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Tech Report: Quaternion-based Trajectory Tracking Control of
VTOL-UAVs using Command Filtered Backstepping

Sheng Zhao, Wenjie Dong, Jay A. Farrell

Abstract— This paper discusses trajectory tracking control
for Vertical Take-Off and Landing (VTOL) Unmanned Aerial
Vehicles (UAVs) using the command filtered backstepping tech-
nique. Quaternions are used to represent the attitude of the
vehicle to ensure the global attitude tracking without singu-
larities. Since the quaternions have their own unique algebra,
they cannot be filtered by a vector-based command filter;
therefore, a second-order quaternion filter is developed to filter
the quaternion and automatically compute its derivative, which
determines the commanded angular rate vector. A quadrotor
vehicle is used as an example to show the performance of the
proposed controller.

I. INTRODUCTION

Recently, Vertical Take-Off and Landing (VTOL) Un-
manned Aerial Vehicles (UAVs) have gained tremendous
interest among researchers and practitioners. In many appli-
cations, VTOL UAVs have advantages over fixed wing UAVs
due to their relatively smaller size, capability to operate
in cluttered environments and their hover capability. Many
aerial vehicles fall into the categories of VTOL UAVs:
Quadrotor, Coaxial rotorcraft and Ducted-fan UAV.

However, the control of VTOL UAV is not straightforward
because of its under-actuated dynamics. The under-actuated
dynamics require that translational motion of VTOL UAV
be determined in part by the attitude of the vehicle. Since
the translational motion of the VTOL UAV is determined by
the attitude of the vehicle, the performance of the attitude
tracking loop directly affects the performance of the position
tracking loop. Euler-angles are commonly used in attitude
control loop to represent the vehicle’s attitude [4], [7]. How-
ever, the singularity problem of the Euler-angles prevents the
controller to have the global tracking capability. Quaternion
can represent the attitude without any singularity and thus
a global attitude tracking controller can be implemented.
In contrast to the rotation matrix representation, quaternion
use fewer parameters (4 as opposed to 9) and quaternion
is commonly used in the state estimators to represent the
attitude. Hence, this paper uses quaternion to represent the
attitude.

Regardless of how attitude is represented, the vehicle
position trajectory tracking problem through the vehicle
attitude involves strong nonlinearities. In many applications
[4], [10] and commercial products [1], VTOL UAV control is
implemented by linearizing the dynamics around a hover op-
erating point and designing linear (e.g., PID-like) controllers
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to control the position and attitude of the vehicle. Such
control design approaches have good performance near the
linearized point (hover stage), but may perform poorly when
the vehicle deviates away from the linearized point, which
typically happens when tracking an user-specified trajectory.
The trajectory commands considered in this paper can take
two forms: 1) position only trajectory or 2) position and the
desired yaw trajectory.

To improve the global VTOL tracking performance, var-
ious model-based nonlinear control methodologies can be
considered. Among these nonlinear control methodologies,
backstepping based design is widely adopted due to its
systematic design and physically intuitive approach. In the
backstepping design, the derivatives of virtual control signals
are required in each design step. When the number of steps
is greater than three, like the case of VTOL UAV, the
analytic derivation of the derivatives becomes prohibitively
complicated. When quaternions are involved in the control
design, their special algebra and dynamics also complicates
the design procedure. The paper [11] designs a quaternion-
based backstepping controller to track a position trajectory
and the required derivatives are computed analytically. The
procedure is already very cumbersome for position tracking
only. If the trajectory contains the desired yaw angle, all
the derivatives computed in [11] need to be recomputed
with respect to (w.r.t.) the desired yaw angle which makes
the already tedious procedure even worse. There are many
reasons that prevent the wide adoption of nonlinear controller
in real applications, and the complexity involved in the
design process is one. The command filtered implementation
of the backstepping approach [3] maintains the desirable
aspects of the backstepping method, has the same provable
convergence properties, and simplifies the implementation
process.

