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Abstract: Genetic alterations and dysregulation of signaling pathways are indispensable for the
initiation and progression of cancer. Understanding the genetic, molecular, and signaling diversities
in cancer patients has driven a dynamic change in cancer therapy. Patients can select a suitable
molecularly targeted therapy or immune checkpoint inhibitor based on the driver gene alterations
determined by sequencing of cancer tissue. This “precision medicine” approach requires detailed
elucidation of the mechanisms connecting genetic alterations of driver genes and aberrant down-
stream signaling pathways. The regulatory mechanisms of the Hippo pathway and Yes-associated
protein/transcriptional co-activator with PDZ binding motif (YAP/TAZ) that have central roles in
cancer cell proliferation are not fully understood, reflecting their recent discovery. Nevertheless,
emerging evidence has shown that various genetic alterations dysregulate the Hippo pathway and
hyperactivate YAP/TAZ in cancers, including head and neck squamous cell carcinoma (HNSCC).
Here, we summarize the latest evidence linking genetic alterations and the Hippo pathway in HNSCC,
with the aim of contributing to the continued development of precision medicine.

Keywords: Hippo pathway; YAP/TAZ; genetic alterations; HNSCC

1. Introduction

The Hippo pathway is a tumor-suppressive signaling axis. Its downstream effectors,
Yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif
(TAZ), are essential in normal cell growth, tissue growth, and organ size [1]. In mammals,
the core Hippo kinase pathway consists of mammalian STE20-like kinase 1 and 2 (MST1/2),
large tumor suppressor 1 and 2 (LATS1/2), and their respective adaptor proteins, Sal-
vador homolog 1 (SAV1) and MOB kinase activators 1A and 1B (MOB1A/B) [2–9]. When
the Hippo pathway is active, MST1/2 phosphorylates LATS1/2. This, in turn, activates
LATS1/2 phosphorylation of YAP/TAZ at five serine residues, resulting in their cyto-
plasmic retention by binding to 14-3-3 and/or degradation by the ubiquitin-proteasome
pathway [10]. In contrast, when the Hippo pathway is inactive, hypophosphorylated
YAP/TAZ translocates into the nucleus and interacts with transcription factors, including
TEA domain family members (TEAD), to promote the transcription of growth-related genes,
including connective growth factor (CTGF) and cysteine-rich angiogenic inducer 61 (CYR61) [11].
Similar to YAP/TAZ, vestigial-like proteins 1-4 (VGLL1-4) also bind to TEAD through their
Tondu (TDU) domains. VGLL1-3 contains only one TDU domain at its C-terminus, while
VGLL4 has two TDU domains [12–15]. The function of VGLL is still poorly understood.
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VGLL1 promotes proliferation of prostate cancer cells [14]. However, VGLL2-4, especially
VGLL4, transcriptionally suppress TEAD by competing with YAP [16–19] (Figure 1).
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Figure 1. Roles of the Hippo pathway and YAP/TAZ. TAOKs phosphorylate MAP4Ks and MST1/2.
Activated MAP4Ks and MST1/2 phosphorylate LATS1/2. Activated LATS1/2 phosphorylates
YAP/TAZ at multiple serine residues, leading to its cytoplasmic retention or degradation. Cell-cell
interaction induces cytoplasmic sequestration of YAP/TAZ by AMOT and α-catenin. While the
Hippo is inactive, dephosphorylated YAP/TAZ translocates to the nucleus, binds to TEAD, and
enhances transcription of growth-related genes. Mechanical stress induces RhoA activation and F-
actin formation, thereby inhibiting LATS1/2. Serum or LPA treatment inhibits MAP4K4 and MST1/2
through STRIPAK formation, which causes LATS1/2 inactivation. Heat stress induces LATS1/2
dephosphorylation and degradation. Abbreviations are: ras homolog family member A (RhoA),
Rho GTPase binding protein 1 (RHPN1), Neurofibromin 2 (NF2; also known as Merlin), kidney and
brain protein (KIBRA; also known as WWC1), STRN-interacting protein (STRIP1/2), sarcolemmal
membrane-associated protein (SLMAP), the angiomotin (AMOT) family, Mitogen-activated protein
kinase kinase kinase kinase 4 (MAP4K4), TAO kinases (TAOKs), mammalian STE20-like kinase 1 and
2 (MST1/2; MST2 is also known as STK3), salvador homolog 1 (SAV1), large tumor suppressor 1
and 2 (LATS1/2), MOB kinase activator 1A and 1B (MOB1A/B), Yes-associated protein (YAP), and
transcriptional co-activator with PDZ binding motif (TAZ; also known as WWTR1), ras homolog
family member A (RhoA), vestigial-like proteins (VGLL), TEA domain family members (TEAD),
connective growth factor (CTGF), and cysteine-rich angiogenic inducer 61 (CYR61), lysophosphatidic acid
(LPA), and G protein-coupled receptor (GPCR).

