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EXCHANGE

On the Nature of Connectionist Conceptualizations

and Connectionist Explanations

Foong-Ha Yap
Kanto Gakuin University

Yasuhiro Shirai

Daito Bunka University

In previous issues ofML (cf. Fantuzzi, 1992, 1993), it was
argued that connectionist explanations are too vague to qualify as

theories of cognitive functions. Much of the argument hinges on
the claim that hidden unit activation patterns of connectionist

networks are currently too difficult to analyze, and that such

opacity renders connectionist accounts virtually ineffective.

However, recent attempts at analyzing connectionist hidden units

using statistical techniques such as hierarchical clustering and
principal component analysis reveal that connectionist networks

easily yield categories which we traditionally associate with

constituent structures (Elman, 1990). In this paper, we will focus

on Elman's statistical analyses of the hidden unit activation patterns

in his simple recurrent network on sentence prediction, first to

highlight the feasibility of such analyses, and then to show how
connectionist explanations contribute to the development of

effective explanatory theories. In addition, in response to

Fantuzzi's (1993) argument that connectionist conceptualizations

do not qualify as connectionist explanations, we argue for the

evolutionary nature of explanations as they relate to theory

development, and for the role of conceptualizations as constructive

intermediate explanations. Finally, to address Fantuzzi's (1993)
criticism that pre-simulation connectionist conceptualizations are

unproductive exercises akin to putting the cart before the horse, we
provide examples to show that the relationship between
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connectionist conceptualization and connectionist simulation is

essentially an interactive one, and we conclude by advocating the

more tenable simulation-a«rf-theory approach over an
unnecessarily restrictive simulation-r/zew-theory paradigm.

ON THE NATURE OF CONNECTIONIST EXPLANATIONS

It was argued in Fantuzzi (1992, 1993) that connectionist

explanations are too vague to qualify as theories of cognitive

functions. To illustrate with an example from our previous

discussions, Fantuzzi (1992), citing McCloskey (1991), states:

While Seidenberg & McClelland (1989) have provided an

explicit computer simulation of a cognitive behavior,

McCloskey argues that the underlying theory of human
cognition remains vague: just general statements to the effect

that representations are distributed and similar words are

represented similarly. (Fantuzzi, 1992, p. 328)

According to McCloskey, among the questions that

Seidenberg and McClelland's model of word recognition and
naming would have to address are: What regularities and
idiosyncrasies does the network encode in response to the pool of

words it encounters? How does the network represent the acquired

knowledge over a set of connection weights? And how is the

appropriate knowledge brought into play in the appropriate

context? For example, how does the network determine the

appropriate phonological instantiation of a in the case of regular

words like hate, exception words like have, and nonwords like

mave? (McCloskey, 1991, p. 390).

In response to McCloskey's questions, Seidenberg (1993)
points out that complex data sets like the ones connectionist

models generate can be analyzed in many different ways in

response to different research questions. In the case of the

Seidenberg and McClelland model, for instance, the theoretical

claims were about "the form in which knowledge is represented,

not about the ways in which individual letters or sounds are

encoded" (Seidenberg, 1993, p. 233). Theoretical issues, then,

determined the kinds of analyses that were reported. Seidenberg
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also points out that some of the questions McCloskey raises are

already answerable, among them the question of the pronunciation

of specific letters or letter patterns. What we need to do, according

to Seidenberg, is to "observe the patterns of activations over the

hidden units that occur for different spelling-sound
correspondences" (p. 233). This is because the hidden units play a

central role in helping the network develop appropriate internal

representations capable of supporting the necessary (and often

complex) input-output functions, which in this case involves

grapheme-phoneme correspondences.

For those less familiar with dynamical systems^ and
dynamical explanations, the notion of "patterns of activations over
hidden units" would, as Fantuzzi points out, mean nothing more
than "general statements to the effect that representations are

distributed and similar words are represented similarly"—
connectionist jargon that appears to describe rather than explain

complex cognitive functions. Indeed, Fantuzzi (1992) is not alone

when she points out that "the dynamics of complex nonlinear

connectionist systems are difficult to analyze, and thus understand"

(p. 328; see also McCloskey, 1991; Pavel, 1990; Rager, 1990).