A command filtered backstepping trajectory tracking con-
trol approach for VTOL aircraft is presented and analyzed
herein. The quaternion attitude representation requires ex-
tension of the approach represented in [3]. By exploiting
the special dynamics of quaternion, this paper proposes a
second-order quaternion filter to compute the commanded
quaternion and its angular velocity, without differentiation.
The proposed quaternion filter enables the command filtered
backstepping design for the many types of vehicles uti-
lizing quaternion-based attitude representations. Moreover,
with the use of command filters, the flexibility of giving
yaw commands in the trajectory is realized without further
complicating the design process.

The paper is organized as follows. Section II reviews
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quaternion facts related to the modified definition. Section
III presents the VTOL dynamics. Section IV presents the
backstepping control design Section V presents the com-
mand filtered backstepping controller. Section VI presents
the second-order quaternion filter. Section VII presents the
stability analysis. Section VIII presents simulation results.

II. QUATERNION REVIEW

In this section, we review the essential equations of quater-
nions for the controller design. The quaternion used in this
paper follows the modified definition, instead of the Hamilton
convention [13]. Derivations related to the quaternion algebra
can be found in [15].

A. Unit Quaternion
The quaternion q̄ = [ε> η]> is a unit quaternion if it

satisfies:

|q̄| =
√
q̄>q̄ =

√
‖ε‖2 + η2 = 1. (1)

The unit quaternion can be written as:

q̄ =

[
k̂ sin(θ/2)

cos(θ/2)

]
. (2)

In this notation, the unit vector k̂ describes the rotation axis
and θ is the angle of rotation. Note that, one attitude can be
represented by two quaternions: q̄ and −q̄. They differ by
the rotating directions around the rotation axis to reach the
target configuration.

B. Quaternion Algebra
The skew-symmetric matrix S(x) for any x ∈ R3 is

defined as S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . For any two

vectors x,y ∈ R3, x× y = S(x)y.
The rotation matrix can be retrieved from the q̄ as

R(q̄) = I3×3 − 2ηS(ε) + 2S(ε)2. (3)

The multiplication of two quaternions is defined as

q̄ ⊗ p̄ =

[
ηqεp + ηpεq − εq × εp

ηqηp − ε>q εp

]
. (4)

Quaternion multiplication is distributive and associative, but
not commutative. The multiplication of quaternions is analo-
gous to multiplication of rotation matrix, in the same order:

R(q̄)R(p̄) = R(q̄ ⊗ p̄). (5)

The inverse of a quaternion (analogous to the transpose of
rotation matrix) is defined as q̄−1 = [−ε> η]>. For any
quaternion q̄, we have

q̄ ⊗ q̄−1 = q̄−1 ⊗ q̄ =

[
0
1

]
. (6)

Given a vector p, we can form the quaternion as q̄p =
[p> 0]>. The transformation of the representation of vector
p from frame a to frame b using quaternions is

bq̄p = b
aq̄ ⊗ aq̄p ⊗ b

aq̄
−1 (7)

=

[
b
aR

ap
0

]
. (8)
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Fig. 1. The definitions of global and body frames

C. Quaternion Dynamics

Let {G} represent the inertial frame and {B} represent
the body frame. Let ωB

GB denote the angular velocity of
{B} w.r.t. {G} expressed in {B}.

The dynamics of B
GR and B

Gq̄ are:
B
GṘ = −S(ωB

GB)BGR (9)

B
G

˙̄q =
1

2
q̄ωB

GB
⊗ B

Gq̄ (10)

=
1

2
Φ(BGq̄)ω

B
GB (11)

where Φ =

[
S(ε) + ηI
−ε>

]
.

The dynamics of G
BR and G

B q̄ are:
G
BṘ = G

BRS(ωB
GB) (12)

G
B

˙̄q =
1

2
G
B q̄ ⊗ q̄−ωB

GB
(13)

=
1

2

[
S(ε)− ηI
ε>

]
ωB

GB . (14)

The derivations of the rotation matrix dynamics can be found
in Section 2.6.1 of [2]. The derivations of the dynamics of
quaternion are in Section 2.4 of [15].

