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* NUCLEAR STRUCTURE, FISSION: AND SUPERHEAVY ELEMENTS 

** S. G. Nilsson 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

October 1968 

INTRODUCTION 

The intention behind these lecture notes is to present some material 

relevant to half-life determinations of fissioning actinide and superheavy 

elements. In order to deal with this subject at all systematically, we first 

outline briefly the general problem of nuclear stability as seen from the 

view-point of the semiempirical mass formula. Furthermore we consider the 

modifications brought about by the deformation dependent shell model. Finally, 

we discuss the most critical mode of decay of very heavy elements - spontaneous 

fission - first from the point of view of statics, the character of the nuclear 

potential energy surface, secondly, from the point of view of dynamics, aiming 

at the description of the penetration of the fission barrier and the estimate 

of the inertial mass associated with the penetration. 

* Work supported by the U.S. Atomic Energy Commission, based on investigations 

in cooperation with C. F. Tsang, Lawrence Radiation Laboratory; Z. Szymanski, 

A. Sobiczewski and S. Wycech, University of Warsaw, Warsaw, Poland; P. 

Moller, and C. Gustafson, Lund Institute of Technology, Lund, Sweden. A 

common publication is forthcoming. 
x- ,. 

Ou leave of I1bt,811ce from Department of Mathematical Physics, Lund Institute 

of rrechnology, Lund, Sw·eden. 



-2- UCRL-18355-Rev. 

I. ~JCLEAR STA~ILI~1 FROM THE POINT OF VIEW OF THE SEMIEMPIRICAL MASS FORMULA 

The nuclear hinding energy B(N,Z) is defined in the following way 

1 1 
m(N,Z) = :2 E(N,Z) = ~ + ZMZ - :2 B(N,Z) 

c c 

where m(N,Z) is tpe.actual mass of a nuclide, corresponding to neutron number 

N and proton munber Z, and ~ and Mz the free neutron and proton masses. 

From an analysis of available nuclear masses (now numbering approximately 

) 
... 1 2 

1200 already in the 1930's V. Weizsacher and Bethe and Backer were able to 

identify four leading terms that relatively well accounted for the variation 

of B with Nand Z: 

2 
B = _ b A2/ 3 _ ! b (N-Z) 

bvol A surf 2 sym A 

The first two terms are formally the same as those employed to describe a 

liquid drop. The charge term is also the same provided the liquid is homo-

geneously charged. A straight-forward generalization of this. formula to 

describe other shapes of the nucleus than the spherical equilibrium one is 

usually called the liquid-drop model of the nucleus. 

Let us discuss briefly each one of these four terms. The first and 

dominant term, the volume energy, reflects the nearly linear A-dependence of 

the nuclear volume or the A-independence of the nuclear density. Every 

nucleon appears to interact basically with the nearest of its neighbors. 

Most authors give b 1:::" 16 MeV. vo This is the binding energy per particle 

of nuclear matter, the latter So defined that surface effects are negligible 

, 
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and Coulomb interaction nonexistant. Furthermore, there are equal numbers 

of neutrons and protons, by definition, in nuclear matter. 

The second term, the surface energy, proportional to the nuclear sur-

face area, represents the loss of binding suffered by the particles in the 

surface layer due to the lower density (fewer neighbors) there. On the 

other hand the average kinetic energy in a realistic nuclear surface is 

* less than that in the nuclear bulk. A fit to mass data gives approximately 

bsurf ~ 18-20 MeV. 

The third term, the symmetry energy, reflects the fact that, nuclear 

forces favor equal numbers of neutrons and protons, or N z. In the case 

N = Z the limitations brought about by the Pauli principle are reduced to a 

minimum. With a b of ~ 50 MeV, this term decides the width of the mass sym 

valley and together with the Coulomb term the stability line. 

The last term, the electric repulSion term, corresponds to the electro-

static energy of a homogeneously charged sphere of radius R. 
c 

One may regard 

this quantity as an available mass formula parameter. One should, however, 

expect it to approximate the value normally assumed for the nuclear radius. 

The half-density radius Rl / 2, defined as the radius where the density is 

half of that in the center, is assumed to be3 

* On this latter point see W. J. Swiatecki, Proc. Phys. Soc. A., 64(1951) 

226. 
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The commonly employed rms-radius, defined as 

is consistent with Rl / 2 ~ 1.1 X Al / 3 fm, provided there .is a certain depth 

of diffuseness, and for this depth one assumes 

d == R(p 10%) - R(p 90%) ~ 2-3 fm 

The value of R employed to fit mass data is usually near 
c 

R ~ 1.25 x Al / 3 fm. 
c 

The excess of R 
c 

over is roughly consistent 

with the quoted diffuseness of the charge distribution. However, if one adds 

a specific diffuseness correction term and an exchange correction term to the 

electrostatic energy as follows (see e.g., W. D. Myers and W. J. Swiatecki, 

Ref. 4) 

E 
c 

2 
'IT 

2" 

where the diffuseness parameter a is related to d by d ~ 2a ln 9, one 

should expect to use an Rc value near to Rl / 2 . 

by Myers and Swiatecki4 ·gives R == 1.2249 x Al / 3 
c 

* Instead the mass fit 

fm, a fact which hints 

that the Coulomb energy term in-their semiempirical mass formula hides some 

additional effect otherwise not explicitly accounted for. 

* See second paper quoted under Ref. 4. 
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Some of the different terms of the mass formula are clearly discernible 

in Fig. 1. Thus, one sees that the nuclear matter limit of 16 MeV is never 

reached, not even approached. Still the binding energy per nucleon is 

roughly constant (~ 8 MeV) for A > 40. Below this A-value the surface energy 

dominates. The negative slope for A > 60 reflects the growing importance 

of the Coulomb energy term. 

* It has been argued that not only the volume energy, but also the 

surface energy should be isospin dependent. Thus one has added a symmetry 

dependent term to the surface energy which is now written 

where Ref. 4 gives b' f = 17.944 MeV, sur 

furthermore b = 15.494 MeV, b vol sym 

'Y = 1. 7826. 

55.24 MeV.) 

** (In this reference 

To these terms there 

is finally added a pairing energy term P(N,Z) usually taken equal to 

(- 6 , 0, 6) for even-even, odd-A, and odd-odd nuclei, respectively, 

where 

* The symmetry energy earlier introduced is such a term proportional to 

A . (N~Z) 2 or to the nuclear volume. See Ref. 4. 

** We have in the present investigation employed the values cited, taken 

from the second paper quoted under Ref. 4. 
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In terms of this semiempirical mass formula, where no account is .' 
made for a possible deviation from a purely spherical shape, one may now 

study the region of nuclear stability with respect to various break-ups 

and transformation phenomena such as beta-decay, neutron- and proton-emission, 

spontaneous fission, and alpha-decay. 

The trend of the mass valley (beta-stability line) is obtained from 

the condition 

= ° const 

This leads to the relatio~ below for ° 
3 e

2 
2 

10 ~ A - (M -M )c 
c n p 

N - Z 
b '3 2 sym + _ e 

A 10 ~ 
c 

* P. E. Nemirovsky and Yu. V. Adamchuk (Nucl. Phys. 39 (1962) 551) give for 

th dd d 'ff th ' 11.56/AO.552 M V e average 0 -even mass l erence e expresslon 6 = e 

applying to both protons and neutrons. (The authors also propose two alterna-

tive, slightly different functions of A.) One may in addition note in the 

emp.Ll'ic3.1 c1:'lta ::l ,.,ren);; but systematic excess of ~ over ~ . 
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For very large A, Green
6 

has found an alternative and simpler approxi-

mate relation 

N - Z 
0.4 X A2 
A + 200 

The heaviest attainable neutron isotope of a given element corresponds 

to zero neutron separation energy, or 

o 
const 

The so-called neutron "drip line" is of great astrophysical interest. The 

corresponding proton "drip line" corresponds to the condition 

o 
const 

Instability with respect to alpha decay and spontaneous fission set 

additional limits to the availability of nuclides. Especially the limit of 

availability for a heavy-A nucleus is largely decided by the spontaneous 

fission process. The largest binding energy per particle is realized for systems 

near ~~Fe, and all nuclei with A > 100-120 are unstable against fission. 

The lifetimes are, however, so long that the fission process is unimportant 

for normal nuclides of A < 230. The spontaneous fission half-life of 2§gTh 

, , t 1 1017 h'l th f 240, 011 
lS approxlma e y years, w lee same or 94PU lS ~ 1 years, 

254 260 
for 102No 10 sec, and for 104Ku 0.3 sec. The fall-off of half-lives with 

A is thus very rapid, The liquid drop model (see below) makes Z2/A the 
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one relevant parameter for the fission process, and it has been inferred that 

the quantity z2/A being ~ 41 should correspond to half-lives in the region 

of seconds (which in the Z = 100 region is a rather appropriate estimate). 

The use of the semiempirical mass formula defines only rough boundaries 

to the regions of long-lived or stable nuclei (see Fig. 2). The mass valley 

boundaries are in their details connected with nuclear shell structure that 

gives modifications in the binding energy relative to the predictions of the 

semiempirical mass formula of the order of ± 10 MeV for heavy nuclei. The 

problem of a possible island of relative stability beyond the short-lived 

heavy nuclei of Z = 102-105 recently under investigation is directly connect-

ed with the existence of nuclear magic numbers (in this case Z = 114, N = 184). 

A comparison of empirical nuclear masses with the semiempirical mass 

formula, fit in terms of five free mass parameters, bvol ' bsurf' bsym' ~, 

and R, as determined by Myers and Swiatecki,4 is exhibited in Fig. 3. The 
c 

plot is constructed in terms of neutron number N and the sharp increase 

in binding connected with N = 28, 50, 82, and 126 is clearly visible. 

Although it is tempting, one cannot employ the mass formula for 

much larger or very different systems than those encountered in the neighbor-

hood of the beta-stable mass valley. Thus, e.g., it cannot answer the 

problem as to whether finite masses of pure neutron matter are stable. 

For this, a discussion of the nuclear matter problem, the reader is referred 

to other lecture series offered in this summer school. 

Even if neutron matter has a negative nuclear binding, the superposition 

of the gravitational attraction may finally make a large assembly of neutrons 

stable (a neutron star). Essentially employing the undeterminancy relation 



-9- UCRL-18355-Rev. 

to estimate the nuclear energy associated with the location of nucleons 

within a box of measure r, the space alloted to a nucleon in a close-packed o 

neutron star, one can estimate5 the critical mass number of such a star as 

where G is the gravitational constant. This mass number corresponds to a 

mass of about 1/10 of the solar mass. It has been suggested that matter in 

this state could possibly be associated with the white dwarf state of stellar 

evolution. 5 
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II. THE NUCLEAR POTENTIAL 

Nuclear shell structure affects mainly the binding of the last few 

nucleons and gives rise to fluctuations relative to the smooth behavior of 

the mass formula of the order of 10 MeV (see Fig. 3). Although this represents 

a small quantity (~ 1%) compared to, e.g., the nuclear surface energy, shell 

structure is responsible for the existence of nonspherical equilibrium shapes, 

shape isomers and for nuclear spectra in general. 

The condition for a Fermi gas model to be valid is that the mean free 

path of a nucleon inside the nucleus is larger than the average internucleon 

distance. For a shell model field to be appropriate it is required that the 

mean free path is larger than the dimensions of the entire nucleus,5 Exper-

imentally, even this latter condition appears to be fulfilled. 

From the fact that the nucleon separation energy is approximately 

10 MeV and the nucleon kinetic energy (which can be estimated from the Fermi 

gas model) is about 40 MeV one may conclude that the potential depth should 

be of the order of -50 MeV. Actually, a detailed study shows that the potential 

is somewhat momentum dependent and the effective potential, V, due to the 

velocity dependence of the nuclear two-body force, is somewhat deeper for 

particles far below the Fermi surface and somewhat shallower for the ones far 

above. One may thus write the potential as a first order expansion in the 

nucleon kinetic energy 

V = V( €. • 
lnn 

0) + a ' €.. + ---­
lnn 

The second term can then formally be included in the single-particle kinetic 
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* energy term through an effective mass M defined by 

M '"* == 1 + a 
M 
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From the nuclear level density encountered experimentally it appears that it 

* * is appropriate to use M ~ M near the Fermi surface while M approaches 

M/2 for the states near the bottom of the potential. 