Notions such as "patterns of activations over hidden units"

do, however, provide deeper insights into cognitive functions. In

what follows, we will illustrate this point with the help of a specific

connectionist model, namely Elman's (1990, 1993) simple
recurrent network on sentence prediction. We first describe the

model and the cognitive behavior it simulates, then proceed to

analyze its hidden units to discover the nature of its internal

representation.

Like most other connectionist networks, Elman's network
consists of a layer of input units which is connected to a layer of
output units via an intermediate layer of "hidden" units (so called

because it represents the network's internal representation). In

addition to this basic connectionist structure, Elman's network also

has a recurrent context layer that gives it a dynamic memory (see

Figure 1). Activations from the hidden (or intemal representation)

layer are thus propagated, not only to the output layer, but in this

case also to the context layer, which then feeds the activations back
to the hidden layer to influence subsequent activations within the



1 76 Yap & Shirai

network's internal representation. In so doing, the recurrent

context layer enables the network to encode prior context, or

temporal information, and thus to "live in time" (Plunkett, 1993, p.

55).2

output layer

Step 2a

hidden layer

(internal representation)

Step 1
Step 3o Step 2b

input layer

context layer

(memory)

Figure 1 . A recursive network that provides memory feedback via the

context layer. Step 1 shows the input activating the hidden

units to form an internal representation. Step 2a shows the

hidden units generating an output. Step 2b shows the hidden

units simultaneously updating the context layer with

information about the internal representation. Step 3 shows

the context layer supplying the hidden units with information

about the network's prior internal representations. (Adapted

from Elman, 1990, 1991, used with permission.)

Trained on a succession of words, presented one at a time,

from an unbroken string of grammatically well-formed sentences,

the network succeeded in abstracting several important properties
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underlying human language. In the first simulation (Elman, 1990),

the network learned to make lexical category distinctions between

nouns and verbs on the basis of distributional evidence alone. In

addition, it learned to make type-token distinctions, as well as

grammatical role distinctions (such as subject versus object). In

the second simulation (Elman, 1993), the network further leamed

to assign proper subject-verb agreement, even in the case of

complex sentences that involved long-distance dependencies.

Clearly, the network was encoding some fundamental linguistic

properties. The question is how.

As emphasized earlier, notions such as "patterns of

activations over hidden units" can be analyzed to provide important

insights into a network's internal representation. Such analyses

frequently make use of statistical techniques such as hierarchical

clustering analysis and principal component analysis.^ Elman
(1990) employed the former, while Elman (1993), the latter.

Hierarchical clustering analysis is a technique that allows

us to identify the similarity structure of the hidden unit activations.

In effect, the technique permits us to use spatial organization at the

hidden unit level to observe the categorization distinctions encoded

within the network's internal representation (Elman, 1992).

Principal component analysis, on the other hand, allows us to

observe how hidden unit activations change over time. It does this

by reducing the network's multi-dimensional internal

representation to a set of more manageable 2 or 3-dimensional

phase portraits, or graphs.

When Elman (1990) subjected the hidden unit activations in

his network to a hierarchical clustering analysis, he obtained the

tree shown in Figure 2. The tree reveals a highly structured

internal representation. To begin with, nouns are clustered

separately from verbs, indicating that the network has captured an

important grammatical/syntactic distinction, namely that of lexical

category. Moreover, within the noun cluster, animates form a

separate category from inanimates. And further down the

hierarchy, among the animates, humans are distinct from non-

humans, while among the inanimates, distinctions are made
between breakables, edibles, etc. These are semantic distinctions.

What the cluster analysis reveals, then, is a hierarchy in which
semantic clusters are nested within syntactic clusters (Elman, 1992;

van Gelder, 1992). The analysis also reveals that verbs are further
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differentiated into those that require objects, those that optionalize

objects and those that preclude objects. These are differentiations

involving verb argument structure, a linguistic property with strong

semantic overtones, yet at the same time inextricably involved with
grammatical/syntactic relations. What we see, then, is an internal

representation in which the semantic and syntactic domains are

intimately interlocked, such that both semantic and syntactic

features are simultaneously instantiated. Here we get a glimpse
into an internal representation in which both semantic and syntactic

features intertwine to affect the course of language processing."^

(See Figure 2).