III. SYSTEM DYNAMICS

The rigid body dynamics of a VTOL UAV are:
ṗ = v, v̇ = F

m
G
BRe3 − ge3

B
G

˙̄q = 1
2 q̄ωB

GB
⊗ B

Gq̄, Jω̇B
GB = −ωB

GB × JωB
GB + τ

where e3 = [0 0 1]>, F is the collective force, τ is the
torque w.r.t. the center of gravity of the vehicle, J is the
body-referenced inertia matrix, m is the mass of the vehicle
and g the gravity constant. The definition of {G}-frame
and {B}-frame is illustrated by using the example of a
quadrotor in Fig. 1.

In this paper, the standard backstepping controller is de-
rived first, including the attitude and force command extrac-
tion steps. Then command filters are designed to generate the
required virtual control signals and their derivatives required
at each step for implementation. This is done in a manner that
maintains the desirable stability properties of the command
filter implementation, relative to the standard backstepping
approach, as discussed in [3].

IV. BACKSTEPPING CONTROL

This section derives the quaternion-based backstepping
control laws for the position trajectory tracking task. This
derivation is similar to the control laws presented in [11].



The subscript c denotes the virtual control variable. The gains
Ki ∈ <3×3, i = 1...4 are positive definite matrices.

Step 1 (Position Control)

Assume that the continuous signals pd(t) and ṗd(t) are
given. The goal in this step is to define a signal vc(t) that
causes p(t) to track the desired position pd(t). The position
tracking error dynamics are

˙̃p = vc + ṽ − ṗd (15)

where ṽ = v − vc and p̃ = p − pd. Let the Lyapunov
function be

V1 =
1

2
p̃>p̃. (16)

The time derivative of V1 along solutions of eqn. (15) is

V̇1 = p̃>(vc + ṽ − ṗd). (17)

Choosing vc = −K1p̃ + ṗd, yields V̇1 = −p̃>K1p̃ + p̃>ṽ.

Step 2 (Velocity Control)

Assume that the continuous signals vc(t) and v̇c(t) are
given. The goal in this step is to define a signal µc(t) that
causes v(t) to track the desired velocity vc(t). The velocity
tracking error dynamic is

˙̃v =
F

m
G
BR e3 − ge3 − v̇c (18)

= µc + µ̃− ge3 − v̇c (19)

where µ = F
m

G
BR e3, µc is the desired value of µ, and

µ̃ = µ − µc. The desired force Fc and the desired attitude
G
Bc q̄ will be determined from µc at Step 3. Let the Lyapunov
function be

V2 = V1 +
1

2
ṽ>ṽ. (20)

Then the time derivative of V2 is

V̇2 = V̇1 + ṽ>(µc + µ̃− ge3 − v̇c). (21)

Choosing

µc = −K2ṽ + ge3 + v̇c − p̃, (22)

yields V̇2 = −p̃>K1p̃− ṽ>K2ṽ + ṽ>µ̃. In this paper, we
assume ‖µc‖ > 0. This is typically the case, because if
µc = µ = 0, then the system is in freefall.

Step 3 (Attitude & Force Extraction)

The total applied thrust vector µ is determined by the
force F and the attitude B

Gq̄: µ(F,BGq̄) = F
m

G
BR e3. The

desired value µc defined in eqn. (22) is implemented through
selection of a desired force Fc and desired attitude B

Gq̄c such
that µ(Fc,

B
Gq̄c) = µc. The desired force is Fc = m ‖µc‖.

Let µ̄c = µc/ ‖µc‖.
Attitude extraction is discussed below separately depend-

ing on whether the yaw angle trajectory is or is not specified.

Case 1: When the yaw trajectory is specified, let the unit
vector py be the desired yaw direction at t and assume
that py is not parallel with µc. The desired direction cosine
matrix is G

BRc = [y × µ̄c, y, µ̄c], where y = µ̄c × py

[5]. Therefore, B
GRc = G

BR>c , and B
Gq̄c can be retrieved from

B
GRc by using eqn. (D.15) in page 504 of [2] (see the faq).