In addition to the main Hippo components (MST1/2, LATS1/2, SAV1, and MOB1),
multiple molecules have been identified as regulators of the Hippo pathway. The an-
giomotin (AMOT) family, neurofibromin 2 (NF2; also known as Merlin), kidney and
brain protein (KIBRA; also known as WWC1), FERM domain-containing 6 (FRMD6), LIM
domain-containing protein AJUBA, zonula occludens, and α-catenin are involved in cell-
cell junctions and regulate the Hippo pathway [20]. Therefore, the loss of cell-cell adhesion
inactivates the Hippo pathway and activates YAP/TAZ [21]. Mitogen-activated protein
kinase kinase kinase kinase (MAP4K) family members consist of hematopoietic progeni-
tor kinase 1 (HPK1/MAP4K1), germinal center kinase (GCK/MAP4K2), germinal center
kinase-like kinase (GLK/MAP4K3), HPK/GCK-like kinase (HGK/MAP4K4), misshapen-
like kinase 1 (MINK1/MAP4K6), and TRAF2 and NCK interacting kinase (TNIK/MAP4K7).
These enzymes can phosphorylate the hydrophobic motif (T1079) of LATS1/2, leading
to YAP inactivation [22]. TAO kinases (TAOKs) phosphorylate MST1/2 and MAP4Ks,
inducing their activation [23–25]. Striatin (STRN)-interacting phosphatase and kinase
(STRIPAK) is a protein complex composed of PP2A catalytic subunit (PP2AC), scaffolding
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subunit (PP2AA), and the STRN regulatory subunit. The complex recruits STRN-interacting
protein (STRIP1/2), sarcolemmal membrane-associated protein (SLMAP), tumor necrosis
factor receptor-associated factor 3-interacting protein 3 (TRAF3IP3), suppressor of IKBKE1
(SIKE1), fibroblast growth factor receptor 1 oncogene partner 2 (FGFR1OP2), cortactin-
binding protein 2 (CTTNBP2), CTTNBP2 N-terminal-like protein (CTTNBP2NL), MOB4,
GCK family, and cerebral cavernous malformations 3 (CCM3) [26]. Serum or lysophospha-
tidic acid (LPA) stimulation activates ras homolog family member A (RhoA) and dissociates
rhophilin Rho GTPase binding protein 1 (RHPN1) and NF2/KIBRA from STRIPAK, in-
ducing the dephosphorylation of MST1/2 and MAP4K4 by STRIPAK [27]. STRIPAK
induces dephosphorylation of MAP4K4, leading to Hippo pathway inactivation and YAP
activation [28]. Heat stress induces dephosphorylation and degradation of LATS1/2 by
heat shock protein 90 (HSP90) and protein phosphatase 5 (PP5) [29]. Through these
aforementioned multiple regulators, the Hippo pathway and YAP/TAZ are controlled
by physiological conditions including cell density, mechanical stress, serum through G
protein-coupled receptors, and heat stress [29,30] (Figure 1).

The Hippo pathway is dysregulated and YAP/TAZ is predominantly hyperactivated
in multiple types of cancer [31]. Genetic alterations are strongly involved in dysregula-
tion of the Hippo pathway. For example, NF2, a suppressor of the Hippo pathway, is
frequently mutated or inactivated by gene copy number loss, which leads to the activation
of YAP/TAZ in meningiomas, mesotheliomas, and peripheral nerve sheath tumors [31].
GNAQ or GNA11, encoding Gαq and Gα11, respectively, are frequently mutated in uveal
melanomas (>80%), which causes YAP/TAZ hyperactivation, resulting in uveal melanoma
development [32,33]. Liver kinase B1 (LKB1; also known as STK11) is frequently mutated
in non-small-cell lung carcinomas (15–35%) and cervical carcinomas (20%) [34]. LKB1
regulates the microtubule affinity-regulating kinase (MARK) family and scribble homolog
(SCRIB) to activate MST1/2 and LATS1/2 [35]. These findings suggest that the somatic
mutation of LKB1 drives carcinogenesis through YAP/TAZ activation. In terms of the
treatment, however, no drug targeting the Hippo-YAP/TAZ pathway is approved by the
Food and Drug Administration (FDA) for the treatment of any types of cancer. Strikingly,
despite the oncogenic role of YAP/TAZ in most cancers, the function of the Hippo path-
way and YAP/TAZ depends on cancer type. YAP/TAZ plays a tumor suppressive role
by inducing integrin alpha 5 and beta 5 in neural/neuroendocrine and RB transcriptional
corepressor 1 (RB1)−/− solid cancers, such as retinoblastoma, small cell lung cancer, and
neuroendocrine prostate cancer [36]. In estrogen receptor-alpha positive (ERα+) breast
cancer, LATS1/2 regulates ERα expression. Loss of LATS1/2 selectively suppresses the
proliferation of ERα+, but not ERα−, breast cancer cells [37]. Moreover, activated YAP and
TEAD enhance VGLL3 transcription. In turn, VGLL3 interacts with TEAD and NCOR2
and inhibits ESR1 transcription from its super enhancer region [38]. LATS1/2 has an onco-
genic role by sustaining the Wnt pathway and stem cell function in the intestine, thereby
promoting colorectal malignancies [39]. Therefore, cancer type-specific roles of YAP/TAZ
should be carefully considered and investigated for precision medicine targeting the Hippo
and YAP/TAZ pathways.

