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Intracranial infection of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into
the central nervous system (CNS) of susceptible strains of mice results in an acute
encephalomyelitis, accompanied by viral replication in glial cells and robust infiltration
of virus-specific T cells that contribute to host defense through cytokine secretion and
cytolytic activity. Mice surviving the acute stage of disease develop an immune-mediated
demyelinating disease, characterized by viral persistence in white matter tracts and a
chronic neuroinflammatory response dominated by T cells and macrophages. Chemokines
and their corresponding chemokine receptors are dynamically expressed throughout viral
infection of the CNS, influencing neuroinflammation by regulating immune cell infltration
and glial biology. This review is focused upon the pleiotropic chemokine receptor CXCR2
and its effects upon neutrophils and oligodendrocytes during JHMV infection and a number
of other models of CNS inflammation.
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INTRODUCTION
Intracranial infection of susceptible mice with the JHM
strain of mouse hepatitis virus (JHMV) causes an acute
encephalomyelitis followed by a chronic demyelinating disease.
JHMV, after initially infecting ependymal cells lining the ven-
tricles, rapidly disseminates to astrocytes, oligodendroglia, and
microglia throughout the brain and spinal cord (Wang et al.,
1992). Although inflammatory virus-specific T cells are effi-
cient in controlling viral replication through the secretion of
IFN-γ and cytolytic activity, sterile immunity is not achieved.
Viral protein and/or RNA persist within oligodendroglia and
drive continual T cell and macrophage infiltration, leading
to chronic neuroinflammation and demyelination. Histological
features associated with viral persistence include the develop-
ment of an immune-mediated demyelinating disease similar
to the human demyelinating disease MS; both T cells and
macrophages are critical mediators of disease severity, contribut-
ing to myelin damage (Cheever et al., 1949; Perlman et al.,
1999).

Through the course of acute and chronic JHMV-induced neu-
rologic infection, there is a coordinated expression of chemokines
and chemokine receptors that regulate inflammation, contribut-
ing to both host defense and disease exacerbation. Among the
chemokines expressed during infection are members of the
ELR(+) chemokine family CXCL1 and CXCL2. CXCL1 and

CXCL2 are potent chemoattractants for peripheral mononu-
clear cells (PMNs), binding and signaling through their receptor
CXCR2 (Wolpe et al., 1989; Moser et al., 1990; Schumacher
et al., 1992; Marro et al., 2012; Weinger et al., 2013). More-
over, PMNs have been shown to enhance central nervous system
(CNS) inflammation by disrupting blood brain barrier (BBB)
integrity in animal models of spinal cord injury (SCI; Tonai et al.,
2001; Gorio et al., 2007), autoimmune demyelination (Carlson
et al., 2008), and JHMV-induced encephalomyelitis (Zhou et al.,
2003), while blocking or silencing of CXCR2 signaling mutes
inflammation and tissue damage in mouse models in which
PMN infiltration is critical to disease initiation (Kielian et al.,
2001; Belperio et al., 2005; Londhe et al., 2005a,b; Strieter et al.,
2005; Gorio et al., 2007; Wareing et al., 2007; Carlson et al.,
2008).

CXCR2 is also expressed by oligodendrocytes (Omari et al.,
2005), and CXCL1 promotes the proliferation and posi-
tional migration of oligodendrocyte precursor cells (Robin-
son et al., 1998; Robinson and Franic, 2001; Tsai et al.,
2002; Filipovic and Zecevic, 2008). Further, both CXCR2
and CXCL1 are expressed within active MS lesions (Omari
et al., 2005, 2006). How and whether CXCR2 and its cog-
nate ligands regulate immune and glial cell function during
acute and chronic disease of the CNS is the focus of this
review.
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ELR(+) CHEMOKINE SIGNALING PROMOTES PMN
INFILTRATION INTO THE CNS DURING ACUTE JHMV
INFECTION
Following JHMV infection, mRNA for the chemokine recep-
tor CXCR2 and its associated ligands CXCL1 and CXCL2
are significantly upregulated within the acutely infected CNS,
peaking at 3 days pi (Figure 1A). CXCL1 expression was
localized to astrocytes (GFAP-positive) within the parenchyma
and associated with the microvasculature (Figure 1B), con-
sistent with previous observations (Lane et al., 1998; Omari
et al., 2006; Rubio and Sanz-Rodriguez, 2007). The expres-
sion of the CXCR2 ligands within the CNS closely paral-
leled neutrophil emergency release into the circulation and
infiltration into the CNS; CXCR2-expressing neutrophils were
detectable as early as 1 day pi and peaked at 3 days pi
within both the periphery and the CNS (Hosking et al.,
2009).