Case 2: When the yaw trajectory is not specified, the
desired attitude is not unique, due to the freedom to choose
the yaw angle. The attitude extraction in this case is denoted
as B

Gq̄c = Ξ(µc, q̄r) where we have introduced a reference
{r}-frame and a rotation q̄r , r

Gq̄ to accommodate this free
variable. Define q̄m , r

B q̄, which rotates the {B} frame to
the {r} frame. Lemma 1 is used to obtain q̄m by setting
u = e3 and v = R(q̄r)µ̄c. Then the desired quaternion is
computed by B

Gq̄c = q̄−1m ⊗ q̄r.

Lemma 1. [11] Given two unit vectors u and v with u 6= −v,
the unit quaternion q̄ with minimal rotation angle θ that
satisfies R(q̄m)u = v is given by

ε =

√
1

2(1 + u>v)
S(v)u, η =

√
1 + u>v

2
(23)

Note 1. The reference attitude (q̄r) could be chosen as the
global frame (GGq̄), the current vehicle attitude (BGq̄) or the
current desired attitude (BGq̄c). If a design goal is to choose
the desired attitude such that the yaw rotation is minimized,
then choosing the global frame as the reference attitude
could result in unnecessary yaw rotation at start-up. Through
simulations, we find that using the current desired attitude
(BGq̄c) as the reference attitude results in smaller yaw rotation
during the trajectory tracking than using the current vehicle
attitude.

Step 4 (Attitude Control)
Assume that the continuous signals Fc, B

Gq̄c and ω̄ are
available. To simplify notation, we define q̄ , B

Gq̄ and
q̄c , B

Gq̄c, and let ω̄ , ω̄Bc

GBc represent the rotational
velocity vector of q̄c whose dynamic is defined in eqn. (10).
Computation of ω̄ is discussed in Section VI. The goal in
this step is to choose ωc to ensure the attitude of vehicle
B
Gq̄(t) tracks the desired attitude q̄c(t).

The attitude tracking error q̃ is defined as

q̃ = B
Gq̄ ⊗ q̄−1c . (24)

Thus, using (5) we have

q̃ = q̄ ⊗ q̄−1c and R(q̃)R(q̄c) = R(q̄). (25)

With this definition of attitude tracking error, the dynamic
of q̃ is derived in Appendix I to be

˙̃q =
1

2
Φ(q̃) (ω −R(q̃)ω̄) , (26)

=
1

2
Φ(q̃)(ωc + ω̃ −R(q̃)ω̄), (27)

where ω̃ = ω − ωc and ω , ωB
GB to simplify the notation.

Let the Lyapunov function be

V3 = V2 + 2(1− h̃η̃) (28)



where η̃ is the scalar part of q̃, and h̃ ∈ {−1, 1} is a hybrid
variable introduced in [8] that determines the convergence
point of q̃ to either [0 1]> or [0 − 1]>. The dynamics of h̃
contain both continuous and discontinuous parts:{

˙̃
h = 0, if x ∈ C
h̃+ = −h̃, if x ∈ D

(29)

where h̃+ denotes the discrete update of the variable, x is
the controller state vector, C is the flow set and D is the
jump set [9]. The flow set and the jump set will be defined
in the next control step.

The time derivative of V3 is

V̇3 = V̇ s
3 + ṽ>µ̃+ h̃ε̃>(ωc + ω̃ −R(q̃)ω̄) (30)

where V̇ s
3 = −p̃>K1p̃ − ṽ>K2ṽ. To proceed, we rewrite

µ̃ as µ̃ = W(q̄c, q̃, Fc)ε̃ as derived in the Appendix II. This
yields

V̇3 = V̇ s
3 + ṽ>Wε̃+ h̃ε̃>(ωc + ω̃ −R(q̃)ω̄). (31)

Choosing

ωc = −K3h̃ε̃−W>ṽ + R(q̃)ω̄ (32)

and noticing that h̃2 = 1, we have

V̇3 = V̇ s
3 − ε̃>K3ε̃+ h̃ε̃>ω̃. (33)

Step 5 (Angular Velocity Control)
In this step, the goal is choose τ to cause the actual

angular rate ω(t) track the desired angular velocity ωc(t).
We assume ωc and ω̇c are available, continuous, and known.