Head and neck squamous cell carcinoma (HNSCC) is diagnosed in approximately
54,000 new cases each year in the United States alone, resulting in more than
11,230 deaths [40]. The Cancer Genome Atlas (TCGA) network contains comprehensive in-
formation regarding gene alterations in HNSCC. This data have accelerated the understand-
ing of the connections between gene alterations and Hippo pathway dysregulation [41].
Emerging evidence has linked genetic alterations with Hippo pathway dysregulation and
aberrant YAP/TAZ activation, which are essential for HNSCC initiation and progression.
Here, we introduce the latest discoveries connecting genetic alterations and the Hippo
pathway in HNSCC. The aim of this review is to assist the further development of precision
medicines for HNSCC patients.
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2. Role of the Hippo Pathway and YAP/TAZ in HNSCC

YAP/TAZ protein levels are generally sustained at low levels in the prickled layer but
are higher in the basal cells in the normal mucosal epithelium of the head and neck region.
YAP/TAZ protein levels increase in precancerous and invasive HNSCC [42]. Nuclear
YAP activation is more evident in poorly differentiated HNSCC than in well-differentiated
HNSCC [43]. Conditional MOB1A/B double knockout in basal cells initiates squamous
cell carcinoma of the tongue within four weeks, suggesting that YAP hyperactivation
is sufficient for HNSCC initiation [44]. Several mouse studies have also shown that
YAP/TAZ is required for the initiation of basal cell carcinoma and skin squamous cell
carcinoma [45,46]. Moreover, loss of heterotrimeric G protein Gαs and protein kinase A
(PKA) signaling promotes YAP and glioma-associated oncogene homolog 1 (GLI1) activ-
ities, which are sufficient for hair follicle stem cell expansion and basal cell carcinoma
initiation [47]. In HNSCC tissue, YAP expression is higher in the invasive front of the tumor
than proximal region [48]. Single cell approach revealed partial epithelial-to-mesenchymal
transition (EMT) cells localize in the invasive front [49]. Partial-EMT cells also promote
cancer stemness [50]. Collectively, these results indicate that YAP/TAZ hyperactivation sus-
tains and expands stem or progenitor cells in the basal cell layer of the mucosal epithelium
in the head and neck region, leading to HNSCC initiation and progression.

3. Genetic Alterations and Dysregulation of the Hippo Pathway in HNSCC

YAP1 amplification and minor gene alterations in Hippo components. TCGA in-
cludes a comprehensive landscape of somatic genetic alterations in HNSCC, with the
second highest incidence of YAP1 gene amplification (4.4% of the cases) and the third high-
est incidence of WWTR1 (TAZ) gene amplification (8.8%) among all cancers [51]. However,
copy number loss or mutations in the core Hippo components (MST1/2, LATS1/2, SAV1,
and MOB1A/B) are rare in HNSCC (Figure 2). This suggests that genetic alterations coding
for the molecules surrounding the core Hippo pathway components or interacting with
YAP/TAZ/TEADs in the nucleus are more important for Hippo pathway dysregulation,
leading to YAP/TAZ hyperactivation.

Human papillomavirus (HPV) infection. HPV is an important subset of HNSCC
cases globally [52]. Specifically, HPV-16 and HPV-18 are high-risk subtypes associated
with many malignancies, including cervical, head and neck, anal, and vulvar cancers [53].
Among the head and neck areas, the oropharynx is the site most frequently affected by HPV,
and its incidence is rising [54,55]. E6 and E7 are specific viral oncoproteins that are essential
for carcinogenesis through the inhibition of the tumor suppressor proteins p53 and RB [53].
E6/E7 expressing HNSCC is also associated with mammalian target of rapamycin (mTOR)
signaling activation [56]. In addition, recent discoveries indicate that YAP/TAZ activation
is required for both HPV-negative and HPV-positive HNSCC initiation and progression.
The tumor suppressor protein tyrosine phosphatase non-receptor type 14 (PTPN14) is a
tumor suppressor inducing YAP inactivation [57–60]. E7 binds and degrades PTPN14,
thereby activating YAP in basal cells in the stratified squamous epithelium, leading to car-
cinogenesis [61]. E6 homodimerization induces degradation of SCRIB, thereby promoting
YAP/TAZ nuclear localization [62]. E6 suppresses YAP degradation and promotes nuclear
YAP localization, thereby increasing growth-related genes, including amphiregulin (AREG)
and transforming growth factor alpha (TGFA), which encode TGF-α, in cervical cancer [63,64].
Hyperactivation of YAP and E6/E7 synergistically promotes the initiation and progression
of cervical cancer in vitro and in vivo [64]. Therefore, YAP/TAZ was hyperactivated in
HPV-positive HNSCC cells (Figure 3).

FAT atypical cadherin 1 (FAT1). FAT1 is a member of the FAT family. FAT1 is the
second most frequently altered gene (29.8%) after TP53 (70%) [41]. The FAT1 protein
is composed of a large extracellular region with cadherin and epidermal growth factor
(EGF)-like repeats, a transmembrane region, and an intracellular region [65]. FAT1 can
be proteolyzed, and its intracellular domain is translocated into the nucleus [66]. FAT1
has a tumor-suppressive role by interacting with β-catenin and suppressing its nuclear
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translocation. Thus, frequent somatic mutations in FAT1 cause aberrant Wnt pathway
activation in HNSCC [67]. In addition, FAT1 somatic mutations are positively correlated
with poor survival of HNSCC patients [68]. Patients harboring truncated FAT1 have a
worse prognosis than wild type patients with HPV-negative HNSCC [69]. Bioinformatics
and statistical approaches have revealed that FAT1 mutation is prevalent in HPV-negative
HNSCC and is associated with human epidermal growth factor receptor 3 (HER3) activation
and reduced epidermal growth factor receptor (EGFR) expression, suggesting that FAT1
mutation may confer resistance to EGFR-targeted therapy [70].
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Figure 2. Landscape of the genetic alterations dysregulating the Hippo pathway and YAP/TAZ in
HNSCC. The landscape was created by c-BioPortal for Cancer Genomics (https://www.cbioportal.org
accessed on 19 September 2022) by analyzing the data of the HNSCC TCGA, PanCancer Atlas (2015).
Abbreviations are: Epidermal growth factor receptor (EGFR), FAT atypical cadherin 1 (FAT1), tissue
inhibitor of metalloproteinase-1 (TIMP-1), vav guanine nucleotide exchange factor 2 (VAV2), protein
tyrosine phosphatase non-receptor type 14 (PTPN14), AT-rich interaction domain 1A (ARID1A),
bromodomain containing protein 4 (BRD4), Cyclin dependent kinase 7 (CDK7), and Lysine-specific
demethylase 1 (LSD1).