In heavy nuclei the nuclear potential felt by neutrons and protons 

becomes somewhat different due to the excess in numbers of neutrons over 

protons. On account of the Pauli principle there is less probability for two 

like nucleons to come within the range of strong attraction than for two 

unlike ones. The neutron potential is therefore largely generated by the 

protons and vice versa. The isospin dependent part of the potential is reflect-

ed in the mass formula in the symmetry energy term. We may write for the 

potential 

1 
2' 

1 
- 2' 

(neutron) 

(proton) 

The last term, when evaluated in the independent-particle approximation, 

leads to the following symmetry energy term 
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It is generally assumed that half of the symmetry energy term derives 

from potential energy and half from kinetic energy.5 This would correspond 

to 

"'" 2 b """ 100 MeV sym 

For 238U the difference between the neutron and proton potential (representing 

strong interactions) amounts to about 15 MeV. For the protons, however, this 

difference is more than compensated for by the repulsive Coulomb potential. 

As pointed out by LanelO the empirically derived charge dependent 

term of the potential can be recognized as the main part of a more general 

term proportional to the scalar product of -t, the nucleon isospin, and 
-7 
T

A
_l , the isospin vector of the rest of the nucleus. Due to the well-known 

alignment of the nuclear wave functions in isospace, only the 3-components of 

this scalar product contribute significantly, resulting in a term proportional 

to t3 (N-Z). 

A. Nuclear Potentials Employed in Literature 

The potentials that have been employed are limited by what is mathe-

matically convenient or manageable. With the advent of present day computers 

a more complicated potential "ansatz" can be explored. From the analysis of 

a large body of scattering data for spherical near-closed shell nuclei the 

parameters of a spherical potential of the Woods-Saxon type have been deter-

mined. As an example we quote the Woods-Saxon potential fitted by Rost 11 

to reproduce the observed single-particle level order near N = 126, Z = 82 

(see belmv, Figs. 6a and 6b), as 'well as observed relative stripping 

Y, 
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cross-sections. (This potential is in fair agreement with those employed by 

Blomquist and Wahlborn12 and Sliv.13) 

where 

and 

We quote here the parameters of the potential employed 

o 
V = V f(r) c c 

f(r) 1 

1 + e 

r o 
x Al / 3 

for protons and neutrons, respectively; Rost finds r = 1.275 fm for protons 
o 

and r = 1.347 fm for neutrons and a diffuseness parameter a = 0.70 fm for 
o 

both neutrons and protons. 
o 

Optimum V is found to equal -58.7 MeV for 
c 

protons and -40.6 MeV for neutrons. 

The spin-orbit term is defined as 

V = -2\' V - (.€' s ) - - f(r) o ( n )2 -7 -7 1 d 
so c 2Mc r dr 

where f(r) is a term of the same character as above, with a = a = 0.70 fm so 

and furthermore r = r so 0 
The parameter \. is chosen differently for 

protons and neutrons, 17.8 and 31.5, respectively, according to Rost. 
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To cite another of many examples, Gareev, Ivanova, and Kalinkin14 

employ the same type of potential in the deformed case but assume the range 

parameters r 
o 

and a to be the same for neutrons and protons. 

For 

o 
V c 

o 
V c 

they assume 

- 53 (1 ± 0.63 x N~Z ) MeV 

and for the spin-orbit term 

N-Z ( ) /-.. ~ 1 + 2 x -p:- protons and neutrons 

{

protons 

neutrons 

Provided the difference in range for neutrons and protons could be neglected 

in the Rost case the corresponding numbers, cited above, would be 

and 

( N-Z ) /-.. ~ 1 + 1·31 x -X-

where the upper sign applied to protons and the lower sign to neutrons. Thus, 

the greatest difference lies in the treatment of the spin-orbit term, the 

Rost potential suggesting a somewhat smaller spin-orbit splitting strength 

for protons than for neutrons for heavy nuclei while for the scheme of Ref. 

14 the reverse is true. 

.~ 
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B. Oscillator Potential, Spherical and Deformed 

The Woods-Saxon potential in principle lends itself to the treatment 

of distorted shapes. One may thus (see Ref. 16) use a = const and let 

Rl / 2 be angle dependent, thus, 

However, the resulting numerical problem of finding single-particle orbitals 

is there formidable unless some expansion of v 
c 

is employed. To the 

extent that large ~2-values are involved (quadrupole distortions) the 

* expansion of the potential is essentially nonconvergent beyond, say, 

~2 ~ 0.4. All calculations at large distortions have been made in terms 

of a modified harmonic oscillator potential. For equilibrium distortions 

in the rare earth and actinide regions, where energy levels and single-

particle wave functions both from a modified oscillator and from an expanded 

Woods-Saxon potential are available, no significant advantage of the one com-

pared to the other are apparent, as far as single-particle level order is 

concerned. Strangely enough this holds true even for relative stripping 

cross-section prediction. 

* N. K. Glendenning, private communication .. By employing suitable coordinates 

the large quadrupole term in the Woods-Saxon potential can be transformed 

away. The Idnetic energy term, in turn becoming asymmetric, can easily be 

16 
handled. 
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For this reason we have found it advantageous to base an analysis of 

the probability for spontaneous fission on the modified harmonic oscillator 

model. 

Let us first consider the simple quadrupole terms introduced by the 

non-isotropy of the oscillator potential assUmed 

V 
M [ 2 (x2 + i) + (i z2 1 osc ='2 (1)1 z 

with16 

2 (1) (1)O(E)(l - "3 E ) z 

1 (1) (1)O( E)(l + "3 E ) 1 

This leads to a distortion dependent part of the potential proportional to 

It turns out to be advantageous to use stretched coordinates 

JM(1)l!li i x = ~,etc. With the help of these one may transform away coupling 

terms of between shells N and N ± 2 

The spin-orbit term is an essential feature of the central potential. 

In the deformed case it is reasonable5 to generalize this term into a term 
~ ~ ~ ~ ~ 

proportional to s· (p x ~ V). As s, v, and grad V are the only three 

available vectors of the nucleon motion, this is the simplest invariant term 

one may construct. 
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If one were to derive a spin-orbit term from the deformed harmonic 

oscillator using the above prescription one would find 

v so 

where the last term in the bracket, for moderate deformation, is very small 
~ 

and where iT is defined in terms of the "stretched-all-the-way" coordinates 

a = -J Millo' ill1 
n ill 

o 
x etc. 

(which transform the harmonic oscillator ellipsoid into a sphere). 

Presently we have been content with going half the way in this 

direction by replacing 
~ ~ ~ ~ 

i . s by it· s, where 
~ 

it is defined in the 

stretched coordinates mentioned, 

takes for form
16 

~ ~ ~. x etc. The Hamiltonian then 
1 

H +~ [ 2 2 2 
(cos et ) T tim 6. + P - 3" EP P2 sp 2 0 P 

+~ 1 (2 2P 2P ?l 
) ] + C 

~ ~ 

E -
d~2 - d~2 - d7]2 

it s 
3 2 



Here 
2 

P 

2 
p 
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is defined as 

/:2 2 1'2 
~ + TJ + ~ 

* To this we have added terms proportional to (cf. Ref. 9). 

and 

We will return to these terms below. 

It is well-known that one cannot fit the deformed level spectra by 

this potential without a correction term that truncates the potential more 

and more with increasing A. It is natural to consider an expansion of the 

radial dependence of the potential, of which the 
2 

r (oscillator) term is 

to be considered the lowest-order term. One might think of adding first an 

4 4 r or a p term, which latter somewhat better adjusts to the deformed 

shape, or rather - and this might appear a more consistent approach - a 

* Distortions of the nuclear potential in connection with the equilibrium state 

have recently been considered by P. Vogel, Phys. Letters 25B (1967) 65 (p
3 

deformations) and C. Brihage and G. Reidemeister, Nucl. Phys. A100 (1967) 

65 (p4 deformations). 
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* term proportional to .?-osc 
The matrix elements of a term p4 within one 

shell are actually the same as those of ~ (_ "2
1 "12) apart from constants. 

Thus, one has 

1(£+1) + ~ ] 

C. The Oscillator Frequency and the Respective Radii of Proton and Neutron 
Matter 

The oscillator parameter 
o 
w is usually determined from the 

o 

condition that the nuclear radius be reproduced. From a simple application 

of the Thomas-Fermi model to the spherical case, or by simply summing matrix 

<r2) elements of for the pure harmonic oscillator, one obtains16 

nm o 
= 41 A- l / 3 MeV 

With the wave fUnctions available we may then go back and calculate 

for protons and neutrons. One then finds17,18 for this value of n.w 
o 

at spherical shape 

* Preliminary results along this latter line are, however, somewhat dis-

couraging (P. Moller, private communication). 
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To obtain the average radius correctly it is found that Al / 3 . hill ~ 40 

MeV is a somewhat better value than 41 MeV. Furthermore one is not confined 

to employing the same value of lim for neutrons and protons. One may let o 

the different neutron and proton potentials and the Coulomb repulsion on the 

protons be reflected in the use of ill 1= ill n p 

requirement of 

2 2 (r) ~ (r ) 
n p 

approximately by choosing 

0 0 ( +! N~Z ) ill = ill 1 n 0 3 

0 

= ~o ( 
1 N~Z ) ill 1 - 3 p 

This corresponds to an isospin vector term 

4 N-Z 
37\ . t 

3 

This term, whose average value is 

~ 20 N-Z ( ) p:- t3 MeV 

Indeed one can fulfill the 

t. 
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represents the difference between the repulsive Coulomb energy term and the 

additional attractive contribution to the proton potential (originating from 

the strong interaction). 

It is presently not clear whether one wants as much excess in the 

neutron radius as corresponds to the use of 
o 
ill 

n 

o 
ill 

P 
or whether requiring 

(r2) = (r2) 
. n p 

is more desirable. Calculations carried out with the alternative 

assumptions exhibit only small relative differences as to equilibrium shapes 

* and barrier heights. 

* Recently a fit to the differential electron scattering cross-section for 

208pb on the basis of a charge distribution obtained from nuclear wave function 

has been interpreted by L. R. B. Elton, Phys. Letters 26B (1968) 689, to 

imply a roughly 10% larger value of the r.m.s. radius for neutrons than for 

protons. Recent experiments on Kaon absorption, assumed to reflect on con-

ditions in the nuclear skin region, indicate a large excess of neutrons over 

protons for 79,81Br and 107,109Ag (E. H. S. Burhop, Nucl. Phys. 131 (1967) 

438). On the other hand, earlier pion absorption experiments (A. Abasian, 

R. Cool, and J. W. Cronin, Phys. Rev. 104 (1956) 855) giving the ratio 

at 700 MeV claim to have set a limit of 

- (0.25 ± 0.20) fm. The determination by J. A. Nolen, J. P. Schiffer, and 

N. Williams (Phys. Letters 27B (1968) 1) of the neutron r.m.s. radius for 

208 . 
Pb from the charge r.m.s. radius and from the Coulomb displacement energy 

of the isobaric analog state gives an excess in the r.m.s. radius for neutrons 

of 0.0'( ± 0.03 fm. We presently tend to interpret the seemingly contradicting 

situation as indicating more a larger diffuseness for neutrons than an actual· 

difference in the half-radius or even r.m.s. radius. 
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D. The Condition of Conservation of Equipotential Surfaces 

An important problem is the formulation of an auxiliary condition 

that corresponds to the fact that the nuclear "liquid" at various deformations 

retains on the average the 'same density. Hence, due to the short-range nature 

of the nuclear two-body interaction, the nuclear field should also extend over 

the same volume in space. One way to formulate this condition mathematically 

is to require that the volume enclosed by a given equipotential surface be 

conserved. Implicitly assumed is that the oscillator bottom remains fixed, 

i.e., that the force field at the very center is left unaffected by changes 

near the surface. 

Consider the surface in x, y, z space spanned by all the points of 

the same potential energy 

const v 
o 

The volume inside this surface is the following 

vol 47T 
:3 

which is a constant, provided the condition 

const 
o 3 
(J) 

o 

is fulfilled. It should be emphasized that for a pure harmonic oscillator the 

same condition applied to all equipotential surfaces. 

'.1' 
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It can now be noted that a similar volume conservation condition is 

. easy to formulate also when the terms proportional to and are 

added. Our total potential is then written 

The relation between the distortion coordinates E and on the 

one hand and a2 and a4 defined by the radius vector 

on the other hand is illustrated in Fig. 4. It should be noted that the 

spheroid itself contains, in addition to P2 and P4, also P6, PS' etc. 