What might it mean to have an internal representation in

which the semantic and syntactic domains are intricately

interwoven with each other? Before answering this question, let us
first consider the results of a second, more elaborate cluster

analysis on the same set of hidden unit activation patterns. ^ The
analysis reveals the emergence of grammatical role distinctions

such as subject versus object within the noun clusters. For
example, within the BOY-cluster, BOY-sleep and BOY-move-rock
occur closer to each other than to woman-like-BOY or man-chase-
BOY. Indeed, barring a few exceptions, tokens of BOY-in-subject-
role tend to occur closer to each other than to tokens of BOY-in-
object-role. A similar distinction holds within other noun clusters.

In fact, as Elman (1990) observes, "The differentiation is

nonrandom" (p. 207).

The picture we get is one in which grammatical/syntactic
distinctions are arranged in subset-superset relations. First, we
have a lexical category distinction between nouns and verbs. Then,
within the NOUN-cluster, we have a grammatical role distinction

between subject-nouns and object-nouns. At the same time, we
see a picture of grammatical role clusters nested within
semantically-defined noun clusters (e.g., [+animate], [+human],
[-i-masculine], etc.), which in turn are nested within lexical category
clusters. The network does not instantiate a syntactic distinction

devoid of semantic interpretation, nor vice-versa.
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Figure 2. A hierarchical cluster diagram of the hidden unit activation

vectors in a simple sentence prediction task. Labels indicate

the inputs which produced the hidden unit vectors. Inputs

were presented in context, and the hidden unit vectors

averaged across multiple contexts. (Elman 1990, used with

permission)



750 Yap&Shirai

The second cluster analysis also reveals how the network

preserves type-token relations while at the same time allowing each

token to be instantiated in a context-sensitive manner. For

example, the analysis shows that all BOY-tokens are closer to each

other than they are to GIRL-tokens. This is because tokens of the

same type have hidden unit activations that are very similar-

certainly more similar to each other than to the activations of

tokens of a different type. At the same time, no two tokens of the

same type are exactly identical. BOY-sleep, for example, has a

different internal representation from BOY-move-rock or woman-
like-BOY. This is because each hidden unit activation pattern

reflects its own unique prior context.

The above analysis is important because it shows that

sensitivity to context "does not preclude the ability to capture

generalizations" (Elman, 1991, p. 220). According to Elman, all

the network needs to do is learn "to respond to contexts which are

more abstractly defined" (p. 220). This is a simple task for the

network. Given sufficient similarity in the hidden unit activation

pattern, the network can easily abstract and generalize. At the

same time, whatever is dissimilar automatically contributes to

individual token identity. This use of context to establish

generalizations about classes of items and at the same time to

identify individual items is also significant from a processing

perspective because it shows that types and tokens can be

identified simultaneously, and without recourse to additional

procedures such as indexing or binding operations which often

feature prominently in traditional symbolic modeling (Elman,

1990).

The context-sensitivity of each token, in effect, means that

its hidden unit activation pattern is subject to subtle adjustments as

the token combines with other tokens (Elman, 1992). How the

hidden units "accommodate" themselves as a token interacts with

other tokens can be captured to some extent by phase-portraits, or

graphs, obtained through principal component analysis. The graph

in Figure 3 illustrates how hidden unit activation patterns are

constrained by prior context. The graph shows the trajectories

through state space for the sentences boy who boys chase chases

boy and boys who boys chase chase boy. Note that the embedded
clause for both sentences is the same. Nevertheless, the path taken

by the vector representing the hidden unit activations for this
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particular embedded clause varies slightly depending on the

preceding context. In the first sentence, the prior context was a

singular subject boy, while in the second sentence, the prior context

was a plural subject boys. Each context produces its own
expectations, and these expectations affect the pattern of hidden
unit activations of the tokens that follow.