Notably, recent emerging evidence has clarified a solid link between FAT1 gene alter-
ations and the Hippo pathway. FAT1 recruits and assembles Hippo components, including
NF2, AMOT, MST1/2, SAV1, LATS1/2, and MOB1A/B, and activates them via TAOKs,
resulting in YAP inactivation. Thus, frequent deletion or truncation of FAT1 disperses
Hippo components and leads to aberrant activation of YAP in HNSCC [43]. Loss of
FAT1 also induces a hybrid epithelial to mesenchymal transition (EMT) state with stem-
ness and metastasis via activation of the Ca2+/calmodulin-dependent protein kinase II
(CAMK2)-CD44-SRC-YAP axis in mouse and human squamous cell carcinoma [71]. Given
the frequent gene alterations of FAT1 in HNSCC, FAT1 gene alterations explain the prevalent
YAP activation in HNSCC (Figures 2 and 3).

https://www.cbioportal.org
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Figure 3. Schematic of the Hippo pathway and YAP/TAZ regulatory components in HNSCC. When
the Hippo pathway is active, activated LATS1/2 phosphorylates YAP/TAZ at multiple serine residues,
leading to its cytoplasmic retention or degradation. When Hippo is inactive, dephosphorylated
YAP/TAZ translocates to the nucleus, binds to TEAD, and enhances transcription of growth-related
genes. Genetic alterations including FAT1, EGFR, VAV2, TIMP-1, HPV (E7), ARID1A, BRD4, LSD1,
AP-1, CDK7, and YAP1 are involved in aberrant YAP/TAZ activation. Abbreviations are: Rac family
small GTPase 1 (RAC1), Ca2+/calmodulin-dependent protein kinase II (CAMK2), and scribble
homolog (SCRIB).

EGFR. EGFR is an ERBB family tyrosine kinase. EGFR is amplified and highly
overexpressed in HNSCC and lung squamous cell carcinoma, frequently mutated and
activated in lung adenocarcinoma (LUAC), and mutated, rearranged, and amplified in
glioblastoma [41,72–74]. Several reports have shown that phosphoinositide-dependent
kinase (PDK1) activated by EGFR and phosphoinositide 3-kinase (PI3K) induces Hippo
pathway inactivation and YAP activation [75,76]. EGFR, followed by RAS activation,
induces SUMOylation of Otubain-2 (OTUB2), thereby promoting deubiquitination of
YAP/TAZ and stabilizing them in cancer cells [77]. In addition, recent emerging evidence
has revealed that EGFR induces tyrosine phosphorylation of MOB1 at Y95, Y114, and Y117
and inactivates LATS1/2. The resulting activation of YAP/TAZ in HNSCC occurs indepen-
dent of FAT1 gene alterations and the PI3K-PDK1 axis [78]. In another study, MOB1A/B
double knockout in keratin 14 expressing basal cells resulted in the development of tongue
squamous cell carcinoma within 4 weeks, suggesting that MOB1A/B knockout is sufficient
to suppress LATS1/2 activity and to hyperactivate YAP/TAZ [44]. Given this evidence, ty-
rosine phosphorylation of MOB1A/B by EGFR may interfere with the physical interactions
between LATS1/2 and MST1/2, MAP4Ks, or TAOKs, resulting in LATS1/2 inactivation.
Although EGFR has been targeted by cetuximab, an FDA-approved drug for HNSCC
patients, monotherapy response rate remains only 10–30% with intrinsic or acquired
resistance [79–81]. YAP is amplified and overexpressed in cetuximab-resistant HNSCC
cell lines [82]. In LUAC harboring frequent EGFR-activating mutations, EGFR-tyrosine
kinase inhibitors (EGFR-TKIs) are the main therapeutic drugs. The emergence of YAP
reactivation, EGFR-T790M mutations, or activation of other signaling pathways, including
MET proto-oncogene, receptor tyrosine kinase (MET), AXL receptor tyrosine kinase (AXL),
insulin-like growth factor 1 receptor (IGF1R), interleukin-6 receptor (IL-6R), human epider-
mal growth factor receptor 2 (HER2), and HER3, are potentially important for resistance to
EGFR-TKIs in LUAC [83–85]. The observation that LATS1/2 KO by CRISPR/Cas9 confers
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resistance to EGFR inhibitors in vitro and in vivo [78] indicate that YAP/TAZ reactivation
by an unknown mechanism after EGFR inhibitor treatment plays an important role in
HNSCC initial resistance or tumor recurrence. In addition, activated YAP/TAZ promotes
transcription and expression of amphiregulin (AREG), which in turn acts as a ligand for
EGFR [86]. These findings suggest that the sustained EGFR-YAP-AREG axis represents
a positive feedback loop in EGFR-altered cancers. Therefore, targeting YAP/TAZ such
as by the use of TEAD inhibitors or inhibitors/antibodies for unknown mechanisms in
combination with EGFR-targeting therapy may provide novel therapeutic approaches for
preventing cancer recurrence and progression (Figures 2–4).
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Figure 4. Schematic of the role of Hippo pathway and YAP/TAZ in cetuximab resistance. Cetuximab
treatment inactivates EGFR, which in turn reduces tyrosine phosphorylation of MOB1 and activated
LATS1/2, resulting in transient YAP/TAZ inactivation. However, unknown mechanisms, includ-
ing reactivation or overexpression of other receptor types of tyrosine kinases (RTKs), re-activate
YAP/TAZ, leading to intrinsic or acquired resistance to cetuximab treatment. Combination therapy
with cetuximab and a TEAD inhibitor may be beneficial for avoiding YAP/TAZ reactivation and
tumor relapse. AREG denotes amphiregulin (also abbreviated AREG).