Such terms are, however, neglected in the diagram. Calculating the volume 

inside the surface, defined by the next to the last equation above one finds 

~ 
o 1 

1 '2 d(cos e) 

gs 
o 

1 2 1/2 
(1 + 3 E)(l - 3 E) 

This condition still holds independently of which equipotential surface we 

choose to consider, and the relative simplicity of the expression above is 

one reason for adding 4 
rather than, e.g., rP4 or to our 

potential. The same argument holds for the P
3 

and P6 parts of the 

potential. 
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Added terms that can be written as powers of Vd can obviously be 

included in the same volume conservation condition on mo(E, E4' ... ). 

4 However, p does not qualify as such a conveniently handled term, nor does 

-? -? 
the term proportional to it' s. As the effect of these latter terms is 

to bring down levels from other shells, it is to be expected that their effect 

on the volume conservation condition is not negligible. To correct for this 

neglect without modifying the volume conservation condition above we have 
-? -? 

subtracted the average value of these terms for each shell. As (it' s ) 

* for each shell has a vanishing mean value, t~e entire modification consists 

of replacing 4 
p with 4 4 

p - (p )N' or 

Actually, the addition of 4 
p alone tends to push the shells apart 

beyond the oscillator spacing lim . 
o This corresponds to the fact that the 

added 
4 

p term makes the well narrower. A subtraction of (p4)N restores 

the width of the potential for each shell but still causes the potential 

walls to rise faster locally than do the pure oscillator walls. The addition 

of 
-?2 

-it on the other hand, lowers the effective oscillator spacing below 

lim , while 
o restores the spacing to lim . o 

This is possible 

only with the introduction of the peculiarity that each shell is given its 

own,potential shape. In spite of this artifice, orthogonality is still 

preserved as long as one entire matrix is diagonalized. 

* 1 -?2 -?2 Obviously within one N-shell the matrix elements of (n (i») - 2 ~t - t N 

and are identical. 

, I 



'. 

-25- UCRL-1835j-Rev. 

E. Single-Particle Energies 

In Figs. 2-5 of Ref. 9 we exhibit the energy eigenvalues as functions 

of E, for E
3

, E4' E6' equal to zero, for the two important regions of 

deformed nuclei. These d~agrams are roughly adequate for 165 < A < 175 

and 245 < A < 260. As hexadecapole distortions are important at the beginning 

and the end of the rare earth and the beginning and end of the actinide regions, 

we exhibit diagrams (Figs. 5a-h) valid for nuclei with 150 < A < 165, 

175 < A < 190, 225 < A < 235, 250 < A < 260, where E = -0.04, 0.04, -0;04, 

and 0.04, respectively. More complete level diagrams will be given elsewhere. 

Slight improvement of the level schemes is noticeable particularly for rare-

earth neutron levels. 

By this device we have established a fair reproduction of the order of 

the observed single-particle levels. Presently stripping data of, e.g., 

(d,p) and (He3,d) type, giving distribution strengths over the different 

members of a rotational band, have become ,of increasing importance (among a 

iarge number of relevant references see, e.g., Ref. 19). From these data, 

orbital "finger prints" identify the single-particle orbits experimentally 

beyond any doubt among available orbitals of given spin and parity. With 

almost no exception, earlier assignments, based on alpha-, beta-, and 

gamma-spectroscopic data, have been confirmed. However, new levels of 

considerably higher excitations have been observed, in addition. It is to 

be emphasized that, to describe conditions at fission saddle distortions, the 

positions of the shell crossings due to deformation are decisive. Thus, 

for the actinide elements we want to know safely the position of, e.g., the 

proton levels [505 11/2J, [400 1/2], [651 1/2], and [770 1/2] and 
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the neutron levels [606 13/2], [501 1/2], [761 1/2], and [880 1/2], 

see cited figures. 

In Fig. 5i, we note in passing the magic numbers predicted by the 

potential chosen. As other authors 7,8 we predict Z = 114 to be a fairly 

good magic number. 9 On the neutron side, there does not appear anything 

clearly "magic" for the shell parameters appropriate to the actinide region. 

As the parameters K and Il are extrapolated into the A ~ 300 region 

(see Figs. 6a,b), the N 164 subshell disappears entirely while the shell 

closing at N = 184 may be said to approach magicness (as also N 196) . 

In the latter figure we display the spherical level ordering obtained 

by the modified oscillator potential and the Woods-Saxon potential as employed 

11 by Rost. The extrapolation procedure employed by us to describe masses 

near A "" 300 is the following. The shell parameters K and Il are optimized 

for the regions centered around A = 165 and A = 242. By these two sets of 

choice of the K and Il parameters the entire rare earth and actinide 

regions are fairly adequately described. It is then assumed that one may 

extrapolate the encountered variation in K and Il linearly with A. As 

a check the spectrum obtained by interpolation for K and Il to A = 268 

is plotted. 

The agreement with the single-hole levels of 207Tl and 207pb is 

encouraging. 209 . 209 On the other hand, the spectra of Bl and Pb are less well 

reproduced. The levels in the latter cases start at a binding energy of 

only 3-4 MeV, and the insufficiency of the oscillator well is therefore 

expected to become increasingly important with excitation energy in the 209Bi 

209 and Pb spectra. 

v· 
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For comparison we have included in the same figures the level schemes 

obtained by Rost according to similar extrapolation rules outlined in Ref. 

11. Although in details there are considerable disagreements, there is an 

overall agreement in the prediction ·of low level density for the spherical 

shape for A = 114 - 126 and for N = 178 - 184. As detailed calculations 

bear out, this situation is favorable to the establishment of a spherical 

ground state and a large barrier against fission. 
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III. THE PAIRING FORCE 

Of relatively minor importance to the equilibrium distortion is the 

pairing force. When pairing is taken into account, the single-particle 

energy sum is replaced by the following expression 

where 

E 

e 
v 

v 
ep~-G(L>vvvt-G L 

v v 

are the single-particle energies and U 
v 

and v 
v 

the 

pairing factors, and where the sum is taken separately over neutrons and 

protons, for each with a different pairing matrix element G and G 
n p 

The previously employed prescription has been to assume the pairing 

matrix element as proportional to a constant divided by A, or 

neutrons and G /A for protons. 
p 

G /A n 
for 

The pairing force was originally introduced by Bohr, Mottelson and 

Pines20 to simulate the short range interaction not included in the potential 

field. It was basically thought of as being a simplified representation of 

the a-force but additionally limited to acting only between pairs of time-

reversed states. The factor l/A is a volume factor and is assumed to 

reflect the fact that the overlap integral, in lieu of any other correlation, 

should be inversely proportional to volume. The entering matrix element is 

for a a-force 

f * * G ~ '1' '1'_ '1' 
v v 11 
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It should be obvious that the overlap between ~ and v orbitals 

'. is weakened by ~ and v being in different magic shells, or, e.g., represent-

ing very different asymptotic quantum numbers . 
• 

Relative to a certain level v the matrix elements for scattering 

into a state ~ should falloff with energy (and e.g., angular and radial 

quantum number differences between v and ~). In the simplified version 
. 

of pairing theory, one employs one single average pairing matrix element and 

a corresponding choice of the cut-off energy above and below the Fermi 

level. To some extent a higher cut-off can be compensated by a smaller matrix 

element within a given region of A. However, one has in addition the 

empirical finding that the odd-even mass difference, in the simple pairing 

theory equal to 6, depends on A as 

12.0 MeV 

~ 

The magnitude of 6 and its A-dependence appear to set some limits on the 

freedom of choice (see below). 

The neutron and ,proton collision velocities depend on the depths of 

the neutron and proton potentials. These depths in turn depend not only on 

A but also on Z. As the S-state interaction depends critically on the 

colliding energy, it is natural to assume for the pairing force matrix 

elerrent an isospin dependence to lowest order in (N-Z) of the following 

type 

G \ X A 
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where the plus sign holds for protons and the minus sign for neutrons. It 

was found that the empirical odd-even mass differences were reproduced for 

constant go 

by including 

and glover a wide mass range, from A ~ 150 to A ~ 250, 

,J 15Z' states' below and equally many states above the prot on 

Fermi surface. The corresponding cut-off was employed for neutrons. This 

corresponds roughly to the inclusion of three neutron and three proton 

oscillator shells. As emphasized some of these prescriptions are arbitrary. 

Other authors confine themselves to a constant number of states and cover a 

less wide region of masses. A wide range of prescriptions are therefore 

available. 

* With present prescriptions we find go = 19. 2 , gl = 7.4 MeV. The 

fit to odd-even mass differences in the rare earth region achieved may be 

studied in Figs. 7a,b. 

The effect of the inclusion of pairing relative to a simple summation 

of single-particle energies is exhibited in Fig. 8 for the case of 254Fm 

mostly for the pure spheroid case (E4 0). While the pairing energy is 

about 14 MeV for E = 0 it is reduced to about 1 MeV at the equilibrium 

distortion and thereafter exhibiting strong fluctuations. The variation in 

* We have presently limited the number of free parameters by prescribing go 

and gl the same for neutrons and protons. From Figs. 7a and 7b it appears 

that an improved fit may be obtained by using somewhat different values of 

and for neutrons and protons. 
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~ and ~ with 
n p 

E for 254Fm may be studied in Fig. 9. To account for the 

2la 
indication of an energy gap at the fission saddle point of about 2 MeV 

2~ 2W for Pu and of about 3-4 MeV at the fission saddle point for Po one 

: . 2lb . G must, as Stepien and Szymanskl, assume an lncrease of with distortion. 

Such an assumption receives support from the energy gap calculation based on 

22 
the "slab model" by Kennedy, Wilets and Henley. We have in separate cal-

culations assumed G constant with deformation and proportional to the sur-

face area, respectively. The latter assumption appears to account better for 

fission half lives as well as for the apparent large energy gap at the fission 

saddle point. 

Setting G directly proportional to S corresponds to the simplified 

assumption that the contribution to the pairing from the inner regions of 

the nucleus is negligible and that the surface region is entirely responsible 

for the pairing. The assumption that pairing is largely a surface phenomena 

is based on the fact that at the large collision velocities encountered in 

1 
the center of the nucleus, the S phase shift becomes very small and ultimately 

changes sign. The slab model calculations
22 

bear out that ~ is proportional 

to while the simple assumption of G ~ S leads to as 

borne out by Fig. 10. The sUrface dependence of G suggested by the slab 

model thus appears to fall half-way between the assumptions of G = const 

and G ~ S 



-32- UCRL-18355-Rev. 

IV. THE COULOMB ENERGY 

The Coulomb energy involves quantum mechanically the following 

expression 

E 
c 

~(r --- r ) dT --- dT 1 Z 1 Z 

where, if correlations are neglected, ~ is the Slater determinant of single-

particle states. Furthermore provided that anti-symmetrization is neglected 

and ~ replaced by a simple product wave function, E takes the simple form c 

2 
e 

~ ~ 
Ir. - r·1 

1. J 

where the single-particle density Pi is defined as 

As our program calcula~es single-particle wave functions 

.* 
'IjJ., this 

1. 

expression can in principle be evaluated. Presently we have been content 

with the simplification of assuming a homogeneous charge density within an 

* Preliminary results of such calculations by J. Bang and A. Stenholm Jensen 

are reported in Conf. Int. Symp. Nucl. Str., Dubna (1968) 98. 
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equipotential surface enclosing a volume equal to Thus 

R(e) 
z2 

If 
-7 -7 

2 
E p(rl ) p(r2 ) e 

d'rl d'r2 c: "2 c -7 -7 

Irl - r21 

. where thus p is the total nuclear charge density, which is constant out 

a radius R(e), depending on the distortion parameters E, E4,E6' etc., 

assumed. 

In principle this is a six-dimensional integral. It can, however, 

be reduced (see e.g., J. R. Nix23 ) to a two-dimensional integral where 

to 

elliptic functions appear in the integrand. The two-dimensional integral can 

then be evaluated numerically for an axially symmetric but otherwise 

arbitrary shape. 

We have, in addition, introduced corrections for surface diffuseness 

and exchange energy. These are of the order of a few percent. One may then 

write the Coulomb energy form 

E 
c 

2 5 
g( € , E4' ... ) -; 3" (:J2 - ] 

In this equation g( €, E4' ... ) assumes the value one for. a pure sphere and 

has otherwise to be evaluated numerically. 

