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Abstract: Determination of internal metabolic fluxes is crucial for fundamental and applied biology
because they map how carbon and electrons flow through metabolism to enable cell function.
13C Metabolic Flux Analysis (13C MFA) and Two-Scale 13C Metabolic Flux Analysis (2S-13C MFA) are
two techniques used to determine such fluxes. Both operate on the simplifying approximation that
metabolic flux from peripheral metabolism into central “core” carbon metabolism is minimal, and can
be omitted when modeling isotopic labeling in core metabolism. The validity of this “two-scale” or
“bow tie” approximation is supported both by the ability to accurately model experimental isotopic
labeling data, and by experimentally verified metabolic engineering predictions using these methods.
However, the boundaries of core metabolism that satisfy this approximation can vary across species,
and across cell culture conditions. Here, we present a set of algorithms that (1) systematically
calculate flux bounds for any specified “core” of a genome-scale model so as to satisfy the bow tie
approximation and (2) automatically identify an updated set of core reactions that can satisfy this
approximation more efficiently. First, we leverage linear programming to simultaneously identify
the lowest fluxes from peripheral metabolism into core metabolism compatible with the observed
growth rate and extracellular metabolite exchange fluxes. Second, we use Simulated Annealing to
identify an updated set of core reactions that allow for a minimum of fluxes into core metabolism
to satisfy these experimental constraints. Together, these methods accelerate and automate the
identification of a biologically reasonable set of core reactions for use with 13C MFA or 2S-13C MFA,
as well as provide for a substantially lower set of flux bounds for fluxes into the core as compared
with previous methods. We provide an open source Python implementation of these algorithms at
https://github.com/JBEI/limitfluxtocore.

Keywords: genome scale models; 13C metabolic flux analysis; two-scale 13C metabolic flux analysis;
flux balance analysis; stoichiometry; linear programming; cellular metabolism; simulated annealing
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1. Introduction

Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer
biological systems to produce biofuels and other desired chemicals [1]. Determination of internal
metabolic fluxes (i.e., the amount of metabolites traversing each biochemical reaction per unit time [2,3])
is a useful tool in this effort because they map how carbon and electrons flow through metabolism
to enable cell function [3,4] and can produce actionable insights to increase biofuel production [5].
Several methods are available for calculating internal metabolic fluxes. Arguably, the most popular are
Flux Balance Analysis (FBA) and 13C Metabolic Flux Analysis (13C MFA). FBA determines fluxes by
using comprehensive genome-scale models and by assuming that cells closely follow an evolutionary
principle of maximizing biomass. 13C MFA calculates fluxes by constraining small models of central
carbon metabolism with the strong flux constraints obtained from 13C labeling experiments [6–8].
Proponents of each of these two techniques rarely combine them, except for a few exceptions
(e.g., [9–15]). FBA and COnstraint Based Reconstruction and Analysis (COBRA) can predict all fluxes
in a large genome scale model using an optimization principle, but do not directly constrain internal
fluxes with high resolution experimental data. Conversely, 13C MFA models are well constrained by
experimental data, but only measure a small number of central carbon metabolism fluxes, and do
not model the full complexity and plasticity of a large metabolic network. However, metabolic
engineering can benefit from uniting the advantages of both approaches: a method that provides
fluxes for comprehensive genome-scale models as constrained by the very informative 13C labeling
experimental data.