-0.5 _

-1.0 _

-1.5

-2.0

-2.5 —

'

boys

Figure 3. Plot of the movement through one dimension of the hidden

unit activation space (the second principal component) as the

successfully trained network processes the sentences boy who
boys chase chases boy vs. boys who boys chase chase boy.

The second principal component encodes the singular/plural

distinction in the main clause subject. (Elman, 1993, used

with permission).
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Without going into further examples, due to space

constraints, let us integrate the insights we have gained about the

internal representation in Elman's network. This will help us

address some of the questions raised earlier: What kinds of

linguistic knowledge does the network encode? How is this

knowledge represented in a distributed manner? And how is the

appropriate knowledge brought into play in the appropriate

context? From hierarchical clustering analyses, we know that the

network encodes constituent structure. The constituents, however,

do not have the discrete characteristics commonly associated with

traditional symbolic representations. For example, instead of

occupying a discrete location in memory, the constituents reflect

their characteristics through a shared network of hidden units.

Constituents are similar as well as dissimilar to other constituents

in different ways, and this is reflected in the similarity structure of

their hidden unit activation patterns. On the basis of their

similarity and dissimilarity to other hidden unit activation patterns,

their identity as individual tokens and their identity as members of

different classes are recognized. Moreover, because hidden units

are shared along many dimensions, a constituent often belongs to

more than one type of category. For example, boy belongs to

lexical category NOUN, semantic categories [+ANIMATE],
[+HUMAN], [+MALE], etc., grammatical role category SUBJECT
or OBJECT depending on its context, number category

SINGULAR, which prompts verb agreement expectations in the

event that boy is identified as a SUBJECT, and the list could go on.

Information about the various category memberships is activated,

not category by category, but all at the same time, and in

conjunction with information about individual (or context-

sensitive) token identity.

Nor are semantic and syntactic considerations delegated to

autonomous domains. Because semantic categories are found

nested within syntactic categories, and vice-versa, constituents are

also bound to instantiate semantic and syntactic properties at one

and the same time. This is possible because the internal

representation of each constituent is a pattern of hidden unit

activations, and not a single discrete hidden unit. In fact, by
sharing hidden units, constituents are further able to exhibit finer-

grained distinctions among category members when appropriate,

thereby overriding the brittleness of all-or-none category
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memberships. The question of when it is appropriate to make
gradient distinctions and when it is appropriate to make all-or-none

categorizations will, of course, be determined by the demands of

the task—in other words, by the context.

Another important characteristic of the network's internal

representation is that it is non-static. Whereas traditional symbolic

representations tend to be "timeless" (Port & van Gelder, 1991), in

the sense that they remain unchanged once learning or retrieval or

production rules have acted upon them, network representations are

dynamic, keenly sensitive to context, and thus at different points in

time never quite the same, although similar enough for most
categorization purposes. More importantly, as the trajectories

derived from principal component analysis reveal, each pattern of

hidden unit activations (with prior context encoded) constrains the

next pattern of hidden unit activations. In other words, hidden unit

activation patterns have "causal properties" or, as Elman (1991)

puts it, "they are cues which guide the network through different

grammatical states" (p. 221). In this sense, each constituent is

dynamic and plays an active role in determining an entire

composite representation (Port & van Gelder, 1991), be that

composite representation a single sentence, a whole paragraph, or

an entire discourse. In this sense, too, we see the emergence of

grammatical relations~not in static, timeless fashion, but malleable

to context and functioning in real time.

Clearly, the kind of intemal representation found in Elman's

network is very different from the kind conceived within the

traditional symbolic paradigm. At the very least, the difference is

significant enough to challenge us to give more serious thought to

the temporal and integrative aspects of language representation.

The arguments necessary to advance this new focus in language
research have come from some innovative analyses into the hidden

units of dynamic networks. Although some have argued that the

explanations provided by these analyses are not explicit in the

same way that symbolic explanations are explicit, it is important to

bear in mind that network explanations are not so vague that they

cannot broaden our conception of what counts as a viable scheme
of linguistic representation within the human brain. With further

research, some of these explanations may become more explicit,

but it is also worth remembering that the so-called "vague
explanations" mentioned earlier-those referred to as "general
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Statements to the effect that representations are distributed and

similar words are represented similarly"--are the kinds of basic

principles that keep re-surfacing across different domains. If, as

proposed in Seidenberg (1993), one of the desiderata for theories of

cognition is that they be able to show "how phenomena previously

thought to be unrelated actually derive from a common underlying

source" (p. 233), then connectionist explanations are way ahead in

fostering the development of effective explanatory theories.