To determine whether CXCR2—signaling controlled neu-
trophil infiltration into the CNS, JHMV-infected mice were
treated with either CXCR2 antiserum or control serum (NRS).
Neutralization of CXCR2 almost completely abrogated neutrophil
infiltration into the CNS (Figures 1C,D). Without infiltrat-
ing neutrophils, permeabilization of the blood-brain barrier
was impaired (Hosking et al., 2009) and subsequent inflam-
matory cell infiltration was significantly reduced. Mice treated
with CXCR2 neutralizing antiserum were incapable of con-
trolling viral replication, and 100% of all infected mice suc-
cumbed to viral infection within 11 days and this was associated
with an impaired ability to control CNS viral replication
(Figures 1E,F). Moreover, total and virus specific CD4+ and
CD8+ T cell infiltration into the CNS was diminished. Notably,
CXCR2 neutralization did not alter the peripheral generation
of virus-specific T cells, indicating that the increased mor-
tality and diminished ability to control viral infection within
the CNS is likely associated with the dampened access of T
cells into the CNS parenchyma (Hosking et al., 2009). Collec-
tively, these data demonstrate that during viral infection of the
CNS, CXCR2 and its associated chemokines function to non-
redundantly attract neutrophils into the CNS, where they are
required to permeabilize the blood-brain barrier, thus facilitating
subsequent inflammatory cell infiltration and control of viral
replication.

ELR(+) CHEMOKINE SIGNALING AND NEUTROPHILS IN
OTHER MODELS OF CNS INFLAMMATION
Neutrophils are amongst the earliest inflammatory infiltrate
into the CNS following experimental autoimmune encephali-
tis (EAE) induction, and their presence precedes axonal dam-
age, demyelination, and clinical disease (Carlson et al., 2008;
Soulika et al., 2009; Wu et al., 2010). Neutralization of either
CXCR2 (Carlson et al., 2008) or CXCL1 (Roy et al., 2012)
potently reduces neutrophil infiltration into the CNS and reduces
BBB permeability, thereby significantly delaying the onset and
peak of clinical symptoms. Neutrophils also infiltrate into the
CNS during the first week following cuprizone feeding, and
their early presence in the CNS is absolutely necessary for the

subsequent demyelination observed within the corpus callosum
(Liu et al., 2010a). CXCR2 deficient mice or bone marrow
chimeric mice, where myeloid cells lack CXCR2, or neutrophil-
depleted mice are resistant to cuprizone induced demyelina-
tion (Liu et al., 2010a). Interestingly, although neutrophils are
also critical for lymphocytic choriomeningitis virus (LCMV)-
and pilocarpine-induced BBB permeabilization and subsequent
seizures (Fabene et al., 2008; Kim et al., 2009), they are dis-
pensable for seizures during Theiler’s murine encephalomyelitis
virus (TMEV; Libbey et al., 2011), underlining the fact that
neutrophils are not the only cell type capable of mediating perme-
abilizing the BBB. To this point, resident monocytes, astrocytes,
and CD8+ T cells are all capable of direct permeabilization
(Savarin et al., 2010, 2011; Johnson et al., 2012). Nevertheless,
CXCR2-directed neutrophil infiltration into the CNS is a key
determinate for subsequent inflammatory cell infiltration in a
variety of CNS models of viral infection, demyelination, and
autoimmunity.