While 13C MFA has been performed at the genome scale for E. coli [16], it is a computationally
expensive method and requires knowledge of all of the carbon transitions in the network.
This knowledge is nontrivial to obtain systematically for any desired organism [17–22]. Two-scale 13C
Metabolic Flux Analysis [23] (2S-13C MFA) is an alternative technique that constrains genome-scale
models with 13C labeling experimental data. 2S-13C MFA constrains all fluxes in the genome-scale
model simultaneously using stochiometric and 13C labeling constraints, but does so at two resolution
scales: for core reactions, both stochiometric and 13C labeling constraints are used, whereas,
for non-core reactions, only stochiometric constraints are used. 2S-13C MFA is meant to obtain
the same results as genome-scale 13C MFA if we assume that flux flows from core to peripheral
metabolism and there is limited flow back. This assumption is named the two-scale or bow tie
approximation (Figures 1 and 2) and stems from the bow tie structure of cellular metabolism,
a universally conserved product of evolution [24,25]. Hence, in this paper, we will refer to it
indistinctly as the bow tie approximation or the two-scale approximation. The bow tie structure
entails, as shown in Figure 1, that almost all carbon and energy sources are converted through
central carbon metabolism pathways into a set of twelve precursor metabolites (glucose-6-phosphate,
fructose-6-phosphate, ribose-5-phosphate, erythrose-4-phosphate, glyceraldehyde-3-phosphate,
3-phosphoglycerate, phosphoenol-pyruvate, pyruvate, acetyl-CoA, 2-oxoglutarate, succinyl-CoA,
and oxaloacetate), which are the building blocks of most cellular components and natural products
synthesized by cells [26]. Hence, if carbon sources are included in the core metabolism, the bow
tie structure implies that flux flows from core to peripheral metabolism and there is limited flow
back. This bow tie approximation is experimentally justified by the fact that traditional 13C MFA,
using only core metabolism models, can convincingly explain labeling patterns for amino acids and
intracellular metabolites for model organisms [27–30], and by experimentally verified metabolic
engineering predictions using 2S-13C MFA [5].
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Figure 1. The bow tie structure of metabolism. The bow tie structure of metabolism describes how
numerous different types of carbon sources (left side of figure) are funneled into a small set of precursor
metabolites (middle of figure) in central carbon metabolism that are subsequently processed into a large
set of peripheral metabolites (right side of figure) for the formation of biomass in the form of protein,
DNA, RNA, cell wall, and other cellular components.

In this paper, we formalize the bow tie approximation (a.k.a. two-scale approximation) in terms
of genome-scale models by providing improved and systematic methods to (1) constrain fluxes in
accordance with this approximation and (2) determine the boundaries of core metabolism. In the
context of genome-scale models, the bow tie approximation is implemented by setting the upper
bound of all reactions with products in core metabolism to zero, or the lowest value consistent with the
observed growth rate (see “Limit Flux to Core” step in Figure 2 of [23] and Figure 2). The previously
published 2S-13C MFA [23] implementation of the “Limit Flux to Core” step used an algorithm that
limited the upper bounds of fluxes into the core using an inefficient and ad hoc process which relied
on trial and error, arbitrary cutoff values, and sequential execution. Here, we present an improved
method which uses linear optimization to find the minimum flux bounds into the core, which is
computationally more efficient, and also more biologically relevant, as we identify the lowest flux into
core metabolism consistent with observed experimental data. Minimizing the flux of reactions into the
core through linear programming is complicated by the reversible nature of some reactions which cross
the core boundary. We solve this problem by constructing a minimization procedure which considers
only the unidirectional component of each boundary flux that has products in core metabolism.

For a given core, a metric to quantitatively determine to what degree the bow tie approximation
holds, is the sum of fluxes into the core (zero for a perfect case of the bow tie structure). Therefore,
we also introduce a Simulated Annealing algorithm to computationally explore the space of alternate
core metabolism reaction sets, minimizing the sum of fluxes flowing into core metabolism. This process
can automatically identify an improved core (displaying less total flux into core) which has more or less
reactions as needed to better satisfy the bow tie approximation and be more suitable for subsequent
13C MFA or 2S-13C MFA modeling.
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Figure 2. The bow tie approximation (a.k.a. two-scale approximation) assumes that flux flows
from core to peripheral metabolism and there is a limited flow back. 2S-13C MFA is based on this
assumption, providing fluxes constrained by 13C data for genome-scale models [23]. Under 2S-13C MFA,
stoichiometric balances are taken into account for the full genome-scale model, but labeling originating
from the 13C feed in the labeling experiments is only tracked for the core set of reactions responsible for
the main fraction of metabolite labeling (grey box). The bow tie approximation implies that non-core
(peripheral) metabolites do not directly affect core metabolite labeling. For this example, measured
data involves the mass isotopomer distribution for metabolites A and C and extracellular fluxes for
reactions producing metabolites T, U, Y and Z as well as labeled carbon (Input) uptake rate and Biomass
growth rate. The core set involves reactions and metabolites in the grey box. The fit involves finding
fluxes that best match the measured labeling and the values of the measured extracellular fluxes,
where only the contribution of reactions inside the grey box is taken into account to fit the labeling of
metabolites A and C. The metabolite balance, however, is global. In this way, the core fluxes are not
overconstrained by (e.g.,) NADPH balance: any excess core NADPH can be balanced by the non-core
fluxes that consume NADPH. Fluxes are determined for 2S-13C MFA in a single optimization problem
instead of using the constraints from the 13C MFA problem to constrain an equivalent FBA problem
as done by Kuepfer et al. [15]. This enables stoichiometric constraints from outside of the core set to
influence the core fluxes in the solution. The 2S-13C MFA method provides a reliable base upon which
to improve the design of engineered biological systems [5].