Mechanotransduction. Matrix stiffness is an important factor that regulates YAP/TAZ
activity. Stiff matrices activate YAP/TAZ through Rho GTPase activity and modification of
the actomyosin cytoskeleton [87]. Matrix stiffness activates phospholipase Cγ1 (PLCγ1)
to suppress phosphatidylinositol 4,5-bisphosphate (Ptdlns(4,5)P2) and phosphatidic acid,
which induce Ras-related GTPase RAP2 activation by PDZ domain-containing guanine
nucleotide exchange factor 1 (PDZGEF1) and PDZGEF2. At low stiffness, active RAP2
stimulates MAP4K4, MAP4K6, MAP4K7, and ARHGAP29, leading to LATS1/2 activation
and YAP/TAZ inactivation [88].

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is a member of the TIMP family
(TIMP-1 to -4) that is overexpressed in many cancers, including HNSCC. TIMP-1 high
expression in HNSCC is positively correlated with angiogenesis, EMT, metastasis, and
worse prognosis [89]. Previous studies have supported the oncogenic role of TIMP-1 in
activating the mitogen-activating protein kinase (MAPK) or PI3K-AKT-mTOR pathway
independent of its matrix metalloproteinase (MMP) inhibitory function [90–94]. TIMP-1
forms a complex with CD63 and integrin β1 on collagen, and then activates Src and RhoA,
resulting in F-actin assembly that inactivates LATS1/2 and activates YAP/TAZ in many
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types of cancer cell lines, including HNSCC [95,96]. TIMP-1 released from cancer cells
promotes the accumulation of cancer-associated fibroblasts (CAFs) within several cancer
types [97]. In contrast, CAFs also require YAP/TAZ activation through the activation of
Rho-associated, coiled-coil containing protein kinase (ROCK) and Src, which generates
a stiffer matrix in cancer tissue [98]. These results suggest that TIMP-1 induces matrix
stiffness with fibrosis and that the stiffness simultaneously induces YAP/TAZ activation in
cancer cells via mechanotransduction (Figures 2 and 3).

The VAV family (VAV1-3) are guanosine nucleotide exchange factors (GEFs) that are
activated through tyrosine phosphorylation by tyrosine kinases [99]. EGFR phosphorylates
and activates VAV guanine nucleotide exchange factor 2 (VAV2), resulting in high levels
of GTP-bound (activated) Rac family small GTPase 1 (RAC1) in HNSCC [100]. Moreover,
VAV2 is frequently overexpressed in HNSCC, is important for cell proliferation, and sus-
tains an undifferentiated state through activation of Rac1 and RhoA, followed by YAP
activation [101]. Interestingly, VAV2 delays EGFR internalization and degradation, thus
enhancing downstream signaling pathways [102]. Given that the EGFR-MOB1 axis leads
to YAP activation, VAV2 overexpression may be involved in YAP activation in HNSCC by
sustaining the EGFR-MOB1 and VAV2-RAC1-YAP axes (Figure 3).

YAP-interacting molecules in the nucleus. Emerging evidence suggests that
YAP/TAZ/TEAD interacts with multiple factors in the nucleus. YAP/TEAD2 cooper-
ates with transcription factor E2F and promotes cell cycle gene expression during relapse
of KRAS-independent pancreatic ductal adenocarcinoma [103]. Activator protein-1 (AP-1;
a dimer of JUN and FOS proteins) and YAP/TAZ/TEAD co-occupy the enhancer region of
growth-related genes, resulting in synergistic cell proliferation [104]. YAP/TAZ binds to the
promoter region of FOS and enhances its transcription, suggesting a positive feedback loop
for AP-1 and YAP/TAZ [105]. The general co-activator bromodomain containing protein 4
(BRD4) physically interacts with YAP/TAZ to recruit YAP/TAZ-bound enhancers close
to RNA polymerase II (POL II) at YAP/TAZ-regulated promoters, leading to enhanced
transcription of growth-related genes [106]. YAP occupies enhancers or super-enhancers
and recruits the mediator complex and the CDK9 elongating kinase, thereby releasing
RNA POL II promoter pausing to boost transcriptional elongation [107]. The AT-rich in-
teraction domain 1A (ARID1A)-containing SWI/SNF complex physically interacts with
YAP/TAZ and suppresses YAP/TAZ-regulated genes [108]. Cyclin dependent kinase 7
(CDK7) phosphorylates YAP/TAZ at S128 and S90 to avoid ubiquitination for degrada-
tion by the CRL4DCAF12 E3 ubiquitin ligase complex [109]. Lysine-specific demethylase 1
(LSD1), a histone demethylase encoded by KDM1A gene, forms the nucleosome remodeling
and deacetylase complex with YAP, enhancing the transcription of YAP-target genes [110].
Moreover, YAP/TAZ promotes polyamine levels and cell proliferation by activating tran-
scription of ornithine decarboxylase 1 (Odc1), inducing the hypusination of eukaryotic
translation factor 5A (eIF5A) to enhance translation of LSD1 [111]. Co-amplification and
overexpression of the p53 family members p63 and ACTL6A, encoding an SWI/SNF sub-
unit, suppresses transcription of WWC1 encoding KIBRA, in turn activating YAP [112]
(Figure 3). Collectively, the understanding of the YAP/TAZ regulatory mechanism in the
nucleus is expanding, which is also necessary for the advancement of precision medicine
targeting YAP/TAZ.