The diffuseness correction contains the diffuseness parameter a 

~ (taken equal to 0.546 fm). It is shown (Myers and Swiatecki4 ) that, to 

lowest order in the diffuseness parameter a, this expression is correct for 
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an arbitrarily shaped drop. No shape-dependence is thus connected with this 

term. Finally, the third term representing an approximate correction, as 

derived by Bethe and Bacher,2 to take into account the extra correlation of 

the protons that is implied by the requirement of anti symmetry of the nuclear 

wave function. In the evaluation of the Coulomb integral on the preceding page 

the uncorrelated density should be replaced by the correlated two-particle 

density function, which can be evaluated for a simple Fermi gas as 

where ~ is the Fermi momentum 

and 

C(x) = L 
2 

x (
Sin x ) x - cos x 

The second term in the density function gives the antisymmetrization energy 

term 

.. 
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From the derivation of this term, one may verify that it represents a volume 

energy and is thus independent of the nuclear shape. Because the exchange 

term is the result of short-range correlations, the correction to this term 
, . 

resulting from the finite size of the nucleus is proportional to the nuclear 

surface area and is smaller by than the leading term given above. 

This surface correction to the exchange term has not been included. 
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V. EQUILIBRIUM DISTORTIONS 

With the inclusion of the Coulomb energy the total energy takes the 

form 

E( E, E4, ... ) 

v 

- G ( L 
v 

The minima of the energy surface are ·obtained from the condition 

o 

Equilibrium distortions of E, E4' E6 have been calculated according 

to this prescription. Often the corresponding experimental quantities do not 

relate directly to any singular one of these. Thus the quadrupole moment re-

ceives a large contribution from the interference of the and E 

distortions. For nuclear quadrupole moments, which are presently acc~rately 

measured in the deformed regions via Coulomb excitation cross-sections, one 

may employ the nucleonic wave functions to compute the expectation value 

A comparison with data shows the so determined quadrupole moments to be well 

reproduced as to their A-dependence. As to the absolute magnitudes the 



'. 
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theoretical values are generally 5-10% too small, however. 17 We do not 

exhibit any comparison as earlier results in the field are essentially 

. 24-27 reproduced. 

In the case of E4 distortions (and E6 distortions) an interesting 

area of comparison is presently available. A detailed analysis of inelastic 

alpha-scattering data (involving a large set of energies and angles) has 

recently been carried out by Hendrie et al. 15 on.the basis of an optical-

potential. The optical Woods-Saxon potential assumed has equipotenti,al 

* surfaces given by 

The differential cross-sections involving the populations of rotational bands 

+ + 
of even-even deformed nuclei up to and including 6 (and sometimes 8 ) are 

fitted by a combination of ~2' ~4' and ~6 (see Fig. 11). In this analysis 

it is furthermore assumed that the nucleus is a perfect rotor (i.e., that 

Coriolis coupling and stretching may be neglected). The parameters ~2 and 

~4 are determined in this way with an accuracy of about ± 0.01 from the 

data (see Fig~ 12). 

* The relation between the coordinates ~ and ~~ is given by 
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The last paralneter 136 is less accurately determ.ined. It appears) 

hOi-lever) safe to say that in general and over the 1·.-hole region studied) 

152 ::: A ::: 178) Dl.L'l1.erically small arid negative P6-val;;es are favored (see 

Fig. 13 for cO~1:9arison vi th theoretical 'vallE s). One is thus lead to assume 

the existence of stable hexakontatettara-pole shapes for the nucleus. 

Returning to Fig. 12 the agreement bet'·!eer. theoretical and e::lpirical 

p4-values appea:=:,s remark?ble. It turns out that t;,,, P4-values encountered 

correspo~d roughly to the p4-distortion already present to zeroth order by 

the prescribed filHng of levels in the defo!'rr:ed \·,ell. This has been pointed 

out by the auth:lr in Ref. 28 and by Bertsch. 29 Thus the first fe-"l outside-

of-c!~sed-shell sphe!'oide.l orbitals (N == n) haVe a large positive contribution z 

to The sa~e is true of the last filled ones Cn == 0). On the othe!' z 

hand, those near the middle of the shell (n ~ 
z 

1 
'2 ~r) have a large negati '!e 

contri'8'J.tion to This suffices to explain the trend of the encountered 

varie.tion of :34 beh;ee!1 closed-shell. nuclei. It must be emphasized that 

pola!'izs::'ion (couplir'ig bet"leen shells IT -7 N ± 2) enlarges the effect by 

* of 2 or 3. Coulomb inte!'action generally favors positive 

Fine.lly) pairic:g he.s a s:-~learing trend and therefore tends to counteract the 

* Actuall:l the inclusio!1 of couplings '1-11 thin the I~-sl:ell reduces the distortion 

sorrle'\·;nat relatively to that obtained from keeping the diagonal contributions 

only as in Ref. 30. (Fo:=:' a discussion of tte different contributions see 

Ref. 17.) 
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effects of polarization and Coulomb interaction. For this reason, earlier 

calculations that neglected the effects of pairing, polarization, and Coulomb 

repulsion gave still rather similar results. 30,3l 

In Figs. l4a and '14b we exhibit the theoretical distortion para­

meters E and E4 associated with the nuclides in the rare earth and 

actinide regions, respectively. These diagrams should be consulted prior to 

the employment of the single-particle diagrams. 
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VI. DISTORTIONS BEYOND THE EQUILIBRIUM SHAPE AND THE STRUTINSKY NORMALIZATION 
METHOD 

The total potential-energy surface is presently studied between 

E = - 0.2 (sometimes - 0.5) and E = 0.95 (sometimes E = 0.9) and for E4 

between - 0.08 and s4 = 0.16 (sometimes 0.12). With the application of the 

volume conservation condition alone, as can be seen from Fig. 15, the behavior 

is unsatisfactory for large E. One may note that the restoring energy 

introduced by the volume conservation condition is a term of very large 

1 2 
magnitude, being roughly proportional to 9 E times the total nuclear 

energy, or for E = 0.9 of the order of 1000 MeV. As, unfortunately, not 

the entire nuclear potential is included in the volume conservation condition, 

"small" corrections to the geometry of the potential-energy surface are not 

unexpected. (In particular the unrenormalized 
4 

p or 
--72 
£ term appears 

responsible for the improper behavior at large lEI. See Ref. 28.) On the 

otber hand, the topological character of the surface may be correctly reproduced 

as the correct level order is reproduced. 

Such a renormalization of the surface is brought about by the 

introduction of the Strutinsky procedure. 32 The basic idea is the following. 

The average behavior of nuclear binding energies as a function of the nuclear 

charge and size is well reproduced by the so-called liquid-drop model (see 

Section I) with empirically determined parameters. One then surmises that on 

* the average this model also adequately describes deformation. 

* This is, of course, what is conjectured in the original application of the 

model to the theory of fission in the classical paper by N. Bohr and J. A. 

Wheeler (Phys. Rev. 56 (1939) 426). 
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The relative success of the liquid-drop theory of fission may be taken as a 

warrant for this. One should therefore require that on the average ~ the 

average taken over so many nuclei that shell effects are averaged out - the 

total energy has the same' distortion dependence as that of a liquid-drop. 
, 
I 

This requirement is enfor'ced by subtracting out of the total energy an 

averaged energy and replacing the latter by the liquid-drop energy. The main 

problem consists in forming this average in a satisfactorily, unique way. 

To this end Strutinsky first defines a smoothed level density g(e) 

by smearing the calculated single-particle levels e 
v 

over a range ~ J 

where ~ is an energy of the order of the shell spacing. Let us first 

define an uncorrected level density go(e)J where 

go (e) - -y ~ L de' exp [ ( e~e ' r ] . G( e ' ) 

where G(e') 

1 
==---
~.J; 

exp 

v 

L o(e' - e) is the calculated single-particle level 

v 

density. Assume that there' are short-range fluctuations in G(e') with 

ranges ~ < hm and a long-range variation of order L > hm The 

problem is now to average out the short-range variations without affecting the 

long-range dependence on energy. Obviously this puts limits on the choice 
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of ~ as A« ~ «L. With the condition on ~ upheld, one may correct 

for errors introduced by the folding (averaging) procedure by introducing 

a modified averaging function. Thus, an improved averaged level density function 

gee), in second order suggested by Strutinsk~2 and in its more general form 

derived by Tsang,33 can be written as 

gee) 1 L f [ c~ev f ] ~.J;' corr 
exp 

v 

where f is defined as corr 

f 1 + ( ~ - u~ ) + ( ~ _ ~ u2 
+ ! u 

4 
) corr 2 v 2 v 

+ (5 15 2 + 5 4 16) + ---15-g- u '4 Uv b Uv v 

In the latter expression we have introduced the simplified notation 

u 
e-e 

v 
v ~ 

The second term in f represents a second-order correction and ensures corr 

that a (smooth) polynomial G(E) of second order in E is preserved after 

the folding transformation. Using the listed terms up to the sixth order 

the long-range dependence of G(E) is restored up to sixth order in energy. 

.' 
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In Fig. 16, valid for Pb208, we display the shell energy*" E shell' 

representing the finally obtained shell structure c'.)rrection to the liquid 

drop energy, as given below. It is obvious that the keeping of terms in 

fcorr up to 4th order makes Eshell rather ~-independent while the 

** second-order approximation introduces a serious folding error. 

Based on the averaged level density function gee) one may now 

calculate an averaged total energy E(g) e.g., for neutrons 

__ fA.
n 

E(g) 2e g (e) de 
n 

where the neutron Fermi energy 

2g (e) de 
n 

A. 
n is determined from the condition 

The averaged proton energy is obtained similarly. The sum of energies due 

to pairing and shell structure is obtained from the equation 

*. 
In figure this quantity is denoted N-dshell, referring to neutrons. 

** In the present calculation correction terms were included up to the 

sixth order. 
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The two parts of this sum, relating to neutrons and protons respectively, 

have to be evaluated separately. In order to be able to connect to the liquid-

drop model we have in the expression above subtracted the average pairing energy 

* (E . ), where the average is taken over the shell. This average turns out pa1.r 

to be A-independent. One now obtains the renormalized total energy by adding 

to the expression above the surface and Coulomb energies (the symmetry energy 

is usually assumed deformation-independent in the liquid drop model, so its 

addition is irrelevant for the deformation dependence). We have thus 

In summary, we have thus replaced the smoothed total energy behavior with 

** that of the liquid-drop model. All local shell structure variations 

originally obtained are retained, on the other hand. 

It is 'thus important to verify that the equilibrium deformations, 

shown earlier to be in agreement with experiments, remain the same. Indeed 

the changes in E and E4 are usually less in absolute value than 0.01. 

* The average is formed at the equilibrium distortion. The systematic growth 

in pairing energy due to the assumption of G being proportional to S is 

not subtracted out. This is a feature associated solely with very large 

distortions which is assumed not to be built into the liquid-drop model. 

** With parameters as of Ref. 4. 
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This appears to imply that the model used previously, with the volume conservation 

cbndition applied, for small distortions has the gross behavior, stiffness 

etc., of the liquid drop model. The difference first appears at E ~ 0.4 

i 
and corresponds more to a change in IIgeometryll while the IItopologyll of 

! 

the energy surface is retained. 

One may estimate the small quantity (E .), employed in the final 
pa~r 

expression for the total energy, from the following approximate relations 

E . 
pa~r ( ~ 

We have chosen G and G such that (see p. 29) 
n p 

(6. ) ~ 
n 

(6. ) ~ 
p 

12 

.JA' 
MeV 

The level densities can be estimated for the simple oscillator model as 

In this way one obtains 

E . ~ - 2.3 MeV 
pa~r 

independently of A. 

2/3 
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To the extent (E ) is independent of A, its absolute value is, pair " 

of course, largely irrelevant. In the comparison of calculated masses with 

empirical ones, we have thus arbitrarily set 

parison will be further discussed below. 

(E .) = - 2.3 MeV. palr The com-

., 
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VII. PREDICTION OF NUCLEAR MASSES 

In Fig. 17 we compare empirical and theoretical masses with reference 

to the liquid drop mass prediction for zero distortions 
I 
i 

Thus above 

in Fig. 17 we plot M 
exp i 

in units of MeV. Immediately below we 

plot the theoretical value of E at equilibrium distortion, E ,which eq 

thus contains all effects of shell structure and distortion. These latter 

contributions are obviously not contained in the liquid-drop energy evaluated 

for a pure spherical shape, which latter is taken as a reference point. The 

difference between M - M... D( 0) and E , exhibited as the third and lowest exp -L eq 

graph in this figure, reflects on the appropriateness both of the liquid-drop 

parameters chosen and on the nu~lear shell and pairing fields. Although the 

local trends exhibit encouraging agreement, there are two important points of 

deviation: 

(i) the over-all trend appears to be towards too small theoretical 

masses with large A-values. 