2. Materials and Methods

2.1. Old Limit Flux to Core Algorithm

Under the bow tie approximation, non-core reactions in the periphery do not contribute directly to
the labeling of core metabolites because carbon precursors are assumed to flow from core metabolism
into peripheral metabolism and not to flow back (Figure 2). This approximation is implemented in
terms of a genome-scale model by limiting to zero the flux of reactions flowing into core metabolism.
Hence, the first step in 2S-13C MFA consists of taking each non-core reaction that has a product in core
metabolism and setting the upper bound to zero. However, it may be the case that this extra constraint
makes it impossible to meet the measured growth rate, as determined by solving the corresponding
FBA problem. In that case, setting the upper bound to a fraction of the glucose uptake rate is tested
(first 0.05 and then 0.2 by default). Since the labeling of core metabolism can be impacted by reversible
reactions with reactants included in the core set as well, we cover this case by limiting the lower bound
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of the reaction to zero or the lowest value that permits growth (e.g., biomass flux). The impact of the
reactions that could not be set to zero is checked later in the 2S-13C MFA procedure through External
Labeling Variability Analysis [23]. The input for the “Limit Flux to Core” algorithm is the genome-scale
model along with a set of reactions that define core metabolism, a cellular growth rate, and a set of
exchange fluxes including the carbon source uptake rate. The output consists of the genome-scale
model with lower and upper bounds modified by this “Limit Flux to Core” procedure.

A detailed description of the old Limit Flux to Core algorithm be found in the pseudo code
Algorithms 1 and 2. This algorithm was previously published as part of the 2S-13C MFA method [23],
and is implemented in the jQMM software tool [31]. The set of “boundary reactions” which can
potentially alter 13C labeling of core metabolites is determined for both Algorithms 2 and 3 using
Algorithm 1. This requires, for any given core, first specifying a set of “currency metabolites” which
participate in core reactions, but (based on known atom transitions) cannot contribute carbon to any
of the simulated metabolites in a 2S-13C MFA or 13C MFA model (e.g., ATP, NADH). Our software
includes a pre-determined list of suggested “currency metabolites”; however, most popular software
tools for 2S-13C MFA or 13C MFA, including the jQMM library [31], can compute these directly from
a set of core reaction atom transitions. Reactions which feed only currency metabolites into core
metabolism are excluded from the set of boundary reactions for subsequent flux minimization.

Algorithm 1 Identify core boundary reactions.

1: Function CoreBoundary(genomeScaleModel, coreReactionSet, currencyMetaboliteSet):
2: boundaryReactionSet = emptySet()
3: For reaction in coreReactionSet:
4: For reactant in reaction.reactants and not in currencyMetaboliteSet: # reactants includes

products if reversible
5: For otherReaction in genomeScaleModel.reactions and not in coreReactionSet:
6: If reactant in otherReaction.products: # products includes reactants if reversible
7: boundaryReactionSet.add(otherReaction)
8: return boundaryReactionSet

Algorithm 2 Previous Limit Flux to Core Algorithm.

1: Function LimitFluxToCore(genomeScaleModel, coreReactionSet, currencyMetaboliteSet,

carbonUptakeFlux):
2: boundaryReactionSet = CoreBoundary(genomeScaleModel, coreReactionSet, currencyMetaboliteSet)
3: limits = [0, 0.05, 0.2] * carbonUptakeFlux
4: fluxLimitsTowardsCoreResults = emptySet()
5: for reaction in boundaryReactionSet:
6: i = 0
7: reaction.fluxLimit = limits[i] # this is the flux limit in the direction producing core

metabolites
8: While hasNoFBASolution(genomeScaleModel):
9: i = i + 1

10: reaction.fluxLimit = limits[i]
11: fluxLimitsTowardsCoreResults.add(reaction: reaction.fluxLimit)
12: return fluxLimitsTowardsCoreResults

2.2. New Limit Flux to Core algorithm

Algorithm 2 is robust and has allowed for the effective measurement of fluxes through the 2S-13C
modeling approach. Upon inspection, Algorithm 2 is fundamentally a sequential routine which tests
boundary fluxes one by one to determine if they can be zeroed, and which sets flux bounds to arbitrary
limits when this testing fails. We present a faster and improved algorithm for limiting the flux to
the core from the periphery, which involves a minimization procedure for flux into the core that is
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consistent with the observed growth rate of the organism. This is achieved by Algorithm 3 using
a methodology where all reactions are split into a pair of unidirectional fluxes (e.g., a forward and
reverse flux as separate components), and the sum of all unidirectional fluxes into the core is minimized
in a single step through linear programming. This has several key advantages as demonstrated in the
results section below: (1) the limits of flux into the core are substantially lower than those obtained with
Algorithm 2; (2) the run time for computing these limits is reduced by several orders of magnitude,
as only a single linear optimization is performed instead of hundreds; and (3) there is no arbitrary bias
introduced by the order in which individual reactions are minimized, as was the case in Algorithm 2.