ON THE NATURE OF CONNECTIONIST
CONCEPTUALIZATIONS

It is unfortunate that the value of conceptualization as

explanation and as a precursor of theories has not always been fully

appreciated. This undervaluation was highlighted in our previous

exchange when Fantuzzi (1993) raised the question of whether

conceptualization counts as explanation in SLA. Fantuzzi's own
position is that "general conceptualizations are not explanations of

linguistic behavior" (p. 309). Such a position, in our view, is much
too restrictive. For while conceptualizations tend to focus on more

abstract problems, or problems that are still fuzzily defined, which

inevitably adds a general or notional flavor to them, to the extent

that these conceptualizations help to clarify a problem and

contribute to its solution, they nonetheless qualify as explanations.^

The tendency to undervaluate conceptualization crops up

from time to time, and perhaps more frequently in the case of some
paradigms than in others, but for a field as new as connectionism,

unfamiliarity with the nature of connectionist conceptualizations

may have been an additional factor. In this section, we will draw

on an extended example found in van Gelder (1992) to illustrate

how connectionist conceptualizations contribute to the

development of explanatory theories.

As discussed earlier, Elman's work has shown how a

network capitalizes on the similarity structure of hidden unit

activations to encode constituent structure. The structure, as

revealed by cluster analysis, is hierarchically nested, such that both

syntactic and semantic considerations constrain the class of

possible successors in a sentence. A logical question that follows



Nature of Connectionist Conceptualizations 185

is how other considerations such as phonological and discourse-

pragmatic factors constrain the composition of an utterance. To
answer this question, we would need to look at how these other

factors are encoded in the network's internal representation. We
would also need to observe how these factors interact and integrate

with other factors to produce complex cognitive behavior. One
way to proceed is to build a phonologically-sensitive network

(perhaps somewhat like NETtalk) and train it on a discourse-based

training corpus. Obviously, such an ambitious project cannot

proceed atheoretically: We would need to narrow our search space

with a clearer definition of what we expect the network to do, and

if possible to anticipate the answers the network will reveal. As in

other paradigms, the anticipations serve as hypotheses to be

confirmed, rejected, or modified. These anticipations are

conceptualizations, and are important to the process of theory

construction.

Conceptualizations are not conceived in a vacuum. Like

our language representations, they are constrained by prior

knowledge"^. Van Gelder (1992), for example, recalls the nested

hierarchy used to encode semantic and syntactic distinctions in

Elman's network, and postulates that "a host of further subtle

contextual and pragmatic factors" are likewise encoded in "an

extraordinarily intricate hierarchical structure of regions within

regions," only this time the "cascade of regions with differing

functional significances" would have to be much deeper, perhaps

infinitely so (pp. 183-84). But how, one might ask, do we envisage

a hierarchically nested structure that is infinitely deep? Are there

similar constructs in other fields that can serve as metaphors to

help us visualize something that we can only begin to vaguely

imagine?
In an earlier work. Pollack (1989) had identified one such

construct (the classical Cantor Set) in the domain of fractal

mathematics. As van Gelder (1992) explains, this set consists of

points obtained in the following manner:

Begin with the set of all points on the unit interval (the

segment of the real number line between and 1) and delete

the middle third open subinterval-that is, every point between

1/3 and 2/3, although being careful not to delete these two

points themselves. We are now left with two intervals, each

1/3 the length of the original. Now delete the middle third
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open subinterval of the remaining intervals, and so on ad

infinitum. What remains is usually termed a 'dust'--an infinite

set of points, systematically arranged in an infinitely deep

hierarchy of clusters, such that between any two clusters at the

same level there is a gap as big as those clusters. Thus,

paradoxically, in this dust the strict separation between

clusters (and, eventually, points) is maintained at any level one

cares to examine, even though, given any distance, no matter

how small, one can find an unbounded number of clusters that

are less than that distance apart, (pp. 184-85, emphasis added)

