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ABSTRACT The existence of a link between the gut microbiome and autism spectrum
disorder (ASD) is well established in mice, but in human populations, efforts to identify
microbial biomarkers have been limited due to a lack of appropriately matched controls,
stratification of participants within the autism spectrum, and sample size. To overcome
these limitations, we crowdsourced the recruitment of families with age-matched sibling
pairs between 2 and 7years old (within 2 years of each other), where one child had a
diagnosis of ASD and the other did not. Parents collected stool samples, provided a
home video of their ASD child’s natural social behavior, and responded online to diet
and behavioral questionnaires. 16S rRNA V4 amplicon sequencing of 117 samples (60
ASD and 57 controls) identified 21 amplicon sequence variants (ASVs) that differed sig-
nificantly between the two cohorts: 11 were found to be enriched in neurotypical chil-
dren (six ASVs belonging to the Lachnospiraceae family), while 10 were enriched in chil-
dren with ASD (including Ruminococcaceae and Bacteroidaceae families). Summarizing
the expected KEGG orthologs of each predicted genome, the taxonomic biomarkers
associated with children with ASD can use amino acids as precursors for butyragenic
pathways, potentially altering the availability of neurotransmitters like glutamate and
gamma aminobutyric acid (GABA).

IMPORTANCE Autism spectrum disorder (ASD), which now affects 1 in 54 children in
the United States, is known to have comorbidity with gut disorders of a variety of
types; however, the link to the microbiome remains poorly characterized. Recent
work has provided compelling evidence to link the gut microbiome to the autism
phenotype in mouse models, but identification of specific taxa associated with au-
tism has suffered replicability issues in humans. This has been due in part to sample
size that sufficiently covers the spectrum of phenotypes known to autism (which
range from subtle to severe) and a lack of appropriately matched controls. Our origi-
nal study proposes to overcome these limitations by collecting stool-associated micro-
biome on 60 sibling pairs of children, one with autism and one neurotypically devel-
oping, both 2 to 7 years old and no more than 2 years apart in age. We use exact
sequence variant analysis and both permutation and differential abundance proce-
dures to identify 21 taxa with significant enrichment or depletion in the autism cohort
compared to their matched sibling controls. Several of these 21 biomarkers have been
identified in previous smaller studies; however, some are new to autism and known to
be important in gut-brain interactions and/or are associated with specific fatty acid
biosynthesis pathways.
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Autism spectrum disorder (ASD) is a heterogeneous developmental disorder affect-
ing social and behavioral functioning in 1 out of 59 children in the United States

(1). Recent studies have identified several environmental factors associated with ASD
etiology and susceptibility, including prenatal infection (2), zinc deficiency (3), maternal
diabetes (4), toxins and pesticides (5), and advanced parental age (6). Individuals with
ASD have demonstrated a high prevalence of gastrointestinal (GI) and immunologic
abnormalities pertaining to GI motility and intestinal permeability (7, 8). The legitimacy
of the proposed microbiome-ASD connection is supported by research on ASD pheno-
type mouse models and the microbiota compositions of human individuals with ASD
(9, 11, 15–17). Hsiao et al. found that administrating Bacteroides fragilis to ASD mouse
models improved ASD-typified behavioral traits by reducing anxiety, restoring commu-
nicative behaviors, and improving sensorimotor gating (9). Bacterial taxa, such as
members of Lactobacillus and a genus of Bifidobacterium, have demonstrated micro-
bially induced behavioral modulation in both rats and humans (10, 12–14). Moreover,
several studies have identified microbial trends among the ASD population such as an
increased abundance of Clostridium (15, 16). More recently, a study involving fecal
microbiome transplant between neurotypical controls and children with ASD demon-
strated a significant improvement in both GI and neurobehavioral symptoms following
the treatment (17). This study particularly demonstrates a potential causative relation-
ship between the gut microbiome and ASD symptoms. While the data on the micro-
biome-ASD symptom link is compelling, studies attempting to identify the specific
microbes responsible have maintained small sample sizes, lack of appropriately
matched controls, limited phenotype scoring, and a lack of bacterial phylogenetic reso-
lution, factors that impact the reproducibility of findings.

The present study aims to determine the specific intestinal microbiota that associ-
ate with behavioral traits in children with ASD. We recruited families with age-matched
neurotypical and ASD siblings via crowdsourcing to reach a sufficient sample size
(18–20). Recruited families had a child clinically diagnosed with ASD and a neurotypical
sibling who were both between the ages of 2 to 7 years old and no more than 2 years
apart in age. We confirmed the self-reported autism diagnosis of each child by leverag-
ing validated machine-learning classification tools that assess ASD-typified features
obtained from parent reports and home video showcasing social interactions (21–26).
Lack of ASD diagnosis relied on parent reporting. Each family completed an extensive
dietary questionnaire online and collected a stool sample from each child at home.

RESULTS
Crowdsourcing recruitment and participant demographics. Between March 2015

and September 2017, 20,478 unique users visited our study website, 1,953 were elec-
tronically screened for eligibility by survey, and 297 of them met our study inclusion
criteria. A total of 194 users electronically consented to participate, and 164 began
responding to the online surveys. Of 164 participants, 100 completed the online com-
ponent and were mailed sampling kits. Seventy-one families, or parents of 142 sibling
pairs, completed the online and at-home sampling procedures for the study, and 117
child subjects (60 ASD and 57 neurotypical [NT]) met all eligibility criteria, including
the required confirmation of diagnosis obtained from the mobile autism risk assess-
ment (MARA) and video classifier, when submitted. Of the 117 child subjects, there
were 55 sibling pairs, two sibling pairs were accompanied by a third sibling with au-
tism, and 5 were singleton samples.

The ASD cohort comprised 72% male participants (n=43) compared to 55% of the
NT cohort (n=27). Dietary and lifestyle questionnaires were completed, in entirety, for
106 of the 117 participants. Among the 106 child subjects, 66% (n=79) identified as
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Caucasian, 7.5% (n=8) identified as Asian or Pacific Islander, 3.8% (n=4) identified as
African American, and 7.5% (n=8) identified as Hispanic (participants were also given
the option to select more than one identifying ethnicity, not reported here).
Participant age was not significantly different between ASD and NT cohorts. Samples
were collected from 24 states: California, Colorado, Florida, Georgia, Hawaii, Illinois,
Indiana, Massachusetts, Maryland, Michigan, Minnesota, Missouri, North Carolina,
Nebraska, New Jersey, Nevada, New York, Ohio, Pennsylvania, Tennessee, Texas, Utah,
Washington, and Wisconsin. Additional demographic and lifestyle data are in Table S1
in the supplemental material.

ASD diagnosis confirmation using the mobile autism risk assessment (MARA)
and video classifier. For all child subjects with ASD, the MARA was completed, and
scorable video was provided for 29 of these child subjects (including one family with
two siblings with ASD and one NT sibling meeting the age criteria). There was a 100%
agreement in class assignment between the MARA and the video classifier in all 37
cases (Table S2). In 12 instances, the output from either or both classifiers (2 supported
by the video classifier) did not confirm the parent-reported ASD diagnosis. These par-
ticipants were therefore excluded from analysis. The results reported hereafter include
only the remaining 60 child subjects with confirmed ASD.

Diet differences between children with ASD and neurotypical siblings. We
found three categorical factors (supplements, dairy intolerance, and dietary restric-
tions) to be significantly different between the two cohorts according to a chi-square
test (Table 1). Nutritional/herbal supplements showed significant differences between
the two cohorts, with 63.6% (n=35) ASD child subjects taking an herbal supplement
compared to 35.3% (n=18) NT child subjects (q value [qval], 2.3E22). Dairy intolerance
was also more prevalent in the ASD cohort (1 NT child subject versus 16 ASD child sub-
jects) (qval, 2.6E23), which correlates with a statistically significant deviation in the fre-
quency of consumption of both milk/cheese and milk substitutes: only 33.3% (n=18)
of ASD child subjects consumed milk/cheese on a “regular” or “daily” basis compared
to 72% (n = 36) of NT child subjects (qval, 2.3E23). Finally, gluten intolerance was
found to be more prevalent in the ASD cohort (qval, 3.5E24). Additionally, 20 ASD
child subjects had other special dietary restrictions apart from dairy and gluten con-
straints compared to only 6 NT child subjects (qval, 2.3e23). Refer to Table 1 and
Table S1 for a summary of the remaining reported data.

Dietary and lifestyle habits influencing the microbial community. Figure S1 in
the supplemental material detailed the five variables that seem to significantly influ-
ence the microbial community: probiotics, multivitamin, sugary sweets, olive oil, and
sequencing batch. Constraint principal coordinate analysis (PCoA) were used to iden-
tify the amplicon sequence variants (ASVs) for which the abundance was the most
influenced by these variables.

Because none of the factors that may influence the microbial structure (probiotics,
multivitamin, sugary sweets, olive oil, and sequencing batch) was significantly different
between the two cohorts, we did not expect confounding effects when identifying
ASVs specific to each cohort. Note that we did not detect any significant differences in
the microbial community of our samples significantly associated with the reported bi-
nary gender of the children.

Similarity between sibling lifestyles. Sibling lifestyles, as measured by our online
questionnaire were significantly more similar to each other than to other participants
(P� 0.01) (Fig. S2). We observed significant differences in gluten and dairy intolerances.
We did not, however, observe any significant differences between our cohorts regarding
the reported gastrointestinal motility (Fig. S2C and S2D) or the frequency distribution of
bowel movements (two-sample Wilcoxon signed-rank test, P value=0.8313, Fig. S2E,
S2A, and S2B). We did not observe statistically significant results either when samples
were agglomerated into two categories, typical bowel movement (one per day) and
abnormal bowel movement (less or more than one per day) (chi-square P = 0.17), de-
spite the percentage of “tend to have normally formed stool” higher in the neurotypical

Association of the Gut Microbiota with Autism

March/April 2021 Volume 6 Issue 2 e00193-20 msystems.asm.org 3

https://msystems.asm.org


cohort (63% compared to 52%). Finally, we performed a Levene test and determine that
the variance was not significantly different between the cohorts as well.