The “minimize flux into core” problem is solved by Algorithm 3 using linear programming with
the following constraints:

Minimize ∑
j∈J

cjvj, (1)

Subject to:

∑
i,j

Sijvj = 0 ∀i ∈ I, j ∈ J, (2)

lbj ≤ vj ≤ ubj ∀j ∈ J, (3)

where:

I : Set of all metabolites;
J : Set of all fluxes where reversible reactions are treated as two unidirectional reactions;
cj : Vector selecting unidirectional flux components with products in core (e.g., from reactions with

non-currency metabolite products in the core, as well as reversible reactions with reactants
in core);

Sij : Stoichiometry matrix;
vj : Flux value of reaction j ∈ J;
ubj, lbj : Upper and lower bounds for j.

Algorithm 3 New Limit Flux to Core algorithm.

1: Function LimitFluxToCore(genomeScaleModel, coreReactionSet, currencyMetaboliteSet):
2: boundaryReactionSet = CoreBoundary(genomeScaleModel, coreReactionSet, currencyMetaboliteSet)
3: genomeScaleModel.FBAobjective = ∑r∈boundaryReactionSet r.FluxLimitTowardsCore #

FluxLimitTowardsCore is the unidirectional flux components with a product in core

metabolism, this step is equivalent to the sum in Equation (1)
4: fluxes = FBAminimization(genomeScaleModel)
5: fluxLimitsTowardsCoreResults = emptySet()
6: for flux in fluxes:
7: if flux.reaction in boundaryReactionSet:
8: fluxLimitsTowardsCoreResults = fluxLimitsTowardsCoreResults.add(flux.reaction:

flux.FluxTowardsCore)
9: return fluxLimitsTowardsCoreResults

2.3. Calculating Fluxes Using the Different “Limit Flux to Core” Algorithms

We used the jQMM library [31] to calculate genome scale fluxes for E. coli using both the old “Limit
flux to core” procedure given by Algorithm 2 and via the new “Limit flux to core” procedure as given by
Algorithm 3. For calculating fluxes using the old “Limit flux to core” algorithm, the jupyter notebook
“A4: FluxModels demo” was used. This notebook is included in the public release of the jQMM library
found at http://github.com/JBEI/jqmm. Genome scale fluxes using the new “Limit flux to core”
algorithm were also calculated using the “A4: FluxModels demo”, except that the limitFlux2Core flag
was set to False when calculating fluxes via the findFluxesRanges command and flux bounds into the

http://github.com/JBEI/jqmm
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core were calculated using the example Jupyter notebook included in the public release of the new
limit flux to core algorithm at http://github.com/JBEI/limitfluxtocore.

2.4. Simulated Annealing Core Boundary Improvement Algorithm

To successfully perform 2S-13C MFA, or 13C MFA on a subset of the metabolic reactions in a given
species, it is necessary to first identify the set of core reactions where the bow tie approximation is
valid under the tested experimental conditions. For common model organisms, previously published
literature will often include a reasonable set of core reactions suitable for common laboratory cell
culture conditions. In many cases, these previously published core boundaries were painstakingly
manually curated by iteratively expanding the core boundaries until a set of reactions is found which
constitute a model that can explain experimental data within the bounds of experimental error [23].

However, this labor intensive process must be repeated when modeling a new species,
or a previously studied species under radically altered growth conditions. Here, we present a new
method, Algorithm 4, which automates this process by systematically exploring the core boundary
space with Simulated Annealing, and computing the sum of fluxes into core metabolism using
Algorithm 3 at each iteration [32]. For a given set of core reactions and experimentally measured
exchange fluxes, the sum of minimized fluxes into the core represents the “energy” (which we are
trying to minimize) in Simulated Annealing terms. The “energy landscape” is systematically explored
by iteratively and randomly adding or removing reactions from the boundaries of the core metabolism
set, and checking the new “energy” at each step. An improved (e.g., lower energy) core set is always
accepted, whereas an inferior (e.g., higher energy) core set is conditionally accepted at each iteration
with a probability computed by Equation (4). Occasionally accepting an inferior solution allows the
Simulated Annealing algorithm to escape local minima, and find a better solution which requires first
traversing an inferior solution.