(ii) There appear relatively large discrepancies connected with the 

doubly-closed shells of 208pb • The theoretical binding appears underestimated 

by about 2 MeV below and at A ~ 208. 

First, a slight readjustment of the Myers-Swiatecki 
4 

mass parameters 

may be desirable, particularly as these were obtained on the basis of a 

conjectured shell structure term; e.g., a different choice of the Coulomb 

. radius may affect the masses of deformed and spherical nuclei differently 

and thereby also affect the deviation near A = 208. Alternatively, the 

underestimate of binding near doubly closed shells may reflect on details 

of the single-particle level scheme, or to some extent it may indicate the 
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existence of an additional correlation energy not reproduced by the pair 

correlation energy, which latter, on the contrary, collapses near closed 

shells. Finally we have neglected the rotational asymmetry degree of freedom 

~, which may .be important for ground state masses between A = 190 and 

A = 200. 

For the moment we have been content with the performance of the semi­

empirical mass parameters on the basis of this comparison. However, a 

redetermination of these parameters on the basis of the experimental masses 

* is being planned. 

* OUr calculations of masses are similar to those reported by P. A. Seeger and 

R. C. Perisho, Los Alamos Scientific Laboratory Report, LA-375l, 1967. These 

authors neglect, however, theP4 degree of freedom and represent the liquid 

drop barrier by a cubic in E. On the other hand, they allow for an 

adjustment of the liquid drop parameters. OUr inclusion of the P4 degree 

of freedom appears to improve the mass fit considerably. 
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* VIII. POTENTIAL-ENERGY SURFACES AND THE FISSION ISOMER STATES 

Two representative energy surfaces are exhibited in Figs. 18 a,b. 

The separate contributions from the liquid-drop terms and the shell plus 
I 

pairing energies are exhibited in Figs. 19 and 20. The employment of E 

and E4 and the range of these parameters chosen in the calculations appear 

adequate to map the general trend of the fission barrier for elements with 

z ~ 96. For lighter elements the existence of higher distortion multipoles 

may be important. Thus the liquid-drop energy alone appears in U to be 

about 0.6 MeV higher at the liquid-drop saddle point distortion (E "'" 0.85) 

in the (E, E4) parametrization than in the more general parametrization 

used by Nix. 23 Similarly for.the Pu saddle point, occurring at E"'" 0.75 

in the liquid dr9P model, the error due to the insufficient number of para-

meters appears to be at least 0.3 MeV. Beyond Cm the difference at the liquid-

drop saddle point falls, however, below 0.1 MeV. This reflects the fact that 

f 1 Z2/A or arger the liquid drop saddle point occurs at smaller quadrupole 

distortion, where higher shape multipoles are less significant. (One might 

attempt to introduce an ad hoc correction of the barrier based on this com-

parison, but presently we use these numbers as a measure of the inaccuracy of 

the parametrization at large distortions.) 

* The recent results by Yu. A.Muzichka, V. V.Pashkevich, and V. M. Strutinsky, 

Joint Institute of Nuclear Research, Dubna, preprint P7-3733, are in good 

agreement with those reported here concerning the barriers of the actinide 

and super-heavy-element region, although the E4 degree of freedom is 

neglected in the reference above. 
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For the Z = 114 region the parametrization appears adequate as the 

barrier rarely extends beyond E ~ 0.7. Actually the double-hump saddle 

points are situated at yery moderate distortions. In the super-heavy element 

case the great uncertainty enters due to the extrapolation to higher A-regions 

of the nuclear potential-while the parametrization may be adequate. 

In the actinide region, on the other hand, the nuclear potential seems 

well known, at least for the equilibrium region of distortions. Representative 

topographical maps are given for a few nuclei exhibiting the entire (E, E4) 

plane covered in the calculations. As is seen from these, the importance of 

the E 4-degree of freedom increases with increasing E. Although 

equilibrium shapes of both positive and negative E4-values are represented, 

the saddle always occurs for a positive E4' representing a small waistline 

on the spheroid. As E increases, the waistline develops rapidly, as 

expected. 

In Fig. 8 one may study the effect of the E4 degree of freedom onthe 

barrier of 254
Fm• Obviously its inclusion is decisive. In Figs. 21a-h 

we exhibit the barriers obtained for isotopes Z = 92 to Z = 106 for 

the two alternative assumptions of G = const and G proportional to the 

* surface area. This type of plot represents a cut through the two-dimensional 

topographic map in the (E, E4) plane such that for each E-value we have 

* We believe the second assumption to be more adequate (see below). 
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employed the E4for which the energy is minimum.* 

One should note the general trend in the actinide nuclei for the for­

mation of a double-hump barrier, as was first emphasized by Strutinsky.3
2 

As 
j 

A grows from 230 to 250, the innermost barrier rises from a very small hUmp 

to be the dominant barrier while the second barrier hump diminishes. For 

common Z = 100 isotopes the second barrier is very low (and with the inclusion 

of neglected degrees of freedom it appears likely that it vanishes altogether). 

The second barrier hump in U, Pu, and Cm comes out much too high theoretically, 

unless the surface dependent G matrix element is employed. In this latter 

case the barrier heights are within one or a few MeV of that obtained from 

** experimental data analyzed in terms of the one-hump barrier theory. 

The empirical evidence for the two-hump fission barrier is now fairly 

convincing and is connected with the foJ,lowingrecent findings. First among 

these were the discovery of the spontaneous-fission isomers, which correspond 

to excited states of nuclei in the region 236 ~ A < 246. These isomeric 

* The oblate minimum, as has been shown by D. A. Arseniev, L. A. Malov, V. V. 

Pashkevich, and V. G. Soloviev, preprint Dubna, E4-3703 (1968), is unstable 

with respect to the 'Y degree of freedom and directly leads to the 

ground state minimum. It can therefore not be associated with any shape 

isomerism. 

** The inclusion of the gamma degree of freedom appears further to reduce the 

. 240 256 
first hump of the barrier by 0.4 to 2.1 MeV, for nuclei between Pu and Fm 

as repor:ted by V. V .. Pashkevich, Conf. :tnt. Symp. Nucl. Str., Dubna (1968) 94. 
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states are found to decay by spontaneous fission rather than by gamma decay. 

The first fission isomer, in 242Am, discovered by POlikanov,34 had a 

half-life of 140 ms. Later eight other cases have been found35,36 with half­

lives from 6 x 10-5sec (238
Am) to 5 x 10-9sec (240pu ). The known excitation 

energies appear to lie between 2 and 3 MeV. Indeed these latter half-lives 

and excitation energies are consistent with the assumption that these isomeric 

states represent a shape isomerism and are connected with the secondary barrier 

242' minimum. (The marked additional hindrance for Am may be connected with 

the single-particle orbitals involved in this odd-odd case.) 

Additional evidence appears_ to support the existence of states associated 

with the barrier indentation. This eVidence36 is based on the study of the 

variation of the cold-neutron fission cross section for elements in the 

region 231 ~ A ~ 242. Superposed on the fine structure of, say, about 1 eV, 

occurring at about 6-7 MeV of excitation, and relating to compound states 

associated with an equilibrium shape, there appears a sequence of resonances 

* with a spacing of, on the average, about 100 eV and a width of a few eV. 

DII/DI varies from about 500 in 235U to about 50 in 241pu; DII referring to 

*These numbers being relevant for the particular case of 235U are obviously 

rather different in odd-A, odd-odd or even-even cases. For a discussion on 

- 24L 
the -Pu resonance spectrum, see A. Kerman and H. Fashbach, Comments on 

Nuclear and Particle Physics 2 (1968) 125. 
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the spacing of the resonance type states and DI to the spacing of the normal 
.-' 

equilibrium shape states. Presently one interprets the resonance states as 

36 the states of the second energy minimum as suggested by Lynn. Using the 

standard level density formulas one may estimate the second minimum to lie 

1.5 - 3 MeV above the ground state for the various nuclei between 235U and 

242Am:. All these facts appear to be in qualitative agreement with the 

predictions of these present model calculations. This seems all to give 

further confidence to our description of the actinide barriers. 

A. Region of Superheavy Ele:rrents 

For elements Z = 102 108 with A < 280 presently studied the equili-

,brium shape corresponds to E ~ 0.2 - 0.25 and the barrier appears to show 

a simple one-hump character. 

For these elements and for others with larger Z, as N approaches 

184 the lowest minimum becomes spherical and the barrier becomes again of 

double-hump character. The barrier minimum occurs near E ~ 0.3. Actually 

the transition from a deformed to a spherical ground state takes place for 

N ~ 176 - 178 for Z = 102 - 114, according to present preliminary investi-

gations. Thus for Z = 102, e.g., already A = 280 is spherical according 

to our calculations. The deepest spherical minimum and the highest barrier 

seems to occur for the double-magic nucleus38 Z = 114, N = 184, A = 298 

(see Fig~. 22 a-d). * It was conjectured by Swiatecki, that there might be a 

* As quoted in Ref. 45. 
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region of relative stability (half-life ~ lS) against spontaneous fission 

(see below) bounded by the approximate mass valley boundaries of A ~ 308, 

A ~ 288 and N-Z = 76 and N-Z = 62. It now appears that this region may 

be connected with the very neutron rich actinide element region along N = 184. 

Thus N = 178 to N-values beyond N = 184 appear to favour sphericity. For 

a more detailed investigation into the fission process, in terms of which the 

boundaries of this region are determined, we next turn to the problem of the 

barrier penetration. 
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* IX. THE BARRIER PENETRATION PROBLEM 

A problem of foremost importance in connection with the fission barriers 

is that of the dynamical inertial mass associated with the penetration of the 

barrier leading to fission. (For a general review of the probiem of nuclear 

fission see the monograph by Wilets. 38 ) 

Let us assume for the moment that the problem were a one-dimensional 

one and E the relevant parameter. According to simple WKB theory the 

penetration probability for the penetration of a barrier is given by the 

expression 

P:
u 

.J 2B(W( E) - E)' dE - exp (-K) exp 
{ 

- :;;<~ J"E' } 

.. .• 39 There exists an improved expression, as shown by P. O. Froman and N. Froman, 

. 1 
P = (1 + exp Kr 

This expression differs from that above mainly for small K-values. Maybe 

one is more familiar with the corresponding expression for the case that 

E is replaced by x and B by the penetrating-particle mass M. In our 

2 
case B takes the dimension of mass times length, or moment of inertia, 

* I have in the following exploited Prof. Z. Szymanski's notes on the penetra-

tion problem, as well as the lecture notes by A. Bohr and B. Mottelson5 on 

'~, the time-dependent treatment of the analogous problem of vibrational motion" 
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as € is dimensionless. The quantity W( €) represents the potential-energy 

surface considered in the foregoing. To make things simple, let us assume 

B to be a constant, while in the actual case it turns out to be E-dependent. 

One usually assigns toB . its value at the saddle point, where the contribution 

to the integral is expected to be the largest. The quantity P is defined 

as the probability of penetration through the barrier for a given "assault". 

To relate to the fission half-life, we also need an expression for the number 

of assaults on the barrier per second. Thus number n is usually equated to 

the frequency of the beta-vibrational motion at the equilibrium point. One 

may therefore set 21 n ~ 10 ,corresponding to a vibrational frequency of 

TIm 0b g: 1 MeV. 
Vl 

We have thus, in.units of sec. 

TC=::-· 
1 1 -21 P !::! 10 exp K n 

Consider a parabolic barrier of height 8 over the energy minimum 

W( E) 
1 2 

8 - - C( E - € ) 2 8 

where 

€8 ( E' + E" )/2 

and 

C 88/ (€' ,,)2 ~ 

- E 
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Introducing 

one obtains 

Using the Froman39 expression for the penetration probability P one finally 

obtains 

This actually equals the exact expression derived by Hill and Wheeler40 

valid specifically for a parabolic shape. In this formula S represents 

the barrier height, while the frequency w
f 

contains both the barrier 

curvature C and the inertial parameter B. 

From the Hill-Wheeler expression we obtain P = 1/2 for zero barrier. 

The zero barrier point accordingly is the point where, as a function of the 

excitation energy E, the penetrability has diminished to 1/2 of that of 

infinite excitation. It is also the point of maximum change in penetrability 

with E. Indeed from the dependence of the penetrability on E not only S 

but also an average nW
f 

appears experimentally accessible. Experimental 

analysis gives S as dropping from 8 to 4 MeV when A goes from 230 to 250. 