The dynamic of the angular velocity tracking error ω̃ is

J( ˙̃ω + ω̇c) = −(ω̃ + ωc)× J(ω̃ + ωc) + τ

J ˙̃ω = −(ω̃ + ωc)× J(ω̃ + ωc)− Jω̇c + τ

J ˙̃ω = Σ(ω̃,ωc)ω̃ − S(ωc)Jω̃ + τ f (ωc, ω̇c) + τ (34)

where

Σ(ω̃,ωc) = S(Jω̃) + S(Jωc) (35)
τ f (ωc, ω̇c) = S(Jωc)ωc − Jω̇c. (36)

Note that Σ is a skew-symmetric matrix for any ω̃ and ωc.
Choosing the Lyapunov function as

V4 = V3 + ω̃>Jω̃, (37)

yields the time derivative of V4 as

V̇4 = V̇ s
4 + h̃ε̃>ω̃ + ω̃>(Σω̃ − S(ωc)Jω̃ + τ f + τ ) (38)

where V̇ s
4 = V̇ s

3 − ε̃>K3ε̃. Choosing

τ = −K4ω̃ − h̃ε̃+ S(ωc)Jω̃ − τ f (39)

and noticing that ω̃>Σω̃ = 0 yields

V̇4 = V̇ s
4 − ω̃>K4ω̃ (40)

which is a negative definite function of the error state. The
change in V4 following a jump in h̃ can be shown, using

eqns. (28), (32) and (37) and the procedure on page 2526 in
[9], to be:

V4(h̃+)− V4(h̃) = 2(1− (−h̃)η̃) (41)

+(ω − ωc(h̃
+))>J(ω − ωc(h̃

+))− 2(1− h̃η̃) (42)

−(ω − ωc(h̃))>J(ω − ωc(h̃)) (43)

= 4h̃(η̃ − ε̃>K>3 G) (44)

where G = ω+W>ṽ−R(q̃)ω̄. Letting Λ = η̃− ε̃>K>3 G,
then the flow and jump sets can be defined as

C1 = {h̃Λ ≥ −δ} (45)

D1 = {h̃Λ ≤ −δ} (46)

where δ ∈ (0, 1) is a design variable that determines at what
point to switch the convergence point. Implementation of this
control law requires computation of the various command
signals and their derivatives.

V. COMMAND FILTERED BACKSTEPPING

The backstepping controller an signal requirements at each
step are summarized below.

Step Rqrd. sig. Control Law
1 pd, ṗd vc = −K1p̃ + ṗd

2 vc, v̇c µc = −K2ṽ + ge3 + v̇c − p̃
3 µc F = m ‖µc‖, q̄c = Ξ(µc, q̄c)

4 q̄c, ω̄ ωc = −K3h̃ε̃−W>ṽ + R(q̃)ω̄

5 ωc, ω̇c τ = −K4ω̃ − h̃ε̃+ S(ωc)Jω̃ − τ f

In the standard backstepping approach, the variables v̇c,
ω̄ and ω̇c are derived analytically. This is cumbersome as
shown in [11], which only considered position tracking.
For the position and yaw tracking, the analytic derivation
would become even more cumbersome as all derivatives
in [11] must re-computed to include the commanded yaw
direction. Command filters are employed herein to automate
the computation.

The command filtered backstepping controller is summa-
rized below:

1) vo
c = −K1p̃ + ṗd; [vc, v̇c] = CF1(vo

c).
2) µo

c = −K2ṽ + ge3 + v̇c − p̃.
3) Fc = m ‖µo

c‖, q̄oc = Ξ(µo
c , q̄c); [q̄c, ω̄] = QF (q̄oc ).