P(acceptance|t, Eold, Enew) =

e
Eold−Enew

t , Eold < Enew,

1, Eold ≥ Enew,
(4)

where:

Eold : Energy (in units of metabolic flux) of the previous iteration;
Enew : Energy (in units of metabolic flux) of the current iteration;
t : Temperature of the current iteration (in units of metabolic flux) per the user specified annealing

schedule.

The temperature is gradually and iteratively lowered over the course of the simulation, from a high
initial starting temperature to a low final temperature following an exponentially decaying annealing
schedule. This annealing schedule provides an initial high temperature where the algorithm can
efficiently escape local minima, while a long and slow “cooling” process encourages eventual settling
in a new local minima. As Simulated Annealing is stochastic, a different sequence of random numbers
can alter the final solution obtained. Therefore, we recommend running the algorithm multiple times
with an array of different random number generator seeds, in order to find the best solution from a set
of many simulations.

The computational overhead of finding improved core boundaries with Algorithm 4 can be
substantially lowered by starting with a reasonable initial set of core reactions as a starting point.
Two possible methods for computing a reasonable starting set of core reactions include: (1) including all
reactions which are shared in common between the current species or strain and the phylogenetically
closest previously published species with a known valid 13C MFA core reaction set; (2) by systematically
testing a genome scale model with Flux Balance Analysis under randomized growth conditions for
a common set of key core reactions (e.g., using the method published by Almas et al. [33]). Algorithm 4
also provides a minimum overlap parameter, which will limit the number of reactions that can be

http://github.com/JBEI/limitfluxtocore
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removed from the starting core set, as well as a maximum size parameter that limits the number
of new reactions added. This is an important feature because a trivially “perfect” core with no flux
from peripheral metabolism could include, for example, just the carbon uptake exchange flux and no
other reactions, or, conversely, it could include the entire genome scale model. The minimum overlap
parameter can ensure that most or all experimentally measured core metabolites are retained in the
model, while the maximum size parameter avoids expanding the core into a size that is computationally
prohibitive to model with 13C MFA.

Algorithm 4 Simulated annealing core improvement algorithm.

1: Function AnnealCore(genomeScaleModel, InitialCoreReactionSet, AnnealingSchedule,

minimumOverlap, maximumSize, currencyMetaboliteSet):
2: currentSet = InitialCoreReactionSet
3: oldBoundaryFluxes = LimitFluxToCore(genomeScaleModel, currentSet, currencyMetaboliteSet)
4: oldEnergy = ∑ oldBoundaryFluxes
5: for temperature in AnnealingSchedule:
6: newSet = MoveCore(genomeScaleModel, currentSet, InitialCoreReactionSet,

minimumOverlap, maximumSize)
7: newBoundaryFluxes = LimitFluxToCore(genomeScaleModel, newset, currencyMetaboliteSet)
8: newEnergy = ∑ newBoundaryFluxes
9: if newEnergy < oldEnergy:

10: currentSet = newSet
11: else if Exp( oldEnergy−newEnergy

temperature ) > Rand(0, 1): # here Rand returns a random floating point

number between 0 and 1
12: currentSet = newSet
13: oldEnergy = newEnergy
14: return currentSet
15:
16: Function MoveCore(genomeScaleModel, currentSet, InitialCoreReactionSet, minimumOverlap,

maximumSize):
17: if (Rand(0,1) > 0.5) or (length(currentSet) ≥ maximumSize): # here Rand returns a random

floating point number between 0 and 1
18: randomReaction = selectRandomElement(currentSet)
19: newCore = currentSet.remove(randomReaction)
20: if IsConnectedComponent(newCore, genomeScaleModel): # check if all reactions are

connected to each other
21: overlap = length(InitialCoreReactionSet.intersection(newCore))/length

(InitialCoreReactionSet)
22: if overlap ≥minimumOverlap:
23: return newCore
24: else:
25: return currentSet
26: else:
27: return currentSet
28: else:
29: boundaryReactionSet = CoreBoundary(genomeScaleModel, currentSet, currencyMetaboliteSet)
30: return currentSet.add(selectRandomElement(boundaryReactionSet))

2.5. Implementation of Simulated Annealing and Limit Flux to Core Algorithms

We provide an open source Python implementation of Algorithms 1, 3 and 4 at https://github.com/
JBEI/limitfluxtocore. This implementation leverages the capabilities of the COBRApy Python library for
importing and analyzing genome scale models, as well as for performing linear optimization using an

https://github.com/JBEI/limitfluxtocore
https://github.com/JBEI/limitfluxtocore
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OptLang objective function [34,35]. Our implementation of Algorithm 4 makes use of the general purpose
simanneal Python library for Simulated Annealing (https://github.com/perrygeo/simanneal).