YAP-target genes involved in immune evasion. The interaction between programmed
cell death 1 (PD-1) in T cells and programmed cell death 1 ligand 1 (PD-L1) in tumor cells
leads to T cell exhaustion. This immune checkpoint mechanism generates a new therapeutic
approach that targets PD-1 or PD-L1. Emerging evidence suggests that YAP/TAZ are key
regulators of PD-L1 expression in tumor cells. The transcriptional complex of activated
YAP and TEAD binds to the PD-L1 promoter in EGFR-TKI-resistant lung adenocarcinoma
cell lines [113]. YAP/TAZ binds to TEAD at the promoter region of PD-L1 in human
breast cancer cell lines, which is not conserved in mouse cancer cell lines [114]. In contrast,
YAP/TEAD binds to the enhancer region of PD-L1 in human non-small cell lung cancer
(NSCLC) [115], human malignant pleural mesothelioma [116], and BRAF inhibitor-resistant
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melanoma cells [117]. In addition, BRD4 enrichment in both promoter and enhancer regions
is important for PD-L1 transcription by YAP/TAZ/TEAD in HNSCC [118]. However,
another study demonstrated that the loss of LATS1/2 triggers anti-tumor immune responses
by releasing nucleic-acid-rich extracellular vesicles [119]. Although PD-L1 regulation by
YAP/TAZ has been supported by many studies, further research is required (Figure 3).

4. Therapeutic Approach Targeting the Hippo Pathway and YAP/TAZ

Multiple drugs targeting the Hippo pathway and YAP/TAZ have been identified and
examined. Here, we discuss representative therapeutic approaches and representative
drugs that are undergoing clinical trials (Figure 5 and Table 1).
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Figure 5. Schematic of therapeutic drugs targeting the Hippo pathway and YAP/TAZ in
HNSCC. Metformin, Src, RhoA, Rac1, BET, LSD1, MEK, CDK7, and TEAD inhibitors are poten-
tial drugs for HNSCC treatment. AMPKa2 denotes AMP-activated catalytic subunit alpha 2 (also
abbreviated AMPK).

Inhibitors targeting YAP or TEAD. Although a few studies have demonstrated drugs
that effectively target YAP, antisense oligonucleotides ION-537 reduce YAP protein levels,
thereby suppressing tumor growth in a mouse model of hepatocellular cancer and a
xenograft model of HNSCC cell lines harboring FAT1 mutation, which is in Phase I clinical
trial [120] (Table 1).

Several approaches to target TEAD have been described. The first approach focuses
on the nucleocytoplasmic shuttling of TEAD. Osmotic stress induces p38 activation, which
binds to TEAD and induces its cytoplasmic translocation. Osmotic stress or p38 overexpres-
sion suppresses tumor growth in YAP-driven mesothelioma or uveal melanoma cells [121].
Thus, drugs that induce TEAD cytoplasmic localization can be a therapeutic option for
patients with YAP-driven cancer (Figures 3 and 5).

The second approach is to focus on vestigial-like (VGLL) proteins competing with
YAP/TAZ for TEAD. Super-TDU, a peptide that mimics VGLL4, potently suppresses gastric
tumor growth [122]. Moreover, a TEAD inhibitor in a mouse model, in which the Super-
TDU peptide was modified to suppress both YAP-TEAD and TAZ-TEAD interactions,
reportedly suppressed E2F transcription and cell proliferation and promoted differentiation
through Kruppel-like factor 4 (KLF4) activation in keratinocytes [123]. Verteporfin, a
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photosensitizer used for the treatment of neovascular macular degeneration, was identified
as the first drug that inhibits the YAP-TEAD interaction [124] (Figure 3).

Table 1. Representative potential drugs targeting the Hippo pathway undergoing clinical trials.
Potential drugs undergoing clinical trials were searched using “head and neck cancer” or “solid, un-
specified” terms using the Pharmaprojects intuitive interface of Citeline. Drugs shown as “Preclinical”
were removed.