ELR(+) CHEMOKINE SIGNALING PROMOTES
OLIGODENDROGLIA SURVIVAL DURING CHRONIC
JHMV-INDUCED DEMYELINATION
How chemokine receptor signaling contributes to chronic neu-
rologic diseases has largely been considered within the con-
text of targeted leukocyte recruitment into the CNS (Liu
et al., 2000, 2001a,b; Glass and Lane, 2003; Hosking et al.,
2009). However, numerous resident cell types of the CNS
also express chemokine receptors under non-inflammatory and
inflammatory conditions (reviewed in Bajetto et al., 2001;
Ubogu et al., 2006), indicating that these cells are capable
of responding to specific chemokine ligands. Thus, chemokine
signaling may participate in either repair and/or exacerba-
tion of pathology following insult, injury, or infection of the
CNS (Liu et al., 2001b; Kerstetter et al., 2009; Omari et al.,
2009).

Following JHMV infection, mRNA transcripts for CXCR2 as
well as its ligands CXCL1 and CXCL2 are significantly upreg-
ulated, persisting until at least 21 days pi within the spinal
cord (Figure 2A). CXCL1 expression was localized to GFAP+
astrocytes within the white matter (Figure 2B), suggesting that
CXCR2, besides attracting neutrophils during early acute viral
infection, may also alternatively function during chronic demyeli-
nation. To determine whether CXCR2 signaling was benefi-
cial or pathogenic, mice persistently infected with JHMV were
treated with anti-CXCR2 or control serum (NRS) from day
12–20 p.i. CXCR2 neutralization significantly delayed sponta-
neous clinical recovery (Figure 2C). Correspondingly, spinal
cords from anti-CXCR2 treated mice revealed significantly greater
areas of demyelination (Figures 2D,E). Importantly, CXCR2
neutralization during chronic JHMV infection did not affect
inflammatory cell infiltration into the CNS (Hosking et al.,
2010).

CXCR2 neutralization was also associated with an increase
of apoptotic oligodendrocytes and oligodendrocyte precursor
cells within white matter tracts of the spinal cord (Figure 2F;
Hosking et al., 2010). To determine whether or not CXCR2
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FIGURE 1 | CXCR2 drives neutrophil infiltration into the CNS during
acute JHMV infection. C57BL/6 mice were infected with JHMV and their
brains removed at the indicated time points. (A) mRNA for CXCR2, CXCL1,
and CXCL2 are upregulated within the brains of JHMV infected mice. (B)
Immunofluorescence staining reveals that the majority of CXCL1 (green)
co-localizes with GFAP+ (red) astrocytes. (C) Representative FACS plots

depicting the average frequency of neutrophils at day 3 are shown in panel.
(D) Neutralization of CXCR2 blocks neutrophil (Ly6G+CD11b+) infiltration
into the CNS. (E) CXCR2 neutralization results in 100% morality by day 11
pi (shaded area indicates the treatment period) and (F) elevated viral loads
within the brains of treated mice. NRS = normal rabbit serum treated mice.
* p < 0.05, ** p < 0.01, *** p < 0.001 compared to NRS-treated mice.

could directly prevent JHMV-mediated apoptosis, cultured
oligodendroglia were infected with JHMV in vitro and treated
with varying concentrations of CXCL1. In accordance with
previous observations (Liu et al., 2003, 2006; Liu and Zhang,
2005, 2007), JHMV—infected oligodendrocytes readily
underwent apoptosis (Figure 2G), and western blotting
confirmed activated caspase 3, cleaved poly ADP ribose
polymerase (PARP) (a caspase 3 target), and muted expression of
Bcl-2 (Figure 2I). CXCL1, in a dose-dependent manner,