3. Results

3.1. Minimizing Flux into Core Metabolism

To evaluate the ability of Algorithm 3 to identify lower flux bounds into core metabolism than
Algorithm 2, we ran both algorithms on the iJR904 E. coli genome scale model, using exchange
and biomass fluxes from the previously published Toya et al. wild-type 5 h sample data [36,37].
We used a standard set of 127 core E. coli reactions that has been previously published as part of
the jQMM software tool [31]. These core reactions result in a set of 219 “boundary reactions” that
either produce a product consumed by core metabolism, or are reversible and include a reactant
consumed by core metabolism. For generating the boundary reaction list, we excluded “currency
metabolites” such as NADPH, which participate in core reactions without exchanging carbon. Both Limit
Flux to Core algorithms identified a set of 27 reactions with products in core metabolism where the
unidirectional component producing a product in core metabolism could not be set to zero. For the old
algorithm (Algorithm 2), the minimized upper flux bound found for each was 0.585 mmol·gDW−1·h−1,
resulting in a maximum sum of fluxes into core metabolism of approximately 15.80 mmol·gDW−1·h−1.
The new algorithm presented here (Algorithm 3) was able to identify substantially lower flux limits
for these same reactions, resulting in a much smaller maximum sum of fluxes into core metabolism of
approximately 3.19 mmol·gDW−1·h−1. Figure 3 shows a comparison between the flux bounds identified
with each method.

To further test the effect of the new algorithm on the overall flux calculation, we computed 2S-13C
MFA flux profiles for the full genome-scale model using the old “Limit flux to core” Algorithm 2 and
the new one (Algorithm 3, see Figure 4 and Figure 2 in the original publication [23]). Even though
the core stays the same, flux results may change due to the different flux bounds (Figure 3). We used
the jQMM library [31] for this purpose, where the “Limit flux to core” step given by Algorithm 2
was substituted by Algorithm 3. After futile cycles have been removed from flux results, only minor
differences remain (Figure 5). Furthermore, the External Labeling Variability Analysis (ELVA), showing
the impact of reactions not included in the core set on the measured labeling, are very similar (Figure 6).
Overall, this demonstrates that, while Algorithm 3 improves the overall modeling workflow by making
it more consistent with the bow tie approximation, previously published 2S-13C MFA modeling results
may still be regarded as reasonably accurate.

https://github.com/perrygeo/simanneal
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Figure 3. Flux bounds for core boundary reactions computed via the new Limit Flux to Core algorithm
(blue) are much lower than those calculated with the old one (red). Our goal is not only to set to zero all
reactions that can be zeroed, but also find the maximum allowable upper bound for those that cannot
be zeroed. Upper flux bounds are shown for all reactions outside of core metabolism with products in
core metabolism for the iJR904 E. coli genome scale model, using exchange and biomass fluxes from the
previously published Toya et al. wild-type 5 h data [36,37]. The set of core reactions was taken from
the Toya et al. (2010) example included with the jQMM software tool [31]. Flux bounds for the old
Algorithm 2 are shown in red, whereas improved much lower flux bounds for the new Algorithm 3
are shown in sky-blue. Boundary reactions with fluxes into core metabolism that could be set to zero
are not shown. Using the new algorithm, much lower bounds for reactions flowing into the core can
be obtained. This limits the amount of flux flowing into the core and, hence, translates into better
fulfillment of the bow tie approximation.

Old	workflow New	workflow

Figure 4. Comparison of old algorithm workflow for 2S-13C MFA versus the new workflow using the
algorithms presented here. The left panel represents the old workflow (Figure 2 in Garcia Martin et al. [23]
and the right panel portrays the new workflow, where the new algorithms are shown with a red overlay.
Algorithm 2 presented in this paper represents the old “Limit flux to core” algorithm that is replaced
by Algorithm 3 in this paper. Algorithm 4 represents a new way to determine the set of core reactions,
which used to be a manual step in the old workflow. Algorithm 4 can also be used to refine the core set
after reactions are added as a consequence of the External Labeling Variability Analysis (ELVA)).
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Figure 5. Comparison of 2S-13C MFA fluxes computed using the new vs. old Limit Flux to Core
algorithms. Algorithm 2 fluxes are shown in red, whereas the new Algorithm 3 fluxes are shown in
sky-blue. Only non-futile cycle fluxes from the iJR904 E. coli genome scale model, which were changed
by at least 0.01 mmol·gDW−1·h−1 between the two results are shown [36]. Fluxes were computed with
the jQMM software tool using the previously published Toya 2010 et al. wild-type 5 h data [31,37].
The final fluxes calculated through 2S-13C MFA are nearly the same using either algorithm. The new
algorithm, however, is more systematic and faster since it only requires a single linear optimization
problem. Confidence intervals obtained through 13C Flux Variability Analysis [23] can be found in
Supplementary Figures S1 and S2.
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A BNew Limit Flux to Core Old Limit Flux to Core