Drug Name Company Target Clinical Trials
(ClinicalTrials.gov Identifier) Cancer Type

IK-930 Ikena Oncology TEAD Phase I (NCT05228015) Solid, unspecified

ION-537 Ionis Pharmacueticals YAP Phase I (NCT04659096) Solid, unspecified

BTX-A51 BioTheryX CDK7 Phase I (NCT04872166) Solid, unspecified

fadraciclib Cyclacel CDK7 Phase II (NCT04983810) Solid, unspecified

samuraciclib Carrick Therapeutics, Evotec CDK7 Phase II (NCT03363893) Unspecified

SY-5609 Syros Pharmaceuticals CDK7 Phase I (NCT04247126) Solid, unspecified

XL-102 Exelixis CDK7 Phase I (NCT04726332) Solid, unspecified

trametinib Novartis MEK Phase II (NCT01376310) Solid, unspecified

binimetinib Pfizer MEK Phase II (NCT01885195) Solid, unspecified

cobimetinib Roche MEK Phase II (NCT02639546) Solid, unspecified

mirdametinib SpringWorks Therapeutics MEK Phase II (NCT05054374) Solid, unspecified

BI-894999 Boehringer Ingelheim BRD4 Phase I (NCT02516553) Solid, unspecified

BPI-23314 Betta Pharmaceuticals BRD4 Phase I (CTR20192223, China FDA) Solid, unspecified

NUV-868 Nuvation Bio BRD4 Phase II (NCT05252390) Solid, unspecified

PLX-2853 Daiichi Sankyo BRD4 Phase II (NCT03297424) Solid, unspecified

SYHA-1801 CSPC Pharmaceutical BRD4 Phase I (NCT04309968) Solid, unspecified

JBI-802 Jubilant Life Sciences LSD1 Phase II (NCT05268666) Solid, unspecified

seclidemstat Salarius Pharmaceuticals LSD1 Phase II (NCT05266196) Solid, unspecified

CC 90011 Bristol-Myers Squibb LSD1 Phase II (NCT02875223) Solid, unspecified

dasatinib Bristol-Myers Squibb Src Phase II (NCT00882583) Head and neck

repotrectinib Turning Point Therapeutics,
Zai Lab Src Phase III (NCT05004116) Solid, unspecified

VAL-201 ValiRx Src Phase II (NCT02280317) Solid, unspecified

TPX-0046 Turning Point Therapeutics Src Phase II (NCT04161391) Solid, unspecified

elzovantinib Turning Point Therapeutics Src Phase II (NCT03993873) Solid, unspecified

The third approach is to focus on the YAP-binding site of TEAD. Several studies have
identified a central pocket in the YAP-binding domain (YBD) of TEAD as a targetable site
for small molecule inhibitors, including flufenamic acid, a non-steroidal anti-inflammatory
drug (NSAID) [125,126]. Furthermore, TEADs have an intrinsic palmitoylating enzyme-
like function, and the auto-palmitoylate cysteine of TEADs is essential for binding to
YAP/TAZ [127]. During palmitoylation of TEAD, palmitate is attached via thioester linkage
to a cysteine residue, which is supplied exogenously by diet or de novo biosynthesized
by fatty acid synthase (FASN) [128]. DC-TEADin02, a potent and selective TEAD auto-
methylation inhibitor, was identified in a biochemical study [129]. A small molecule
library screen using a TEAD-dependent luciferase reporter identified MGH-CP1 as a TEAD
auto-methylation inhibitor [130]. A small molecule that antagonistically binds to the
TEAD YBD lipid pocket was shown to potently inhibit TEAD function [131]. VT103 and
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VT104 are compounds that prevent TEAD auto-methylation and inhibit tumor growth of
mesothelioma [132]. MYF-01-37 binds covalently to TEAD and disrupts the YAP-TEAD
interaction, enhances EGFR inhibitor-mediated apoptosis, and prevents dormancy in EGFR-
mutant non-small cell lung cancer [133]. Currently, IK-930 is undergoing Phase I clinical
trial [134] (Table 1). Therefore, targeting YAP itself or the YAP-TEAD interaction is a
promising therapy for HNSCC patients (Figure 5).

ROCK inhibitor. TIMP-1, Src, and p53 DNA contact mutations and mechanotransduc-
tion hyperactivate RhoA/ROCK1/actomyosin signaling. This, in turn, promotes YAP/TAZ-
driven carcinogenesis. ROCK inhibitor selectively antagonizes YAP/TAZ-promoted prolif-
eration in cancer [135] (Figure 5). No clinical trials (solid tumors, unspecified or head and
neck) are undergoing.

Inhibitors targeting YAP-interacting molecules. CDK7 selective inhibitor THZ1 re-
duces CDK7-mediated phosphorylation of YAP/TAZ, thereby inducing its degradation
by the CRL4DCAF12 E3 ubiquitin ligase complex [109] (Figure 5). Several drugs (BTX-
A51, fadraciclib, samuraciclib, and SY-5609) are in Phase I or II clinical trials (Table 1).
The bromodomain and extra-terminal motif (BET) inhibitor JQ1 suppresses YAP/TAZ-
driven gene expression and tumorigenesis [106] (Figure 5). Five drugs including BI-894999,
BPI-23314, NUV-868, PLX-2853, and SYHA-1801 are in Phase I or II clinical trials (Table 1).
LSD1 knockout reportedly suppressed 4NQO-driven mouse tongue oral squamous cell
carcinoma and LSD1 inhibition by SP2509 inhibited 4NQO-driven oral squamous cell
carcinoma in combination with verteporfin [110]. Inhibition of LSD1 by SP-2577 inhibited
liver carcinogenesis in YAP transgenic mice and breast cancer cell growth in an in vivo
xenograft model [111] (Figure 5). Three drugs including JBI-802, seclidemstat, and CC
90011 are in Phase II clinical trial (Table 1).