4) ωo
c = −K3h̃ε̃−W>ṽ+R(q̃)ω̄; [ωc, ω̇c] = CF2(ωo

c).
5) τ = −K4ω̃ − h̃ε̃+ S(ωc)Jω̃ − τ f .

where QF is the quaternion command filter discussed in
Section VI, and CF1 and CF2 are command filters defined
as

ẋ1 = x2 (47)

ẋ2 = −ω2
n(x1 − u)− 2ξωnx2 (48)

where x1 and x2 are in R3 , and u = vo
c for CF1 and

u = ωo
c for CF2. The outputs of the filters are x1 and x2. For

example, in the case of CF1, vc(t) = x1(t), v̇c(t) = x2(t).
The analysis in [3] ensures that as ωn is increased, the

tracking error performance of the command filtered imple-
mentation approaches the performance of the backstepping
controller using analytically derived command derivatives.
To complete the derivation for this application, we must



present a quaternion command filter and show that it fits
within the framework of [3].

VI. SECOND-ORDER QUATERNION FILTER

This section develops a second-order quaternion filter
that takes the quaternion q̄oc (t) as the input and produces
the filtered quaternion q̄c(t) and the corresponding angular
velocity ω̄(t) as outputs. The purpose of the filter is to ensure
producing ω̄(t) without differentiation and to ensure that the
error between q̄oc (t) and q̄c(t), defined as

˜̄q = q̄c ⊗ (q̄oc )
−1
, (49)

is small. The symbol ε̃ represents the vector part of B̂
B

˜̄q. Both
q̄oc (t) and q̄c(t) are known and available at every time instant;
hence, ˜̄q and ε̃ can be computed at every time instant.

The proposed quaternion filter is

˙̄qc =
1

2
Φ(q̄c)ω̄ (50)

˙̄ω = α(−k̃h̃f ε̃− ω̄) (51)

where h̃f is a hybrid variable as discussed in Section IV, and
α, k̃ ∈ R+. The form of eqn. (50) is designed to maintain the
unit norm property for q̄c. The form of eqn. (51) is designed
to cause q̄c(t) to track q̄oc (t). In this filter, the parameter α
determines how fast ω̄ tracks −k̃h̃f ε̃ and k̃ determines how
fast q̄c tracks the input attitude q̄oc .

The dynamic of ˜̄q is (see Appendix I)

˙̄̃q =
1

2
Φ(˜̄q)ω̃ (52)

where ω̃ = ω̄ −R(˜̄q)ω̄o, and ω̄o is the angular rate of the
q̄oc which is not available (i.e., unknown).

The stability of the filter is shown by considering the zero
input case. Define the Lyapunov function V = 2αk̃(1 −
h̃f η̃) + ω̃>ω̃, where η̃ is the scalar part of ˜̄q. Then the time
derivative of V can be computed as

V̇ = αk̃h̃f ε̃
>ω̃ + ω̃>(−αk̃h̃f ε̃− αω̄) (53)

= −αω̃>ω̃ ≤ 0. (54)

The change in V following the jump of h̃f is V (h̃+f ) −
V (h̃f ) = 4αk̃h̃f η̃. By defining the flow and jump sets of
the filter to be

C2 = {h̃f η̃ ≥ −δ} and D2 = {h̃f η̃ ≤ −δ}, (55)

it follows that V (h̃+f ) − V (h̃f ) < 0. Since V̇ = 0 if only
if ω̃ = 0 and {x ∈ D2 : V (h̃+f ) − V (h̃f ) = 0} = ∅,
by Theorem 4.7 in [12] the filter is global asymptotically
stable.

Note 2. The vector command filter of eqns. (47-48) could
also be used to produce q̄c(t) and ω̄(t) from q̄oc (t). However,
that filter would not maintain the quaternion having unit
norm and would not necessarily track the input quaternion
through the path of minimal rotation. In contrast, the hybrid
variable h̃f in the proposed quaternion filter ensures the
input quaternion is tracked through the path of minimal ro-
tation. Moreover, the state vector in the proposed quaternion

filter has smaller size than the one in the vector-based filter
(7 as opposed to 8).

Note 3. Either a normalization step or the Lie group
variational integrator, see e.g., [6], can be used to ensure
the unit norm property of the quaternion in practice.