Figure 6. External Labeling Variability Analysis (ELVA) for new (Algorithm 3) and old (Algorithm 2)
“Limit flux to core” algorithms shows similar results. The ELVA shows the maximum possible
computational error incurred by not adding all reactions to the core, and is used to determine if
the core set is complete enough for 2S-13C MFA to be self-consistent. The similarity of both plots shows
that both algorithms produce similar results for this important part of the method.

3.2. Improving Core Metabolism Boundaries Using Simulated Annealing

To evaluate the ability of Algorithm 4 to automatically identify an “improved” core with
a lower sum of fluxes into core metabolism from peripheral metabolism, we ran a simulation
starting with the same 127 core reactions from the iJR904 E. coli genome scale model mentioned
above. We also used the same exchange and biomass fluxes from Toya et al. (2010) mentioned
above. The initial “energy” (i.e., sum of minimized fluxes into core metabolism) for this starting
core set was 3.19 mmol·gDW−1·h−1. After running 64 parallel simulations of 200,000 steps,
we found a “lowest energy” core set of 141 reactions with a substantially reduced “energy” of
only 1.20 mmol·gDW−1·h−1. We used an exponentially decaying annealing schedule starting at
a “temperature” of 50,000 mmol·gDW−1·h−1 and ending at 0.01 mmol·gDW−1·h−1. Figure 7 shows
a trace of the temperature, energy, and core size (in reactions) over the entire simulation. To reduce
the search space, we bounded the solution between a minimum of the 127 reactions in the initial core,
and a maximum of 13% of the entire genome scale model, which was equal to the final core size of
141 reactions. As shown in Figure 7C,D, the trace shows excellent mixing over the solution space
at high temperatures, whereas Figure 7B shows that the simulation effectively stopped exploring
very high energy solutions approximately halfway through the simulation. Figure 8 shows a visual
comparison of the initial and final core set, overlaid on a graph representing the entire E. coli metabolic
network, as described in the figure caption. This graph shows that the initial E. coli core contains many
reactions divided into two somewhat distinct clusters (upper left and lower left). The simulation largely
identified new reactions centered in the “bridge” between these two clusters, which carry flux out of,
and back into, the initial core, and therefore should be included inside the core metabolism reaction
set. Note that this result is dependent on defining a set of “currency metabolites” that are widely
exchanged in metabolic reactions throughout the cell, but do not contribute any carbon (directly or
indirectly) to experimentally measured metabolite mass isotopomer distributions. We define a default
set of currency metabolites in our Python implementation, but this set should be recomputed for each
individual 13C modeling experiment, based on the metabolites being measured. Overall, this result
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demonstrates the ability of Algorithm 4 to automatically expand a set of core metabolism reactions, to
produce an improved core which better satisfies the bow tie approximation.
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Figure 7. Temperature, energy, and core size during and example Simulated Annealing run to
automatically identify an expanded core that minimizes the required sum of fluxes into core metabolism
from peripheral metabolism. We started with an example core containing 127 reactions from central
carbon metabolism in the iJR904 E. coli genome scale model, using exchange and biomass fluxes
from the previously published Toya et al. (2010) wild-type 5 h data [36,37]. We ran the simulation
for 200,000 steps using an exponentially decaying annealing schedule starting at a “temperature”
of 50,000 mmol·gDW−1·h−1 and ending at 0.01 mmol·gDW−1·h−1. The sum of fluxes into core
metabolism was reduced from a starting “energy” of 3.19 mmol·gDW−1·h−1 to a final value of
1.20 mmol·gDW−1·h−1. Shown here is the best (lowest flux into core) result over 64 simulations
each started with a different random seed; (A) the annealing schedule “temperatures” over the course
of the simulation; (B) a semilogarithmic plot of the “energy level” of the simulation at each iteration,
defined as the sum of fluxes into core metabolism as computed with Algorithm 3, subsampled every
100 steps; (C) the size of the core in reactions, subsampled every 1000 steps. Vertical black lines indicate
the zoomed in timestep range that is used for panel (D); (D) the size of the core in reactions, zoomed in
from part (C), from simulation timestep 35,000 to timestep 39,000 without any subsampling.
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Figure 8. Initial and expanded core metabolism network from Simulated Annealing example run.
Shown is the iJR904 E. coli genome scale model where each node is a reaction, and each pair of nodes
are connected by an edge if they share a common “non-currency” metabolite in their reactants or
products. Nodes that were not part of the largest connected component (e.g., reactions not connected to
the rest of the graph by non-currency metabolites) are not shown. The initial reaction core is shown in
blue, with the new reactions added by the Simulated Annealing run shown in red. All other reactions
in the genome scale model (e.g., peripheral metabolism) are shown in gray. Note that several of the
added reactions bridge two distinct highly connected clusters in core metabolism, and therefore should
be included as part of the core per the bow tie approximation. Graph layout was performed via the
Gephi software tool using the ForceAtlas2 force-directed layout algorithm [38,39]. This algorithm was
informed only by connectivity, and not influenced by node category (color).