MEK inhibitor. AP-1 and YAP/TAZ synergistically promotes growth-related genes [104],
and, given that upstream MAPK-extracellular signal-regulated kinase pathway is frequently
activated in HNSCC by EGFR or other receptor tyrosine kinases (RTKs), MEK inhibitors
including trametinib can be a potential drug targeting AP-1/YAP/TAZ-driven HNSCC
progression. In addition, trametinib, an MAPK kinase (MEK) inhibitor, confers YAP
overexpression and growth-related gene expression in HNSCC cell lines and patient-
derived xenograft models, suggesting an effective combination therapy targeting YAP and
MEK for HNSCC patients [136] (Figure 5). Four drugs including trametinib, binimetinib,
cobimetinib, and mirdametinib are in Phase II clinical trials (Table 1).

Src inhibitor. Tyrosine phosphorylation of YAP is also important for its activity, as
well as serine/threonine phosphorylation. Tyrosine 357 of YAP is phosphorylated by
Yes, Src, and focal adhesion kinase (FAK) [137–140]. Moreover, Y341, Y357, and Y394 of
YAP phosphorylation by Src enhances transcriptional activity, nuclear accumulation, and
interaction with TEAD of YAP in skin squamous cell carcinoma [141]. Dasatinib, an Src
family kinase inhibitor, suppressed the initiation of YAP1-induced tongue squamous cell
carcinoma in a mouse model [44]. Therefore, Src inhibitors are promising drugs that target
YAP (Figure 5). Five drugs including dasatinib, repotrectinib, VAL-201, TPX-0046, and
elzovantinib are in Phase II or III clinical trials (Table 1).

Metformin. Energy stress is an important regulatory factor for YAP/TAZ. AMP-activated
catalytic subunit alpha 2 (AMPKa2; also known as AMPK) activated by energy stress di-
rectly phosphorylates YAP Ser 94. This induces the dissociation of YAP-TEAD binding and
indirectly inactivates YAP through LATS1/2 inactivation [142]. Metformin-induced energy
stress also inactivates LATS1/2 through the inhibition of Rho GTPase and actin cytoskeleton
dynamics as well as AMPK activation [143]. AMPK activated by energy stress phosphory-
lates and increases the protein stability of angiomotin like
2 (AMOTL2), which induces LATS1/2 activation and YAP inactivation [144]. Moreover,
YAP is O-GlcNAcylated by O-GlcNAc transferase at serine 109 under high-glucose con-
ditions, which prevents YAP inactivation by LATS1/2. Thus, low glucose levels induce
YAP inactivation by loss of O-GlcNAcylation independent of AMPK activation [145]. Met-
formin, a drug used for patients with type 2 diabetes, as well as other AMPK activators,
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reportedly suppress tumorigenicity and YAP activity via AMPK activation in vitro and
in vivo [142]. In addition, AMPK activation also suppresses mTOR signaling, which is
important for premalignancy, initiation, and progression of HNSCC proved in past clinical
trials [146–150] (Figure 5). Thus, metformin may prove to be a valuable precision drug.

5. Conclusions and Future Directions

Significant progress has been made in understanding the molecular and genetic mech-
anisms of the Hippo pathway and YAP/TAZ. Abundant evidence integrating genetic
alterations in cancer with the Hippo pathway has emerged. The collective evidence will
inform the development of drugs targeting the Hippo pathway specifically and, more
generally, the future of precision medicine for HNSCC patients. Simultaneously, drug
delivery systems, including antisense oligonucleotides, mRNA, liposomes, and nanopar-
ticles, have dramatically advanced. These developments will aid in the realization of
therapeutic approaches targeting the Hippo pathway and YAP/TAZ in cancer cells. Given
that EGFR-targeted therapy resistance involves YAP/TAZ reactivation and that TEAD
inhibitors may represent effective for YAP/TAZ signaling blockade, targeting the Hippo
pathway and YAP/TAZ may be expanded toward combination therapy with other existing
drugs, including tyrosine kinase inhibitors, antibodies, and immune checkpoint inhibitors.
As the functions of the Hippo pathway and YAP/TAZ differ in many cancer types, it is
possible cancer heterogeneity may underlie distinct roles for YAP/TAZ in different HN-
SCC subpopulations. Further studies, including single-cell approaches, will uncover the
comprehensive and heterogeneous activity of YAP/TAZ in HNSCC.

Among the multiple drugs targeting the Hippo pathway, YAP/TAZ/TEAD and their
regulators, TEAD inhibitors appear to emerge as the most effective and potent suppressors
of YAP/TAZ-driven cancer growth, because TEADs bind YAP/TAZ directly and, hence,
are the most downstream effectors of the pathway. Future studies will uncover the effect
of TEAD inhibitor treatment alone and advanced combination therapies using TEAD
inhibitors for HNSCC patients.

Collectively, integrating genetic alterations and the Hippo pathway has opened a new
field of cancer research. This includes the development of analyses or drugs that will alter
and improve clinical examination and treatment of HNSCC patients. Further studies will
reduce a long distance between emerging biological evidence and current clinical trials and
assist the development of precision medicine for HNSCC patients.
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