VII. STABILITY ANALYSIS

The only difference between the proposed controller in
this paper and the controller in [3] is the involvement of
the quaternion filter. Therefore, this section shows that the
quaternion filter can be written into the form of ż = ε̄F (·),
which is required to apply the singular perturbation analysis
as presented in [3]. Once this is shown, the stability of the
proposed controller in this paper can be proved in an identical
manner as was done in [3].

Eqn. (51) can be rewritten as

˙̄ω = −αk̃(h̃f ε̃)− αω̄. (56)

Comparing eqns. (48) and (56), we note that h̃f ε̃ is equiv-
alent to (x1 − u) and ω̄ is equivalent to x2. Hence we can
let αk̃ = ω2

n and α = 2ξωn to obtain

ωn =
√
αk̃, ξ =

1

2

√
α/k̃. (57)

Thus, eqn. (56) can be written as

˙̄ω = −ω2
n(h̃f ε̃)− 2ξωnω̄. (58)

Letting z1 = q̄ and z2 = ω̄/ωn, we can rewrite the
quaternion filter (eq. (50) and (51)) into the form[

ż1
ż2

]
= ωn

[
1
2Φ(z1)z2

−h̃f ε̃− 2ξz2

]
which has the desired form ż = ε̄F (z, q̄c), where ε̄ = ωn.
Then, the singular perturbation theorem can be applied as in
[3] to prove the stability of the proposed controller.

VIII. SIMULATION RESULTS

First, we demonstrate in Fig. 2 that the vector-based filter
(red) may take a non-minimum angle path while tracking the
input quaternion when the attitude difference is greater than
180 degrees. The vector-based filter uses eqns. (47-48) with
x1 and x2 in R4, and u = q̄oc (t) is the input quaternion. The
angular velocity is ω = 2Φ(x1)>x2 based on eqn. (11) using
the fact that Φ>Φ = I. The initial quaternion is set to [0 1]>

and the initial angular velocity is set to 0 for both the vector-
based filter and the quaternion filter. The input quaternion is
a constant value created by letting k̂ = [0 0 1]> and θ =
240◦ in eqn. (2). Fig. 2 shows that both filters successfully
track the input quaternion, but the vector-based filter (red)
rotates counter-clockwise to reach the desired attitude while
the proposed quaternion (blue) filter rotates clockwise which
is a shorter route to reach the desired attitude.

In the second simulation, we use quadrotor as an example
of a VTOL UAV to demonstrate the performance of the
proposed tracking controller. The desired trajectory in this
simulation is a position trajectory which is shown in blue
in Fig. 3 with the actual trajectory of the vehicle in red.



The position tracking errors p − pd are plotted in Fig. 4.
In this figure, we compare the performance of controller
by setting a different α in the quaternion filter. We also
compare the yaw rotation of the vehicle in the trajectory
tracking by running the simulation separately with using the
current desired attitude and the current vehicle attitude as
the reference attitude. The comparison result given in Fig. 5
shows that using the current desired attitude results in lesser
yaw rotation.

The parameters used in the simulation are: m = 0.5kg,
J = diag([0.0820; 0.0845; 0.1377]), K1 = 2I, K2 = I,
K3 = 8I, K4 = I, α = 200, k̃ = 50, δ = 10−2, and
ξ = 1, ωn = 100 for both CF1 and CF2.

IX. CONCLUSIONS & FUTURE WORK

This paper presents trajectory tracking control for VTOL
UAVs using the command filtered backstepping technique.
The commanded trajectory may include just the position or
position and desired yaw. Quaternions are used for attitude
control, which ensures the global attitude tracking perfor-
mance. The quaternion used in this paper follows the mod-
ified definition, which is well recognized by the navigation
and robotics communities, to facilitate the adoption of var-
ious quaternion-based nonlinear controllers by practitioners
outside the control community in their applications. More
importantly, in the backstepping control design, command
filters are used to avoid the often prohibitively difficult
analytic computation of the required command derivatives
in each step. For the quaternion filtering, a standard vector-
based command filter does not exploit the special dynamics
of the quaternion, which could result in a longer route being
taken by the filter to track the desired quaternion. To address
this issue, a second-order quaternion filter is introduced
that automatically computes the derivative of quaternion
(namely the angular velocity) without differentiation, always
follows the smallest angular path, and maintains the unit
norm property of the quaternion. As a benefit of using
command filters, the flexibility of giving yaw commands in
the trajectory is realized without adding extra efforts in the
design process. In the future, model error, actuator allocation,
and an adaptive version of the controller can be considered.