4. Discussion

In this paper, we have provided systematic methods to delineate how the bow tie approximation
takes form within genome-scale models. We have constructed an improved method to constrain
metabolic fluxes so as to limit flux into core metabolism, and have created a method to identify the
boundaries of core metabolism. The practice of assuming that certain reactions do not affect metabolite
labeling is used even in the case of genome-scale 13C MFA (e.g., beta-oxidation, nucleotide salvage
pathways), although for a much larger core set [16]. The method presented here can be applied to
systematize and make this practice more rigorous.
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The new Limit Flux to Core algorithm described in this manuscript computes substantially lower
flux limits for reactions flowing into the core while maintaining consistent predicted genome scale
fluxes constrained by 13C data. This new algorithm is faster because it does not depend on sequential
execution, as flux bounds are simultaneously minimized via linear programming. Additionally,
this algorithm is more efficient and does not rely on ad hoc processes such as trial and error and
arbitrary cutoff values as the original Limit Flux to Core algorithm does. This provides an improved
understanding of the theoretical process of Two-Scale 13C Metabolic Flux Analysis, as it more closely
follows the underlying biological assumption that little flux flows from the periphery to the core.

Furthermore, although we have reworked how flux bounds are determined, final flux predictions
from the full 2S-13C MFA procedure are consistent with predicted fluxes before changes to the Limit
Flux to Core algorithm, where the set of core metabolic reactions is fixed. Figure 5 shows predicted
fluxes for only the reactions that have different predicted fluxes between different Limit Flux to Core
algorithms, with only marginal predicted flux differences for a handful of reactions.

The Simulated Annealing algorithm described here identifies core boundaries that have low net
flux into the core. A possible downside to this approach is that it could inappropriately set low bounds
for a boundary reaction that has a physiologically high bidirectional flux but low net flux. In most such
cases, the modeling of mass isotopomer distributions in core metabolism would fail to fit accurately
to experimental mass isotopomer data, and the user would have to manually add reactions with
inappropriate bounds to the core set. This process could be automated in the future with a model
for bidirectional fluxes in peripheral metabolism, but remains unaddressed in this manuscript given
the technical challenges in rapidly performing non-convex global optimization on large dimensional
problems and the lack of reliable characterizations for the carbon atom transitions for reactions in
peripheral metabolism.

Lastly, decades of metabolic flux analysis on E. coli or other model organisms has resulted in
a determination of core metabolic networks that give reasonable flux results and that satisfy the bow
tie approximation well. However, for new organisms, model organisms under uncommon laboratory
conditions (e.g., a different carbon source), or novel genetically engineered strains, no reasonable core
reaction set is known. For these cases, the Simulated Annealing algorithm described here provides
a general method for automatically identifying an improved set of core reactions that better satisfies the
bow tie approximation. This method and the open source implementation we provide is of general use
for the 13C MFA, 2S-13C MFA and FBA communities, as it has the potential to substantially reduce the
manual effort required for 13C flux modeling in new organisms, and/or new experimental conditions.

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/8/1/3/s1. Figure S1.
Comparison of 2S-13C MFA flux bounds computed using the new vs. old Limit Flux to Core algorithms. Figure S2.
Comparison of 2S-13C MFA flux bounds computed using the new vs. old Limit Flux to Core algorithms with the
most likely flux shown.
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FBA Flux Balance Analysis
13C MFA 13C Metabolic Flux Analysis
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