Microbial alpha-diversity. We calculated the phylogenetic diversity (PD) and
Shannon diversity metric for each sample (27). Performing a rank sum test using each
metric, we found no significant difference between cohorts. However, the variance of
diversity (distribution of scores) in the ASD cohort was significantly greater than the NT
cohort (bootstrap P , 0.001; Fig. 1) with both diversity estimators (Fig. 1C and F).
Shannon diversity was not associated with ASD, but rather with bowel movement qual-
ity (exact Fisher P=0.02) with low diversity associated with diarrhea (Fig. 1A and B), but
not significantly related to bowel movement frequency (exact Fisher P = 0.17). Shannon
diversity was also significantly related to bowel movement quality (exact Fisher P = 0.02),
with low diversity associated with diarrhea, but not significantly related to bowel move-
ment frequency (exact Fisher P = 0.17).

Permutation test on sibling pairs to determine ASVs that differentiate between
ASD and NT. Ten ASVs were determined to be differentially abundant between sibling
pairs (ASD versus NT) as determined by a permutation test with false discovery rate
(FDR) correction (Table 2; also see Text S1A in the supplemental material). The mean
differential abundance drawn from the null distribution was never more extreme than
the actual differential abundance mean, and all P values were 0 and increased to 9.36� 1023

upon correction (see distribution plot in Fig. S4). The genera Aggregatibacter, Anaerococcus,
and Oscillospira were significantly enriched in the ASD cohort, while Porphyromonas, Slackia,
Desulfovibrio, Clostridium colinum, and Acinetobacter johnsonii were enriched in the NT
cohort.

TABLE 1 Clinical characteristics for ASD and NT participants with significant difference between the cohorts

Clinical characteristic

ASD participants (n = 60) NT participants (n = 57)

Adjusted P value
No. of participants/ total no.
of participants %

No. of participants/ total no.
of participants %

Gendera

Male 43/60 71.7 27/49 55.1 2.3e22
Female 17/60 28.3 22/49 44.9

Gluten intoleranceb

Yes 22/59 34.4 1/56 1.8 3.5E24
No 42/59 71.2 55/56 98.2

Nutritional/herbal supplementc

Yes 35/55 63.6 18/51 35.3 2.3E22
No 20/55 36.4 33/51 64.7

Special diet restrictionsd

Yes 20/54 37.0 6/51 11.8 2.3E22
No 34/54 63.0 45/51 88.2

Dairy intolerance
Yes 16/60 26.7 1/57 1.8 2.6E26
No 44/60 73.3 56/57 98.2

Consumption of at least 2 servings of
milk or cheese a daye

Never 23/54 42.6 6/50 12.0
Rarely (a few times a month) 8/54 14.8 2/50 4.0
Occasionally (1 or 2/week) 5/54 9.3 6/50 12.0 2.3E23
Regularly (3 to 5/week) 7/54 12.9 18/50 36.0
Daily 11/54 20.4 18/50 36.0

aMissing 8 NT gender responses.
bMissing 1 NT and 1 ASD responses.
cMissing 6 NT and 5 ASD responses.
dMissing 6 NT and 6 ASD responses.
eMissing 7 NT and 6 ASD responses.
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Models to maximize the likelihood of detecting rare ASVs. We implemented a
mixture model using a zero-inflated Gaussian (ZIG) distribution of mean group abun-
dance for each ASV in metagenomeSeq (28) in order to quantify the fold change in
taxa between the ASD cohort and the NT cohort. This analysis revealed 10 ASVs differ-
entially present in the two cohorts: four were enriched in the ASD cohort (Table 2), and
six were enriched in the NT cohort. The NT cohort was enriched in the Lachnospiraceae
(five of six ASVs), including Coprococcus catus, Clostridium colinum, and the genera
Bifidobacterium. In comparison, the ASD cohort was enriched in Ruminococcus and
Holdemania, as well as the species Bacteroides uniformis and Clostridium celatum.

We also used a negative binomial distribution analysis to identify ASVs between
ASD and NT cohorts, through which we identified a single ASV, from the genus
Bacteroides (ASV1), enriched in the ASD cohort. Among the aforementioned statistical
analyses, the microbial genus types identified in more than one statistical abundance
test in the ASD cohort included the family Ruminococcaceae (by three ASVs including
the genera Oscillospira and Ruminococcus) and the genus Bacteroides (by two ASVs).
The NT cohort presents six ASVs belonging to the family Lachnospiraceae.

Correlation between ASVs and MARA scores. Four taxa were correlated with the
MARA score in the ASD cohort, Bacteroidales genus Prevotella, Campylobacterales genus
Campylobacter, and two ASVs from the Clostridiales order, and classified as genera
Peptoniphilus and WAL_1855D.

Functional profile prediction. The software Piphillan predicted ;6,900 active KEGG
orthologs (KOs) that were part of ;170 metabolic pathways as defined by KEGG Brite.
Overall, we were able to associate 105 ASVs with full genome annotations. From the

FIG 1 Phylogenetic diversity and Shannon diversity used as estimators of microbial alpha-diversity. The variance of diversity
(distribution of scores) in the ASD cohort was significantly greater than that in the NT cohort (bootstrap P, 0.001) with both
diversity estimators. Shannon diversity was also significantly related to bowel movement quality (exact Fisher P= 0.02), with low
diversity associated with diarrhea, but not significantly related to bowel movement frequency (exact Fisher P= 0.17). NA, not
available; PD, phylogenetic diversity.
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predicted KOs that were present in these genomes, we observed 17 predicted metabolic
pathways with significantly differential abundance between ASD and NT cohorts. Two
pathways were significantly enriched in the ASD cohort: flagellar assembly (ko02040) and
aminoacyl-tRNA biosynthesis (ko00970) (Fig. 2). Fifteen pathways were significantly
enriched in the NT cohort, including butanoate metabolism (ko00650), propanoate metab-
olism (ko00640), sulfur metabolism (ko00920), phosphotransferase system (ko02060), and
microbial metabolism in diverse environments (ko01120). A full list of significantly differen-
tial pathways is shown in Fig. 2 and Fig. S6.

DISCUSSION
Crowdsourcing recruitment, lifestyle, dietary practices, and GI symptoms. By

targeting the Internet-active autism community, we were able to crowdsource study
subject recruitment from diverse geographical areas and reach our targeted sample
size for each cohort in a short amount of time. This study design highlights ASD bio-
marker candidates while minimizing the impact of confounding environmental factors.
By recruiting only sibling pairs who are within 2 years of age of one another, living in
similar home environments, and eating similar diets (see Fig. S2F in the supplemental
material), we successfully controlled for diet and lifestyle among our two cohorts.
Using this approach of working with sibling cohorts, other studies have also shown
very similar microbial structure between the two cohorts (29) to the point of not being
able to identify taxa specific to a cohort.

We observed no overlap between factors that heavily influence the microbial struc-
ture (Fig. S1) and the factors that were significantly different between the ASD and the
NT cohorts (Table 1). Therefore, it is unlikely that the ASVs identified as ASD or NT bio-
markers were differentially abundant due to diet or lifestyle as confounding influences.

We did not observe significant differences in the GI motility or stool quality
between cohorts; however, there was an increased prevalence of dairy and gluten sen-
sitivities among ASD child subjects which may imply a propensity for GI distress and
have been previously found to be associated with children with ASD (30–32). We also
observed an increase in special dietary restrictions among our ASD child subjects,
which could imply that many parents had already implemented limitations to their
child’s diet to alleviate any potential or previously identified gastrointestinal issues.
Perhaps due to high parent involvement, we did not observe the expected differences
in GI motility or gastrointestinal abnormalities, which is unusual for a study, especially
with this sample size. Failure to detect systematic GI distress in ASD could also be
attributed to differences in the populations recruited in this study, where the families
involved were very interested by the potential impact of the diet on autism, and there-
fore potentially very aware and proactive in relieving GI discomforts. It can be noted
that when focusing on the quality of the gastrointestinal motility (rather than quantita-
tive), we observe a trend with a chi-square of 0.12, suggesting that maybe the fre-
quency of bowel movements are a sensitive enough measure.

Microbial community diversity. There is much debate in the literature as to
whether microbial diversity is significantly different in children with ASD versus chil-
dren with typical neurodevelopment. While we found no significant rank sum relation-
ship between alpha-diversity of the microbiota and ASD diagnosis, we observed a sig-
nificant relationship when considering samples “high,” “medium,” or “low” diversity.
The variance in diversity scores was significantly greater in the ASD cohort than in the
NT cohort, which may explain some of the discrepancies seen in smaller cohort studies
such as those conducted by Finegold et al. and Kang et al. (33, 34), which report
increased and decreased microbial diversity, respectively, in the ASD cohort. It is worth
noting that young children (between 2 and 7 years old) also experience some drastic
changes in their gut microbial diversity (35), which may also contribute to the high var-
iation in the diversity of the samples.

Microbial taxon analysis. The control cohort chosen in this study, typically devel-
oping siblings of ages within 2 years of the children with autism, has the advantage of
closely matching the environment and diet within each sibling pair. The literature
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indicates that interpersonal distances of the microbial community as a whole using
beta-diversity analysis of children within family is significantly smaller than between
families (35, 36). Because they share the same environment and because of the possi-
ble horizontal microbial transmission, our study design may hinder some 16S amplicon
biomarkers that would be exchanged between the two siblings.

This study relied exclusively on ASVs, which means that the taxonomic comparisons
were performed without any clustering of 16S rRNA amplicon sequences (Table 2) (37). This
approach produces single sequence variants which can be reproducibly detected between
studies and across sequencing runs and improving taxonomic resolution (38). Among those
variants, one ASV was also correlated with the MARA score within the ASD cohort.