Various empirical values of nWf are available centered around about 500 

KeV. However, recently all such experimental determinations are somewhat 

in question as they are based on an analysis in terms of a one-hump and not 

a two-hump barrier. 
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A. Microscopic Theory of the Fission Process 

In the preliminary discussion above we used a one-dimensional descrip-

tion, and furthermore B entered as a completely phenomenological parameter. 

Let us for the moment, for the sake of simplicity, continue to disregard all 

except one degree of freedom, but try to obtain a value of B in terms of the 

microscopic nuclear model developed here on the preceeding pages. The 

adiabatic treatment employed is largely analogous to the treatment of vibrations 

around an equilibrium point. The usual procedure is to consider small deviations 

from the equilibrium. It is our aim to find an expression for the total energy 

* of the following kind valid around the equilibrium point 

1 .2 1 ( (»2 T + V = Eo + '2 B a + '2 C a - a 0 

. 
which represents the lowest-order terms in an expansion in a and in 

(a - a(O», where a(O) is the equilibrium value of the distortion coordinate 

a. 

We thus expect the microscopic model to determine for us the parameters 

C, the curvature parameter of the potential around the stationary point, and 

B, the inertial mass parameter. It is assumed that in the vicinity of the 

stationary point one may introduce an energy operator of the following type 

* We have employed a and not E to denote a 'general distortion coordinate. 

4\ ; 
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I. where HO is the single particle Hamiltonian appropriate at the saddle point 

(being a stationary point). Let us for simplicity assume that a is the 

distortion mass quadrupole moment relative to the stationary value % 

'" 

'" '" a==Q-Q o 

qi being the single-particle mass quadrupole moment operator. We have thus,. 
, 

for the tim~ being, while the more general case involves both E and I 

as free parameters (see below), assumed that the quadrupole moment is the 

relevant distortion parameter. 

The momentary total quadrupole moment Q(t) is '" (a) + Q
O

• For 

(~) simplicity of notation, let us denote ~ by a. The corresponding wave 

functions are generated by a generator Hamiltonian of the form 

where thus 

oy(t) _ a - ~(t)/K 

The second term in the middle expression is the field generated by the 

nuclear two-body force. The third term, added in the form of a Lagrangian .. 
multiplier, accounts for the inertial effects of the vibrational motion at a 

non-equilibrium point. It is the addition of this term that assures that the 
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"'-
expectation value of the operator a taken with respect to the wave functions, 

calculated from the generator Hamiltonian above, comes out to be the value 

of a that in the first place enters the generator Hamiltonian. 

To obtain the inertial mass parameter we have to consider time-dependent 

deformations a (t) of the potential relative to the stationary saddle point. 
V 

Hence we seek solutions of the time-dependent Schrodinger equation 

As solutions we consider expansions 

-i 
e 

E.t 
1. 

n 

where 10) and Ii) are the ground and excited state solutions of HO with 

eigenvalues 

compared to 

E o 

C . o 

and E .• 
1. 

The coefficients C. (t) 
1. 

The following expressions for 

'" K CXy (ilalo) 

E. - E 
1. 0 

. 
+ in CXy 

are considered small 

are obtained 

i 
e 

E.-E 
1. 0 t 
n 

This is obtained by partial integration of the equation 

inC. = 
1. 

E. -E. 
1. J 
n t 
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under the assumption that ~(t) ~ * const. The total energy is obtained as 

the expectation,value of 
K A A 

Ho - 2 a a with respect to the wave functions 

above, expressed in terms of ay(t) and ~(t). The field ay(t) is eliminated 

from the expressions by the use of the self-consistency condition 

a:= 
A 

(7p(t)lal7p(t) == 
A 

(olali) C. e 
]. 

-i 

With the expressions for C. inserted we obtain 
]. 

A 2 

E -E 
i 0 t 
n 

a(t) == L 2K ayl (i lalo) I 

E. - E 
]. 0 

:= 2K ay(t) L 
i 1 

Taking the derivative of this expression we obtain 

a(t) == 2K ~(t) L 
1 

* 

+ C.C. 

Alternatively this boundary condition of constant rate of change of field 

at the equilibrium point may be replaced by the requirement of a solution of 
o 

the form: ay(t) == ayexp (~ tin). 
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Using the above relations to eliminate OV and OV we obtain* for ~ 

+~ 
2 

112 

'2 

In the last three equations we have employed the short-hand notation: 

n i 

IUlalo)1
2 

(E. _ E )n 
l 0 

A 

Taking pairing into account and replacing a by 

n 

1(~lqlv)12 
(E + E )n 

~ v 

(U U + V V )2 
~ v ~ v 

we finally obtain 

i 

where (~Iqlv) is the single-particle quadrupole matrix element. In the 

expression for ~ above we can identify the inertial mass term B as 

* Use has also been made of the connnonlyemployed "Hartree approximation" that 
A A A 

the expectation value (a a) can be replaced by (a) " (a) . 

.. 
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It is to be noted that in the equation above tu also contains an improved 

expression for the potential energy surface in the immediate neighborhood 

of the saddle point. Presently we have not attempted to correct the potential 

energy surface as obtained by our normalized single-particle energy summation. 

Concerning B, thus obtained, we have to note that this is really 

BQ, the quantity associated with Q. 

approximate relation 

To obtain B we have to employ the 
E 

dQ 
dQ 
dE dE 

Some results of the calculations of B ,performed by Szymanski, 
E 

Sobiczewski and Wycech, are given in Table I. It is seen that B depends 
E 

rather strongly on E. However, the value at E = 0.5 should be the most 

* relevant for the penetration problem. Furthermore B is relatively sensitive 
E 

to the value of the pairing strength G. 

* In fact B is roughly proportional to E 
E 

for moderate deformations. 

Column 3 in Table I is computed on the basis of a linear variation of B 

with E between the two points for which B has been evaluated. 



".-,e 

-64- UCRL-183 55-Rev. 

B. Consideration of Other Degrees of Freedom 

For the potential energy surface we have concluded to be a most 

important degree of freedom. If this and other distortions are included in 

the dynamical picture, the energy expansion around the saddle equilibrium 

point becomes 

T + V = Eo + ~ L 
/1.,/1.' /1.,/1.' 

Due to the fact that BA.A.' is a positive definite expression, one can always 

find coordinates that bring the previous expression into a normal form 

T+V=~ L 
I-l 

C b 2 
I-l I-l 

Of the coefficients CI-l only one is negative for a proper saddle point 

direction in which the fission process proceeds. 

In the microscopic picture the different a/l.-coordinates are replaced 

by different multipoles Q, Q4' Q6 etc. Sobiczewski, Szymanski and Wycech 

are presently investigating the more formidable two-dimensional problem 

associated with Q and Q4' Indications are, however, that the modified­

one-dimensional treatment of the problem as of above is rather adequate 

in view of the other uncertainties entering. 
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x. FISSION HALF LIVES 

We return to the penetration formula 

p = ~l + exp(K)]-l ~ exp(-K) E) 

In this exp~ession let us take the variable B outside of the integral sign 

* and replace it by its value at the saddle point. For WeE), the total static 

energy, we have in the preliminary estimates made the simplifying assumption 

that the E4-degree of freedom is maximally exploited without regard for 

dynamics in such a way that for each E the path goes through the value of E4 

that gives minimum potential energy W. For E, the energy of assault, we 

have been content with the rough prescription of adding 0.5 MeV to the minimum 

energy, this figure representing the zero-point vibrational energy 

corresponding to beta-vibrations. We had earlier 

If we replace the life-time 'r (sec) by t l / 2, the half life, use years as 

units instead of seconds, and furthermore take the logarithm base 10 on both 

sides, we obtain the approximate relation 

* In the case of a double-hump barrier this procedure appears particularly 

questionable. 
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1010g t
l
/ 2 - -28.66 - 1.228 . 

where F is the barrier integral 

F dE 

A. Actinide Region, Even-Even Isotopes 

Fission half-lives are available for even-even nuclei (Fig. 23) in this 

region up to Z = 102 (Nobelium), with several isotopes, and for Z = 104 

(Kurchatovium), with just one isotope measured, 260Ku . The barrier extends 

to larger distortions than those for which our parameterization is adequate 

in the cases of 90Th, 92U, and 94Pu. With some extrapolation most isotopes 

of 9tPm, 98Cf and all of 100Fm and 102No can be handled. In Table I we 

list the theoretical B values obtained by Sobiczewski, Szymanski, and 

42 
Wycech (for G = cCJUst.) for E = 0.2, E4 = 0.0 and for E = 0.5, E4 = 0.02, 

respectively. Assuming a linear E - dependence based on these points we have 

evaluated the integral K theoretically. An experimental K-value is obtained 

from fission half lives. A theoretical, corrected K-value, K ,is obtained corr 

simply by adding to E the error in the equilibrium mass value. Good 

agreement between the experimental K-value and K is obtained for Z = 100 corr 

and Z = 102. The correction applied is most likely an overestimate as the 

error should propagate at least through the first part of the barrier. The good 

agreement for the light actinides in all likelihood reflects on the overestimate 
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of the second hump in the fission barrier (largely due to an insufficient 

number of deformation parameters). 

I. B. Superheavy Region 

To exhibit the sensitivity of the predicted half-lives in the super-

heavy element region, centered around Z =: 1l4, N =: 184, to the value of B 

assumed, we presented in Ref. 37 the result in the form of Fig. 24. This 

figure shows 1°1 t og 1/2 as a function of JB/h2 . A-5/3 J for various 

isotopes of Z =: 114. The straight lines pass through the constant value 

-28.7 and their slopes are given as (1.23) • A5/ 6 times the barrier integral 

F. The microscopic calculations give definite B-values, depending on both 

N and Z •. However, in this figure we replaced them for simplicity by an 

average value (the right thick vertical line). 

For comparison we have in this figure also shown other estimates of 

B. To the left is the liquid-drop value corresponding to the assumption of 

irrotational flow. This is given as23 

Birr =: -2 AMR 2 (1 + 2. cl + •.. ) 
a 10 0 7 

while 

irr 2 AMR 2(1 4 + ) 
BE =: 15 0 + "5 E ••• 

The ratio of the microscopic value to the irrotational-flow value at 

E ~ 0.5 varies between 6 and 11 for different nuclei. This is a somewhat 

larger figure than the corresponding ratio for the rotational moment of inertia 
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for deformed nuclei and the ratio for the quadrupole vibrational mass. On 

the whole, however, the irrotational-flow value should only be considered as 

a lower limit. 

The shaded regions in this figure correspond to semiempirical estimates 

based on empirical fission half-lives in the actinide region. Two such 

estimates of B are displayed in this figure. The higher one, which should 

be considered the more reliable value together with the microscopic value, 

was obtained by Moretto and Swiatecki41 from an analysis of fission half-

lives in the actinide region. This analysis was based on the theoretical 

fission barriers obtained in accordance with Ref. 4. These are the liquid-

drop fission barriers modified by a shell structure correction term. We 

now further assume that this range of B-values obtained for deformed 

a.ctinide nuclei is valid also for spherical super heavy nuclei after scaling 

by the simple * factor, correcting only for an increase in size. 

The scaling problem is also relevant for the second shaded region, 

marked "semiempirical I". 

The latter B-values were obtained from an analysis of actinide fission 

half-lives in terms of a cubic barrier with its minimum value for spherical . 

* The sensitivity of the calculated B -values to the value of E used makes the 
E 

procedure of employing just a scaling factor somewhat doubtful. It is 

to be noted that the saddle shape for Z = 114 isotopes is less distorted 

than for actinide elements. 
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shape and with the liquid-drop curvature at the saddle point. This prescription 

probably overestimates the barrier thickness systematically and when applied 

to fission half-lives in turn underestimates the corresponding B-values. 

These values.;should there'fore be given less weight. 

C. Limits of Super heavy Region of Relative Stability 

Using a value of B/A5/ 5 intermediate between the average micro-

scopic estimate and the estimate of Ref. 41, it appears possible to make the 

rough prediction that there is a region of elements with fission half-lives 

in excess of 1 sec for 290 < A < 310 for Z = 114, 290 < A $ 306 for Z = 

112, 288 < A $ 304 for Z 110 etc. This refers specifically to the 

spontaneous fission half-lives. 

The next test for the "survival of the fittest" is that of alpha decay 

half-lives. 