The spatial organization in the Cantor Set reminds us of the

hierarchical cluster found in Elman's network analysis. Without
forgetting that a network's internal representations are in fact

highly distributed, "not merely in the obvious sense that they are

patterns taking place over a large set of hidden units, but--

primarily-because they encode the relevant information about the

input in a superimposed fashion" (van Gelder, 1992, p. 182,

emphasis added), we can now go on to consider another important

issue: How might fractal structures like the Cantor Set inform us

about the possible behavior of deep nested hierarchies which
encode not only semantic and syntactic constraints but other subtle

contextual and discourse-pragmatic ones as well?

As discussed in van Gelder (1992), an important property

of the Cantor Set is that clusters at the same level are divided by
wide spaces, and these spaces give each cluster its distinctive

identity. This property of distinctiveness is maintained even at the

level of individual fractal points, no matter how infinitesimally

close they might be to one another. In connectionist terms, this

would mean that hidden unit activation patterns that are almost

congruent can still exhibit subtle but distinctive properties. As van
Gelder puts it, within a dynamical system like Elman's network,

"[t]wo points in neighboring clusters would have much in common,
but they would also have differences of functional significance that

could eventually be very important for the future direction of

processing in that system" (p. 192). For networks whose nested

hierarchies must be very deep in order to encode numerous other

constraints besides semantic and syntactic ones, the distance

between neighboring points must be infinitesimally small, and this
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would mean that even very slight variations in hidden unit

activation patterns could make a subtle but significant difference in

the processing output.

Such fine sensitivity to subtle changes would make the

behavior of these networks appear chaotic at times (van Gelder,

1992), but one needs to remember that this chaos-like behavior is

in fact entrenched in a type of internal representation that at the

same time inherently honors type-token distinctions. Thus it

appears that these networks, with their deep Cantor Set-like nested

hierarchies, are well-suited to the paradoxical task of "capturing the

order and regularity inherent in linguistic systems" and at the same
time responding appropriately (and this could mean drastically) "to

small changes in word order, intonation, or pragmatic context"

(van Gelder, 1992, p. 193).

What van Gelder's conceptualization has done, then, is to

provide us with a clearer idea of what an internal representation

that has to encode numerous linguistic differentiations might look

like and how such a representation might be expected to behave.

In so doing, his conceptualization helps to more clearly define a

possible line of simulation research that moves us closer toward an

explanatory theory of language representation. Conceptualizations

like van Gelder's are made possible by findings from previous

simulation efforts, but are also enriched by attempts to seek out

compatibilities with other fields. In fact, van Gelder points out that

a possible consequence of drawing metaphors from a different

domain like fractal mathematics is that we might discover the same
set of principles (in this case, mathematically expressed)
underlying not only cognitive functions but numerous other natural

phenomena as well. It is in this more general but also more
unifying sense, then, that conceptualizations often contribute to the

development of effective explanatory theories.^

SIMULATION-THEN-THEORY, OR SIMULATION-AND-
THEORY

Attempts are sometimes made to characterize a paradigm
according to its research style. Thus, we come across observations

about a paradigm being either theory-then-research oriented, or
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vice-versa. Taken to the extreme, however, such characterizations

can be counter-productive. One such example is found in the last

exchange, when Fantuzzi (1993), observing that connectionist

explanations are essentially "built bottom-up from a working

model" (p. 296), argues that Shirai and Yap (1993), in attempting

to come up with a general connectionist framework to account for

language transfer phenomena prior to running actual simulations,

"have the relationship backwards" (p. 303). While there is little

doubt that general conceptualizations stand to benefit from the

findings of specific simulations, it would be a mistake to assume

that connectionist theorizing cannot proceed ahead of specific

simulations.

As pointed out earlier, conceptualizations are rarely (if

ever) conceived in a vacuum. For example, Shirai (1992)

examined evidence from language transfer studies and discussed

basic principles extracted from numerous connectionist simulation

efforts. The purpose of general conceptualizations of this kind was
to define a possible line of research that can help these

conceptualizations gain greater specificity.