We provided in Table 3 and Table 4 a comprehensive list of biological information
and information related to other reports on each bacterial association with ASD and
other pertinent phenotypes. Our findings agree overall with the literature in that the
Bacteroides genus and families such as Erysipelotrichaceae and Clostridiaceae (member
of clostridial cluster I) have already been widely reported as enriched in ASD (Table 3).
We also observed that members of clostridial cluster IV (genus Ruminococcus) and fam-
ily Pasteurellaceae (ASV5) were both enriched in the ASD cohort. This entire family was
previously reported as being depleted in ASD participants (34); this discrepancy could
be explained by the aggregation of all Pasteurellaceae, while we implicate a single
member of the family. Pasteurellaceae was also detected as one of the most abundant

TABLE 2 Candidate 16S biomarkers enriched and depleted in the autism cohort and their annotation
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FIG 2 Pathway analyses derived from amplicon sequence variant analysis. (A) Butanoate metabolism. Detailed analysis of the butanoate pathway is shown. The
color of the arrow reflects the cohort in which the ASV carrying the KEGG ortholog was detected. CoA, coenzyme A; OAA, oxaloacetate. (B) KEGG pathways
enriched in each cohort. A list of the 17 pathways enriched in the gene set enrichment analysis using genomes and abundances estimated from the ribosomal
analysis is shown. (C) Microbial metabolism in diverse environments. A detailed analysis of the pathway microbial metabolism in diverse environments and
metabolites of interest for the gut-brain axis interaction is shown. TCA cycle, trichloroacetic cycle; DDT, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane.
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bacterial families in children with developmental disabilities in Japan (39), supporting
its potential association with atypical behavioral phenotypes. Finally, we also found
that the genus Anaerococcus (ASV5) was enriched in the ASD cohort which to our
knowledge has not yet been reported in previous research literature.

Our analysis also identified six ASVs belonging to the Lachnospiraceae family that
are depleted in the ASD cohort and enriched in the neurotypical cohort. This family
overall has already been reported as associated with autism phenotype (Table 3). Of
these ASVs, the Ribosomal Database Project (RDP) classifier was able to assign only
two species names, and we were only able to identify three genomes carrying similar
ribosomal sequences (Table 2), indicating that we may have identified novel variants
from our analyses (40, 41). These homogeneous phylogenetic groups of ASVs seem
especially interesting as they cluster near each other on the 16S rRNA phylogenic tree
(Fig. 3). Additionally, members from clostridial cluster IV were associated with ASD,
while members from Clostridium cluster XIVa were associated with the control cohort.
We could hypothesize that these two families exhibit metabolic pathways that are dis-
tinct among their functional redundancies. As microbes from this genus are some of
human gut-associated microbiomes main butyrate producers, we examine the dif-
ferences in butyrate production pathways of these two clusters in our pathway
analysis below. The genera Desulfovibrio and Bifidobacterium were also depleted in
the ASD cohort, consistent with results from at least three other studies (Table 4).
Bifidobacterium has been characterized for its ability to normalize gut permeability (14).
Finally, we identified two more families depleted in the ASD cohort, Porphyromonadaceae
and Moraxellaceae, which produce butyrate or use it as the sole source of carbon,
respectively.

Pathway analysis. We identified 17 predicted pathways associated with either
cohort (Fig. 2). It should be noted that connecting enriched predicted pathways to the
potential biomarker ASVs reported can be tenuous, as Piphillin was able to match only
6 of our 21 markers to full genomes and extract their associated KOs. Notable differen-
tially predicted pathways include the following.

(i) Butyrate production pathway. The potential role of short-chain fatty acids
(SCFAs) in autism has been discussed in multiple studies. Wang et al. reported elevated
SCFA concentration in children with ASD (42), while two other studies reported the op-
posite trend when looking at total SCFAs (43, 44). Macfabe et al. found that intrave-
nous administration of the SCFA propionate induced ASD typified behavior in mouse
models (45). Butyrate, in particular, has been proposed as a potential major mediator
of the gut-brain axis either through modulation of the density of cholinergic enteric
neurons through epigenetic mechanisms or through direct modulation of the vagus
nerve and hypothalamus (46). Our gene set enrichment analysis (GSEA) revealed that
the stool microbiome of NT participants carry microbial genomes capable of butyrate
metabolism, implying that butyrate production and consumption pathways may be
enriched in the NT cohort, in Fig. 2. Butyrate production pathways in commensal mi-
crobial species and pathogens are thought to have evolved divergently; there are four
pathways for butyrate production, each branching from a different initial substrate: py-
ruvate, 4-aminobutyrate, glutarate, and lysine (47). The by-products and influences of
these major butyrogenic pathways could be relevant to host physiology. In our cohort,
the predicted bacterial genetic potential in NT samples showed an enrichment for KOs
associated with butyrate production from pyruvate, while in the ASD samples, the pre-
dicted functional potential was enriched for butyrate production via the 4-aminobuta-
noate (4Ab) pathway (Fig. 2A and Fig. S6. 4Ab (or gamma aminobutyric acid [GABA]) is
a major inhibitory neurotransmitter and its biosynthesis can directly interfere with the
amount of available glutamate (47). GABA has also been found in a few case reports in
high levels in the urine and blood of young children with autism (48). This pathway
can also potentially release harmful by-products such as ammonia (47), which were
found to be elevated in feces of children with ASD (42). Genes identified as part of the
pyruvate biosynthesis pathway were either found in both cohorts or only in predicted
genomes associated with biomarkers from the NT cohort (Fig. 2 and Fig. S6B).
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(ii) Propionate pathway. The predicted pathways for the synthesis of propionate,
another SCFA, appears depleted in the ASD cohort (Fig. 2C). This pathway generates
isopropanol as a by-product, which has recently been found at a greater concentration
in the feces of children with autism (34).

TABLE 3 Taxa enriched in the ASD cohort

Phylogeny Commensal activity and/or potential relevance to ASD
Family: Clostridiaceae Belongs to clostridial cluster IV
ASV 10: Clostridium celatum Enrichment in ASD cohort: Clostridium genus (19, 33), Clostridium

histolyticum (72), Clostridium bolteae in ASD (73)
Clostridia and Bacteroides classes drive differences between ASD and NT in
mouse guts (9)

Depletion of Clostridium leptum in ASD (33)
Correlated with high-fat diets and subsequently cognitive inflexibility (74)
Producem-tyrosine which has been shown to decrease neural
catecholamine concentration levels and induce ASD typified behavioral
abnormalities in animal models (75)

Antibiotic vancomycin can be used to target the Clostridium species to
provide short-term alleviation of ASD symptoms (76)

Increased Clostridiales correlated with shorter gap between GI symptoms
and time of onset of ASD symptoms (32)

Clostridia produce both an enterotoxin and a neurotoxin and are generally
very active metabolically. They may produce toxic substances like
phenols, p-cresol, and various indole derivatives (16)

Genus: Bacteroides
ASV1, ASV8

Largest portion of the gut microbiome and helps digest vegetables and
whole grain; produce butyrate and ferment glycans

Responsible for biotransformation of bile acids, which in turn are
associated with GI dysfunction in mouse (77)

Bacteroides vulgatus found enriched ASD (33)
Increased levels of the bacterium Bacteroides vulgatus lead to increased
brain levels of propionic acid, known to cause symptoms characteristic
of autism when injected into the brains of rats (78)

In situ hybridization targeting Bacteroides found no association with ASD
(72)

Family: Ruminococcaceae
ASV3 and ASV4: Ruminococcus

Aids in digestion of resistant starches, belongs to clostridial cluster IV, and
produces butyrate

Helps reverse infectious diarrhea by slowly digesting resistant starches (79)
Ruminococcus torques associated with increased severity of irritable bowel
syndrome (80) and enriched in ASD (81)

Ruminococcus potentially predictive fecal biomarkers for dysregulation of
central brain neurometabolite N-acetylaspartate mediated through
serum cortisol in young pigs (82). Same neurometabolite was reported
altered in ASD (83)

ASV7: Oscillospira Oscillospira aids in the breakdown of complex carbohydrates by
fermenting resistant starches and produces butyrate

Family: Erysipelotrichaceae
ASV9: Holdemania

Family commonly found in gut microbiome of mice on high-fat diet (84),
which itself is often associated with neurobehavioral change (85)

Erysipelotrichaceae Turicibacter sanguinis found enriched in ASD (86)
Entire Erysipelotrichaceae family also found depleted in ASD individuals (87)

Family: Pasteurellaceae
ASV6: Aggregatibacter/ Haemophilus pittmaniaea

Periodontopathic species. Demonstrate opportunistic pathogenicity,
including brain abscess (88)

Aggregatibacter was detected as one of the most abundant bacterial
genera in children with developmental disabilities in Japan (39)

Aggregatibacter was isolated from urine of children with ASD (17)

Family: Tissierellaceae
ASV5: Anaerococcus

Isolated for infectious sites and bacterial abscesses, especially ovarian (89)

aDiscrepancy in annotation. The RDP classifier using GreenGenes 13.8 (last updated 2013) assigned Aggregatibacter Unknown, while the IMG database (updated
continuously) assigned Haemophilus pittmaniae. Both genera are strongly related to each other, and the new genus Aggregatibacterwas created to accommodate some
former Haemophilus and Actinobacillus species.
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(iii) Sulfur pathway. The association between the predicted sulfur pathway and
the NT cohort, though somewhat surprising, parallels our finding of Acinetobacter and
Desulfovibrio enrichment in the NT cohort and has already been hypothesized as possi-
ble route modulating the gut-brain interaction in autism (49) (Fig. S6D).

(iv) Phosphotransferase system. ASVs associated with ASD seemed to show a
much greater variety of carbohydrate transporters (Fig. S6G).

(v) Microbial metabolism in diverse environments. This high level category com-
prises many different pathways, and it is interesting to note that this KEGG category is
associated with several metabolites already known in the literature as enriched or
depleted in subjects with ASD (Fig. 2C). Among these metabolites were p-cresol (34)
and ammonia (43) that have been found in greater abundance in the feces of children
with autism; SCFAs (propanoate and acetate), which have mixed reports associating
them with either children with ASD or controls (43, 44, 50); and neurotransmitters such
as L-glutamate and GABA, which tend to be greater and lower, respectively, in feces of
children with ASD (34). Glutamine, found in greater levels in the feces of ASD partici-
pants (34), also belongs to this KEGG pathway, as do several metabolites such as nico-
tinate and aspartate, another neurotransmitter (34, 43, 51).