43 Q-values. 

On the basis of the calculated masses, one obtains easily alpha 

From these in turn alpha half-lives have been calculated. 44 

In general, alpha decay energies, representing a derivative function of 

the mass valley, are expected to be smallest for Z and N just below the 

magic numbers 114 and 184 respectively. Longevity thus favors the 

N < 184, Z < 114 quadrant. Due to the fact that for these very heavy nuclei 

the direction of the stability line forms a considerable angle with the 

direction of the alpha decay arrow in the mass chart, the neutron rich side 

of the stability line is the most favorable. Indeed, for Z = 110, N = 184 

we calcUlate Qa = 5.76 MeV, which should correspond to an alpha half-life 

of the order of 108 years. Roughly in this region of elements Qa = 5.5 MeV 

corresponds to 1010 years, 6.0 MeV to 107 years, 6.5 MeV to 10
4

, and 7.0 to 
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10 years. As a rough rule an increase in Qa by 0.05 MeV decreases the 

half-life by factor of two and 0.5 MeV by a factor of 103 . A test of Qa 

values in the Pb region shows agreement with empirical ones within ±0.5 MeV. 

However, in the quadrant in question the theoretical energies are generally 

overestimated by about 0.5 MeV. This corresponds to a factor 103 in alpha 

half-lives. Assuming the errors in Qa-values, in the region to which we have 

extrapolated our potential, to behave similarly one may hold out a certain 

probability for a pocket of alpha-longevity around the nucleus mentioned. 

The survival-of-the-fittest test finally concerns beta-decay. From the 

masses calculated the following relevant even-even isotopes with masses 

286 ~ A ~ 302 appear to be beta stable (Z = 108, A = 286, 288), (Z = 110, 

A = 288, 290, 292, 294), (z = 112, A = 292, 294, 296), and (Z 

300, 302) and the following odd-A ones (Z = 109, A = 287), (Z 

114, A 

110, A 

289, 291), (Z = Ill, A = 293), (z = 112, A = 295) and (Z = 113, A = 297). 

D. Surviving Elements 

The candidates for long-range survival appear to be located around 

298, 

(Z = 110, N = 184), which element is estimated to have a half-life against 

11 8 spontaneous fission of about 10 years, against alpha decay of 10 years 

(with probable errors of several powers of ten), and appears to be beta-stable. 

If these elements were produced somewhere in the universe at some past 

time, the chance that we may still trace them at present lies in two directions. 

One is in the incoming cosmic radiation. The other lies in the chemical 

isolation of such a surviving element from its chemical relatives in natural 
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* ores. As pointed out by G. Seaborg in his review of Elements Beyond 100, 

Present Status and Future Prospects45 Z 114 should have the chemical 

properties of Pb, Z = 113 those of Tl, Z = 112 those of Hg, Z = 110 those 
I 

of Pt, etc. (see Fig. 25). It appears likely that such a remnant element 

would most easily be found among its chemical relatives, Ft, Au, Os, etc. 

* This possibility was first pointed out to us by Dr. S. G. Thompson. 
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* XI. POSSIBLE PRODUCTION OF SUPERHEAVY ELEMENTS 

A. Heavy Ion Reactions 

UCRL-18355-Rev. 

·The heaviest elements presently produced (Z > 100) are all synthesized 

by bombardment of target elements of sufficiently high atomic number vlith 

beams of heavy ions. 
40 

The heaviest ion employed appears to be 18Ar, but in the 

future as heavy ions as 92U may be available. 

By heavy ion reactions one tends to reach elements far off on the 

neutron deficient side of the stability line. This is so because the 

stability line bends more and more relative to its initial 45° direction in 

the N-Z mass plane. Both target and projectile are therefore less neutron-

rich than the center of the superheavy region (Z = 114, N = 184), near to which 

the stability line happens to pass. Even by the choice of neutron-rich 

targets as 2~m and neutron-rich projectiles as igAr one falls short of the 

limits of the superheavy region as for example, 

2~ + 40 _, 284114 + 4n 
9b- m l8Ar -,. 

The unfortunate loss of bOil-away neutrons is due to the excessive energy 

needed to penetrate the Coulomb barrier between the heavy ions and the 

target nuclei. 

* The subject matter under this heading is covered in detail in Ref. 45. The 

remarks here contained are in a large measure based on this very broad review 

article. 

0' 

.. ; 
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Slightly more promising future prospects are 

or 

Both reactions require the exclusive 48Ca projectiles, which at the present 

are difficult to strip. An even more distant prospect is 

which may be additionally pro~ising as Z ~ 124 also appears associated with 

.a minor shell. closing. Reference 37 gives a half-life of the order of seconds. 

B. Neutron Capture Reactions 

Two other avenues seem presently open, namely exposure of available 

heavy isotopes to the large neutron fluxes in special (high flux) reactors 

and in so-called "nuclear explosive devices". In the former case the largest 

neutron flux achieved up to now45 is 6 X 1015 and in the latter about 

1031 neutrons/cm
2 

sec. If the material is exposed for, say, a few years in 

such a fast reactor, the integrated exposure is 1023 neutrons/cm
2

, which 

is somewhat less than the integrated flux from the nuclear explosive device, 

the latter being approximately 1025 neutrons/cm
2

. 
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One should compare this with the possibly available neutron fluxes in 

the heavenly laboratories responsible for the "slow" neutron capture process 

(the s-process) associated with the red giant phase of stellar evolution46,47 

where the flux is estimated at 1016 neutrons/cm
2 

sec, the duration of the 

order of 103 years, and the integrated flux around 1026 neutrons/cm2 . The 

corresponding numbers for the "fast" neutron capture process (the r-process), 

first associated with supernovae and more recently with extended or quasi­

stellar radio sources* where the corresponding numbers are >1027 neutrons/cm2 

1-1000 sec, and >1027 neutrons/cm
2

. sec, 

The nuclear explosive devices have produced less heavy elements than 

expected. Indeed i66Fm corresponds to the largest z- and A-numbers recently 

produced. 45 However, the neutron capture path followed is sensitive to e.g., 

the flux duration, the target elements present, the neutron spectrum, etc. 

The neutron flux s~pposedly present in the r-process, although somewhat 

resembling the flux from nuclear explosive devices, has still a 10
6 

_ 108 

times longer time scale. This may, in spite of the results from the "device" 

experiments, lead to an r-path in the very neutron rich region, that eventually 

* As recently pointed out by F. Hoyle and W. A. Fowler (Nature 197 (1967) 533) 

and P. A. Seeger, W. A. Fowler and D. D. Clayton (Astrophys. Jour. Suppl. 97 

(1965) 121) the neutron flux and temperatures associated with the r-process 

appear to require such large stellar objects of 10
4 ~ 106 solar masses. 
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will populate the Z = 114, N = 184 region. Residues of these nuclei, a 

few of these with rather long alpha half-lives, may occur around Z = 110, 

. N == 184, which might possibly, if occurring half-lives are longer than a few 

times 108 years, be present in earthly matter. If half-lives are shorter 

than that by a few powers of ten, such elements could still reach us in the 

cosmic radiation as messengers of more recent cosmic experiments. 



UCRL-18355-Rev. 

ACKNOWLEffiMENTS 

The author is grateful to Dr. Isadore Perlman, head of the Nuclear 

Chemistry Division of Lawrence Radiation Laboratory, for the warm hospitality 

granted. 

I am indebted to Dr. Ben Mottelson and Dr. Larry Wilets for suggestions 

and critical comments on the isospin and surface dependence of the basic 

pairing matrix element. The great interest in this work shown by Dr. Glenn 

Seaborg, Dr. Wladyslaw Swiatecki and Dr. Stanley Thompson has been decisive 

for its line of direction. In recent months the great burden of the work 

reported here was in a large measure carried by Mr. Chin Fu Tsang of LRL 

on the problem of the potential energy surface, and, on the penetration problem, 

by Drs. Zdrislaw Szymanski, Adam Sobiscewski, and Slavomir Wycech. Important 

contributions to the present investigation have earlier been made by Mr. 

Bjorn Nilsson of Lund and Dr. Raymond Nix, now at Los Alamos. In Lund further 

work on the P6 and P
3 

degrees of freedom is in progress by Mr. Peter Moller 

and Mr. Christer Gustafson. 



-77- UCRL-18355-Rev. 

REFERENCES 

1. C. F. von Weizsacher, Z. Physik 96 (1935)431. 

2. H. A. Bethe and R. F. Backer, Rev. Mod. Phys. ~ (1936) 193. 
~ ~. I 

3. L. R. B. Elton, Nuclear' Sizes, (Oxford University Press, Oxford, 1961). 

4. W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81 (1966) 1; see also Proc. 

International Symposium on Why and How Should We Investigate Nuclei Far 

Off the Stability Line, Lysekil, Sweden, 1966, (Almqvist and Wiksell, 

Stockholm, 1967), p. 343; and Arkiv Fysik 36 (1967) 593. 

5. A. Bohr and B. R. Mottelson, monograph, to be published. 

6. A. Green, Nuclear Physics (McGraw-Hill Book Co., New York, 1955). 

T. H. Meldner, Lysekil Symposium, 1966, op. cit., p. 593; and Arkiv Fysik 

36 (1967) 593. 

8 .. A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys. Letters 22 

(1966)500. 

9. C. Gustafson, I. L. Lamm, B. Nilsson and S. G. Nilsson, Lysekil Symposium, 

1966, Ope cit., p. 613; and Arkiv Fysik 36 (1967) 613. 

10. A. M. Lane, Nucl. Phys. 35 (1962) 676. 

11. E. Rost, Phys. Letters 26B (1967) 184. 

12. H. Blomquist and S. Wahlborn, Arkiv Fysik 16 (1960) 545. 

13. L. A. Sliv and B. A. Volchok, J. Exp. Theor. Phys. 36 (1959) 539. 

14. F. A.Gareev, S. P. Ivanova, and B. N. Kalinkin, Joint Institute for 

Nuclear Research Preprint p4-3451; F. A. Gareev, S. P. Ivanova, B. N. 

Kalinkin, S. V. Slepnev, and N. G. Ginzburg, Preprint p4-3607. 



-78- UCRL-18355-Rev. 

15. D. L. Hendrie,. N. K. Glendenning, B. G. Harvey, O. N. Jarvis, H. H. Duhm, 

J. Saudinos1 and J. Mahoney, Phys. Letters 26B (1968) 127; see also N. K. 

Glendenning, Proc. of the International School of Physics, Enrico Fermi, 

Varenna, Course XL, M. Jean editor (Academic Press, New York, 1968). 

16. S. G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 29 (1955) no. 16. 

17. B. Nilsson, to be pub~ished. 

18. I. L. Lamm, to be published. 

19. M. Jaskola, N. Nybo, P. O. Tj6in, and B. Elbek, Nucl. Phys. A96 (1967) 

52; D. G. Burke and B. Elbek, Mat. Fys. Medd. Dan Vid. Selsk. 36(1967) 

no. 6. 

20. A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110 (1958) 936. 

21a. H. C. Britt, F. A. Rickey, and W. S. Hall, Los Alamos Scient. Lab. 

Report LA-DC-9562; L. Moretto and S. Thompson, to be published. 

21 b. W. Stepie~ and Z. Szymanski, Phys. Letters 26B (1968) 18l. 

22. R. C. Kennedy, L. Wilets, and E. M. Henley, Phys. Rev. Letters 12 (1964) 

36. 

23. J. R. Nix, Ann. Phys. 41 (1967) 52, and private communication. 

24. B. R. Mottelson and S. G. Nilsson, Mat. Fys. Skr. Dan Vid. Selsk 1 

(1959) no. 8. 

25. D. B~s and Z. Szymanski, Nucl. Phys. 28 (1961) 92. 

26. Z. Szymanski, Nucl. Phys. 28 (1961) 421. 

27. A. Sobiczewski, Nucl. Phys. A93 (1967) 501. 

28. S. G. Nilsson, Nucleonic Structure of Equilibrium and Fission Deformations, 

International School of Physics "Enrico Fermi", Varenna, Course XL, 

M. Jean editor (Academic Press, New York, 1968). 



-79- UCRL-18355-Rev. 

29· G. F., Bertsch, Phys. Letters 26B (1968) 130. 

30. K. Kjallquist, Nucl. Phys. 2 (1958/1959) 163. 

3l. K. Harada, Phys. Letters 10 (1964) 80. 
i 

32. V. M. Strutinsky, NucI. Phys. A95 (1967) 420. 

33· C. F. Tsang, private communication. 