That connectionist research is not strictly bound to a

simulation-then-theory approach is evident from the following

illustration. In van Gelder (1992), we trace an interesting historical

development: Armed with insights from exploratory forays into

neuroscience and dynamical computational modeling, Paul

Churchland (1986) postulated that "the brain represents various

aspects of reality as a position in a suitable state space" (van

Gelder, 1992, p. 179). As van Gelder notes, at the time,

Churchland's statement was seen as an exciting but hopelessly bold

speculation, yet in a matter of just a few years an explosion of

connectionist simulations such as Elman's work had begun to

rapidly clear some of the mysteries surrounding Churchland's

postulate. And, as we have seen earlier in this paper, Elman's

simulation efforts were followed by van Gelder's own bold

conceptualization, which although is bound to invite criticism yet

at the same time is sure to find its way into the theoretical

underpinnings (whether explicit or implicit) of some researcher's

simulation effort. What we see, then, is a principle of interaction

and integration at work, not just at the level of hidden units within
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a network's internal representation, but also at the level of

conceptualization and simulation (i.e., in the way we as researchers

go about formulating and formalizing our hypotheses and theories).

CONCLUSION

Thus far we have shown that connectionist explanations are

not so vague that they cannot contribute to our understanding of

how language is represented and processed. Nevertheless, since

connectionism as a field is young, many questions remain to be

explored. For instance, we have yet to address the question of how
symbolic representations and processing might emerge from a

subsymbolic (i.e., connectionist) architecture. As yet we still do
not know if a hybrid symbolic-connectionist system holds the

answer, or if the solution merely lies within a more sophisticated

network. Nevertheless, the search for an answer is on, and
philosophers and researchers like Clark and Karmiloff-Smith

(1993) are proposing some interesting answers. Drawing on
language acquisition and child development studies, and the results

of relevant connectionist simulations, Clark and Karmiloff-Smith

sketch a scenario in which a connectionist network makes use of

cluster analysis to induce constituent categories (as discussed

earlier), then submit these categories through another kind of

statistical procedure known as "skeletonization" (cf. Mozer &
Smolensky, 1989) to yield a more abstract version of each

category. Through a series of skeletonization procedures, the

network will eventually obtain explicit (i.e., symbolic)

representations that are manipulable for novel combinations and

transportable to different domains. In this way, Clark and
Karmiloff-Smith argue, the connectionist network retains its

sensitivity to contextual nuances by exploiting its implicit (i.e.,

subsymbolic, or distributed) representations, and at the same time

acquires the flexibility to manipulate more explicit representations

obtained through the process of skeletonization.

As with many other connectionist-based accounts, the

sketch proposed by Clark and Karmiloff-Smith requires an

understanding of how connectionist networks behave, but it also

requires something more. It requires powers of perception.



190 Yap&Shirai

reasoning and imagination for a researcher to integrate what (s)he

knows about connectionist principles, cognitive principles,

language acquisition principles, neurobiological principles, etc.

The path to more plausible and more effective explanatory theories

of cognitive functions requires that we recognize the value of broad
conceptualizations in addition to explicit explanations. And it also

requires that we conceptualize, and theorize, not only at the end of

each simulation, but all the time.
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NOTES

^ A system is said to be dynamical when its behavior evolves over time. An
excellent example is the human brain with its non-static flow of neural excitations and
inhibitions. Another good example is the connectionist network with its ever-changing

pattern of hidden unit activations. Each dynamical system can be studied as a closed

system in which their state at any given time can be captured in terms of values of a set of

parameters. The values of these parameters change in interdependent ways as the system

evolves and often it is possible to capture the changing behavior of the system by means
of equations. As van Gelder (1991) points out, these equations can be used to address

some important research questions, for example, how the system got to be in the state it is

in, and what states it will move on into next. Van Gelder goes on to point out, however,

that "dynamical explanations may proceed without making explicit use of the equations

governing the system" (p. 500), as often happens when researchers do not have all the

equations for a complex system, or when researchers do have the equations but prefer to

use some more perspicuous way of explaining how the system works. Van Gelder cites

the use of state trajectories in connectionist research (discussed a little later in the main
text) as an example when explanations of particular features of a network's behavior can

proceed without adverting to the full equations which formally govern the behavior of the

network.