APPENDIX I
ATTITUDE ERROR DYNAMICS

The purpose of this appendix is to show that the dynamic
of the attitude error q̃, defined in eqn. (24), is

˙̃q =
1

2
q̄ω̃B ⊗ q̃ (59)

where ω̃B , ω̃B
BcB = ωB

GB−R(q̃)ωBc

GBc . The proof follows
the derivation in [14].

Proof. From eqn. (24), we have
B
Gq̄ = q̃ ⊗ q̄c (60)

Taking the time derivative on both sides of (60) yields
B
G

˙̄q = ˙̃q ⊗ q̄c + q̃ ⊗ ˙̄qc (61)
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Fig. 2. The quaternion tracking error (η̃) and the last component of the
output angular velocity (ω̂3) are shown for the vector-based filter (red) and
the proposed quaternion filter (blue).
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Fig. 4. The position tracking errors (p − pd). The blue line is using
α = 200 and the red dash line is using α = 10.
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Rearrange the above equation

˙̃q ⊗ q̄c = B
G

˙̄q − q̃ ⊗ ˙̄qc (62)
˙̃q =

(
B
G

˙̄q − q̃ ⊗ ˙̄qc
)
⊗ q̄−1c (63)

Applying eqn. (13) twice yields

˙̃q =
1

2

(
q̄ωB

GB
⊗ B

Gq̄ − q̃ ⊗ q̄ωBc

GBc
⊗ q̄c

)
⊗ q̄−1c

Distributing q̄−1c into the bracket and using eqn. (24) yields:

˙̃q =
1

2

(
q̄ωB

GB
⊗ q̃ − q̃ ⊗ q̄ωBc

GBc

)
(64)

Multiplying q̃−1 ⊗ q̃ to the right of the second term on the
right-hand side yields

˙̃q =
1

2

(
q̄ωB

GB
⊗ q̃ − q̃ ⊗ q̄ωBc

GBc
⊗ q̃−1 ⊗ q̃

)
Then eqn. (7) is used to obtain:

˙̃q =
1

2

(
q̄ωB

GB
⊗ q̃ − q̄ωB

GBc
⊗ q̃
)

(65)

=
1

2
q̄ω̃B ⊗ q̃ (66)

where ω̃B , ω̃B
BcB = ωB

GB − ωB
GBc = ωB

GB −R(q̃)ωBc

GBc .

APPENDIX II

In this appendix, we rewrite the acceleration tracking error
µ̃ into a function of the vector portion of the quaternion error
ε̃. Let Ac = Fc

m to simplify the notation. From the definition
of µ̃, we have

µ̃ = Ac
G
BRe3 − µc (67)

= Ac

(
G
BR− G

BcR
)
e3 (68)

= Ac (R(q̄)−R(q̄c)) e3 (69)

where we use the assumption of perfect actuators (i.e.,
Fc(t) = F (t)). Applying eqn. (25) yields

µ̃ = Ac (R(q̃)R(q̄c)−R(q̄c)) e3 (70)
= Ac (R(q̃)− I) R(q̄c)e3 (71)

Using eqn. (3) gives

µ̃ = 2Ac

(
−η̃S(ε̃) + S2(ε̃)

)
R(q̄c)e3 (72)

= 2Ac (−η̃I + S(ε̃))S(ε̃)R(q̄c)e3 (73)
= 2Ac (η̃I− S(ε̃))S(R(q̄c)e3)ε̃ (74)
= W(q̄c, q̃, Fc)ε̃ (75)

where

W(q̄c, q̃, Fc) = 2
Fc

m
(η̃I− S(ε̃))S(R(q̄c)e3) (76)
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