34. S. M. Polikanov, V. A. Druin, V. A. Karnaukov, V. L. Mikheev, A. A. 

Pleve, N. K. Skobolev, V. G. Subotin, G. M. Ter-Akopian, and V. A. 

Fomichev, Exp. Theor. Phys. 42 (1962) 1464j cf. also S. Bjornholm, J. 

Borggreen, L. Westgaard, and V. A. Karnaukov, Nucl. Phys. A95 (1967) 513. 

35. S. Bjornholm, private communication. 

36. E. Lynn, report at the Conference on Nuclear Structure, Dubna, July, 1968. 

37. s. G. Nilsson, R. Nix, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, 

andP . Moller, Nucl. Phys., Al15 (1968) 545. 

38. L. Wilets, Theories of Nuclear Fission (Clarendon Press, Oxford, 1964). 

39. P. O. -Froman and N. Froman, J.W.K.B. Approximation, Contribution to the 

Theory (North-Holland Press, Amsterdam, 1965). 

40. D. L. Hill and J. A. Wheeler, Phys. Rev. 89 (1953) 1102. 

41. L. Moretto and W. J. Swiatecki, private communication. 

42. A. Sobiczewski, Z. Szymanski, and S. Wycech, private communication. 

43. C. F. Tsang, and S. G. Nilsson, to be published. 

44. S. Thompson, private communication. 

45. G. T. Seaborg, Elements Beyond 100, Present Status and Future Prospects, 

to be published in Ann. Rev. Nucl. Sci. (1968). 

46. E. M. Burbidge, G. R. Burbidge, W. A. Fowler and F. Hoyle, Rev. Mod. 

Phys. 29 (1957) 547. 



-80- UCRL-18355-Rev. 

47. w. A. Fowler, Nuclear Astrophysics (Amer. Phil. Soc., Philadelphia, 

1967). 



-81- UCRL-18355-Rev. 

FIGURE CAPTIONS 

Fig. 1. Binding energy per particle as function of A. The smooth curve 

represents a mass formula fit. (Figure from A. Bohr, B. R. Mottelson, 

Ref. 5.) 

Fig. 2.· Nuclear Valley of Stability (after C. N. Flerov in Why and How Would 

We Investigate Nuclides Far Off the Stability Line, Almqvist and Wiksell, 

Stockholm, 1967). The circular mark at 298114 is the double-closed shell 

nucleus predicted by the present calculations. The super-heavy region 

connected withZ = 126, marked in figure, is not directly supported by 

the present calculations. 

Fig. 3. Shell effects evidenced by nuclear masses. Plotted is M - tL exp -J.iq 

in units of MeV. Note deviations associated with shell closure of 

N =,28, 50,82 and 126. (Figure is taken from W. D. Myers and.W. J. 

Swiatecki, Ref. 4.) 

Fig. 4. Relation between coordinates €, €4 and a2, a4. Note that the 

pure spheroid shape contains some a4 (and in addition a6 etc. not 

shown in figure). 

Fig. 5a. Single-proton levels 150 < A < 165; K = 0.0637, ~ = 0.600, €4 = -0.04. 

5b. Single-neutron levels 150 < A < 165; K = 0.0637, ~.= 0.420, €4 = -0.04. 

5c. Single-proton levels 175 < A < 190; K = 0.0620, ~ = 0.614, €4 = 0.04. 

5d. Single-neutron levels 175 < A < 190; K = 0.0630, ~. = 0.393, €4 = 0.04. 
! 

5e. Single-proton levels 220 < A < 240; K = 0.0590, ~ = 0.639, €4 = -0.04. 

5f. Single-neutron levels 220 < A < 240; K = 0.0635; ~ = 0.346, €4 = -0.04. 

5g. Single-proton levels 250 < A < 260; K = 0.0569, ~ = 0.656, €4 = 0.04. 
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5h. Single-neutron le~els 250 < A < 260j K ~ 0.0635, ~ ~ 0.314, E4 

5i. Single-proton levels A ~ 298; K ~ 0.534, ~ ~ 0.686, E4 ~ O. 

Fig. 6a. Single-proton level diagram for spherical potential. Parameters 

0.04. 

are fitted to reproduce observed deformed single-particle level order at 

A ~ 165 and 242. Level order at A = 208, 290 is extrapolated linearly. 

E. Rost's predicted level orderll for A ~ 298 is exhibited for comparison. 

6b. Analgous to Fig. 6a, valid for neutrons. 

Fig. 7a. Empirical odd-Z-even-Even mass differences compared with theoretical 

~ in rare earth region. 
p 

7b. Empirical odd-N-even-even mass differences compared with theoretical 

~ in rare-earth region. 
n 

Fig. 8. Effect of various terms in total energy as a function of deformation. 

Long-dashed curve marks simple sum of single-particle energies, for dotted 

curve Coulomb energy is added, for dot-dashed curve also pairing (G ~ S) 

is included, for short-dashed curve the Strutinsky normalization is 

applied. In all these cases it is assumed that E4 = O. In the last 

case (solid curve) also the effect of the E4-degree of freedom is included. 

Fig. 9. Gap parameters (left scale) and total pairing energy (right scale) 

as functions of distortion E for the two cases that G is constant 

and that G is proportional to the surface area. 

Fig. 10. Plot of ratios of calculated ~ and ~ for the case G - S n p 

and for the case G ~ const. The two G-functions are normalized at 

E = 0.25. It is found that, apart from fluctuations, due to level 

density variations, ~ varies roughly as S3 under the assumption 

G ~ S. In the figure we also exhibit for comparison a curve 

.. 

.. 
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corresponding to s3/2, the .6.(S) dependence suggested by the "slab 

model" of Ref. 22. 

Fig. 11. Differential cross sections15 for 50 MeV alpha-particles scattered 

against 154Sm. Fits Ito experimental data is made by coupled channel 

calculations with three alternative sets of ~2 and ~4. The great 

sensitivity to ~4 in the 4+ and. 6+ cross sections is clearly borne out. 

Fig. 12. Empirical rare earth ~4-values (filled circles) obtained through 

the analysis of Ref. 15 as illustrated in Fig. 11, compared to the pre-

sent calculations before the inclusion of the Strutinsky normalization. 

The effect of the latter is less than 0.01 in magnitude. 

Fig. 13. Same as Ref. 12 for equilibrium ~6-values in rare earth region. 

Errors in empirical ~6-values are at least 0.02. Theoretical ~6-values 

are sensitive to polarizations due to couplings between shells 

N -7 N ± 4 not presently included. 

Fig. 14a. Equilibrium (E, E4)-values in the rare earth region as of present 

calculations (Strutinsky normalization included). 

14b. Equilibrium (E, E4 )-values in actinide region. 

Fig. 15. Sum of single-particle, pairing and Coulomb energies without 

Strutinsky normalization as function of E, E4. At large distortions 

the energy ultimately rises beyond + 15 MeV (limit for plot). 

Fig. 16. Pairing and shell corrections evaluated by the Strutinsky method 

as a function of the shell-smearing parameter ~. Energies corresponding 

to three different distortions are considered. For 1. 2 li(1) 
o it is 

obvious that with fourth, or better, sixth order correction terms included 

,there is very satisfactory stability with respect to the choice of ~. 
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Fig. 17- Experimental and theoretical mass values for 150 < A < 310 plotted 

relative to the spherical liquid drop value as of Ref. 4. 

( 252 Fig. lSa. Total~energy surface in E, E4) plane for Fm after application 

of the Strutinsky normalization. This figure corresponds to a somewhat 

earlier calculation and employs G = const and a different pairing cut-

off than described in the present paper. More recent calculations are 

exhibited in Figs. 21 and 22. 

19b. Same as Fig. lSa valid for 29°114. 

Fig. 19a. Liquid-drop energy surface. for 252Fm. 

19b. Liquid-drop energy surface for 29°114. 

Fig. 20a. Shell and pairing energy contributions for 252
Fm• For further 

details see Fig. lSa. 

20b. Same as Fig. 20a for 29°114. 

Fig. 21a. Total energy minimized w.r.t. E4 for each E as function of E 

for isotopes of 92U. Dashed curve corresponds to G set constant while 

the solid line is based on assumption that G is proportional to the 

nuclear surface area. 

21b. Same as Fig. 21a for isotopes of 94Pu. 

21c. Same as Fig; 21a for isotopes of 9tPm. 

21d. Same as Fig. 21a for isotopes of 9SCf . 

21e. Same as Fig. 21a for isotopes of 100Fm. The extra dot-dashed 

?56 curve added for - Fm represents the new total energy for the case 

G ~ S when the nuclear potential parameters are modified from those 

relevant for A = 242 to A = 265. As can be seen the barrier change 

is actually very small. 

.. 
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21f. . Same as Fig. 21a for isotopes of 102No. 

21g. Same as Fig. 21a for isotopes of Z ::: 104. 

21h. Same as Fig. 21a for isotopes of Z 106. 

22a. Same as Fig. 21a for isotopes of Z ::: 114. 

22b. Same as Fig. 21a for isotopes of Z ::: 112. 

22c. Same as Fig. 21a for isotopes of Z 110. 

22d. Same as Fig. 21a for isotopes of Z lOS. 

23· Empirical fission half lives of even-even nuclei plotted against 

neutron number (taken from A. Ghiorso, University of California, Lawrence 

Radiation Laboratory Report UCRL-17907). The dotted lines are surmised 

,extrapolations, not necessarily supported by the present work. 

Fig. 24. Spontaneous fission half lives of Z::: 114 isotopes according to 

earlier calculations of Ref. 37 as functions of the inertial parameter 

B for barrier penetration. Four estimates of B are given. The most 

reliable estimate is placed between the one denoted "semiempirical II" 

and the one denoted "microscopic". For further explanations, see text. 

Fig. 25. Periodic Table exhibiting predicted location of new elements 

(from G. T. Seaborg, Ref. 45). 

Fig. 26. The path of element generation followed by the rapid-neutron capture 

process (the "r-process") according to P. A. Seeger, W. A. Fowler, D. 

D. Clayton (Astrophys. Journ.Suppl. XI (1965) 121). The fission break-off 

line in the upper right corner corresponds to an arbitrary assumption by 

the authors. Present calculations indicate that this break-off line is 

associated with much higher A-values. 
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Table I. Experimental and theoretical fission half-life parameters. The 
nuclide is identified by Z and A in the first two columns. Columns 3-5 
give theoretical and experimental K-values (see section IX), the latter 
from empirical half-lives. The first K-value is calculated assuming a linear 
£-dependence of B between the two calculated points. The second K-value is 
obtained after a correction for the error in the ground state mass value. 
The correction is assumed only to affect the equilibrium minimum only. Columns 
6-7 give the theoretical B-values calculated for £ = 0.2 (£4 = 0) and £ = 0.5 
(£4 = 0.02). 

Theoretical Experimental Theoretical 

Z A K K corr K B(0.5} B(0.2} 

92 232 127 99 98 1020 260 
234 132 111 103 1050 240 
236 130 106 104 980 260 
23B 127 102 103 910 320 

94 236 120 101 BB 1077 240 
23B 119 103 91 1000 270 
240 11B 98 92 920 330 
242 139 97 91 920 3Bo 
244 144 106 90 BBo 300 

96 240 103 76 Bl 1020 270 
242 117 79 B2 930 340 
244 121 B9 B3 930 390 
246 131 93 B3 B90 320 
248 131 91 Bl B60 300 

98 246 95 61 74 980 410 
248 114 71 75 920 330 
250 114 72 76 880 320 
252 106 59 71 BOO 290 

100 248 75 33 59 980 450 
250 Bo 45 910 370 
252 BB 40 6B B70 360 
254 B3 40 66 780 330 
256 B6 58 820 420 

102 252 47 51 920 330 
254 56 34 61 BBo 320 
255 53 56 790 280 
'':X1 56 <hG 830 :no 

~ ". ~::;l"' 1~6 960 330 
.~5S !~5 870 "90 
.. ~l:.o 58 48 910 390 
262 59 B80 )~70 

.", 

•• 
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Table II. Table of masses, spontaneous-fission and alpha half-lives near 
Z = 114, N = 184. The upper number in each square gives the mass relative 

) 

to the spherical liquid drop value (see Ref. 4) in MeV. In the line below is 
listed the spontaneous-fission half-life and in parenthesis the barrier height 
in MeV. The bottom line in each square gives the alpha half-life and the 
alph~ Q-value (in parenthesis). Beta-stable nuclei are underlined. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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