prevented JHMV-mediated apoptosis (Figure 2G). Moreover,
activated caspase 3 and cleaved PARP were undetectable
in CXCL1-treated cultures (Figure 2I). Notably, CXCL1
was incapable of rescuing CXCR2 deficient cultures from
JHMV-mediated apoptosis (Figures 2H,I). CXCR2 also
prevents IFNγ-and CXCL10- mediated apoptosis of murine
or human oligodendroglia cultures (Tirotta et al., 2011,
2012). Collectively, these data suggest that CXCR2, during
chronic viral infection of the CNS, prevents oligodendrocyte
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FIGURE 2 | CXCR2 promotes spontaneous recovery and
oligodendrocyte survival during chronic JHMV infection. C57BL/6
mice were infected with JHMV and their spinal cords removed at the
indicated time points. (A) mRNA for CXCR2, CXCL1, and CXCL2 are
upregulated within the spinal cords of JHMV infected mice. (B)
Immunofluorescence staining reveals that the majority of CXCL1 (green)
co-localizes with GFAP-positive (red) astrocytes within the spinal cord
white matter. (C) Neutralization of CXCR2 (from day 12–20 pi) delays
clinical recovery from chronic JHMV infection. (D and E) Mice receiving
CXCR2 antiserum had significantly greater total areas of demyelination
within the spinal cord. Representative luxol fast blue stained spinal cords

are shown in panel (D) with the total (solid line) and demyelinated (dashed
line) white matter indicated. (F) Significantly (p < 0.001) increased
numbers of apoptotic (TUNEL+) cells were observed within the spinal
cords of anti-CXCR2 treated mice. (G) CXCL1, in a dose-dependent
manner, protects oligodendrocytes from apoptosis, and (H)
CXCR2-deficienct oligodendrocyte-enriched cultures are not protected
from apoptosis. (I) Protein lysates from CXCR2-sufficient and
CXCR2-deficient oligodendrocyte cultures were assessed via western
blot for total caspase 3, activated caspase 3, PARP, Bcl-2, and actin
expression. NRS = normal rabbit serum treated mice. * p < 0.05, ** p <

0.01, *** p < 0.001 compared to NRS-treated mice.
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apoptosis and promotes clinical recovery from viral induced
demyelination.

ELR(+) CHEMOKINE SIGNALING AND OTHER MODELS OF
CNS INFLAMMATION AND DEMYELINATION
The role for CXCR2 signaling during EAE and a variety of
toxin—induced demyelination models has also been studied.
Raine and colleagues (Omari et al., 2009) have shown that
CXCL1, when inducibly expressed by astrocytes after the onset
of EAE, reduces peak disease severity, reduces total demyeli-
nation, and increases the onset of remyelination. Moreover,
transgenic CXCL1 was associated with greater proliferation (pre-
sumably of oligodendrocyte precursors) throughout the spinal
cord white matter (Omari et al., 2009). Conversely, Ranso-
hoff and colleagues (Liu et al., 2010b) have demonstrated,
using a series of bone marrow chimeras, that parenchymal
CXCR2 deficiency on radio-resistant cells promotes faster recov-
ery from EAE, cuprizone—induced demyelination, and in vitro
lysotecithin-induced demyelination. Notably, initial clinical sever-
ity, inflammation, and/or demyelination in all three models of
demyelination and repair were similar regardless of whether
parenchymal cells possessed CXCR2; accelerated recovery was
associated with initial increases in oligodendrocyte precursor
cells, followed by an increased density of mature myelinat-
ing oligodendrocytes (Liu et al., 2010b). Similar results were
observed following CXCR2 chemical anatagonism during EAE
and in vivo lysolecithin-induced demyelination (Kerstetter et al.,
2009).

PERSPECTIVES
The JHMV-induced model of viral-induced encephalomyelitis
provides an important tool in defining molecular and cellular
mechanisms that regulate neuroinflammation during both host
defense and disease progression. Our research on chemokines
and chemokine receptors has revealed important roles for
these molecules in orchestrating CNS inflammation in response
to JHMV infection. We and others have found unique and
pleiotropic roles for ELR+ chemokine signaling via CXCR2
in moderating neutrophil infiltration and protecting oligoden-
droglia from apoptosis in response to exposure to virus and
proinflammatory cytokines. Ongoing research in our laboratory
continues to focus on the role of ELR(+) chemokine signaling
on oligodendroglia during JHMV-induced neuroinflammation.
It will be important to analyze the effects of selectively ablating
CXCR2 on oligodendroglia during JHMV-induced demyelina-
tion, while simultaneously manipulating the cellular sources of
ELR-positive chemokines in the CNS that may promote neuro-
protection during chronic JHMV-induced disease.
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