Limitations. While these results show promising microbial differences between
autism and typically developing children, potential limitations included reliance on

TABLE 4 Taxa enriched in the neurotypical cohorta

Phylogeny Commensal activity and/or potential relevance to ASD
Family: Lachnospiraceae Member of Clostridium cluster XIV
ASV17 and ASV18 Help digest fiber and produces butyrate (40)
ASV16: Lachnospira Family shown depleted in inflammatory bowel disorder (90)
ASV20: Coprococcus catus Genus Coprococcus found depleted in ASD (11)
ASV19: Ruminococcus Lachnospiraceae depletion in ASD suggests lack of bacterial taxa important for

carbohydrate degradation.

Family: Desulfovibrionaceae
ASV14: Desulfovibrio

Desulfovibrio genus potentially key influential organisms in ASD (91) as children with
ASD commonly have low blood levels of sulfur and high urinary excretion

D. pigers, D. desulfuricans, and D. intestinalis found enriched in severe ASD, but multiple
hypothesis testing correction was not performed (91)

Increased abundance correlated with improvement of GI and improvement of
behavioral ASD symptoms after microbial transfer therapy (17)

Family: Bifidobacteriaceae
ASV21: Bifidobacterium

Provides protection from pathogenic infections (92)
Assists in normalization of gut permeability and inhibits inflammatory cytokine
interleukin-10

Aid in prevention of diarrhea, reduce food allergies, and help digest lactose (93)
Found depleted in ASD (33)
Found increased in ASD after microbiota transfer therapy that correlated with
improvement of GI and behavioral symptoms (17)

Family: Porphyromonadaceae
ASV12

Produces butyrate (94)
Genus Porphyromonas harbors several species known to be pathogens for oral cavity,
namely P. gingivalis (95)

P. gingivalis produces a unique capsular polysaccharide that triggers Toll-like receptor
2- dependent anti-inflammatory mechanisms in autoimmune encephalomyelitis
mice (model for multiple sclerosis) (96, 97)

Family: Coriobacteriaceae
ASV13: Slackia

Relatively little physiological information available about the Slackia genus

Family:Moraxellaceae
ASV15: Acinetobacter johnsonii

Has been characterized in soil and water for its catabolic property in degrading
aromatic compounds (98)

Multiple strains of this species have also been reported to develop multiantibiotic
resistance, most likely through horizontal transfer reshuffling (99)

Has capacity to proliferate on butyrate as the sole carbon source (100)
aWe will not discuss the results related to ASV2, as it was not possible to assign any taxonomy beyond the order level.
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FIG 3 Selected order from V4 ribosome-derived phylogenetic tree. Ribosome-derived phylogenetic tree (V4 alignments) of the order carrying
amplicon sequence variants (ASVs) of interest. The ASVs in blue are enriched in the neurotypical cohort and the ones in blue in the autism
cohort.
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self-reported information, limited identification of species or strain level variants,
limited single time point sampling, and lack of consideration of host genetic
variation.

While we safeguarded against self-report bias through two validated machine-learn-
ing algorithms that adapt well to mobile testing and we gathered numerous lifestyle in-
formation, there remains bias in self-report of diagnosis. In particular, because we
required MARA only for the child with ASD, we could not confirm the typical develop-
ment of their siblings. In addition, the compliance with the optional request for video
was slightly under ,50% of the cohort studied. There is also a higher probability for a
second child to have autistic symptoms (even subphenotypes of autism); and in these
scenarios, the parents have a heightened sensitivity to and are more likely to watch for
autistic symptoms and to request formal screening, following the CDC recommendations
that doctors screen all siblings of autistic children for developmental delays starting at
9months old (52). While it was encouraging to see perfect alignment between the
MARA and the video classifier outcomes, bolstering confidence in the confirmation of
self-reporting, it would be better to require this dual check for all participants in future
work.

Although widely used (17), self-reported GI symptoms can also suffer some dis-
crepancies compared to data reported by a pediatric gastroenterologist (45).
Furthermore, while we observed physiological distinctions between the micro-
biomes of the cohorts on the level of amplicon sequence variants, it was often not
possible to assign a taxonomic annotation or full genome to these sequences
because of incomplete coverage in public databases. As the predicted pathways dis-
cussed were highly dependent on availabilities of full genome information, further
metagenome and multi-omics analyses in this space will be needed to confirm the
metabolic hypotheses presented.

MATERIALS ANDMETHODS
Crowdsourcing recruitment and data collection. Data were collected from March 2015 to

September 2017 under an approved Stanford University Institutional Review Board protocol (eProtocol
30205). We crowdsourced study subject recruitment by an online survey (https://microbiome.stanford
.edu) via popular social media networking platforms and engaged with nonprofit and for-profit compa-
nies. Each sampling kit included two sets of collection tubes containing swabs to collect stool samples,
instructions, and a detailed, 53-question dietary questionnaire for each child (see Table S3 and Table S1
in the supplemental material).

ASD diagnosis confirmation. The study enrolled only children that the parents indicated as previ-
ously diagnosed by a clinician with ASD, using standard of care with behavioral instruments such as the
autism diagnostic observation schedule (ADOS) and the autism diagnostic interview-revised. To confirm
this parent-provided ASD diagnosis of a child subject, we applied two machine-learning classifiers, one
based on a parent-directed questionnaire (22, 25) and one based on a home video of the child with ASD
(21, 22, 26). The parent-directed questionnaire is described below as “mobile autism risk assessment” or
MARA, and the video-based classifier is referred to as “video classifier.”

All participants electronically completed the clinically validated mobile autism risk assessment
(MARA) (22, 25). Briefly, this system uses a set of seven behavioral features developed through machine
learning for rapid screening for autism, focusing on the child’s language ability, make-believe play, social
activity, restricted and repetitive behaviors, general signs of developmental delays by or before age 3,
and eye contact; the responses generate a score that classifies the child as either “ASD” (positive score)
or “no ASD” (negative score).

We also requested a home video of their child with ASD. Due to both privacy and technical barriers
to video upload, we made the video upload optional but required that all subjects complete the MARA
as a strict inclusion criterion. The specific details of scoring and the validation of the classifier are
described in previous publications (21, 22, 26). For the purposes of this study, we had at least three
video raters who were blind to diagnosis independently tag the specific behavioral features that our
video classifier requires to produce a risk score. To safeguard against ascertainment bias due to increas-
ing familiarity, we required our video analysts to score an unlabeled mixture of ASD participant videos
and similar home videos of neurotypical children aged 2 to 7 years mined from YouTube’s publicly avail-
able videos. We took the majority consensus diagnosis as the outcome for comparison with the caregiv-
er’s self-reported diagnosis. Finally, we worked individually with the families that enrolled in the study
to minimize the potential of false-negative controls by asking them to confirm that their second child
was not on the autism spectrum (having never received a formal diagnosis, despite the other child
receiving one).

Lifestyle, antibiotics, and dietary practices. Participants electronically completed questionnaires
on behalf of their children, which included both dietary, supplement (including antibiotics) lifestyle
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using a five-point frequency-based Likert scale and categorical answers (Table S1 and Table S3), includ-
ing categorical data items were assigned either 1 or 0, and Likert scale items were assigned a value from
1 to 5 (1 = “Never,” to 5 = “Always”). Differences of qualities with ordinal values were investigated using
a linear-by-linear association test, and qualities with categorical values were tested using a chi-squared
test. To verify that family relation was a practical criterion to ensure similarity between case and control
lifestyle and dietary habits, we performed a permutation test (999 permutations) on the Euclidean dis-
tances between participants’ numerical responses. Data were standardized to mean 0 and variance 1 to
account for the differences in scale between categorical and Likert scale numerical values (see Fig. S2F
in the supplemental material).

DNA extraction, amplification, and sequencing. Microbiome samples were processed according to
the procedures outlined by the American Gut Project Protocol (53–56). Samples were shipped the day of collec-
tion by express mail (prestamped envelopes were provided to the participants) (56). Samples were stored at
280°C upon arrival (within 48 h of sampling) (9). DNA was extracted using the 96-well Powersoil DNA isolation
kit (MO BIO, Carlsbad, CA). We utilized the manufacturer’s protocol with the following modification: after the
addition of the sample and solution C1, we partially submerged the sealed extraction plates in a water bath for
10 min at 65°C. We amplified the extracted DNA using the 5PRIME MasterMix (5 PRIME, Inc., Gaithersburg, MD)
and the 515F/806R (targeting the V4 region) primers for a final concentration of 0.2mM per primer. The ther-
mocycler settings for generating amplicons were as follows: (i) 3 min at 94°C; (ii) 35 cycles, with 1 cycle consist-
ing of 45 s at 94°C, 1 min at 50°C, and 1.5 min at 72°C; (iii) a final extension step of 10 min at 72°C. After PCR,
we quantified the DNA concentration of each sample using the Quant-iT PicoGreen double-stranded DNA
(dsDNA) assay kit and then pooled to 70ng DNA per sample. We generated clean pools using the QIAquick
PCR purification kit (Qiagen, Hilden, Germany). The clean pools were then submitted to the Environmental
Sample Preparation and Sequencing Facility at Argonne National Laboratory to be sequenced on an Illumina
MiSeq using V4 chemistry.

Sequence filtering, chimera removal, taxonomic assignment, and phylogenic tree.We obtained
a total of 3,419,972 reads. Raw sequences were processed using the workflow available in the soft-
ware package DADA2 (31), which models and corrects amplicon errors. Reads were trimmed to
include base pairs 10 through 140 and truncated at the first instance of a Phred quality score less
than 20. Reads with more than two expected errors were filtered out. Reads were then dereplicated
and denoised, and samples with less than 10,000 reads were discarded. Forward and reverse reads
were merged, and chimeras were removed. Taxonomy was assigned to each amplicon sequence var-
iant (ASV) generated by this pipeline by running the Ribosomal Database Project’s (RDP) naive
Bayesian classifier (57), implemented in DADA2, against the GreenGenes data set maintained in
DADA2 package (58). The phylogenetic tree was rooted using an Archaea sequence from
Halorhabdus rudnickae as an outgroup (see available GitHub code): all the sequences were aligned
using the phangorn package and a neighbor-joining tree was built (59) using ape. The tree was
bootstrapped 100 times with phangorn (60).

Statistical analyses. We performed statistical analyses with R version 3.4.2 (28 September 2017)
using R Studio Integrated development environment for R v1.0.136 (open source software) (Boston, MA).
All code used for this work is publicly available: https://github.com/walllab/Microbiome_16S_mbio.