^ It is worth noting that previous connectionist simulations often did not

incorporate the temporal aspect of cognitive functions. By adding a temporal dimension

to his simulation, Elman (1990, 1993) was able not only to explore the spatial
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organization of network representation; he was able to analyze its dynamical properties as

well.

^ Elman (1991) mentions several other techniques for network analysis, among
them weight matrix decomposition (McMillan & Smolensky, 1988), skeletonization

(Mozer & Smolensky, 1989) and contribution analysis (Sanger, 1989).

The intimate interaction between syntactic and semantic features sometimes
makes it difficult to identify which particular features make the biggest difference in

processing outcome. For example, Fantuzzi (1993), citing Kim, Pinker, Prince and

Prasada (1991), argues for the role of syntax in determining whether a novel verb tends

to be regularized for past tense, while Harris (1992, 1993) argues for the greater role of

semantics.

Kim et al.'s work is on past tense naturalness ratings. They attributed the

difference in naturalness ratings of past-tense forms to each verb's derivational status: a

novel verb derived from a noun is more natural with regular past, while that derived from

a verb is more natural with irregular past. They thus attribute the difference in

naturalness ratings to syntax. Harris (1992, 1993), however, has proposed an alternative

account, claiming that natviralness with irregular past is dependent on how much of a

word's original meaning is preserved in the derived verb. Since most of the denominal

verbs used by Kim et al. were semantically very distant from the original noun, it is only

natural that they did not show high ratings for irregular past. In fact, when controlled for

semantic similarity, denominal verbs and deverbal verbs did not show a statistically

significant difference (Harris, 1993). This also shows that syntax and semantics are

closely intertwined; the phenomenon attributed primarily to grammatical status (noun vs.

verb) turned out to be more dependent on semantic factors (see also Stemberger (1993)

for the strong effect of phonological factors in determining the regularizabiUty of a verb).

It should also be pointed out that Marcus, Brinkman, Clahsen, Wiese, Woest
and Pinker's (1993) argument (also cited by Fantuzzi) that connectionism cannot handle

minority default plurals such as those seen in German and Arabic is also coimtered by
Plunkett (1994), who argues that the minority default is problematic only for single-

layered networks such as used in Rumelhart and McClelland (1986), and not problematic

for multi-layered networks that have intermediate structures, and in fact his network

successfully learned Arabic plurals.

Whereas the first cluster analysis averaged aU instantiations of the hidden

unit patterns for each lexical item into a single vector, the second cluster analysis charted

every instantiation of these patterns. Thus, whereas the first analysis involved just 29
vectors (one per lexical item), the second analysis ended up with 27, 354 vectors (one for

every lexical item in a different context). The overall structure of the trees from both

analyses are the same, but finer distinctions are visible in the second, more elaborate tree

(Elman, 1992).

It should be emphasized here that we are not advocating vague explanations

nor vague theories. Contrary to Fantuzzi's claim, Shirai and Yap (1993) did not maintain

that vagueness is all that can be expected from connectionist models. The point we made
was that many linguistic phenomena are "beyond precise description by categorical rules"

(p. 122), and thus any attempt to capture these phenomena in categorical terms would at

best result in something "vague" (in the sense of "approximate" or "imprecise" rather than

in the sense of "unclear"). In fact, we underscored that a partiality for categorical

descriptions is what limits the effectiveness of classical/symbolic explanations, while

connectionist explanations do a better job with their soft constraints (or "soft rules").
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' Note that the terms prior context and prior knowledge are easily

interchangeable. Although not discussed in this paper, prior context/knowledge need not

always take the form of temporal information that finds its way into the internal

representation from the external environment. It is conceivable that complex systems like

the human brain may consist of several networks interacting together, in which case prior

context/knowledge for a particular network can take the form of information previously

stored within a neighboring network.

° It is in this same spirit that Shirai (1992) attempts to articulate a general

framework for language transfer phenomena from the perspective of a different (in this

case, connectionist) domain.
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