Analysis of alpha-diversity differences. We calculated alpha-diversity for each sample using
Shannon-Weiner diversity, a traditional metric that takes into account richness and evenness of taxo-
nomic species, and phylogenetic diversity, a metric that measures the total length of phylogenetic
branches necessary to span the set of taxa in a sample (60). We then used a Wilcoxon rank sum test (61)
to quantify the significance of differences observed between the two cohorts. Next, we performed 1,000
bootstraps to calculate the variance of diversity metrics observed in each cohort and again used a rank
sum test to quantify the significance of the difference in variances.

Identification of dietary and lifestyle habits influencing the microbial community and
identification of confounding factors. To determine whether or not the parent-reported dietary and
lifestyle questionnaires contained influential data and insight into the microbial communities observed
in our samples, we used a permutational multivariate analysis of variance (PERMANOVA) test (ADONIS
function in vegan package) on Bray-Curtis distances agglomerating all the samples (without stratifica-
tion). We also performed a test to measure the homogeneity of the dispersion (PERMDISP2 procedure)
of each cluster in order to be more confident that the cluster-specific centroids were robustly different
rather than due to disparities in cohort dispersions.

Once we identify which dietary and lifestyle habits are significantly associated with a microbial com-
munity structure across all samples, we used the intersection of covariate significantly different between
the two cohorts (see “Lifestyle, antibiotics, and dietary practices” above) to identify which of these cova-
riates could be confounding factors.

Permutation test on sibling pair differentials. In addition to community level trends, we investi-
gated differential abundances of specific taxa. We ran a permutation test on mean taxon abundance
differences between sibling pairs to determine whether any taxa were systematically enriched or
depleted in our ASD samples compared to our NT controls. Details can be found in Text S1A in the
supplemental material.

Models to maximize the likelihood of detecting rare ASVs. Given the sparsity of 16S rRNA gene
sequencing due to sequencing depth limitations, we used differential ribosomal analysis based on the
negative binomial distribution and zero-inflated Gaussian analysis, to estimate log fold changes of taxa
abundances between our ASD and NT groups (62).

Differential analysis of 16S amplicon. (i) Negative binomial distribution.We performed differen-
tial analysis of taxa counts between groups by modeling taxon abundances under a negative binomial
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model using the DESeq2 framework (63). This method performs variance stabilization on taxon counts
and then fits a generalized linear model with a log link on normalized count data.

(ii) Zero-inflated Gaussian analysis. To account for sparsity due to undersampling, we used the
method developed by Paulson et al. (28), a mixture model that uses a zero-inflated Gaussian distri-
bution to account for various depths of coverage. This method uses cumulative sum scaling (CSS)
for normalization to account for undersampling and increase the sensitivity and specificity of identi-
fiable taxa.

(iii) Spearman correlation. Finally, we also leverage MARA classifier scores to determine whether
any ASVs were correlated with phenotype scoring within the ASD cohort only.

Functional profile prediction using Piphillan.We inferred metabolic activity using Piphillan (64).
Piphillan aligns 16S sequences to sequences in the GreenGenes database (58) and assigns func-
tional profiles based on 16S sequences, 16S sequences that do not match a database entry are
assigned the functional profile of their nearest neighbor. Piphillan was run on DESeq2-normalized
data (see Fig. S5 for normalization justification) to produce estimates of KEGG ortholog abundances
(65–67). We then performed a modified gene enrichment analysis: a set was considered a metabolic
pathway as defined by the KEGG Brite database, and an element was considered a KEGG ortholog
(68).

Gene set enrichment analysis using KEGG orthologs. Using KO prediction provided by Piphillan,
we assigned to each ASV the functional pathways using the KEGG database (67). As some KOs contrib-
ute to multiple pathways, we first divided the abundance of each KO in a sample by the number of
pathways the KO participates in, so that a single functional unit’s activity or output may contribute to
only one pathway at a time (as a rule of thumb). Then we used the Gage implementation of gene set
enrichment analysis (GSEA) (69) to perform a modified gene enrichment analysis: a set was considered
a metabolic pathway as defined by the KEGG Brite database, and an element was considered a KEGG
ortholog (68).

Power calculation. We modeled microbial abundances as a Dirichlet-Multinomial, a model which
has been proven to successfully reflect the abundances seen in naturally occurring microbial com-
munities (70). Under this model, we estimated Method-of-Moments (MoM) parameters for each
taxon and determined the stability of those estimates by comparing likelihood ratio test statistics
over 1,000 Monte-Carlo simulations (71). From this simulation, we can determine the number of
samples necessary to reach a given level of power when estimating parameter values. At a rejection
threshold value of 0.05, 70 ASD child subjects and 70 NT subjects were required to obtain power
above 0.99, and 45 ASD child subjects and 45 NT child subjects were sufficient to provide a power
greater than 0.95. Though we do not explicitly use the Dirichlet-Multinomial model in further analy-
ses, a high power in this context implies a high power in more complex downstream analyses that
are not able to be simulated.

Data accessibility. All fastq files can be downloaded at http://files.cgrb.oregonstate.edu/David_Lab/
ASD_study1/. Code and analysis are available on GitHub at https://github.com/walllab/Microbiome_16S_mbio.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, PDF file, 0.1 MB.
FIG S1, PDF file, 0.9 MB.
FIG S2, PDF file, 0.2 MB.
FIG S3, PDF file, 0.4 MB.
FIG S4, PDF file, 0.2 MB.
FIG S5, PDF file, 0.1 MB.
FIG S6, PDF file, 0.8 MB.
TABLE S1, XLSX file, 0.03 MB.
TABLE S2, PDF file, 0.02 MB.
TABLE S3, XLSX file, 0.02 MB.

ACKNOWLEDGMENTS
The work was supported in part by funds to D.P.W. from NIH (1R01EB025025-01 and

1R21HD091500-01), The Hartwell Foundation, Bill and Melinda Gates Foundation,
Coulter Foundation, Lucile Packard Foundation, and program grants from Stanford’s
Precision Health and Integrated Diagnostics Center (PHIND), Beckman Center, Bio-X
Center, Predictive and Diagnostics Accelerator (SPADA) Spectrum, and Maternal and
Child Health Research Institute. We also acknowledge the generous support of David
Orr, Imma Calvo, Bobby Dekesyer, and Peter Sullivan.

M.M.D. is a partner in Microbiome Engineering, an independent company developing
biosensors, and has a financial interest in Second Genome Inc., an independent
therapeutics company with products in development to treat Inflammatory Bowel Diseases

Association of the Gut Microbiota with Autism

March/April 2021 Volume 6 Issue 2 e00193-20 msystems.asm.org 15

http://files.cgrb.oregonstate.edu/David_Lab/ASD_study1/
http://files.cgrb.oregonstate.edu/David_Lab/ASD_study1/
https://github.com/walllab/Microbiome_16S_mbio
https://msystems.asm.org


and Cancer. D.P.W. is cofounder of Cognoa, a company focused on digital methods for
healthy child development.

REFERENCES
1. Maenner MJ, Shaw KA, Baio J, et al. 2020. Prevalence of autism spec-

trum disorder among children aged 8 years—Autism and Develop-
mental Disabilities Monitoring Network, 11 sites, United States,
2016. MMWR Surveill Summ 69:1–12. https://doi.org/10.15585/
mmwr.ss6904a1.

2. Hall D, Huerta MF, McAuliffe MJ, Farber GK. 2012. Sharing heteroge-
neous data: the national database for autism research. Neuroinfor-
matics 10:331–339. https://doi.org/10.1007/s12021-012-9151-4.

3. Lakshmi Priya MD, Geetha A. 2011. Level of trace elements (copper, zinc,
magnesium and selenium) and toxic elements (lead and mercury) in the
hair and nail of children with autism. Biol Trace Elem Res 142:148–158.
https://doi.org/10.1007/s12011-010-8766-2.

4. Gardener H, Spiegelman D, Buka SL. 2009. Prenatal risk factors for au-
tism: comprehensive meta-analysis. Br J Psychiatry 195:7–14. https://doi
.org/10.1192/bjp.bp.108.051672.

5. Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T,
Dean JC. 2000. A clinical study of 57 children with fetal anticonvulsant
syndromes. J Med Genet 37:4892497. https://doi.org/10.1136/jmg.37.7
.489.

6. Parner ET, Baron-Cohen S, Lauritsen MB, Jørgensen M, Schieve LA,
Yeargin-Allsopp M, Obel C. 2012. Parental age and autism spectrum
disorders. Ann Epidemiol 22:143–150. https://doi.org/10.1016/j.annepidem
.2011.12.006.

7. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P,
Carteni M, De Rosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C.
2010. Alterations of the intestinal barrier in patients with autism spec-
trum disorders and in their first-degree relatives. J Pediatr Gastroenterol
Nutr 51:4182424. https://doi.org/10.1097/MPG.0b013e3181dcc4a5.

8. Boukthir S, Matoussi N, Belhadj A, Mammou S, Dlala SB, Helayem M,
Rocchiccioli F, Bouzaidi S, Abdennebi M. 2010. Abnormal intestinal per-
meability in children with autism. Tunis Med 88:685–686.

9. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA,
Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. 2013.
Microbiota modulate behavioral and physiological abnormalities associ-
ated with neurodevelopmental disorders. Cell 155:1451–1463. https://
doi.org/10.1016/j.cell.2013.11.024.

10. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG,
Bienenstock J, Cryan JF. 2011. Ingestion of Lactobacillus strain regulates
emotional behavior and central GABA receptor expression in a mouse
via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055. https://
doi.org/10.1073/pnas.1102999108.

11. Kang D-W, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB,
Krajmalnik-Brown R. 2013. Reduced incidence of Prevotella and other
fermenters in intestinal microflora of autistic children. PLoS One 8:
e68322. https://doi.org/10.1371/journal.pone.0068322.

12. Messaoudi M, Violle N, Bisson J-F, Desor D, Javelot H, Rougeot C. 2011. Benefi-
cial psychological effects of a probiotic formulation (Lactobacillus helveticus
R0052 and Bifidobacterium longum R0175) in healthy human volunteers.
Gut Microbes 2:256–261. https://doi.org/10.4161/gmic.2.4.16108.

13. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y,
Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W,
McLean PG, Bergonzelli GE, Collins SM, Verdu EF. 2011. The anxiolytic effect
of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain
communication. Neurogastroenterol Motil 23:1132–1139. https://doi.org/10
.1111/j.1365-2982.2011.01796.x.

14. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. 2008. The pro-
biotic Bifidobacteria infantis: an assessment of potential antidepressant
properties in the rat. J Psychiatr Res 43:164–174. https://doi.org/10.1016/
j.jpsychires.2008.03.009.

15. Song Y, Liu C, Finegold SM. 2004. Real-time PCR quantitation of clostridia
in feces of autistic children. Appl Environ Microbiol 70:6459–6465.
https://doi.org/10.1128/AEM.70.11.6459-6465.2004.

16. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen M, Bolte E, McTeague
M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen
P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H,
Haake DA, Manning P, Kaul A. 2002. Gastrointestinal microflora studies

in late-onset autism. Clin Infect Dis 35:S6–S16. https://doi.org/10.1086/
341914.

17. Kang D-W, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts
A, Geis E, Maldonado J, McDonough-Means S, Pollard EL, Roux S,
Sadowsky MJ, Lipson KS, Sullivan MB, Caporaso JG, Krajmalnik-Brown R.
2017. Microbiota transfer therapy alters gut ecosystem and improves
gastrointestinal and autism symptoms: an open-label study. Microbiome
5:10. https://doi.org/10.1186/s40168-016-0225-7.

18. Swan M. 2012. Crowdsourced health research studies: an important
emerging complement to clinical trials in the public health research eco-
system. J Med Internet Res 14:e46. https://doi.org/10.2196/jmir.1988.

19. Comber A, Brunsdon C, See L, Fritz S, McCallum I. 2013. Comparing expert
and non-expert conceptualisations of the land: an analysis of crowdsourced
land cover data, p 243–260. In Spatial information theory. Springer Interna-
tional Publishing, Cham, Switzerland.

20. David MM, Babineau BA, Wall DP. 2016. Can we accelerate autism discoveries
through crowdsourcing? Res Autism Spectr Disord 32:80–83. https://doi.org/
10.1016/j.rasd.2016.09.001.

21. Duda M, Kosmicki JA, Wall DP. 2014. Testing the accuracy of an observa-
tion-based classifier for rapid detection of autism risk. Transl Psychiatry
4:e424. https://doi.org/10.1038/tp.2014.65.

22. Wall DP, Kosmicki J, DeLuca TF, Harstad E, Fusaro VA. 2012. Use of
machine learning to shorten observation-based screening and diagnosis
of autism. Transl Psychiatry 2:e100. https://doi.org/10.1038/tp.2012.10.

23. Kosmicki JA, Sochat V, Duda M, Wall DP. 2015. Searching for a minimal set of
behaviors for autism detection through feature selection-based machine
learning. Transl Psychiatry 5:e514. https://doi.org/10.1038/tp.2015.7.

24. Fusaro VA, Daniels J, Duda M, DeLuca TF, D’Angelo O, Tamburello J,
Maniscalco J, Wall DP. 2014. The potential of accelerating early detection
of autism through content analysis of YouTube videos. PLoS One 9:
e93533. https://doi.org/10.1371/journal.pone.0093533.

25. Duda M, Daniels J, Wall DP. 2016. Clinical evaluation of a novel and mo-
bile autism risk assessment. J Autism Dev Disord 46:1953–1961. https://
doi.org/10.1007/s10803-016-2718-4.

26. Levy S, DudaM, Haber N, Wall DP. 2017. Sparsifyingmachine learningmodels
identify stable subsets of predictive features for behavioral detection of au-
tism. Mol Autism 8:65. https://doi.org/10.1186/s13229-017-0180-6.

27. CadotteMW, Davies TJ, Regetz J, Kembel SW, Cleland E, Oakley TH. 2010. Phy-
logenetic diversity metrics for ecological communities: integrating species
richness, abundance and evolutionary history. Ecol Lett 13:96–105. https://
doi.org/10.1111/j.1461-0248.2009.01405.x.

28. Paulson JN, Stine OC, Bravo HC, Pop M. 2013. Differential abundance analysis
for microbial marker-gene surveys. Nat Methods 10:1200–1202. https://doi
.org/10.1038/nmeth.2658.

29. Gondalia SV, Palombo EA, Knowles SR, Cox SB, Meyer D, Austin DW.
2012. Molecular characterisation of gastrointestinal microbiota of chil-
dren with autism (with and without gastrointestinal dysfunction) and
their neurotypical siblings. Autism Res 5:419–427. https://doi.org/10
.1002/aur.1253.

30. Vuong HE, Hsiao EY. 2017. Emerging roles for the gut microbiome in au-
tism spectrum disorder. Biol Psychiatry 81:411–423. https://doi.org/10
.1016/j.biopsych.2016.08.024.

31. Lau NM, Green PHR, Taylor AK, Hellberg D, Ajamian M, Tan CZ, Kosofsky
BE, Higgins JJ, Rajadhyaksha AM, Alaedini A. 2013. Markers of celiac dis-
ease and gluten sensitivity in children with autism. PLoS One 8:e66155.
https://doi.org/10.1371/journal.pone.0066155.

32. Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennett A,
Jabado O, Hirschberg DL, Lipkin WI. 2011. Impaired carbohydrate diges-
tion and transport and mucosal dysbiosis in the intestines of children
with autism and gastrointestinal disturbances. PLoS One 6:e24585.
https://doi.org/10.1371/journal.pone.0024585.

33. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E,
Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA, III.
2010. Pyrosequencing study of fecal microflora of autistic and control chil-
dren. Anaerobe 16:444–453. https://doi.org/10.1016/j.anaerobe.2010.06.008.

34. Kang D-W, Ilhan ZE, Isern NG, Hoyt DW, Howsmon DP, Shaffer M,
Lozupone CA, Hahn J, Adams JB, Krajmalnik-Brown R. 2018. Differences

David et al.

March/April 2021 Volume 6 Issue 2 e00193-20 msystems.asm.org 16

https://doi.org/10.15585/mmwr.ss6904a1
https://doi.org/10.15585/mmwr.ss6904a1
https://doi.org/10.1007/s12021-012-9151-4
https://doi.org/10.1007/s12011-010-8766-2
https://doi.org/10.1192/bjp.bp.108.051672
https://doi.org/10.1192/bjp.bp.108.051672
https://doi.org/10.1136/jmg.37.7.489
https://doi.org/10.1136/jmg.37.7.489
https://doi.org/10.1016/j.annepidem.2011.12.006
https://doi.org/10.1016/j.annepidem.2011.12.006
https://doi.org/10.1097/MPG.0b013e3181dcc4a5
https://doi.org/10.1016/j.cell.2013.11.024
https://doi.org/10.1016/j.cell.2013.11.024
https://doi.org/10.1073/pnas.1102999108
https://doi.org/10.1073/pnas.1102999108
https://doi.org/10.1371/journal.pone.0068322
https://doi.org/10.4161/gmic.2.4.16108
https://doi.org/10.1111/j.1365-2982.2011.01796.x
https://doi.org/10.1111/j.1365-2982.2011.01796.x
https://doi.org/10.1016/j.jpsychires.2008.03.009
https://doi.org/10.1016/j.jpsychires.2008.03.009
https://doi.org/10.1128/AEM.70.11.6459-6465.2004
https://doi.org/10.1086/341914
https://doi.org/10.1086/341914
https://doi.org/10.1186/s40168-016-0225-7
https://doi.org/10.2196/jmir.1988
https://doi.org/10.1016/j.rasd.2016.09.001
https://doi.org/10.1016/j.rasd.2016.09.001
https://doi.org/10.1038/tp.2014.65
https://doi.org/10.1038/tp.2012.10
https://doi.org/10.1038/tp.2015.7
https://doi.org/10.1371/journal.pone.0093533
https://doi.org/10.1007/s10803-016-2718-4
https://doi.org/10.1007/s10803-016-2718-4
https://doi.org/10.1186/s13229-017-0180-6
https://doi.org/10.1111/j.1461-0248.2009.01405.x
https://doi.org/10.1111/j.1461-0248.2009.01405.x
https://doi.org/10.1038/nmeth.2658
https://doi.org/10.1038/nmeth.2658
https://doi.org/10.1002/aur.1253
https://doi.org/10.1002/aur.1253
https://doi.org/10.1016/j.biopsych.2016.08.024
https://doi.org/10.1016/j.biopsych.2016.08.024
https://doi.org/10.1371/journal.pone.0066155
https://doi.org/10.1371/journal.pone.0024585
https://doi.org/10.1016/j.anaerobe.2010.06.008
https://msystems.asm.org


in fecal microbial metabolites and microbiota of children with autism
spectrum disorders. Anaerobe 49:121–131. https://doi.org/10.1016/j
.anaerobe.2017.12.007.

35. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,
Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath
AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber
C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut micro-
biome viewed across age and geography. Nature 486:222–227. https://
doi.org/10.1038/nature11053.

36. Hedin CR, van der Gast CJ, Stagg AJ, Lindsay JO, Whelan K. 2017. The gut
microbiota of siblings offers insights into microbial pathogenesis of
inflammatory bowel disease. Gut Microbes 8:359–365. https://doi.org/10
.1080/19490976.2017.1284733.

37. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.
2016. DADA2: high-resolution sample inference from Illumina amplicon
data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869.

38. Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants
should replace operational taxonomic units in marker-gene data analy-
sis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119.

39. Naka S, Yamana A, Nakano K, Okawa R, Fujita K, Kojima A, Nemoto H,
Nomura R, Matsumoto M, Ooshima T. 2009. Distribution of periodonto-
pathic bacterial species in Japanese children with developmental dis-
abilities. BMC Oral Health 9:24. https://doi.org/10.1186/1472-6831-9-24.

40. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing
EzBioCloud: a taxonomically united database of 16S rRNA gene sequen-
ces and whole-genome assemblies. Int J Syst Evol Microbiol
67:1613–1617. https://doi.org/10.1099/ijsem.0.001755.

41. Microbiology Society. 2010. List of new names and new combinations
previously effectively, but not validly, published. Int J Syst Evol Microbiol
60:1009–1010. https://doi.org/10.1099/ijs.0.024562-0.

42. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon
MA. 2012. Elevated fecal short chain fatty acid and ammonia concentra-
tions in children with autism spectrum disorder. Dig Dis Sci
57:2096–2102. https://doi.org/10.1007/s10620-012-2167-7.

43. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti
DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R. 2013. Fecal microbiota
andmetabolome of children with autism and pervasive developmental disor-
der not otherwise specified. PLoS One 8:e76993. https://doi.org/10.1371/
journal.pone.0076993.

44. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. 2011. Gastrointesti-
nal flora and gastrointestinal status in children with autism – compari-
sons to typical children and correlation with autism severity. BMC Gas-
troenterol 11:22. https://doi.org/10.1186/1471-230X-11-22.

45. Macfabe D. 2013. Autism: metabolism, mitochondria, and the microbiome.
Glob Adv Health Med 2:52–66. https://doi.org/10.7453/gahmj.2013.089.

46. Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X. 2018. Butyrate: a dou-
ble-edged sword for health? Adv Nutr 9:21–29. https://doi.org/10.1093/
advances/nmx009.

47. Anand S, Kaur H, Mande SS. 2016. Comparative in silico analysis of butyr-
ate production pathways in gut commensals and pathogens. Front
Microbiol 7:1945. https://doi.org/10.3389/fmicb.2016.01945.

48. Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A,
Martinez J. 2002. Elevated plasma gamma-aminobutyric acid (GABA) lev-
els in autistic youngsters: stimulus for a GABA hypothesis of autism. Med
Sci Monit 8:PR1–PR6.

49. Midtvedt T. 2012. The gut: a triggering place for autism – possibilities and
challenges. Microb Ecol Health Dis 2012:23. https://doi.org/10.3402/mehd
.v23i0.18982.

50. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA.
2011. Low relative abundances of the mucolytic bacterium Akkermansia
muciniphila and Bifidobacterium spp. in feces of children with autism. Appl
EnvironMicrobiol 77:6718–6721. https://doi.org/10.1128/AEM.05212-11.

51. Yap IKS, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. 2010.
Urinary metabolic phenotyping differentiates children with autism from
their unaffected siblings and age-matched controls. J Proteome Res
9:2996–3004. https://doi.org/10.1021/pr901188e.

52. Centers for Disease Control and Prevention. 2020. Screening and diagno-
sis of autism spectrum disorder for healthcare providers. Centers for Dis-
ease Control and Prevention, Atlanta, GA.

53. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA,
Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diver-
sity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A
108(Suppl 1):4516–4522. https://doi.org/10.1073/pnas.1000080107.

54. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N,
Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G,
Knight R. 2012. Ultra-high-throughput microbial community analysis on
the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi
.org/10.1038/ismej.2012.8.

55. Parada AE, Needham DM, Fuhrman JA. 2016. Every base matters: assess-
ing small subunit rRNA primers for marine microbiomes with mock com-
munities, time series and global field samples. Environ Microbiol
18:1403–1414. https://doi.org/10.1111/1462-2920.13023.

56. Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. 2016.
Preservation methods differ in fecal microbiome stability, affecting suitability
for field studies. mSystems 1:e00021-16. https://doi.org/10.1128/mSystems
.00021-16.

57. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for
rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl
EnvironMicrobiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07.

58. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber
T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked
16S rRNA gene database and workbench compatible with ARB. Appl En-
viron Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05.

59. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi
.org/10.1093/oxfordjournals.molbev.a040454.

60. Schliep KP. 2011. phangorn: phylogenetic analysis in R. Bioinformatics
27:592–593. https://doi.org/10.1093/bioinformatics/btq706.

61. Finegold SM. 2011. State of the art; microbiology in health and disease.
Intestinal bacterial flora in autism. Anaerobe 17:367–368. https://doi
.org/10.1016/j.anaerobe.2011.03.007.

62. Dixon P. 2003. VEGAN, a package of R functions for community ecol-
ogy. J Veg Sci 14:927–930. https://doi.org/10.1111/j.1654-1103.2003
.tb02228.x.

63. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
https://doi.org/10.1186/s13059-014-0550-8.

64. Iwai S, Weinmaier T, Schmidt BL, Albertson DG, Poloso NJ, Dabbagh K,
DeSantis TZ. 2016. Piphillin: improved prediction of metagenomic con-
tent by direct inference from human microbiomes. PLoS One 11:
e0166104. https://doi.org/10.1371/journal.pone.0166104.

65. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG:
new perspectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res 45:D353–D361. https://doi.org/10.1093/nar/gkw1092.

66. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG
as a reference resource for gene and protein annotation. Nucleic Acids
Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070.

67. Kanehisa M. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27.

68. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005.
Gene set enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles. Proc Natl Acad Sci U S A
102:15545–15550. https://doi.org/10.1073/pnas.0506580102.

69. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. 2009. GAGE:
generally applicable gene set enrichment for pathway analysis. BMC Bio-
informatics 10:161. https://doi.org/10.1186/1471-2105-10-161.

70. La Rosa PS, Brooks JP, Deych E, Boone EL, Edwards DJ, Wang Q,
Sodergren E, Weinstock G, Shannon WD. 2012. Hypothesis testing and
power calculations for taxonomic-based human microbiome data. PLoS
One 7:e52078. https://doi.org/10.1371/journal.pone.0052078.

71. Mooney CZ. 1997. Monte Carlo simulation. SAGE Publications, Thousand
Oaks, CA.

72. Parracho HM, Bingham MO, Gibson GR, McCartney AL. 2005. Differences
between the gut microflora of children with autistic spectrum disorders
and that of healthy children. J Med Microbiol 54:987–991. https://doi
.org/10.1099/jmm.0.46101-0.

73. Kandeel WA, Meguid NA, Bjørklund G, Eid EM, Farid M, Mohamed SK,
Wakeel KE, Chirumbolo S, Elsaeid A, Hammad DY. 2020. Impact of Clos-
tridium bacteria in children with autism spectrum disorder and their an-
thropometric measurements. J Mol Neurosci 70:897–907. https://doi
.org/10.1007/s12031-020-01482-2.

74. Magnusson KR, Hauck L, Jeffrey BM, Elias V, Humphrey A, Nath R,
Perrone A, Bermudez LE. 2015. Relationships between diet-related
changes in the gut microbiome and cognitive flexibility. Neuroscience
300:128–140. https://doi.org/10.1016/j.neuroscience.2015.05.016.

Association of the Gut Microbiota with Autism

March/April 2021 Volume 6 Issue 2 e00193-20 msystems.asm.org 17

https://doi.org/10.1016/j.anaerobe.2017.12.007
https://doi.org/10.1016/j.anaerobe.2017.12.007
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/nature11053
https://doi.org/10.1080/19490976.2017.1284733
https://doi.org/10.1080/19490976.2017.1284733
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1186/1472-6831-9-24
https://doi.org/10.1099/ijsem.0.001755
https://doi.org/10.1099/ijs.0.024562-0
https://doi.org/10.1007/s10620-012-2167-7
https://doi.org/10.1371/journal.pone.0076993
https://doi.org/10.1371/journal.pone.0076993
https://doi.org/10.1186/1471-230X-11-22
https://doi.org/10.7453/gahmj.2013.089
https://doi.org/10.1093/advances/nmx009
https://doi.org/10.1093/advances/nmx009
https://doi.org/10.3389/fmicb.2016.01945
https://doi.org/10.3402/mehd.v23i0.18982
https://doi.org/10.3402/mehd.v23i0.18982
https://doi.org/10.1128/AEM.05212-11
https://doi.org/10.1021/pr901188e
https://doi.org/10.1073/pnas.1000080107
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1128/mSystems.00021-16
https://doi.org/10.1128/mSystems.00021-16
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.1016/j.anaerobe.2011.03.007
https://doi.org/10.1016/j.anaerobe.2011.03.007
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1371/journal.pone.0166104
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1186/1471-2105-10-161
https://doi.org/10.1371/journal.pone.0052078
https://doi.org/10.1099/jmm.0.46101-0
https://doi.org/10.1099/jmm.0.46101-0
https://doi.org/10.1007/s12031-020-01482-2
https://doi.org/10.1007/s12031-020-01482-2
https://doi.org/10.1016/j.neuroscience.2015.05.016
https://msystems.asm.org


75. Shaw W. 2010. Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-
hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite
of Clostridia spp. in the gastrointestinal tract, in urine samples from
patients with autism and schizophrenia. Nutr Neurosci 13:135–143.
https://doi.org/10.1179/147683010X12611460763968.

76. Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Väisänen
ML, Nelson MN, Wexler HM. 2000. Short-term benefit from oral vancomy-
cin treatment of regressive-onset autism. J Child Neurol 15:429–435.
https://doi.org/10.1177/088307380001500701.

77. Golubeva AV, Joyce SA, Moloney G, Burokas A, Sherwin E, Arboleya S,
Flynn I, Khochanskiy D, Moya-Pérez A, Peterson V, Rea K, Murphy K,
Makarova O, Buravkov S, Hyland NP, Stanton C, Clarke G, Gahan CGM,
Dinan TG, Cryan JF. 2017. Microbiota-related changes in bile acid & tryp-
tophan metabolism are associated with gastrointestinal dysfunction in a
mouse model of autism. EBioMedicine 24:166–178. https://doi.org/10
.1016/j.ebiom.2017.09.020.

78. MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE,
Boon F, Taylor AR, Kavaliers M, Ossenkopp KP. 2007. Neurobiological
effects of intraventricular propionic acid in rats: possible role of short
chain fatty acids on the pathogenesis and characteristics of autism spec-
trum disorders. Behav Brain Res 176:149–169. https://doi.org/10.1016/j
.bbr.2006.07.025.

79. Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a key-
stone species for the degradation of resistant starch in the human colon.
ISME J 6:1535–1543. https://doi.org/10.1038/ismej.2012.4.

80. Malinen E, Krogius-Kurikka L, Lyra A, Nikkilä J, Jääskeläinen A, Rinttilä T,
Vilpponen-Salmela T, von Wright AJ, Palva A. 2010. Association of symp-
toms with gastrointestinal microbiota in irritable bowel syndrome.
World J Gastroenterol 16: 4532–4540. https://doi.org/10.3748/wjg.v16
.i36.4532.

81. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon
MA. 2013. Increased abundance of Sutterella spp. and Ruminococcus
torques in feces of children with autism spectrum disorder. Mol Autism
4:42. https://doi.org/10.1186/2040-2392-4-42.

82. Mudd AT, Berding K, Wang M, Donovan SM, Dilger RN. Serum cortisol
mediates the relationship between fecal Ruminococcus and brain N-ace-
tylaspartate in the young pig. Gut Microbes 8:589–600. https://doi.org/
10.1080/19490976.2017.1353849.

83. Friedman SD, Shaw DW, Artru AA, Richards TL, Gardner J, Dawson G,
Posse S, Dager SR. 2003. Regional brain chemical alterations in young
children with autism spectrum disorder. Neurology 60:100–107. https://
doi.org/10.1212/WNL.60.1.100.

84. Kaakoush NO. 2015. Insights into the role of Erysipelotrichaceae in the
human host. Front Cell Infect Microbiol 5:84. https://doi.org/10.3389/fcimb
.2015.00084.

85. Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E, IV, Taylor CM, Welsh
DA, Berthoud HR. 2015. Obese-type gut microbiota induce neurobeha-
vioral changes in the absence of obesity. Biol Psychiat 77:607–615.
https://doi.org/10.1016/j.biopsych.2014.07.012.

86. DeAngelis KM, D’Haeseleer P, Chivian D, Simmons B, Arkin AP,
Mavromatis K, Malfatti S, Tringe S, Hazen TC. 2013. Metagenomes of
tropical soil-derived anaerobic switchgrass-adapted consortia with and
without iron. Stand Genomic Sci 7:382–398. https://doi.org/10.4056/sigs
.3377516.

87. Gilbert JA, Krajmalnik-Brown R, Porazinska DL, Weiss SJ, Knight R. 2013.
Toward effective probiotics for autism and other neurodevelopmental
disorders. Cell 155:1446–1448. https://doi.org/10.1016/j.cell.2013.11.035.

88. Nørskov-Lauritsen N. 2014. Classification, identification, and clinical sig-
nificance of Haemophilus and Aggregatibacter species with host speci-
ficity for humans. Clin Microbiol Rev 27:214–240. https://doi.org/10
.1128/CMR.00103-13.

89. Ezaki T, Kawamura Y, Li N, Li ZY, Zhao L, Shu S. 2001. Proposal of the gen-
era Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen.
nov. for members of the genus Peptostreptococcus. Int J Syst Evol Micro-
biol 51:1521–1528. https://doi.org/10.1099/00207713-51-4-1521.

90. Haas KN, Blanchard JL. 2017. Kineothrix alysoides, gen. nov., sp. nov., a
saccharolytic butyrate-producer within the family Lachnospiraceae. Int J
Syst Evol Microbiol 67:402–410. https://doi.org/10.1099/ijsem.0.001643.

91. Frye RE, Rose S, Slattery J, MacFabe DF. 2015. Gastrointestinal dysfunc-
tion in autism spectrum disorder: the role of the mitochondria and the
enteric microbiome. Microb Ecol Health Dis 26:27458. https://doi.org/10
.3402/mehd.v26.27458.

92. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T,
Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H,
Hattori M, Ohno H. 2011. Bifidobacteria can protect from enteropatho-
genic infection through production of acetate. 469:543–547. https://doi
.org/10.1038/nature09646.

93. Di Gioia D, Aloisio I, Mazzola G, Biavati B. 2014. Bifidobacteria: their
impact on gut microbiota composition and their applications as probiot-
ics in infants. Appl Microbiol Biotechnol 98:563–577. https://doi.org/10
.1007/s00253-013-5405-9.

94. Vital M, Karch A, Pieper DH. 2017. Colonic butyrate-producing commun-
ities in humans: an overview using omics data. mSystems 2:e00130-17.
https://doi.org/10.1128/mSystems.00130-17.

95. Spooner R, Weigel KM, Harrison PL, Lee K, Cangelosi GA, Yilmaz Ö. 2016.
In situ anabolic activity of periodontal pathogens Porphyromonas gingi-
valis and Filifactor alocis in chronic periodontitis. Sci Rep 6:33638.
https://doi.org/10.1038/srep33638.

96. Nichols FC, Housley WJ, O'Conor CA, Manning T, Wu S, Clark RB. 2009.
Unique lipids from a common human bacterium represent a new class
of Toll-like receptor 2 ligands capable of enhancing autoimmunity. Am J
Pathol 175:2430–2438. https://doi.org/10.2353/ajpath.2009.090544.

97. Wang Y, Kasper LH. 2014. The role of microbiome in central nervous sys-
tem disorders. Brain Behav Immun 38:1–12. https://doi.org/10.1016/j.bbi
.2013.12.015.

98. Jiang Y, Qi H, Zhang XM. 2018. Co-biodegradation of anthracene and
naphthalene by the bacterium Acinetobacter johnsonii. J Environ Sci
Health A Tox Hazard Subst Environ Eng 53:448–456. https://doi.org/10
.1080/10934529.2017.1409579.

99. Montaña S, Schramm ST, Traglia GM, Chiem K, Parmeciano Di Noto G,
Almuzara M, Barberis C, Vay C, Quiroga C, Tolmasky ME, Iriarte A,
Ramírez MS. 2016. The genetic analysis of an Acinetobacter johnsonii
clinical strain evidenced the presence of horizontal genetic transfer.
PLoS One 11:e0161528. https://doi.org/10.1371/journal.pone.0161528.

100. Van Veen HW, Abee T, Kleefsman AW, Melgers B, Kortstee GJ, Konings
WN, Zehnder AJ. 1994. Energetics of alanine, lysine, and proline trans-
port in cytoplasmic membranes of the polyphosphate-accumulating
Acinetobacter johnsonii strain 210A. J Bacteriol 176:2670–2676. https://
doi.org/10.1128/JB.176.9.2670-2676.1994.

David et al.

March/April 2021 Volume 6 Issue 2 e00193-20 msystems.asm.org 18

https://doi.org/10.1179/147683010X12611460763968
https://doi.org/10.1177/088307380001500701
https://doi.org/10.1016/j.ebiom.2017.09.020
https://doi.org/10.1016/j.ebiom.2017.09.020
https://doi.org/10.1016/j.bbr.2006.07.025
https://doi.org/10.1016/j.bbr.2006.07.025
https://doi.org/10.1038/ismej.2012.4
https://doi.org/10.3748/wjg.v16.i36.4532
https://doi.org/10.3748/wjg.v16.i36.4532
https://doi.org/10.1186/2040-2392-4-42
https://doi.org/10.1080/19490976.2017.1353849
https://doi.org/10.1080/19490976.2017.1353849
https://doi.org/10.1212/WNL.60.1.100
https://doi.org/10.1212/WNL.60.1.100
https://doi.org/10.3389/fcimb<?A3B2 re 3,j?>.2015.00084
https://doi.org/10.3389/fcimb<?A3B2 re 3,j?>.2015.00084
https://doi.org/10.1016/j.biopsych.2014.07.012
https://doi.org/10.4056/sigs.3377516
https://doi.org/10.4056/sigs.3377516
https://doi.org/10.1016/j.cell.2013.11.035
https://doi.org/10.1128/CMR.00103-13
https://doi.org/10.1128/CMR.00103-13
https://doi.org/10.1099/00207713-51-4-1521
https://doi.org/10.1099/ijsem.0.001643
https://doi.org/10.3402/mehd.v26.27458
https://doi.org/10.3402/mehd.v26.27458
https://doi.org/10.1038/nature09646
https://doi.org/10.1038/nature09646
https://doi.org/10.1007/s00253-013-5405-9
https://doi.org/10.1007/s00253-013-5405-9
https://doi.org/10.1128/mSystems.00130-17
https://doi.org/10.1038/srep33638
https://doi.org/10.2353/ajpath.2009.090544
https://doi.org/10.1016/j.bbi.2013.12.015
https://doi.org/10.1016/j.bbi.2013.12.015
https://doi.org/10.1080/10934529.2017.1409579
https://doi.org/10.1080/10934529.2017.1409579
https://doi.org/10.1371/journal.pone.0161528
https://doi.org/10.1128/JB.176.9.2670-2676.1994
https://doi.org/10.1128/JB.176.9.2670-2676.1994
https://msystems.asm.org

	RESULTS
	Crowdsourcing recruitment and participant demographics.
	ASD diagnosis confirmation using the mobile autism risk assessment (MARA) and video classifier.
	Diet differences between children with ASD and neurotypical siblings.
	Dietary and lifestyle habits influencing the microbial community.
	Similarity between sibling lifestyles.
	Microbial alpha-diversity.
	Permutation test on sibling pairs to determine ASVs that differentiate between ASD and NT.
	Models to maximize the likelihood of detecting rare ASVs.
	Correlation between ASVs and MARA scores.
	Functional profile prediction.

	DISCUSSION
	Crowdsourcing recruitment, lifestyle, dietary practices, and GI symptoms.
	Microbial community diversity.
	Microbial taxon analysis.
	Pathway analysis.
	(i) Butyrate production pathway.
	(ii) Propionate pathway.
	(iii) Sulfur pathway.
	(iv) Phosphotransferase system.
	(v) Microbial metabolism in diverse environments.
	Limitations.

	MATERIALS AND METHODS
	Crowdsourcing recruitment and data collection.
	ASD diagnosis confirmation.
	Lifestyle, antibiotics, and dietary practices.
	DNA extraction, amplification, and sequencing.
	Sequence filtering, chimera removal, taxonomic assignment, and phylogenic tree.
	Statistical analyses.
	Analysis of alpha-diversity differences.
	Identification of dietary and lifestyle habits influencing the microbial community and identification of confounding factors.
	Permutation test on sibling pair differentials.
	Models to maximize the likelihood of detecting rare ASVs.
	Differential analysis of 16S amplicon. (i) Negative binomial distribution.
	(ii) Zero-inflated Gaussian analysis.
	(iii) Spearman correlation.
	Functional profile prediction using Piphillan.
	Gene set enrichment analysis using KEGG orthologs.
	Power calculation.
	Data accessibility.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES



