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ABSTRACT OF THE DISSERTATION 

 

Into the Black Box: 

Using Data Mining of In-Game Actions to Draw Inferences from Educational Technology about 

Students’ Math Knowledge 

 

by 

 

Deirdre Song Kerr 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2014 

Professor Noreen M. Webb, Chair 

 

 

Educational video games have the potential to be used as assessments of student understanding 

of complex concepts. However, the interpretation of the rich stream of complex data that results 

from the tracking of in-game actions is so difficult that it is one of the most serious blockades to 

the use of educational video games or simulations to assess student understanding, and there is 

currently no systematic approach to extracting relevant data from log files. This study attempts to 

determine whether data mining techniques can be used to extract information from log files that 

allows for the formation of testable hypotheses. The log files in this study come from an 

educational video game teaching students about the identification of fractions. The three data 

mining techniques used in this study were: cluster analysis, sequence mining, and classification. 
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Cluster analysis was used to examine the individual actions each student took in a given attempt 

to solve each game level. This led to the identification of valid solution strategies students used 

and mathematical errors and game-related errors students made as they tried to solve game 

levels. Sequence mining was used to examine the change in strategy use as each student moved 

through the game levels. This led to the identification of strategy sequences representing 

different paths students took to arrive at the correct solution. Classification was used to examine 

the change in the number of attempts each student required to solve the levels in each stage. This 

led to the identification of performance trajectories representing improvement, decline, or lack of 

change in performance over time.  

To demonstrate the usefulness of the extracted information and provide initial evidence that the 

interpretation of the extracted information was valid, testable hypotheses from the results of each 

data mining technique were generated examining whether the grouping of students resulting 

from each of the three data mining techniques differed significantly on paper-and-pencil pretest 

scores, posttest scores, or the gain in scores between pretest and posttest. The groups resulting 

from each of the three data mining techniques differed significantly on pretest and posttest 

scores, with students in groups interpreted as representing lower performance demonstrating 

lower performance on the tests and students in groups interpreted as representing higher 

performance demonstrating higher performance on the tests. However, none of the three 

techniques led to the identification of groups of students that differed significantly on the gain in 

scores between pretest and posttest. 
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CHAPTER 1: INTRODUCTION 

Educational video games and simulations are often lauded as environments where 

students can be exposed to educational material in more interesting and motivating ways than are 

generally provided in the classroom (Garris, Ahlers, & Driskell, 2002; Lepper & Malone, 1987). 

However, the true benefits of educational video games and simulations go far beyond just the 

motivational. More importantly, they are environments where students can be exposed to 

authentic and interesting educational tasks (Edelson, Gordin, & Pea, 1999) and interact with and 

explore complex representations of serious academic content (Fisch, 2005; National Research 

Council, 2011). 

Besides their ability to address complex content, educational video games and 

simulations also record every action taken by students as they play, rather than just the answers 

given. This means they can record the exact learning behavior of students (Romero & Ventura, 

2007), allowing examination of thought processes that are often not captured in students’ verbal 

explanations (Bejar, 1984). Problem-solving strategies and mistakes that can be impossible to 

capture on a paper-and-pencil test are easily recorded in educational video games and 

simulations (Merceron & Yacef, 2004; Quellmalz & Pellegrino, 2009; Rahkila & Karjalainen, 

1999) in an unobtrusive manner (Kim et al., 2008; Mostow et al., 2011) that is both feasible and 

cost-effective (Quellmalz & Haertel, 2004). 

This information can be used to provide detailed measures of the extent to which players 

have mastered specific learning goals (National Science and Technology Council, 2011) or to 

support diagnostic claims about students’ learning processes (Leighton & Gierl, 2007). 

Educational video games and simulations provide the ability for direct assessments of complex 

tasks (Linn, Baker, & Dunbar, 1991) in a more authentic manner than standard multiple choice 
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tests (Su, Hung, Hwang, & Lin, 2010), and because they are less text-intensive, they may be 

more valid assessments of English language learners, students with disabilities, and students with 

low reading ability (Kopriva, Gabel, & Bauman, 2009). 

Educational games and simulations also have the potential to be used to identify the 

strengths and weaknesses of individual students (Mehrens, 1992), to provide individualized 

feedback (Brown, Hinze, & Pellegrino, 2008), to guide instruction that is optimal for each 

student (Bejar, 1984; Clark, Nelson, Sengupta, & D’Angelo, 2009; Radatz, 1979), or to allow 

students to track their own progress (Rahkila & Karjalainen, 1999). Additionally, they could be 

used to improve classroom instruction (Merceron & Yacef, 2004) by allowing for the 

identification of common errors or determining the relative effectiveness of different pedagogical 

strategies for different types of students (Romero & Ventura, 2007). 

Therefore, it is not surprising that the government called for the research and 

development of educational video games and simulations to assess the complex skills identified 

in state and national standards (U.S. Department of Education, 2010) and the use of educational 

video games and simulations to determine the effectiveness of different instructional practices 

(U.S. Department of Education, 2012). Unfortunately, it is also not surprising that educational 

video games and simulations cannot currently be used as stand-alone assessments of student 

performance. 

In standard testing formats, evidence of student performance takes the form of the 

answers students have given to a series of problems. In educational video games and simulations, 

on the other hand, this evidence takes the form of the specific actions students have taken while 

trying to solve each problem (e.g., “the student changed a fraction from 1/2 to 2/4”). Because the 

interpretation of these actions often depends on what else the student does while attempting to 
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solve the problem, the relationship between each specific action and overall student performance 

is not immediately clear.  

This means the process of identifying evidence of student performance in educational 

video games and simulations is incredibly complex due to the sheer number of observable 

actions and the variety of potential relationships each action could have with student 

performance (Frezzo, Behrens, Mislevy, West, & DiCerbo, 2009). Extracting relevant features 

from the noise in the data is crucial in such environments to make analysis computationally 

tractable (Masip, Minguillon, & Mor, 2011). 

In educational video games or simulations, relevant features of student performance must 

be extracted from the log files that are automatically generated by the game or simulation as 

students play (Kim et al., 2008). Though log data are more comprehensive and more detailed 

than most other forms of assessment data, analyzing log data presents a number of challenging 

problems (Garcia, Romero, Ventura, de Castro, & Calders, 2011; Mostow et al., 2011) inherent 

when examining exact learning behaviors in highly unstructured environments (Amershi & 

Conati, 2011). These environments typically include thousands of pieces of information for each 

student (Romero, Gonzalez, Ventura, del Jesus, & Herrera, 2009) with no known theory to help 

identify which information is salient (National Research Council, 2011). Most of the difficulties 

associated with analyzing data of this type come from the sheer amount of information present. 

Log data consist of prohibitively large quantities of information (Romero, Gonzalez, et al., 

2009), wherein a single student can generate over 3,000 actions in half an hour of game play 

(Chung et al., 2010).  

In addition to the size of the data, the specific information stored in the log files is not 

always easy to interpret (Romero & Ventura, 2007) as the responses of individual students are 
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highly context dependent (Rupp, Gushta, Mislevy, & Shaffer, 2010) and it can be difficult to 

picture how student knowledge, learning, or misconceptions manifest themselves at the level of a 

specific action taken by the student in the course of the game. Additionally, it can be difficult to 

determine which actions represent key features of student performance given that log files are 

generally designed to capture all student actions relevant to game play, and it is not until after 

analysis that one would know which actions were relevant to learning.  

Due to these difficulties, there is currently no systematic approach to extracting relevant 

data from log files (Muehlenbrock, 2005) and the field is still in its infancy (Romero, Ventura, 

Pechenizkiy, & Baker, 2011; Spector & Ross, 2008). Despite the increasing availability of 

extensive fine-grained longitudinal information derived from educational technology (Koedinger 

et al., 2011), the interpretation of the rich stream of complex data that results from the tracking of 

in-game actions is one of the most serious bottlenecks facing researchers examining educational 

video games and simulations today (Mislevy, Almond, & Lukas, 2004). The task is so difficult 

that a government task force recently determined that the single biggest challenge to embedding 

assessment in educational games and simulations is determining methods of drawing inferences 

from log data (National Research Council, 2011). 

Purpose 

The purpose of this study was to develop techniques to extract salient information from 

log data from educational video games so that inferences about student performance can be 

made. Three separate data mining techniques were used: cluster analysis, sequence mining, and 

classification. The usefulness of these techniques was examined through the following research 

questions: 
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1. Can educational data mining techniques be used to extract information from log files 

from an educational video game that allows for the formation of testable hypotheses? 

a. Can cluster analysis be used to extract information leading to testable hypotheses? 

b. Can sequence mining be used to extract information leading to testable 

hypotheses? 

c. Can classification be used to extract information leading to testable hypotheses? 

Additionally, testable hypotheses from the results of each data mining technique were 

generated and examined in order to (a) demonstrate the usefulness of the extracted information 

and (b) create initial evidence that the interpretation of the extracted information was valid. 

These hypotheses focus on the relationship between the information extracted from game log 

data using each data mining technique and student performance on paper-and-pencil measures of 

the same content. 
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CHAPTER 2: LITERATURE REVIEW 

The Game as a Black Box 

In the majority of studies examining the impact of educational video games or 

simulations, the game itself is a black box. The effects of the games are generally measured by 

differences on posttest scores or survey responses, and no information about in-game student 

performance is measured or analyzed (Tobias, Fletcher, Dai, & Wind, 2011).  

Studies of the impact of educational video games or simulations on student perception 

look for differences between students who played and students who did not on surveys 

administered after game play. While students playing the Incredible Machine game were more 

bored and frustrated than students using the Aplusix math tutoring software (Rodrigo et al., 2008) 

and Hoffman, Pack, Zhou, and Turkay (2009) found no change in math motivation after game 

play, most studies found positive effects of game play on perception. 

These studies found that students thought an electronics simulation was more interesting 

than a workbook (Ronen & Eliahu, 1999), were more interested in the topic after playing a game 

about chemical/biological/radiological defense (Ricci, Salas, & Cannon-Bowers, 1996) or math 

(Ke, 2008) than after traditional instruction, and enjoyed playing SimCity more than reading 

about city planning (Betz, 1995). Additionally, students playing games or simulations gained 

more self-efficacy than students who received traditional instruction (Tompson & Dass, 2000) 

and reported higher levels of engagement (Coller & Shernoff, 2009). No in-game measures of 

interest, engagement, or self-efficacy were reported in any of these studies. 

While a number of other studies examined learning in games, those studies also largely 

used differences in posttest scores between students who played and students who did not to 

measure learning rather than using in-game measures. Though Wiebe and Martin (1994) found 



7 

that playing Carmen Sandiego, a geography game, did not increase scores more than standard 

instruction, Whitehill and McDonald (1993) found no difference for Navy students playing a 

game about circuits, and Hart and Battiste (1992) found no transfer for students playing the flight 

simulators Space Fortress or Apache Strike, most studies found positive effects for games and 

simulations. 

Positive posttest differences were found in a number of studies of applied knowledge. 

Students who played ReMission, a cancer education game, took more of their prescribed 

medication (Kato, Cole, Bradlyn, & Pollock, 2008), students who played a virtual putting game 

improved their golf performance more than students who did not (Ferry & Ponserre, 2001), and 

students who played a flight simulation improved pilot ratings more than students who did not 

(Gopher, Weil, & Bareket, 1994). Studies with preschool and kindergarten children found 

positive effects for games teaching classification skills (Sung, Chang, & Lee, 2008), rhyming 

and grapheme knowledge (Segers & Verhoeven, 2005), spelling and reading (Din & Caleo, 

2001), and math (Laffey, Espinosa, Moore, & Lodree, 2003). 

Students who played a Quest Atlantis unit on writing produced better writing than the 

control group (Warren, Dondlinger, & Barab, 2008), students playing a game about the food 

pyramid learned more about nutrition (Serrano & Anderson, 2004), and students playing a 

simulation of cell theory performed better on a biology test (Wekesa, Kiboss, & Ndirangu, 

2006). Similar effects were found for games on electronics (Parchman, Ellis, Christinaz, & 

Vogel, 2000), computer memory principles (Papastergiou, 2009), economics (Gremmen & 

Potters, 1997), math (Kebritchi, Hirumi, & Bai, 2010), physics (Ravenscroft & Matheson, 2002), 

and business (Blunt, 2008). 
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Other studies did not have control groups that did not play the game. These studies gave 

students a pretest before the game and a posttest after the game, and inferred learning if there 

was a significant change between pretest and posttest scores. Chen and O’Neil (2008) used this 

process to determine that students who played a game about diabetes improved their self-care 

skills, and Wilson, Revki, Cohen, Cohen, and Dehaenel (2006) used this process to determine 

that students who played The Number Race, a game designed to teach number sense to struggling 

students, improved their mathematical skills. 

Even studies of the effects of modifications to the game itself rarely used in-game 

measures of those effects, relying instead on posttest or survey measures collected after game 

play. For example, Baylor (2002) found that the presence of a constructivist agent in the game 

was related to higher self-reported planning activity, but did not examine whether it led to an 

increase in planning activity in the game. Similarly, other studies found that having an in-game 

agent give advice reduced self-reported anxiety (Van Eck, 2006), providing players with 

constantly updated information reduced self-reported mental workload (Hsu, Wen, & Wu, 2007), 

and personalizing the game led to greater self-reported engagement (Cordova & Lepper, 1996). 

Studies also found that personalizing the game led to more creative solutions on posttest 

measures (Moreno & Mayer, 2000), and that providing specific prompts rather than general 

prompts (Lee & Chen, 2009), reducing complexity (Lee, Plass, & Homer, 2006), and providing a 

paper-and-pencil pictorial instructional sheet (Mayer, Mautone, &Prothero, 2002) improved 

performance on posttest measures. However, none of these studies examined in-game 

performance measures in addition to or instead of the paper-and-pencil posttest measures. The 

lack of examination of in-game measures in these studies, even when the research questions 
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would seem to dictate it, is largely due to the fact that such measures are extraordinarily difficult 

to extract from game data.  

Basic Log Data Analyses 

Due to the difficulty involved in analyzing log data of students’ in-game performance 

(Frezzo et al., 2009; Mislevy et al., 2004), some researchers have resorted to hand-coding 

information from log files from video games. Trained human raters have been used to extract 

purposeful sets of actions from game logs (Avouris, Komis, Fiotakis, Margaritis, & Voyiatzaki, 

2005) and logs of eye-tracking data (Conati & Merten, 2007) and to identify student errors in log 

files from an introductory programming environment (Vee, Meyer, & Mannock, 2006). One 

study even had the teacher play the role of a game character to score student responses and 

provide live feedback to the students (Hickey, Ingram-Goble, & Jameson, 2009). Amershi and 

Conati (2011) examined behavior patterns in an exploratory learning environment and 

categorized students as high learners, thoughtful low learners, or unthoughtful low learners by 

hand. 

A number of other studies used basic aggregate information from the log data from online 

learning environments, without examining the specific actions taken by students. The aggregate 

information extracted from the log data were the number of activities completed by the student 

and the amount of time spent in the activity. The number of activities completed in the online 

learning environments Moodle(Romero, Gonzalez, et al., 2009) and ActiveMath (Scheuer, 

Muhlenbrock, & Melis, 2007) have been used to predict student grades. The time spent in each 

activity in an online learning environment has been used to detect unusual learning behavior 

(Ueno & Nagaoka, 2002). Combinations of the total time spent in the online environment and the 
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number of activities successfully completed have been used to predict student success 

(Muehlenbrock, 2005) and report student progress (Rahkila & Karjalainen, 1999). 

Studies examining log data from educational video games or simulations generally 

restricted themselves to basic summarizations or averages of pre-coded events such as deaths or 

resets. One such study counted the number of hints students requested and the number of failures 

they experienced to categorize students as hint-driven learners or failure-driven learners 

(Yudelson et al., 2006). A second study counted the number of deaths in each area of the game to 

determine which areas needed improvement (Kim et al., 2008). A third study counted the amount 

of money earned in a management simulation to determine effective or ineffective players 

(Ramnarayan, Strohschneider, & Schaub, 1997). A fourth study counted the number of errors, 

the average economy of motion, and the time it took students to finish a laparoscopic surgery 

simulation to determine performance (Gallagher, Lederman, McGlade, Satava, & Smith, 2004). 

Cluster Analysis 

Because the log files generated by educational video games or simulations are too large 

to analyze manually (Garcia et al., 2011), data mining techniques must be used to automatically 

identify and describe meaningful patterns despite the noise surrounding them (Bonchi et al., 

2001; Frawley, Piateski-Shapiro, & Matheus, 1992). This automatic extraction of implicit, 

interesting patterns from large data sets can lead to the discovery of new knowledge about how 

students solve problems in order to identify interesting or unexpected learning patterns (Romero, 

Ventura, et al., 2009) and can allow questions to be addressed that were not previously feasible 

to answer (Romero et al., 2011). 

Cluster analysis is one of the most commonly used educational data mining techniques 

(Castro, Vellido, Nebot, & Mugica, 2007). It is a density estimation technique for identifying 
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patterns within user actions reflecting differences in underlying attitudes, thought processes, or 

behaviors (Berkhin, 2006; Romero, Ventura, et al., 2009) through the analysis of either general 

or sequential correlations (Bonchi et al., 2001). Because cluster analysis is driven solely by the 

available data and is ideal in instances in which little prior information is available (Jain, Murty, 

& Flynn, 1999), it is particularly appropriate for the analysis of log data. Cluster analysis can be 

used to identify the latent dimensionality of a data set (Roussos, Stout, & Marden, 1998) and to 

compress the data set into a manageable number of variables that are nontrivial, implicit, 

previously unknown, and potentially useful (Frawley et al., 1992; Hand, Mannilla, & Smyth, 

2001; Vogt & Nagel, 1992). It has been used regularly in such fields as engineering, chemistry, 

physics, astronomy, law enforcement, and marketing to identify key features of large data sets 

(Frawley et al., 1992). 

Cluster analysis partitions entities into groups on the basis of a matrix of inter-object 

similarities (James & McCulloch, 1990) by minimizing within-group distances compared to 

between-group distances so that entities classified as being in the same group are more similar to 

each other than they are to actions in other groups (Huang, 1998). Using these similarities, 

cluster analysis algorithms can identify the latent grouping structure of the data (Roussos et al., 

1998; Vellido, Castro, & Nebot, 2011) and perform the necessary pattern reduction and 

simplification so the patterns present in large data sets can be detected (Vogt & Nagel, 1992). In 

educational settings, cluster analysis is most often used to identify sets of test items or types of 

learners (Castro et al., 2007; Vellido et al., 2011). In these studies, each cluster represents either 

a group of users with similar behavior patterns or a group of items with similar requirements 

(Mobasher, Dai, Luo, Sun, & Zhu, 2000). Once the clusters of items or students have been 
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identified, logistic regression is used to identify the variables that differ between groups 

(Rodrigo, Anglo, Sugay, & Baker, 2008). 

Because educational data mining has its roots in the analysis of web logs (records of web 

page visits), a number of cluster analysis studies focused on standard educational data presented 

in an online environment. For example, one study clustered readers of an online newsletter by 

the pages of the newsletter they clicked on in order to recommend relevant articles (Mobasher et 

al., 2000). Chen and Chen (2007) proposed clustering students in a virtual university based on 

their use of online resources in order to create a recommendation service for their digital library. 

Two other studies clustered students based on their page views in virtual universities to identify 

different types of library usage (Ferran, Casadesus, Krakowska, & Minguillon, 2007; Masip et 

al., 2011).  

Roussos et al. (1998) used a simulation study to demonstrate that cluster analysis could 

be used to detect multidimensionality of test items. Properties of test items in the Bridge to 

Algebra cognitive tutor were clustered to form groups with different proficiency requirements 

(Pavlik, Cen, Wu, & Koedinger, 2008), and keywords in an online FAQ system were clustered to 

form a concept hierarchy (Chiu, Pan, & Chang, 2008). Sison, Numao, and Shimura (2000) 

clustered answers in an online programming environment to form an error hierarchy, and Hunt 

and Madhyastha (2005) clustered responses to items on the WASL state standardized exam into 

different types of misconceptions. 

However, most cluster analysis studies grouped students rather than learning material. 

Students in a state university were clustered to identify different profiles of African American 

college students (Rowley, 2000). Students in the Ars Digita online learning environment were 

clustered into six different types of collaborators (Talavera & Gaudioso, 2004), students in an 



13 

intelligent tutoring system for algebra were clustered into collaborative or solitary work patterns 

(Rodrigo, Anglo, et al., 2008), and students in an online distance learning university were 

clustered into low, medium, or high collaborators (Anaya & Boticario, 2009). Students playing 

Prime Climb, a middle school factorization game, were clustered based on differences in their 

biometric data to find different types of affective expression (Amershi, Conati, & Maclaren, 

2006). Students playing Alien Rescue, a middle school science game, were clustered to identify 

different patterns of tool usage (Liu & Bera, 2005). Students playing Magical Surprise, an online 

math game, were clustered into different risk taking categories (Araya et al., 2011). 

Only two studies used fuzzy cluster analysis rather than hard cluster analysis. One used 

fuzzy cluster analysis to group students into either homogeneous or heterogeneous clusters for 

in-class group formation (Christodoulopoulos & Papanikolaou, 2007). The other grouped 

students into different personality types based on survey responses in an online university (Tian, 

Wang, Zheng, & Zheng, 2008). Only one study used feature cluster analysis to cluster actions 

instead of students: Hershkovitz and Nachmias (2011) clustered “learnograms” such as time on 

task to identify different aspects of motivation. No educational studies used fuzzy feature cluster 

analysis. 

This study uses fuzzy feature cluster analysis to identify the different strategies students 

use to complete levels in an educational video game. 

Sequence Mining 

Cluster analysis ignores certain salient aspects of the log data, such as timing and order 

(Perera, Kay, Koprinska, Yacef, & Zaïane, 2009). If timing or order is important to the analysis, 

then sequence mining must be used. Sequence mining is a technique for identifying patterns 

within user actions that frequently occur in the same order (Srikant & Agrawal, 1995). 
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Sequence mining can identify previously unknown misconceptions (Antunes, 2008) or 

patterns of behavior that can be used to support or improve decision making in education (Zhou, 

Xu, Nesbit, & Winne, 2011). However, it produces a prohibitively large number of sequences 

(Antunes, 2008) that are often redundant or difficult to understand (Garcia et al., 2011). 

Therefore, even though order is very important in educational data because it often indicates 

increasing difficulty (Cummins, Yacef, & Koprinska, 2006), time-based analyses of educational 

data are rare (Hadwin, Nesbit, Code, Jamieson-Noel, & Winne, 2007). 

The most common use of sequence mining in education is to identify common access 

patterns in online learning environments. Pahl and Donnellan (2003) used sequence mining to 

identify common patterns of web navigation. Antunes (2008) found sequences of courses taken 

in a computer science program. Cummins et al. (2006) and Ksristofic (2005) found common 

sequences of materials accessed to provide recommendation services in online learning 

resources. This process was expanded by Shen and Shen (2004) to recommend materials related 

to the targeted content if students knew the targeted content, but to recommend materials related 

to the prerequisite if students did not know the targeted content.  

Other studies identified sequences in online collaborative learning data and associated 

those sequences with group performance (Perera et al., 2009), identified sequences indicative of 

good teamwork (Kay, Koprinska, & Yacef, 2011; Kay, Maisonneuve, Yacef, & Zaïane, 2006), or 

detected action patterns reflective of different learning styles (Kelly & Tangney, 2005). 

Additional studies used the results of sequence mining to identify previously unknown student 

conceptualizations of physics (Madhyastha & Hunt, 2009) or determine when students deviated 

from desired behavior (McLaren, Koedinger, Schneider, Harrer, & Bollen, 2004). 
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Robinet, Bisson, Gordon, and Lemaire (2007) used sequences of student actions to assign 

students to predesignated mental models. Chika, Azzi, Hewitt, and Stocker (2009) used action 

sequences to model students’ lab skills. Buckley, Gobert, and Horwitz (2006) used sequence 

mining to identify four groups of students (correct-systematic, correct-haphazard, incorrect-

systematic, and incorrect-haphazard) that were indicative of student performance. 

Only two studies used both cluster analysis and sequence mining. One study clustered 

students in an online learning environment into groups and then ran sequence mining to identify 

common sequences that could be used to provide recommendations in the system (Romero, 

Ventura, Zafra, & de Bra, 2009). The other study clustered only the good students and ran 

sequence mining to find frequently occurring learner patterns for each group of good students 

(Su et al., 2006). 

This study uses sequence mining to identify changes in student strategies over time. 

Classification 

Classification is a supervised form of cluster analysis (Romero & Ventura, 2007) that 

predicts group membership (Ayala, Dominguez, & Medel, 2009) based on inherent 

characteristics of individual group members (Romero, Ventura, Espejo, & Hervas, 2008). 

Classification matches new members to predefined groups by testing the new members’ 

similarity to a training set consisting of previously categorized members of each group (Tanner 

& Toivonen, 2010). 

Classification is one of the most frequently studied machine learning techniques (Romero 

et al., 2008) and is considered to be one of the most useful data mining techniques for 

educational purposes (El Den, Moustafa, Harb, & Emara, 2013; Kotsiantis, Patriarcheas, & 

Xenos, 2010). However, classification algorithms are often supplanted by Bayesian networks or 
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decision trees in educational research (Ayala et al., 2009), even though classification algorithms 

do not require a model because they mine information about group membership directly from 

known group members and are well suited to the noisy or incomplete data often found in 

educational environments because they do not rely on any assumptions about prior probabilities 

(Tanner & Toivonen, 2010). 

Classification algorithms are most commonly used in educational research to predict 

student performance (El Den et al., 2013). For example, Kotsiantis, et al. (2010) used student 

assessment data from the prior year to predict current students’ grades, while Romero et al. 

(2008) used a subset of current students as a training set to classify the remaining students into 

performance categories (excellent, good, or poor). Minaei-Bidgoli, Kashy, Kortemeyer, and 

Punch (2003) not only classified students into performance categories (high, medium, or low) 

but also used classification to predict whether students would pass or fail the course, similar to 

how Tanner and Toivonen (2010) used classification to predict student dropouts and failures. 

Few studies used classification algorithms for purposes other than predicting 

performance. Shih and Lee (2001) used classification to group students in an online learning 

system so that they could be presented with appropriate materials based on their similarity to 

other students who had benefited from the material. Additionally, Baker, Corbett, and Koedinger 

(2004) used classification algorithms to group each action in an intelligent tutoring system as 

being either an example of gaming behavior or a valid action in the system so that the percentage 

of time each student spent gaming the system could be computed.  

This study uses the k nearest neighbor algorithm to classify graphs of students’ 

performance over time into different performance trajectory types, using a hand-coded subset of 

the students as a training set. 
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Validating In-Game Measures 

Because of the difficulty inherent in extracting meaningful measures of student 

performance from in-game actions, there are few studies examining the validity of the extracted 

in-game measures. However, now that a body of work has been published regarding the potential 

of games as assessments, Gee (2011) has called for robust empirical studies testing specific 

hypotheses about the validity of educational games and simulations as mediums of learning and 

assessment. While thus far in-game measures have tended to be motivational rather than 

indicative of student understanding (Tobias et al., 2011), the term “stealth assessment” has been 

coined to refer to the ability of games and simulations to assess students’ abilities by examining 

the actions they perform while attempting to solve problems in these environments (Shute, 

2011). 

Despite calls for more robust studies, the most common method of validating games is by 

consulting experts to determine whether the game has face validity. For example, Thompson and 

Irvine (2011) interviewed content experts about the face validity of CyberCIEGE, a game 

teaching introductory computer security, and found that experts believed they could determine 

students’ level of knowledge of computer security from the amount of time the students spent on 

each problem in the game and whether or not they successfully completed the problems. Sherif 

and Mekkawi (2010) ran a similar study about The Excavation Game, a game teaching project 

management aspects of building construction, and found that both students and experts believed 

the game addressed important aspects of the curriculum. 

Another way to validate games is to examine the correlation between in-game measures 

and other assessments or outcomes thought to measure the same construct. Though this process 

depends on the quality of the assessment the game is being compared to, the strength of the 
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correlation between measures is considered to be a measure of the construct validity of the game 

(Cook & Beckman, 2006). This method of validating games is particularly common in medical 

education. For example, Hislop et al. (2006) examined the correlations of rater-identified 

measures of skill in an endovascular simulator with formal levels of training and prior 

experience, and between the time it took students to complete the simulation and their levels of 

training and prior experience, and found significant correlations for both measures. Additionally, 

Johnsen, Raij, Stevens, Lind, and Lok (2007) found significant correlations between interview 

skills with a virtual human in a medical simulation and interview skills with a trained actor. 

Outside medical education, Delacruz, Chung, and Baker (2010) found that paper-and-pencil 

pretest scores were predictive of last level reached in a game addressing middle school 

mathematics concepts (an earlier version of the game used in this study) and that last level 

reached in the game was predictive of paper-and-pencil posttest scores. 

This study examines the relationship between the in-game measures of student 

performance extracted by all three data mining techniques and paper-and-pencil pretest and 

posttest scores. 
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CHAPTER 3: METHODS 

Designing Save Patch 

The educational video game used in this study is Save Patch, a game designed by the 

National Center for Research on Evaluation, Standards, and Student Testing (CRESST) at the 

University of California, Los Angeles, and the Game Innovation Lab at the University of 

Southern California. The development of Save Patch was driven by the findings of the National 

Mathematics Advisory Panel (2008) that fluency with fractions is critical to performance in 

algebra, which is, in turn, of central importance to performance and participation in science, 

technology, engineering, and math courses and careers (Malcom, Chubin, & Jesse, 2004). 

Additionally, the understanding of fractions is one of the most difficult mathematical concepts 

students learn before algebra (National Council of Teachers of Mathematics, 2000; Siebert & 

Gaskin, 2006) and misconceptions about the meaning of fractions are not only very common but 

are also associated with subsequent difficulty understanding and applying advanced 

mathematical concepts (Carpenter, Fennema, Franke, Levi, & Empson, 2000; McNeil & Alibali, 

2005). 

Once fractions concepts were identified as the subject area for the game, the most 

important concepts involved in fractions knowledge were analyzed and distilled into a set of 

knowledge specifications delineating precisely what students were expected to learn in the game 

(Vendlinski, Delacruz, Buschang, Chung, & Baker, 2010). The four main concepts to be 

addressed in the game included: the meaning of the unit, the meaning of addition as applied to 

fractions, the meaning of the denominator, and the meaning of the numerator. Each of these 

concepts was broken down into further specifications of what understanding of that concept 

would entail, as seen in Table 1. 
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Table 1 

Knowledge Specifications for Save Patch 

1.0 Does the student understand the meaning and importance of the whole unit? 

1.1 The size of a rational number is relative to how the whole unit is defined. 

1.2 In mathematics, a whole unit is understood to be of some quantity. 

1.3 The whole unit can be represented as an interval on the number line. 

2.0 Does the student understand the meaning of addition as applied to fractions? 

2.1 To add quantities, the units or parts of units must be identical. 

2.2 Identical units can be added to create a single numerical sum. 

2.3 Dissimilar quantities cannot be represented as a single sum. 

3.0 Does the student understand the meaning of the denominator in a fraction? 

3.1 The denominator of a fraction represents the number of identical parts in a whole unit. 

3.2 As the denominator gets larger, the size of each fractional part gets smaller. 

3.3 As the fractional part size gets smaller, the number of pieces in the whole gets larger. 

4.0 Does the student understand the meaning of the numerator in a fraction? 

4.1 The numerator of a fraction represents the number of identical parts that are combined. 

4.2 If the numerator is smaller than the denominator, the fraction represents less than a whole. 

4.3 If the numerator equals the denominator, the fraction represents a whole unit.  

4.4 If the numerator is larger than the denominator, the fraction represents more than a whole.  

 

These knowledge specifications were the driving force behind game design decisions. For 

instance, the game area was represented as a line in 1-dimensional levels and a grid in 2-

dimensional levels to reinforce the idea that a unit can be represented as one whole interval on a 

number line (Knowledge Specification 1.3). Units were represented as blue ropes on a dirt path 

with small red posts indicating the fractional pieces the unit was broken into (see Figure 1). 

Students were given ropes in the resource bin on the left side of the game screen labeled “Path 

Options” and had to break the ropes they were given into the fractional pieces indicated in the 

level and place the correct number of unit fractions (fractions with a numerator of one) on each 

sign to guide their character safely to the cage to unlock the prize.  
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Figure 1.Screen shot from Save Patch. 

The level pictured in Figure 1 represents two whole units (indicated by gray posts at 

intersections) broken into thirds (indicated by red posts in the spaces between gray posts). The 

distance between the first sign and the second sign is 1/1 (or 3/3), the distance between the 

second sign and the third sign is 1/3, and the distance between the third sign and the cage is 1/3. 

In order to correctly complete this level, a student would select the top rope in the “Path 

Options” and place it on the sign on the far left of the grid. (Alternatively, the student could 

break the first rope in the “Path Options” into thirds and place all three thirds on the sign.) The 

student would then break the second rope in the “Path Options” into thirds by clicking the down 

arrow to the left of the rope and place one of those thirds on the second sign and one of those 

thirds on the third sign. If the student made a mistake, he or she could either click on the “Help” 

button on the lower left to read through the help menu or click on the “Reset” button to remove 

all ropes from the signs and start the level over. The player could also click on the “Menu” 

button if he or she wanted to return to the main menu to change the game character to a different 
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image. When the student felt that he or she had the correct ropes on each sign, he or she would 

click on the “GO” button. The game character would then move the distance represented by the 

ropes on the first sign. If that placed the game character on the second sign, it would then move 

the distance represented on that sign, and so on. Upon successfully reaching the cage, the cage 

would open, the game character would celebrate, and the student would move on to the next 

level. 

This design allowed students to demonstrate knowledge of the meaning of the 

denominator of a fraction (Knowledge Specification 3.0) and the meaning of the numerator of a 

fraction (Knowledge Specification 4.0). Students could demonstrate understanding of addition as 

applied to fractions (Knowledge Specification 2.0) by adding rope pieces with the same 

denominator to a sign already loaded with rope pieces. Additionally, a number of levels in the 

game were designed to represent more than one unit, allowing students to demonstrate 

knowledge of the meaning and importance of the whole unit (Knowledge Specification 1.0). 

Game play was constrained so that it was not possible to add two numbers with different 

denominators (Knowledge Specifications 2.1 and 2.3), rather than allowing the students to make 

the addition and having the game calculate the resulting distance. This means that the game did 

not allow students to add 1/2 to 1/3, instead forcing them to change the 1/2 rope to 3/6 and the 

1/3 rope to 2/6 before allowing them to be added together. For the same reason, the game did not 

allow the creation of mixed numbers (e.g., 1½), forcing players to convert the whole number 

portion of the mixed number into the appropriate fractional representation (e.g., 2/2) before 

adding the fractional portion to the whole number portion. 

Successful game play was intended to require students to determine the unit size for a 

given grid as well as the size of the fractional pieces making up each unit. The distance the 
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character moved was a function of the number and size of rope pieces placed on each sign, where 

one whole rope represented a whole unit on the grid and each whole rope could be easily broken 

into fractional pieces of the desired size by clicking on the arrows next to the rope in the resource 

bin on the left side of the game screen. Therefore, a successful solution to a given level should 

indicate a solid understanding of the knowledge specifications underlying the game presentation. 

In order to provide a logical progression through the knowledge specifications so that 

students would be exposed to problems that built on each other as they progressed through the 

game (Rupp et al., 2010), Save Patch was broken into seven stages (see Appendix A). The first 

stage was designed to introduce students to the game mechanics in a mathematical setting they 

were comfortable with, and therefore included only whole numbers. The second stage introduced 

fractions via unit fractions, requiring students to identify the denominator while restricting the 

numerator to one. The third stage combined concepts from the first two stages, with at least one 

distance in each level representing a unit fraction and at least one other distance representing a 

distance equivalent to a whole unit. The fourth stage was similar to the third stage, except that 

the distance representing a whole unit did not start and end on unit markers. Instead, the whole 

unit distance spanned a unit marker (e.g., extending from 1/3 to 4/3). The fifth stage dealt with 

proper fractions (e.g., the numerator was greater than one but smaller than the denominator), 

which required students to identify the numerator as well as the denominator of a fraction. The 

sixth stage completed the identification of fractions concepts by asking students to identify 

improper fractions (e.g., the numerator was larger than the denominator). 

Logging Student In-Game Actions 

In order to record student actions that might be indicative of their understanding of the 

knowledge specifications, the data generated by students while playing the game were stored in 
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the form of a structured log written to a tab-delimited text file (Chung & Kerr, 2012). While 

educational video games are often designed to log every mouse click, we chose to ignore mouse 

clicks or drags that did not result in an action in the game (e.g., mouse clicks on the game 

background) and to capture only mouse clicks that represented game state changes or deliberate 

student actions such as clicking on a rope, dragging a rope to a sign on the grid, or clicking on 

the “Reset” button.  

The intent was to capture student actions believed to indicate underlying understanding of 

the knowledge specifications at the smallest usable grain size to eliminate noise representing 

construct-irrelevant variance. However, such actions might not be fully interpretable without 

relevant game context information indicating the precise circumstances under which the action 

was taken (Koedinger et al., 2011). For this reason, each click that represented a deliberate action 

was logged in a row in the log file that included valuable context information such as the game 

level in which the action occurred and the time at which it occurred, as well as specific 

information about the action itself.  

Additional structure was added by assigning codes to each of the different types of 

actions that could occur in the game, such as selecting a rope (code 3000) or adding a rope to a 

sign (code 3010). Codes 1000-1999 were used for general game information, such as game 

version or study condition; 2000-2999 were used for basic manipulation of objects, such as 

toggling a fraction to a new denominator; 3000-3999 were used for in-game mathematical 

decisions, such as adding a fraction to a sign; 4000-4999 were used for success or failure states 

such as player deaths or event-driven feedback; 5000-5999 were used for in-game navigation 

such as returning to the main menu or advancing to the next level; and 6000-6999 were used for 

the help menu system.  
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Using data codes allowed for the easy grouping of similar actions. Grouping specific 

actions such as the addition of a 1/2 rope to the first sign on the grid or the addition of a 1/8 rope 

on the third sign on the grid into a more general group (e.g., “adding fractions”) made both 

evidence identification and evidence accumulation easier. For instance, the number of times a 

player reset a level could be determined by simply adding up all code 4010’s appearing in the log 

data for that level, without having to determine post hoc which actions fell into this category. 

Additionally, if an entire category of actions (e.g., “scrolling ropes to a different denominator”) 

proved to add little or nothing to the analysis, the whole category of actions could be easily 

ignored in later analyses.  

The uniqueness of events was preserved by including columns in the log data capturing 

the specific detail of each event, along with a description of how to interpret the data. Thus, each 

action was captured at both a general and specific level, as can be seen by the logging in Table 2 

of a set of student actions resulting in the addition of 2/3 to the leftmost sign on the grid. In this 

series of actions, the student breaks a 1/1 rope into three 1/3 pieces of rope (in the first row of 

Table 2) and selects one of those 1/3 ropes (in the second row). The student places that third on 

the leftmost sign on the grid (located at position 1/0), resulting in a value of 1/3 on that sign (in 

the third row). Then the student selects another 1/3 rope (in the fourth row) and places it on the 

same sign, resulting in a value of 2/3 on that sign (in the fifth row). The student hits the “Submit” 

button (in the sixth row) and the game character moves right 2/3 from the leftmost sign (in the 

seventh row). The student receives feedback congratulating him or her on passing the level (in 

the eighth row) and then advances to the next level (in the ninth and last row of Table 2). 
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Table 2 

Hypothetical Log Data of a Student Adding 2/3 to the Leftmost Sign on the Grid 

ID Game time Data code Description Data_01 Data_02 Data_03 

1115 3044.927 2050 Scrolled rope from [initial 

value] to [resulting value] 

1/1 3/3  

1115 3051.117 3000 selected coil of [coil value] 1/3   

1115 3054.667 3010 added fraction at 

[position]: added [value] to 

yield [resulting value] 

1/0 1/3 1/3 

1115 3058.443 3000 selected coil of [coil value] 1/3   

1115 3064.924 3010 added fraction at 

[position]: added [value] to 

yield [resulting value] 

1/0 1/3 2/3 

1115 3088.886 3020 Submitted answer: clicked 

Go on [stage] – [level] 

2 3  

1115 3097.562 3021 Moved: [direction] from 

[position] length [value] 

Right 1/0 2/3 

1115 3106.224 4020 Received feedback: [type] 

consisting of [text] 

Success Congratu-

lations! 

 

1115 3108.491 5000 Advanced to next level: 

[stage] – [level] 

2 4  

 

In order for the log data to be used in cluster analysis or other data mining techniques, the 

log data in Table 2 first had to be transformed into a structure more amenable to those 

techniques. The first step in this process was to calculate a mnemonic that summarized all 

relevant information in each row. The mnemonic consisted of two parts. The first part was a 

word indicating the type of action being taken (e.g., ADD, SELECT, SCROLL, etc.) and the 

second part was one or more values with short indicators of the context of each additional value 

beyond the first (e.g., GET_1o3). All blank spaces were removed and all symbols in the values 

were replaced with letters to allow the mnemonic to function as a variable name in a variety of 

statistical software. For example, the symbol “/” was replaced with “o” (for “over”) and “-“ was 

replaced with “n” (for “negative”). See Table 3 for the mnemonics for the data in Table 2. 
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Table 3 

Mnemonics for the Data in Table 2 

ID Game time Data code Mnemonic 

1115 3044.927 2050 SCROLL_1o1_TO_3o3 

1115 3051.117 3000 SELECT_1o3 

1115 3054.667 3010 ADD_1o3_AT_1o0_GET_1o3 

1115 3058.443 3000 SELECT_1o3 

1115 3064.924 3010 ADD_1o3_AT_1o0_GET_2o3 

1115 3088.886 3020 GO_WITH_2o3_AT_1o0 

1115 3097.562 3021 MOVED_Right_2o3_FROM_1o0 

1115 3106.224 4020 FB_Success_WITH_2o3_ON_1o0 

1115 3108.491 5000 ADVANCED_TO_S2_L4 

 

After the mnemonic was calculated, the data were transformed from long to wide format. 

In wide format, each unique mnemonic was a column and each attempt by a student to complete 

the level was a row with a value of “1” or “0” for each column indicating whether or not the 

action performed in that attempt corresponded with that particular mnemonic. The log data for 

each level were separated to create a series of data sets consisting of all actions made in each 

level in the game. This separation of the data was necessary because the same action might have 

different meanings in different levels. For example, ADD_1o2_AT_1o0_GET_1o2 (indicating 

the addition of 1/2 to the leftmost sign on the grid) would be a correct action in a level that was 

broken into halves, but an incorrect action in a level that was broken into thirds.  

Within each level, the data were aggregated for each attempt (defined as the time 

between starting a level and either resetting the level or advancing to the next level), resulting in 

a matrix wherein one dimension consisted of all attempts to complete the level and the other 

dimension consisted of all actions made in those attempts. A hypothetical example of the 

resulting data can be seen in Table 4. The names of the mnemonics have been replaced by 
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“M1,”“M2,” etc. While this dataset had values for hundreds of mnemonics, only eight 

representative mnemonics are shown in Table 4 to illustrate the differences between attempts. 

The data in Table 2 and Table 3 correspond to student 1115’s third attempt to complete this level 

of the game. 

Table 4 

Hypothetical Example of Data Used in Cluster Analysis 

ID Attempt M1 M2 M3 M4 M5 M6 M7 M8 

1115 1 1 0 1 1 1 0 0 1 

1115 2 0 0 0 0 0 1 1 0 

1115 3 1 1 0 0 0 0 0 0 

1116 1 1 1 0 0 0 0 0 0 

1117 1 1 0 1 0 0 0 0 1 

1117 2 1 1 0 0 0 0 0 0 

Mnemonics: M1 = ADD_1o3_AT_1o0_GET_1o3, M2 = ADD_1o3_AT_1o0_GET_2o3, 

M3 = CHNG_1o0_Right_TO_Down,M4 = ADD_WRONG_1o4_TO_1o3_AT_1o0, 

M5 = CLICKED_HELP_WITH_1o3_ON_1o0,   M6 = ADD_1o4_AT_1o0_GET_1o4, 

M7 = ADD_1o4_AT_1o0_GET_2o4,    M8 = RESET_WITH_1o3_ON_1o0 

Cluster Analysis: Identifying Student Strategies 

Groups of in-game student actions were identified using the fuzzy feature cluster analysis 

algorithm fanny (Maechler, 2012) in R (R Development Core Team, 2010). Cluster analysis 

operates over a distance matrix to group one dimension of the matrix based on similarities and 

differences in the other dimension of the matrix. Cluster analysis in educational contexts usually 

groups students based on similarities and differences in their answers to test questions or, in the 

case of educational video games or simulations, clusters student attempts based on similarities 

and differences in the actions taken in each attempt. In the hypothetical game level in Table 4, 

student 1115 attempt 3, student 1116 attempt 1, and student 1117 attempt 2 would be grouped 

together because the actions performed in those attempts were the same, while student 1115 

attempt 2 and student 1116 attempt 3 would be in two different groups because the actions 
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performed in those attempts were different. The distance calculation used when clustering 

answers to test questions is usually the Euclidean or Squared Euclidean distance because the data 

are either continuous or ordinal. However, in the analysis of Save Patch the data were binary, 

indicating whether or not a given student performed a given action in a given attempt, so the 

Manhattan distance was used instead (Cha, 2007). 

Had the analysis of Save Patch used a standard cluster analysis approach, the result 

would have been groups of student attempts. While this would have resulted in the identification 

of distinct groups of students that differed in game play, it would not have been known what the 

distinguishing features of play were. For that reason, feature cluster analysis was run instead. 

Feature clustering differs from standard clustering techniques in that it groups descriptive 

features of entities (e.g., specific actions made by students) rather than grouping the entities 

themselves (e.g., students). Feature clustering does not require different algorithms from 

standard clustering, and can be run by simply transposing the matrix being operated on (Krier, 

Francois, Rossi, & Verleysen, 2007). In the data in Table 4, M1 and M2 would have been a 

group because the students who performed M1 (indicated by a 1 in that column) generally also 

performed M2 and the students who performed M2 generally also performed M1. A second 

group would have been made up of M3, M4, and M5, and a third group would have been made 

up of M6 and M7. Depending on what other students did, M3 and M5 might have been in a 

group of their own or they might have been in the group with M1 and M2. However, M5 and M6 

would never have been in the same group because students who performed M5 (clicking the 

“Help” button with 1/3 on the leftmost sign) never performed M6 (adding 1/4 to the leftmost sign 

to get 1/4), and students who performed M6 never performed M5 because a student could never 

have two different denominators (thirds and fourths) on the same sign. 
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Having the output be a list of actions rather than a list of students meant that the groups 

could be identified by naming each group with the strategy the actions were representative of. 

For example, in Table 4 the group of actions including M1 and M2 could easily be identified as 

the standard solution to the level because adding 1/3 to the leftmost sign to get 1/3 (M1) and 

then adding a second 1/3 to the leftmost sign to get 2/3 (M2) is the standard way to complete the 

level. 

The analysis of Save Patch also differed from most cluster analyses used in educational 

data mining in that it used fuzzy cluster analysis (Ruspini, 1969) rather than hard cluster 

analysis. Hard clustering forces each action to belong to a single cluster, whether or not all 

actions are easily classified in this manner. While hard clustering has been used successfully 

with test items to detect multidimensionality (Roussos et al., 1998), to develop a hierarchy of 

concepts (Chiu et al., 2008), and to find conceptual similarities among items (Madhyastha & 

Hunt, 2009), log files from educational video games are far more likely to require the use of 

fuzzy clustering algorithms due to the highly intercorrelated nature of the data they generate. For 

example, in the level in Table 4, hard clustering would force M1 to belong to either the group 

with M2 or the group with M3 and M8 (even though M1 sometimes occurs with M2 and other 

times occurs with M3 and M8). Fuzzy cluster analysis would allow it to belong to both groups, 

using probability theory to identify the degree of belongingness in each cluster. This allows for 

superior clustering results for data with problematic data points lying between otherwise easily 

identifiable clusters, such as the action M1 that could belong to two separate clusters (Ruspini, 

1969). This is likely to be an issue with data from educational video games because different 

strategies for solving problems often include the same initial steps. While fuzzy clustering and 

hard clustering will return similar results if the data are not very fuzzy, the fuzzier the data are, 
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the more imprecise the hard clustering results will be (Tian et al., 2008). Because the data from 

Save Patch ranged from moderately fuzzy to very fuzzy across different levels in the game 

(indicated by the Dunn coefficient in the fuzzy clustering output), fuzzy clustering was the most 

appropriate choice for clustering in-game actions into the various strategies students used to 

complete levels in Save Patch. 

Clustering algorithms provide no single definitive method of determining the number of 

clusters present in the data. Rather, solutions with different numbers of clusters must be 

compared using both statistical and substantive criteria. In order to determine the correct number 

of clusters in each level in the fuzzy cluster analysis, each level was run with two clusters, then 

three clusters, then four, etc. until one of two things occurred: incorrect actions began to appear 

in the standard solution cluster, or the additional cluster provided no additional interpretive value 

(e.g., the additional cluster resulted in the split of an easily identifiable strategy into two parts). 

Once either of those outcomes occurred, cluster analysis for that level ceased and the largest 

number of previously successful clusters was retained. For example, if incorrect actions began to 

appear in the standard solution cluster when a level was run with eight clusters, it was 

determined that seven was the optimal number of clusters for that level. 

This process led to the identification of six different types of valid solution strategies and 

nine different types of errors in an earlier version of Save Patch (Kerr & Chung, 2012). The 

standard solution was the anticipated solution for each level. In the level in Figure 1, as 

explained earlier, the standard solution consisted of placing 1/1 on the first sign, 1/3 on the 

second sign, and 1/3 on the third sign. 

A fractional solution differed from the standard solution only in that whole units were 

represented as their fractional equivalents. As shown in Figure 2, this strategy would result in a 
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student placing3/3 rather than 1/1 on the first sign, but having an otherwise identical response as 

a student using the standard solution. An alternate solution was a valid solution using a 

denominator other than the one represented in the level. As shown in Figure 2, this would result 

in a student placing 1/1 (or 6/6) on the first sign, 2/6 on the second sign, and 2/6 on the third 

sign. A shortcut solution was a valid solution that skipped one or more signs. As shown in Figure 

2, this would result in a student placing 1/1 on the first sign, 2/3 on the second sign, and leaving 

the third sign empty. An incomplete solution occurred when a student placed ropes correctly on 

one or more signs, but left one or more signs empty. As shown in Figure 2, this might result in a 

student placing 1/1 on the first sign, and 1/3 on the second sign, but leaving the third sign blank. 

A reset solution occurred when a student placed ropes correctly on all signs, but then hit reset 

rather than submitting their answer (this strategy is not shown as a separate row of values in 

Figure 2 because it has the same values placed on each sign as the standard solution). 

 

Figure 2. Solution strategies identified by cluster analysis. 

Most of the nine strategies that resulted in errors were mathematical misconceptions 

involving the three main skills required for adding fractions: unitizing, partitioning, and iterating. 

Unitizing consists of correctly identifying the number of units represented, partitioning consists 

of correctly identifying the number of pieces each unit is broken into (e.g., the denominator of 
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the represented fraction), and iterating consists of identifying the number of unit fractions in the 

representation (e.g., the numerator of the represented fraction) (Olive & Lobato, 2008). 

Students who made unitizing errors were unable to determine the number of units being 

represented. These students either saw the entire representation as a single unit, regardless of the 

number of units represented, or saw each fractional piece as a whole unit. As shown in Figure 3, 

this would result in a student placing 3/6 on the first sign (rather than 3/3), 1/6 on the second sign 

(rather than 1/3), and 1/6 on the third sign (rather than 1/3) if he or she saw the entire 

representation as a single unit. If a student saw each fractional piece as a whole unit, it would 

result in that student placing 3/1 on the first sign (rather than 3/3), 1/1 on the second sign (rather 

than 1/3), and 1/1 on the third sign (rather than 1/3). 

Students who made partitioning errors were unable to determine the number of pieces 

the unit was broken into. These students either counted dividing marks to determine the number 

of pieces the unit was broken into (e.g., seeing halves instead of thirds) or counted dividing 

marks and unit marks (e.g., seeing fourths instead of thirds). As shown in Figure 3, this would 

result in a student placing 3/2 on the first sign (rather than 3/3), 1/2 on the second sign (rather 

than 1/3), and 1/2 on the third sign (rather than 1/3) if he or she counted dividing marks to 

determine the denominator. If a student counted both dividing marks and unit marks to determine 

the denominator, this would result in that student placing 3/4 on the first sign (rather than 3/3), 

1/4 on the second sign (rather than 1/3), and 1/4 on the third sign (rather than 1/3). Some students 

combined both errors, unitizing and partitioning, seeing the entire representation as one unit and 

counting dividing marks to determine the number of pieces the unit was broken into. As shown 

in Figure 3, this would result in a student placing 3/8 on the first sign (rather than 3/3), 1/8 on the 

second sign (rather than 1/3), and 1/8 on the third sign (rather than 1/3). 
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Figure 3.Mathematical errors identified by cluster analysis. 

Students who made iterating errors were unable to determine the numerator of the 

represented fractions. These students were able to correctly identify the number of units being 

represented and the number of pieces each unit was broken into, but were unable to determine 

the number of pieces to put on each sign. As shown in Figure 3, this would result in a student 

placing 1/1 on the first sign (correctly), but placing 2/3 on the second sign (rather than 1/3) and 

2/3 on the third sign (rather than 1/3). Additionally, some students saw improper fractions as 

mixed numbers and attempted to add a fractional rope to a whole unit rope already placed on a 

sign. As shown in Figure 3, this would result in a student adding 1/1 to the first sign (correctly) 

and 1/3 on the third sign (correctly), but then trying to add 1/3 to the 1/1 already placed on the 

first sign (which is not a valid move in the game), leaving the second sign empty because they 

saw the distance between the first sign and the third sign as being 1
1

3
. 

Additionally, the cluster analysis identified two game-related errors where students used 

the correct mathematical strategies but moved in the wrong direction or skipped signs that were 

mandatory (indicated in the color of the sign, e.g., the second sign in Figure 3). Other students 
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avoided math entirely by placing all the available resources on the signs in the order that they 

were given in the resource bin (the everything in order strategy). All attempts that did not fall 

into one of the preceding strategies were identified as unknown error. 

The game was designed to teach students about adding fractions, so we had anticipated 

that students might make unitizing errors and iterating errors and might see fractions as mixed 

numbers, but we did not anticipate students would have trouble determining the denominator that 

was being represented and were therefore surprised to see the partitioning error. Because there 

was not sufficient knowledge apriori about the effect of the game representation on student 

behavior, we knew that there would be strategies related to game play rather than mathematics 

but did not know what those strategies would be. We were also surprised to discover that 

students made incomplete solutions or reset solutions without submitting the answer to see what 

the game character would do. Had the cluster analysis not been run, these strategies would not 

have been identified and less than half of students’ in-game behavior could have been 

interpreted.  

Because the strategies were identified using the same game and students of the same age 

as the students in the current study, it was deemed unnecessary to run the cluster analysis again. 

Since the strategies for each level of the game were already identified, the attempts in this study 

were simply coded with whichever previously identified strategy was being employed. Any 

attempt not identified as belonging to a known strategy was coded as unknown error. This 

process resulted in a dataset indicating which strategy was used in each attempt each student 

made to solve each level, resulting in a data set such as the one shown in Table 5. 
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Table 5 

Hypothetical Strategy Assignment for Attempts 

ID Attempt Strategy 

1115 1 Unknown Error 

1115 2 Partitioning Error 

1115 3 Standard Solution 

1116 1 Standard Solution 

1117 1 Wrong Direction 

1117 2 Standard Solution 

 

Sequence Mining: Identifying Strategy Sequences Within Levels 

Frequent patterns of strategy use were identified using the sequence mining algorithm 

cspade (Buchta & Hahsler, 2013) in R (R Development Core Team, 2010). Sequence mining 

looks for frequent patterns of behavior across time. Due to its roots in market research, the data 

for sequence mining are organized in baskets, with each basket corresponding to the set of items 

purchased by an individual within a given unit of time. In our analysis each basket consisted of a 

single strategy, and the unit of time used was the attempt number corresponding to that strategy.  

Additionally, sequence mining algorithms require the creation of an alphabet that 

shortens the name of each potential basket item into an abbreviated form. The alphabet for this 

analysis (see Table 6) consisted of the first letter of each strategy, except for cases where more 

than one strategy shared the same first letter (the alternate solution, skipped key, unitizing and 

partitioning, iterating error, and unknown error strategies) and cases where the first letter of the 

second word was deemed more informative (the wrong direction strategy). This process resulted 

in a dataset similar to Table 5, but with the strategy names replaced with their corresponding 

alphabet letters and with the addition of a column between the attempt number and the strategy 
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indicating the number of items in each basket (in this case, that number was always one because 

only one strategy was used in any given attempt). 

Table 6 

Sequence Mining Alphabet 

Strategy Alphabet 

Standard Solution S 

Alternate Solution T 

Incomplete Solution I 

Fractional Solution F 

Reset Solution R 

Skipped Key K 

Wrong Direction D 

Unitizing Error U 

Partitioning Error P 

Unitizing and Partitioning B 

Iterating Error N 

Converting to Wholes Error C 

Avoided Math A 

Unknown Error O 

 

The cpade algorithm has six parameters that can be changed to limit the results: support, 

maxsize, maxlen, mingap, maxgap, and maxwin. The support is a required parameter indicating 

the minimum percentage of the data that must fall in a given sequence for it to be considered 

frequent. The default value for support is .10 (10%), but the support was lowered to .02 (2%) 

due to the exploratory nature of the study and because the sample size was deemed sufficiently 

large for 2% of the sample to be an interesting subset of students.  

The maxsize and maxlen are optional parameters indicating the maximum number of 

items a sequence can hold. The maxsize parameter is used when there is more than one item in a 

basket to limit the number of items representing each basket in the sequence of baskets. This 
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parameter was not set because there was only one item in each basket. The maxlen parameter 

limits the number of baskets in a given sequence. This parameter was not set because there was 

no theory regarding the maximum number of strategies that might fall in a strategy sequence.  

The mingap, maxgap, and maxwin are optional parameters indicating the range of time 

between consecutive items in a given sequence. The mingap limits the minimum time difference 

between consecutive baskets in a sequence and the maxgap limits the maximum time difference 

between consecutive baskets in a sequence. The maxwin parameter limits the maximum time 

difference between both consecutive and nonconsecutive baskets in a sequence. To increase 

interpretability, mingap and maxgap were both set to 1.0 so that consecutive strategies in a 

strategy sequence would indicate strategies used in consecutive attempts rather than strategies 

used in some later attempt.  

This means that for students making a partitioning error in their first attempt, a unitizing 

error in their second attempt, and getting the standard solution in their third attempt, two 

sequences were identified: partitioning error to unitizing error, and unitizing error to standard 

solution. However, the sequence partitioning error to standard solution was not identified as a 

sequence because those strategies were not consecutive. 

The resulting dataset consisted of all frequent sequences of strategies used to complete 

levels in Save Patch. Each row in the dataset corresponded to a single student’s behavior in a 

single level, rather than each attempt made at that level, as shown in Table 7. Columns 

corresponded to each unique one-step sequence that student used to complete the level. For 

example, a student who made a partitioning error, followed by a partitioning error, followed by 

another partitioning error, followed by the standard solution, was coded as having completed 

the sequence PtoP because they moved from a partitioning error directly to another partitioning 
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error at least once in the level, and the sequence PtoS because they moved from a partitioning 

error to the standard solution at least once in the level. A given sequence was coded only once 

for each student, regardless of the number of times that sequence was completed by that student.
1
 

Table 7 

Hypothetical Strategy Sequences for Each Level in Stage 4 

ID Level Sequence1 Sequence2 Sequence3 

1115 13 UtoP PtoP PtoS 

1115 14 UtoU UtoS  

1115 15 S   

1116 13 DtoS   

1116 14 S   

1116 15 RtoS   

 

Students who completed a given level on their first attempt did not fall into an identified 

sequence for that level (since sequences consist of more than one attempt). These students were 

coded as S if they completed the level on their first attempt with the standard solution and F if 

they completed the level on their first attempt with a fractional solution. Students who did not 

complete the level on their first attempt and did not perform any of the identified sequences were 

coded as O because they used a strategy sequence other than those identified by the sequence 

mining process. 

Had strategy sequences within a stage been identified using sequence mining (like the 

identification of strategy sequences within a level), a large percentage of students would not have 

been identified by the analysis. This is because the sequence mining algorithm looks only for 

exactly matching sequences. The hypothetical student 1115 in Table 7 moves from the strategy 

                                                 
1
 Sequence mining algorithms identify a sequence only once per student, regardless of the number of times a given 

student completes that sequence. Therefore, a given sequence was coded only once for each student in the resulting 

dataset, regardless of the number of times that sequence was completed, to maintain consistency with the sequence 

mining output.  
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sequence UtoP-PtoP-PtoS in the first level of the stage (Level 13) to the strategy sequence 

UtoU-UtoS in the second level of the stage (Level 14) and to the strategy sequence S in the last 

level of the stage (Level 15).A sequence mining algorithm would only group this student with 

other students who used exactly the same number of attempts for each level as student 1115 and 

the exact same strategy sequences in each attempt as student 1115. This would result in the 

identification of a large number of sparsely populated sequences, particularly in stages with four 

or five levels where students required more than two or three attempts to complete each level. 

This is not just a practical problem, but a substantive issue as well. What is substantively 

meaningful about student 1115’s sequences is that the student began the stage making 

partitioning errors, made no partitioning errors in subsequent levels, and ended the stage 

completing the level on the first attempt. This sequencing demonstrates that student 1115 did not 

know how to partition correctly at the beginning of the stage, but had stopped partitioning 

incorrectly by the end of the stage. This student should be coded as having stopped making 

partitioning errors in Stage 4, along with all other students who demonstrated this general 

pattern. In contrast, student 1116 either completed each level on the first attempt or made a 

single non-math-related error (e.g., wrong direction or reset solution) before completing the level 

correctly. This student should be coded as having completed levels in Stage 4 correctly, along 

with all other students who demonstrated this general pattern. 
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Table 8 

Targeted Errors for Each Stage 

Stage Intended goal Targeted error 

1 Learn how to play the game A (Avoided Math) K (Key Error) 

2 Learn how to identify the denominator of a fraction P (Partitioning Error) 

3 Learn how to identify the denominator of a fraction P (Partitioning Error) 

4 Learn how to identify the denominator of a fraction P (Partitioning Error) 

5 Learn how to identify the numerator of a fraction N (Numerator Error) 

6 Learn how to identify an improper fraction N (Numerator Error) C (Converting Error) 

 

In order to group students who displayed substantively similar behavior, the various 

strategy sequences for each level were recoded based on their movement between targeted errors, 

other errors, and the correct solution. Targeted errors for each stage are shown in Table 8. In 

Stages 2, 3, and 4, the targeted error was the partitioning error. Therefore, in the levels in these 

stages, students were coded as either Correct, Partitioning Error to Correct, Partitioning Error 

to Partitioning Error, Partitioning Error to Other Error, Other Error to Correct, Other Error to 

Partitioning Error, or Other Error to Other Error. 

The information used to determine these strategy sequence types came from graphs of the 

strategy sequences for each level, as shown in Figure 4. These graphs show the percentage of 

students in each strategy sequence in the blue values next to the lines between strategies. The 

percentage of students repeating the same error is shown in the orange values inside the dotted 

loops. The percentage of students using a strategy in the course of the level is shown in the gray 

values next to each strategy. The targeted error is shown in purple. Graphs for all levels can be 

found in Appendix B. 
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Figure 4.Example of graphed strategy sequences for Level 9. 

Students were coded as being in the Correct strategy sequence type if they got the level 

correct on their first attempt. Students were coded as being in the Partitioning Error to Correct 

strategy sequence type if they made partitioning errors in early attempts at the level, but quickly 

moved to the correct solution. Students were coded as being in the Partitioning Error to 

Partitioning Error strategy sequence type if they made partitioning errors in early attempts at 

the level and repeated that error in later attempts at the level. Students were coded as being in the 

Partitioning Error to Other Error strategy sequence type if they made partitioning errors in 

early attempts at the level and made other errors in later attempts at the level. 

Students were coded as being in the Other Error to Correct strategy sequence type if they 

made errors other than partitioning errors in early attempts the level, but quickly moved to the 

correct solution. Students were coded as being in the Other Error to Partitioning Error strategy 

sequence type if they made errors other than partitioning errors in early attempts at the level and 

made partitioning errors in later attempts at the level. Students were coded as being in the Other 

Error to Other Error strategy sequence type if they made errors other than partitioning errors 
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both in early attempts at the level and in later attempts. This process would result in student 1115 

being coded as Partitioning Error to Correct for Level 13, Other Error to Correct for Level 14, 

and Correct for Level 15, and student 1116 being coded as Correct in all three levels. 

After coding each level in a given stage, the codes for each level were combined into an 

overall grouping reflecting student behavior across all the levels of the stage. This process 

mirrored the process for coding each level, using the strategy sequence types for each level to 

come up with a sequence group type for the stage as a whole. The coding process for 

determining the Partitioning Error to Correct sequence group type in Stage 4 is shown in Table 

9. Coding for the sequence group types in Stage 4 can be found in Appendix C. 

Table 9 

Sequence Groups Coded as Partitioning Error to Correct in Stage 4 

Group Level 13 sequence type  Level 14 sequence type Level 15 sequence type 

1 Correct Partitioning Error to Correct Correct 

2 Other Error to Correct Partitioning Error to Correct Correct 

3 Other Error to Other Error Partitioning Error to Correct Correct 

4 Partitioning Error to Correct Correct Correct 

5 Partitioning Error to Correct Other Error to Correct Correct 

6 Partitioning Error to Correct Other Error to Other Error Correct 

7 Partitioning Error to Correct Partitioning Error to Correct Correct 

 

This reduced the information for each student to a single row in the dataset, with a 

column for each stage, as shown for selected stages in Table 10. 

Table 10 

Hypothetical Sequence Coding for Stages Targeting Partitioning 

ID Stage 2 Stage 3 Stage 4 

1115 Partitioning Error to Correct Other Error to Correct Partitioning Error to Correct 

1116 Correct Correct Partitioning Error to Correct 
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Classification: Identifying Performance Trajectory Types 

The previous section measured performance as changes in strategy use, with positive 

performance being characterized by either continuing use of either the standard solution or 

fractional solution or by moving from the targeted error to the correct solution. Another way of 

characterizing performance is as changes in the number of attempts made to complete each level 

in a stage, with positive performance being characterized by either completing each level in only 

one attempt or by moving from a large number of attempts in early levels in the stage to one 

attempt in later levels in the stage. 

In order to use the number of attempts as a measure, attempts caused by computer 

glitches had to be separated from meaningful student attempts to complete the level. Computer 

glitches resulting in meaningless attempts occurred largely either because the student clicked 

reset twice in a row (either accidentally or due to impatience with the speed of the avatar) or 

accidentally clicked “Go” immediately after a new level loaded (due to the initial location of the 

cursor directly above the “Go” button). If left in the dataset, these meaningless attempts would 

artificially inflate the number of attempts those students required to complete each level and 

thereby indicate a greater level of difficulty than was actually the case. Therefore, these attempts 

were not included in the number of times each student tried to complete each level. 

The change in the number of attempts required to solve each level in a given stage was 

plotted to form a performance trajectory. In the performance trajectory shown in Figure 5, the 

student completed the first level in the stage in nine attempts, the second level in five attempts, 

the third in two attempts, and the final level in the stage in only one attempt. 
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Figure 5.Example performance trajectory. 

The first step in analyzing the performance trajectories was to group substantively similar 

performance trajectories into performance trajectory types similar to the sequence group types in 

the previous section, but without the ability to discriminate between targeted errors and other 

errors. In order to identify the different performance trajectory types present in the data, 10% of 

students in the sample were hand classified.  

The hand classification identified six different performance trajectory types (see Figure 

6). There were two different performance trajectory types for students who completed the levels 

in the stage correctly on the first attempt: the All Correct performance trajectory type included 

students who completed every single level in the stage on the first attempt, and the Only One 

Mistake performance trajectory type included students who completed all levels in the stage on 

their first attempt, except for one level in which they took two attempts.  

There were two different performance trajectory types for students whose performance 

improved throughout the stage: the Improved to 1 performance trajectory type consisted of 

students who required fewer attempts to complete each subsequent level in the stage and 

completed the final level in the first attempt, and the Partially Improved performance trajectory 
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type consisted of students who required fewer attempts to complete subsequent levels but who 

did not complete the final level in the stage in the first attempt. 

 

Figure 6. Identified types of performance trajectories. 

There were also two different performance trajectory types for students whose 

performance declined throughout the stage: the Steady Decline performance trajectory type 

consisted of students who required consistently more attempts to complete each subsequent level 

in the stage, and the Unsteady Decline performance trajectory type consisted of students who 

generally required more attempts over time, but performed better on at least one level in the 

stage, resulting in a more ragged uphill trajectory. While it was theoretically possible to find 

additional performance trajectory types (such as Unsteady Improved) these were the only 

performance trajectory types found in any of the stages for the hand-coded students. 

After 10% of students’ performance trajectory types were hand coded, the remaining 

students were automatically coded using the k-nearest neighbor classification algorithm knn 
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(Venables & Ripley, 2002) in R (R Development Core Team, 2010) with k equal to one. The knn 

classification algorithm uses a coded subset of the data to determine the codes for the uncoded 

students. The choice of distinguishing features included in the subset of data used to train the 

classification algorithm is the most important step in the process, as it determines how the 

remaining students are classified (Minaei-Bidgoli et al., 2003). This is particularly true in cases 

where the dataset is too small for machine learning techniques to be applied directly (Kotsiantis 

et al., 2010), as is often the case with educational data. 

The distinguishing features in performance trajectories are the change in performance 

from one level to the next and the number of attempts in each level. In performance trajectories, 

the exact value of the change in performance from one level to the next is not as important as the 

direction of the change, and the exact value of the number of attempts in each level is not as 

important as whether or not the number indicates mastery. For this reason, each change in 

performance from one level to the next in a given trajectory was coded as either being positive 

(where the number of attempts in the second level was more than the number of attempts in the 

first level), negative (where the number of attempts in the second level was less than the number 

of attempts in the first level, or zero (where the number of attempts was the same in both levels). 

The number of attempts in each level in a given trajectory was coded as one (indicating mastery), 

two (indicating near-mastery), or many (indicating non-mastery). 

The list of distinguishing features chosen for classification is listed in Table 11. Each 

feature for the change in performance between levels is calculated multiple times in each 

performance trajectory because there is more than one change in each trajectory (equal to the 

number of levels minus one). The same is true for each feature for the number of attempts, 
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except the number of these features in each performance trajectory is equal to the number of 

levels in the stage. 

Table 11 

Features Selected as Input for Classification 

Feature Description 

Change_Positive Second level completed in more attempts than first level 

Change_Negative Second level completed in fewer attempts than first level 

Change_Zero Second level completed in the same number of attempts as first level 

One_Attempt Level completed in one attempt 

Two_Attempts Level completed in two attempts 

Many_Attempts Level completed in more than two attempts 

 

This process (hand coding 10% of the learning trajectories, calculating the discriminating 

features, running the knn algorithm) was repeated for each stage in the game. The resulting 

dataset consisted of descriptions of the learning behavior of each student in each concept covered 

by Save Patch. This reduced the information for each student to a single row in the dataset, with 

a column for each stage, as shown in Table 12. 

Table 12 

Hypothetical Performance Trajectory Coding for Each Stage 

ID Stage 1 Type Stage 2 Type Stage 3 Type Stage 4 Type Stage 5 Type Stage 6 Type 

1115 Improved to 1 All Correct Improved to 1 Improved to 1 All Correct All Correct 

1116 Improvedto 1 Improved to 1 Steady Decline Unsteady Decline All Correct All Correct 

 

Developing and Testing Hypotheses Using Data Mining Results 

The results of each data mining technique were examined and one or more hypotheses of 

interest were generated regarding the relationship between the strategies/sequences/classes 

occurring with sufficient frequency in the game and performance on the pretest and/or posttest. 
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A rationale for each hypothesis is provided, and the accuracy of the resulting prediction(s) was 

examined using appropriate analyses. Additionally, information about the number of students in 

each resulting subsample and the method of determining relevant pretest/posttest items is 

provided. 

Study Design 

This study uses data from a larger study
2
 examining the effect of four educational video 

games on students’ understanding of rational numbers. In the larger study, 1,746 sixth grade 

students in 62 math classes in nine urban and suburban school districts were randomly assigned 

(by class) to either the treatment condition (consisting of four educational video games on 

rational numbers) or the control condition (consisting of four educational video games on solving 

equations). Students in both conditions took a paper-and-pencil pretest on the first day of the 

study, followed by 10 nonconsecutive days of video game play, and completed another paper-

and-pencil posttest on the last day of the study. Though students only spent a total of 12 days of 

class time in the study, the time between pretest and posttest was much longer. This is because 

teachers were allowed to choose the individual dates of the study and many teachers chose to 

spend one day a week on study activities, extending the study duration over a number of months. 

The start date of the study ranged from November 30, 2011, to March 26, 2012, between 

teachers, and the end date ranged from December 19, 2011, to May 25, 2012. The shortest 

number of days between pretest and posttest was 19, and the longest was 110. 

Students in the treatment condition spent two days playing Wiki Jones, a game about the 

identification of fractions. Then those students spent four days playing Save Patch, a game about 

the addition of fractions, followed by two days playing Tlaloc’s Book, a game about the 

                                                 
2
 The larger study was supported by the Institute of Education Sciences, U.S. Department of Education, through 

Grant R305C080015 to the National Center for Research on Evaluation, Standards, and Student Testing (CRESST).  
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multiplication and division of fractions. Finally, students spent two days playing Rosie’s Rates, a 

game about calculating rates.  

This study focuses on Save Patch, the longest and most well-researched game in the 

larger study. There were 855 students in 31 classrooms who played at least one level of Save 

Patch, 724 of whom completed all 27 criterion levels in the game. Of the 855 students who 

started the game, 373 were male, 401were female, and 81 did not report their gender. 371 were 

Hispanic, 193 were White, 45 were African American, 35 were Asian, 14 were Native American, 

72 were multiracial, and 125 were classified as other or did not report their ethnicity. 

Additionally, 380 students reported speaking English at home less than half of the time. The log 

data from the game consisted of 1,288,103 individual actions taken by the students in the course 

of game play, 17,685 of which were unique. 

The paper-and-pencil pretest and posttest were broken by design into four sections 

matching the content for each of the four games. Save Patch focused on the addition of fractions, 

but also provided remediation for identifying fractions (which was covered previously in the 

Wiki Jones game). Therefore, the pretest and posttest items on both the identification of fractions 

and addition of fractions were included in the analysis in this study, while the pretest and posttest 

items on multiplication and division of fractions and calculating rates were not included. A full 

list of included items can be found in Appendix D. All items on the pretest were repeated on the 

posttest. Students scored an average of 5.82on the 13 items on the pretest, with a standard 

deviation of 3.27. Students scored an average of 6.96 on the 13 items on the posttest, with a 

standard deviation of 3.76. Partial credit was given on pretest and posttest items with multiple 

parts (e.g., a numerator and a denominator). 
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CHAPTER 4: RESULTS 

Information Extracted Using Cluster Analysis 

This section examines the following question: Can cluster analysis be used to extract 

information leading to testable hypotheses about the relationship between in-game performance 

and performance on paper-and-pencil posttests? An affirmative answer to this question depends 

on (1) being able to identify clusters of students who can be characterized according to 

meaningful strategies or errors that they made during the course of the game, and (2) identifying 

clusters that are large enough for statistical analysis. In this study, both conditions were satisfied. 

Table 13 

Strategy Distribution Across Attempts 

Strategy Frequency Percentage 

Standard Solution 18161 33.0% 

Fractional Solution 3757 6.8% 

Shortcut Solution 161 0.3% 

Alternate Solution 521 0.9% 

Reset Solution 610 1.1% 

Incomplete Solution 1827 3.3% 

Unitizing Error 2111 3.8% 

Partitioning Error 7916 14.4% 

Unitizing and Partitioning 516 0.9% 

Iterating Error 5215 9.5% 

Mixed Numbers 445 0.8% 

Skipped Key 1585 2.9% 

Wrong Direction 1223 2.2% 

Everything In Order 999 1.8% 

Unknown Error 9992 18.2% 

 

As can be seen in Table 13, cluster analysis successfully identified a majority of attempts 

in Save Patch as belonging to a specific solution strategy or error pattern. The most common 
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strategy used in the game was the standard solution strategy, accounting for 33.0% of all 

attempts. The most common error patterns corresponded to partitioning errors (14.4% of 

attempts), iterating errors (9.5% of attempts), and unitizing errors (3.8% of attempts). 

Unidentified strategies, coded as unknown error, made up 18.2% of the 55,039 attempts in the 

game. 

There were four relatively infrequent strategies, each accounting for less than 1% of 

attempts. The alternate solution and the unitizing and partitioning error occurred in 0.9% of 

attempts, seeing improper fractions as mixed numbers occurred in 0.8% of attempts, and the 

shortcut solution occurred in 0.3% of attempts. 

Developing and Testing a Hypothesis Using Cluster Analysis Results 

This section addresses the following question: Can the information produced by the 

cluster analysis be used to diagnose student errors related to fractions understanding? To 

investigate this question, analyses were performed to determine the relationship between the 

frequency of a specific type of error made during game play and performance on pretest and 

posttest items measuring proficiency in that area. 

The error type selected for this analysis was the unitizing error. This error was 

specifically selected for analysis because Save Patch was not designed to remediate unitizing 

errors. Therefore, a reasonable interpretation of a student making a large number of unitizing 

errors is that the student holds a misconception about unitizing (a misconception that could not 

be remedied during the course of the game). Similarly, it might be argued that the larger the 

number of unitizing errors a student makes during the course of the game, the stronger the 

student’s misconception about unitizing. This argument provides the basis for examining the 

relationship between the frequency of unitizing errors performed during the game and 
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performance on the paper-and-pencil test items requiring an understanding of unitizing. If the 

number of unitizing errors made during the game reflects the strength of the unremediated 

unitizing misconception as hypothesized, then two predictions are possible: (1) the number of 

unitizing errors made during the game should be positively correlated with the number of 

unitizing errors made on the posttest, and (2) there should be no improvement from pretest to 

posttest in terms of performance on unitizing items (in particular, students making a large 

number of unitizing errors during the game should have low proportions of unitizing items 

answered correctly on both the pretest and the posttest). 

Other major types of errors, including partitioning errors and iterating errors, could not 

be used to make such testable hypotheses because their frequency in the game does not 

necessarily reflect the strength of a misconception held by the end of the game. For example, 

Save Patch was designed to remediate partitioning errors. Consequently, a student who made 

many partitioning errors during the course of the game could have held a misconception early in 

the game that was remediated by the end of the game, or could have held a misconception early 

in the game that was not remediated during the game. Thus, interpreting the number of 

partitioning errors made by a student is not straightforward. To analyze these types of errors, it 

is necessary to examine the sequence of behavior during the game and, therefore, analysis of 

those errors will be deferred to the section on sequence mining. 

Student responses to the seven pretest and posttest items in Appendix D that measure the 

ability to unitize were recoded based on whether the response indicated an understanding of the 

unit. In the examples in Table 14, an answer of 2/3 demonstrates an understanding of unitizing 

because it shows that the student could correctly identify where one unit ended in the 

representation and knew to count the number of spaces in the unit to identify that the fraction 



54 

was broken into thirds. The answers of 3/4 and 2/4 also demonstrate an understanding of 

unitizing because they show that the student could correctly identify where one unit ended, even 

though they incorrectly counted hash marks instead of spaces to determine the denominator of 

the fraction being represented. The answers of 2/10 and 3/10 demonstrate a lack of 

understanding of unitizing because they show that the student counted spaces all the way to the 

end of the representation to determine the denominator of the fraction. The answer of 2/8 also 

demonstrates a lack of understanding of unitizing because it shows that the student counted hash 

marks all the way to the end of the representation to determine the denominator of the fraction. 

Responses that were uninterpretable in the context of unitizing (e.g., numbers far larger or far 

smaller than represented on the number line in the question) were coded as missing. The 

percentage of non-missing responses that indicated an understanding of unitizing was then 

calculated for every student who had non-missing values for at least five of the seven items. 

Students with missing values on more than two out of seven items were not included in the 

analyses. 

Table 14 

Examples of Recoding for Question 6 in Appendix D (correct answer = 2/3) 

Demonstrated an 

understanding of unitizing 

Demonstrated a  

lack of understanding 

Uninterpretable in the 

context of unitizing 

2/3 2/10 28 

3/4 3/10 -1 

2/4 2/8 I Don’t Know 

 

The distribution of unitizing errors during the game was highly skewed, with values 

ranging from 0 to 22, with a mean of 2.47 (27% of students made zero unitizing errors in the 

game, and 75% of students made fewer than four unitizing errors). Because a very small 
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percentage of students (2.34%) made more than 10 unitizing errors in the game, those students 

were combined with students who made 10 unitizing errors. The final scale then ranged from 0 

to 10 (where 10 indicated 10 or more). 

Table 15 gives the correlations between uniting errors made during the game and pretest 

and posttest unitizing scores for the 507 students who had non-missing responses to at least five 

out of seven items on both the pretest and the posttest. The number of unitizing errors made 

during the game was significantly negatively correlated with pretest and posttest scores. This 

indicates that not only did students with lower pretest scores on unitizing items make more 

unitizing errors in the game, but that the frequency of in-game unitizing errors was also 

negatively related to posttest scores. 

Table 15 

Correlations Between Unitizing Errors and Test Scores 

Test score Correlation with unitizing errors Significance 

Unitizing Pretest Percentage -.196 .000 

Unitizing Posttest Percentage -.207 .000 

 

To illustrate the relationship between prior knowledge of unitizing (as indicated by the 

percentage correct on pretest unitizing items) and unitizing errors in the game, the distribution of 

the unitizing pretest percentage was broken into thirds and the mean number of in-game unitizing 

errors and 95% confidence interval was plotted for each level of pretest unitizing percentage in 

Figure 7. While quartiles would have been a more standard way to break up the distribution, 

there were so many students who did not make any unitizing errors on the pretest that breaking 

the distribution into quartiles would have artificially split those students into two different 

quartiles. This figure indicates that students who had higher prior knowledge of unitizing made 

fewer in-game unitizing errors than students with lower prior knowledge of unitizing. 
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Interestingly, even students who had perfect pretest unitizing percentages made on average at 

least one in-game unitizing error. This single in-game unitizing error is likely due to students 

becoming familiar with the in-game number line representation, rather than an indication of lack 

of understanding of unitizing. 

 

Figure 7. Mean in-game unitizing errors and 95% confidence intervals by pretest performance. 

Similarly, the relationship between in-game unitizing errors and posttest knowledge of 

unitizing is shown in Figure 8, where the distribution of in-game unitizing errors was broken into 

quartiles and the mean posttest unitizing percentage and 95% confidence interval was plotted for 

each level of in-game unitizing errors. While the negative relationship between in-game 

unitizing errors and posttest performance is visible, there is considerable overlap in the last two 

categories. 
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Figure 8.Unitizing posttest percentage means and 95% confidence intervals for unitizing errors. 

In order to examine the relationship between in-game unitizing errors and changes in the 

understanding of unitizing, the percentage gain on unitizing was calculated by subtracting pretest 

percentages from posttest percentages. The mean posttest unitizing percentage and 95% 

confidence interval was plotted for each level of in-game unitizing errors. As shown in Figure 9, 

there appears to be no relationship between the number of unitizing errors made in the game and 

gains in unitizing transfer to the posttest. 

These charts indicate that the number of unitizing errors students make while playing 

Save Patch seems to be indicative of both their prior understanding of unitizing and their level of 

understanding unitizing on the posttest. Also, as expected (since the game does not teach 

unitizing) the number of unitizing errors made in-game does not appear to have any relationship 

with students’ gain in understanding unitizing. Importantly, Figure 9 indicates that, on average, 

students’ understanding of unitizing did not change from pretest to posttest. 

 

Pretest 
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Figure 9.Unitizing percentage gain means and 95% confidence intervals for unitizing errors. 

Information Extracted Using Sequence Mining 

This section examines the following question: Can sequence mining be used to extract 

information leading to testable hypotheses about the relationship between in-game performance 

and performance on paper-and-pencil posttests? An affirmative answer to this question depends 

on (1) being able to identify sequences that can be characterized according to meaningful 

patterns of strategies made during the course of the game, and (2) identifying sequences that are 

large enough for statistical analysis. In this study, both conditions were satisfied. 

As can be seen in Table 16, sequence mining successfully identified students in each 

sequence group type in each stage in Save Patch. For clarity, only stages with the partitioning 

error as the target error are shown. The most common sequence group type in Stage 2 was the 

Partitioning Error to Correct sequence group type. The most common sequence group type in 

Stage 3 was the Partitioning Error to Other Error sequence group type, followed by Partitioning 

Error to Partitioning Error. The most common sequence group type in Stage 4 was the Correct 
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sequence group type, followed by the Other Error to Correct, Other Error to Other Error, and 

Partitioning Error to Partitioning Error sequence group types. 

Table 16 

Number of Students in Each Sequence Group Type for Each Stage 

 Stages with partitioning as the target error 

Sequence group type Stage 2 Stage 3 Stage 4 

Correct 51 91 187 

Correct to Partitioning Error 2 1 12 

Correct to Other Error 6 28 40 

Partitioning Error to Correct 510 119 47 

Partitioning Error to Partitioning Error 86 154 110 

Partitioning Error to Other Error 128 241 97 

Other Error to Correct 49 118 127 

Other Error to Partitioning Error 5 64 74 

Other Error to Other Error 7 22 118 

 

The Correct to Partitioning Error sequence group type was uncommon, consisting of 

fewer than 15 students in all stages. The Correct to Other Error sequence group type was also 

uncommon, with fewer than 50 students in all three stages, and fewer than 10 students in Stage 2. 

The Other Error to Other Error sequence group type was uncommon in Stage 2 and Stage 3, and 

the Other Error to Partitioning Error sequence group type was uncommon in Stage 2.  

Developing and Testing a Hypothesis Using Sequence Mining Results 

This section addresses the following question: Can the information produced by the 

sequence mining be used to diagnose student errors related to fractions understanding? To 

investigate this question, analyses were performed to determine the relationship between specific 

sequences of strategies made during game play and performance on posttest items measuring 

proficiency in that area. 
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Student in-game partitioning behavior for the three stages that were designed to address 

partitioning was recoded into a single summary of behavior over all three levels for each student. 

Students were categorized into one of six categories according to their sequences related to 

partitioning. Students who got all levels in all three stages correct on the first attempt were coded 

as All Correct. Students who were never in a strategy sequence group type related to partitioning 

were coded as No Partitioning Errors. Students who were in strategy sequence group types 

related to partitioning in early stages, but got all levels of the last stage on partitioning correct on 

the first attempt were coded as Corrected Partitioning (that is, they made partitioning errors in 

early stages but not in the last stage). Students who were in strategy sequence group types related 

to partitioning in early stages, but were not in strategy sequence group types involving either the 

correct solution or partitioning in later stages were coded as Abandoned Partitioning (that is, 

these students made errors in later stages, but those errors were not partitioning errors). Students 

who were not in a strategy sequence group type involving partitioning in early stages, but were 

in later stages were coded as Some Partitioning (that is, they did not make partitioning errors in 

early stages, but did exhibit partitioning errors in later stages). Finally, students who were in 

strategy sequence group types involving partitioning in all three stages addressing partitioning 

were coded as Repeated Partitioning. 

Student responses to the seven pretest and posttest items in Appendix D that measure the 

ability to partition were recoded based on whether the response indicated an understanding of 

how to determine the denominator of a fraction (even if the answer was not correct), that is, 

understanding of partitioning. In the examples in Table 17, the answer of 2/3 demonstrates an 

understanding of partitioning because it shows that the student correctly counted the number of 

spaces in each unit to determine the denominator of the fraction. The answers of 1/3 and 3/3 also 
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demonstrate an understanding of partitioning because they show that the student correctly 

counted the number of spaces to determine the denominator of the fraction, even though they 

were not able to correctly determine the numerator of the fraction. The answer of 2/2 

demonstrates a lack of understanding of partitioning because it shows that the student counted 

the number of hash marks between zero and one to determine the denominator, instead of 

counting the number of spaces. Similarly, the answers of 2/4 and 3/4 demonstrate a lack of 

understanding of partitioning because they show that the student counted the number of hash 

marks, including the marks at zero and at one, to determine the denominator. Responses that 

were uninterpretable in the context of partitioning (e.g., the answer did not include a 

denominator) were coded as missing. The percentage of non-missing responses that indicated an 

understanding of partitioning was then calculated for every student who had non-missing values 

for at least five of the seven items. 

Table 17 

Examples of Recoding for Question 6 in Appendix D (Correct Answer = 2/3) 

Demonstrated an 

understanding of partitioning 

Demonstrated a  

lack of understanding 

Uninterpretable in the 

context of partitioning 

2/3 2/2 28 

1/3 2/4 0 

3/3 3/4 I Don’t Know 

 

To examine the relationship between in-game partitioning behavior and student scores on 

pretest items involving partitioning, the mean pretest partitioning percent and 95% confidence 

interval around the mean was plotted for each of the in-game partitioning categories in Figure 10. 

This figure shows that students with lower prior knowledge of partitioning made in-game 

partitioning errors that they did not correct by the end of the game (Abandoned Partitioning, 
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Some Partitioning, and Repeated Partitioning). Additionally, students with the lowest prior 

knowledge of partitioning continued to make partitioning errors on all partitioning-relevant 

stages in the game (Repeated Partitioning). In contrast, students with high prior knowledge of 

partitioning did not make partitioning errors in the game (All Correct or No Partitioning Errors) 

or made errors early in the game but corrected those errors by the end of the game (Corrected 

Partitioning). 

 

Figure 10. Mean pretest partitioning percentage by in-game partitioning behavior. 

The relationship between in-game partitioning behavior and pretest/posttest changes in 

knowledge of partitioning is shown in Figure 11. Table 18 gives the corresponding means and 

standard deviations. While all posttest means are approximately 5% higher than their 

corresponding pretest means, the relative positioning of different in-game partitioning behaviors 

is largely unchanged. Pretest means ranged from 60% to 84% and posttest means ranged from 

66% to 89%. There was on average a 6.4% gain (p < .001) in partitioning after playing Save 

Patch, regardless of in-game partitioning behavior.  
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Figure 11.Mean pretest and posttest partitioning percentage by in-game partitioning behavior. 

 

Table 18 

Test Means and Standard Deviations by In-Game Partitioning Behavior 

  Partitioning pretest  Partitioning posttest  Partitioning gain 

Partitioning behavior n Mean SD  Mean SD  Mean SD 

All Correct 14 .84
b 

.15  .89
b
 .12  .05 .09 

No Partitioning Errors 47 .81
a,b

 .20  .88
a,b

 .16  .07 .15 

Corrected Partitioning 120 .78
a,b

 .18  .84
a,b

 .17  .06 .18 

Abandoned Partitioning 141 .70
b,c

 .20  .78
b,c

 .20  .07 .20 

Some Partitioning 44 .71
b
 .21  .77

b
 .20  .06 .21 

Repeated Partitioning 151 .60
d
 .20  .66

d
 .20  .06 .21 

Note.Partitioning behaviors with the same subscript have mean scores that are not significantly different from each 

other. Partitioning behaviors with different subscripts have mean scores that are significantly different. 

 

An ANCOVA testing for differences in posttest score controlling for pretest score was 

planned. However, Figure 10 indicates that these data are not appropriate for an ANCOVA 

because a number of the groups do not have overlapping scores on the covariate (e.g., the 

Repeated Partitioning group has pretest scores far below the other groups). This means, per 

50%
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70%

80%

90%

100%

Pretest
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Miller and Chapman (2001), that controlling for the covariate is not appropriate as students in the 

different groups clearly differ substantially on the covariate. Therefore, any significant 

differences found in an ANCOVA would be due to the largely non-overlapping pretest scores of 

students in different partitioning behavior categories rather than to actual differences in gains. 

ANOVAs were run testing for significant differences between in-game partitioning 

behavior on pretest and posttest scores, as well as gain scores. The ANOVAs for pretest and 

posttest were significant at p < .001. The Bonferonni-adjusted posthoc tests are shown in Table 

18 where lettered superscripts indicate similarities and differences between partitioning 

behaviors. 

The ANOVAs showed that students in Repeated Partitioning had significantly lower 

pretest and posttest scores than all other in-game partitioning behaviors. Students in All Correct 

and Some Partitioning had significantly higher pretest and posttest scores than Repeated 

Partitioning, but were not significantly different from any other in-game partitioning behaviors. 

Students in Abandoned Partitioning had significantly higher pretest and posttest scores than 

Repeated Partitioning and significantly lower pretest and posttest scores than Corrected 

Partitioning and No Partitioning Errors, which had significantly higher pretest and posttest 

scores than all other in-game partitioning behaviors (except All Correct and Some Partitioning). 

The ANOVA for gain scores was not significant (p = .996). 

These results indicate that there was an overall increase in partitioning performance 

between the pretest and posttest, which was expected since the game was designed to teach 

partitioning. However, the amount of the increase was essentially the same for all in-game 

partitioning behavior categories. The pattern of results seems to suggest the following possible 

interpretations. (1) Students in the All Correct and No Partitioning Errors in-game categories 
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had a pretty good understanding of partitioning on the pretest and the game solidified their 

understanding so that they performed a little better on the posttest. (2) Students in the Corrected 

Partitioning category showed slightly less understanding of partitioning at the outset than the All 

Correct and No Partitioning Errors categories and improved their performance by a small 

amount through game play. (3) Students who made partitioning errors early in the game and 

made other errors later in the game (Abandoned Partitioning) and students who did not make 

partitioning errors early in the game but started making partitioning errors later in the game 

(Some Partitioning) had less understanding of partitioning at the outset and increased their scores 

by a slight amount. (4) Students who made partitioning errors throughout the game (Repeated 

Partitioning) had the least understanding of partitioning at the outset, and improved their 

performance by a slight amount.  

The fact that the posttest means track the pretest means so closely, in conjunction with 

the nearly equal gains for each in-game category, suggests that posttest scores may reflect pretest 

understanding of partitioning more than any influence of game play on partitioning 

understanding. That is, it would be incorrect to conclude, for example, that the game was more 

effective for remediating partitioning misconceptions for students who exhibited Corrected 

Partitioning than for students who exhibited Repeated Partitioning. 

However, the results do suggest that it may be possible to interpret patterns of game play 

as indicative of prior understanding of partitioning, which may have useful implications. For 

example, additional instruction that focuses on partitioning could be targeted to some groups 

according to their pattern of game play. Students who continued to make partitioning errors 

throughout the game (Repeated Partitioning) seem to have substantial partitioning 

misconceptions prior to game play (that were largely unremediated during the game) and 
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therefore seem to be especially good candidates for additional instruction. Students in the 

Abandoned Partitioning and Some Partitioning categories may also benefit from additional 

instruction. On the other hand, students in the All Correct and No Partitioning Errors categories, 

and to some extent students in the Corrected Partitioning categories, likely need the least 

additional instruction. 

Information Extracted Using Classification 

This section examines the following question: Can classification be used to extract 

information leading to testable hypotheses about the relationship between in-game performance 

and performance on paper-and-pencil posttests? An affirmative answer to this question depends 

on (1) being able to accurately classify students based on changes in performance during the 

course of the game, and (2) identifying classes that are large enough for statistical analysis. In 

this study, both conditions were satisfied. 

The performance trajectory types were: All Correct, Only One Mistake, Improved To 1, 

Partially Improved, Steady Decline, and Unsteady Decline (see Figure 6 in the Methods section). 

Unlike the strategy sequence types, the performance trajectory types do not take into account the 

type of mistakes students made. That is, for example, students who showed improvement 

(requiring fewer attempts to solve later levels than earlier levels) did not necessarily make fewer 

partitioning errors in later levels than earlier levels. The number of attempts contains no 

information regarding the type of mistakes made and differentiations based on error type such as 

those between the Partitioning Error To Correct and Other Error To Correct sequence group 

types cannot be made using performance trajectory types. However, the number of attempts 

required to solve a level is still useful as it is a quick and easy approximation of performance. 

For example solving the level in a single attempt likely indicates mastery of the content, solving 



67 

the level in two or three attempts likely indicates an error the student could correct, and requiring 

10 or 15 attempts to solve a level likely indicates the student got the correct answer by chance or 

guessing. 

In order to determine the accuracy of the classification process, two measures of 

agreement between the classification results and the performance trajectory types assigned by 

human raters were calculated. The first measure of agreement was exact agreement, which shows 

the extent to which the classification processes and the human rater assigned the same individual 

trajectories to the same performance trajectory type. The second measure of agreement was 

Cohen’s kappa, which shows exact agreement, accounting for the probability of agreeing based 

on chance. 

Table 19 

Comparing Classification Results to a Human Rater 

 Measures of agreement with a human rater 

Stage Exact agreement Cohen’s kappa 

Stage 1 0.796 0.729 

Stage 2 0.819 0.690 

Stage 3 0.833 0.788 

Stage 4 0.967 0.959 

Stage 5 0.902 0.845 

Stage 6 0.816 0.769 

 

As seen in Table 19, classification using one nearest neighbor showed a high degree of 

agreement with the categorization performed by the human rater. Exact agreement between the 

classification algorithm and a human rater was high, ranging from 0.796 in Stage 1 to 0.967 in 

Stage 4. Additionally, Cohen’s kappa was fairly high, ranging from 0.690 in Stage 2 to 0.959 in 
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Stage 4. Cohen’s kappa values over 0.75 are generally considered to indicate substantial 

agreement (Cohen, 1960). 

The number of students in each performance trajectory type in each stage can be seen in 

Table 20. The most common performance trajectory type in Stage 1: Whole Numbers, Stage 2: 

Unit Fractions, Stage 5: Proper Fractions, and Stage 6: Improper Fractions was the Improved to 1 

performance trajectory type. The most common performance trajectory type in Stage 3: Whole 

Numbers and Unit Fractions was the Unsteady Decline performance trajectory type. The most 

common performance trajectory type in Stage 4: Wholes Across the Unit Mark was Steady 

Decline. 

Table 20 

Number of Students in Each Performance Trajectory Type for Each Stage 

 Stage 

Trajectory type 1 2 3 4 5 6 

Steady Decline 130 103 105 236 10 61 

Unsteady Decline 45 0 234 93 51 107 

Partially Improved 141 90 156 153 33 93 

Improved to 1 379 519 196 112 437 209 

Only One Mistake 1 64 56 55 121 117 

All Correct 156 66 82 162 138 169 

 

Unsteady Decline was one of the least represented performance trajectory types in each 

stage (with the notable exception of Stage 3). The Only One Mistake performance trajectory type 

had only a few students in early stages, but much larger numbers of students in later stages. The 

Steady Decline, Partially Improved, and All Correct performance trajectory types ranged in 

frequency between stages, with some stages having far more students than others. The Improved 
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to 1 performance trajectory type was the only performance trajectory type to have a large number 

of students in every stage of the game. 

Developing and Testing a Hypothesis Using Classification Results 

This section addresses the following question: Can the information produced by 

classification be used to make interpretations about student understanding of fractions? To 

investigate this question, analyses were performed to determine the relationship between the 

frequency of specific performance trajectory types made during game play and performance on 

the paper-and-pencil pretest and posttest. 

Student in-game performance trajectories were recoded into a single summary of 

behavior over all game levels for each student. Students were categorized into one of six 

categories according to their performance trajectory types. Students who got all or almost all 

levels correct on the first attempt (indicated by being in the All Correct or Only One Mistake 

performance trajectory types in all stages) were labeled as All Mastery. Students who were in the 

All Correct or Only One Mistake performance trajectory types in early stages but not in later 

stages were labeled as Declined From Mastery. Conversely, students who were in the All Correct 

or Only One Mistake performance trajectory types in later stages but not in earlier stages were 

labeled as Improved To Mastery. Students whose performance trajectory types got consistently 

better (e.g., Steady Decline to Unsteady Decline to Partially Improved) but were not in the All 

Correct or Only One Mistake performance trajectory types were labeled as Showed 

Improvement, and students whose performance trajectory types got consistently worse but did 

not start in the All Correct or Only One Mistake performance trajectory types were labeled as 

Showed Decline. Finally, students whose performance trajectory types showed no clear pattern 

were labeled as Mixed. 
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As opposed to earlier analyses, the percentage of correct pretest and posttest items for 

this portion of the study were calculated using all pretest and posttest items in Appendix D, 

rather than only items addressing a specific concept, because performance trajectories only 

reflect overall performance. 

 

Figure 12. Mean pretest percentage by in-game performance trajectory. 

To examine the relationship between in-game performance trajectories and students’ 

pretest scores, the mean pretest percentage and 95% confidence interval around the mean were 

plotted for each of the in-game performance trajectories in Figure 12. This figure indicates that 

students with high prior knowledge of fractions exhibited in-game performance trajectories 

indicating initial mastery (All Mastery and Declined From Mastery). Students with moderately 

high prior knowledge of fractions exhibited in-game performance trajectories that did not begin 

with mastery, but did end with mastery (Improved To Mastery). Additionally, students with the 

lowest prior knowledge of fractions did not achieve mastery at any point in the game (Showed 
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Improvement or Showed Decline). The Mixed performance trajectory type cannot be 

substantively interpreted, but is shown for completeness. 

The relationship between in-game performance trajectory and pretest/posttest changes in 

knowledge of fractions is shown in Figure 13. Table 21 gives the corresponding means and 

standard deviations. While all posttest means are approximately 10% higher than their 

corresponding pretest means, the relative positioning of different in-game performance 

trajectories is largely unchanged. Pretest means ranged from 45% to 72% and posttest means 

ranged from 53% to 89%. There was on average a 10.5% gain (p< .001) in fractions scores after 

playing Save Patch, regardless of in-game performance trajectory. 

 

Figure 13. Mean pretest and posttest percentage by in-game performance trajectory. 

 

ANOVAs were run testing for significant differences between in-game partitioning 

behavior on pretest and posttest scores, as well as gain scores. The ANOVAs for pretest and 

posttest were significant at p< .001. The Bonferonni-adjusted posthoc tests are shown in Table 

21, where lettered subscripts indicate similarities and differences between in-game performance 

trajectories. The ANOVAs showed that students in the All Mastery, Declined From Mastery, and 
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Improved to Mastery performance trajectories had significantly higher pretest and posttest scores 

than students in the other performance trajectories. However the ANOVA for gain scores was 

not significant (p = .063). 

Table 21 

Test Means and Standard Deviations by In-Game Performance Trajectory 

  Pretest  Posttest  Gain 

Performance trajectory n Mean SD  Mean SD  Mean SD 

All Mastery 47 .72
a
 .20  .89

a
 .20  .17 .19 

Declined From Mastery 51 .71
a
 .21  .80

a
 .22  .09 .16 

Improved To Mastery 81 .62
a
 .20  .73

a
 .20  .11 .18 

Showed Improvement 94 .49
b
 .22  .58

b
 .26  .09 .16 

Showed Decline 140 .45
b
 .19  .53

b
 .23  .08 .16 

Mixed 105 .52
b
 .23  .60

b
 .24  .08 .17 

Note. Performance trajectories with the same subscript have mean scores that are not significantly different from 

each other. Performance trajectories with different subscripts have mean scores that are significantly different. 

 

These results indicate that there is an overall increase in performance between the pretest 

and posttest, but the amount of the increase was not significantly different between performance 

trajectory types. The pattern of results seems to suggest the following possible interpretations. 

(1) Students in the All Mastery and Declined From Mastery performance trajectories had pretty 

good understanding of fractions on the pretest and the game solidified their understanding so that 

they performed better on the posttest. (2) Students in the Improved To Mastery trajectory showed 

slightly less understanding of fractions at the outset than the All Mastery and Declined From 

Mastery categories and improved their performance through game play. (3) Students in the 

Showed Improvement, Showed Decline, and Mixed trajectories had less understanding of 

fractions at the outset and increased their scores by a small amount. 



73 

As with the sequence mining results, posttest scores may reflect pretest understanding of 

fractions more than any influence of game play on fractions understanding. That is, it would be 

incorrect to conclude that in-game improvement in the form of the Showed Improvement or 

Improved To Mastery performance trajectories resulted in greater than average improvement 

between the pretest and the posttest. 

However, as with sequence mining, the results do suggest that it may be possible to 

interpret performance trajectories as indicative of prior understanding of fractions. For example, 

students in the Showed Improvement, Showed Decline, and Mixed performance trajectories 

seemed to have a low understanding of fractions prior to game play (as indicated by their low 

pretest scores) that was largely unremediated during the game (as indicated by their low posttest 

scores). Although these students seem to be especially good candidates for additional instruction, 

the performance trajectory results do not indicate the specific area in which students could most 

benefit from additional instruction. 

Comparison of Classification and Sequence Mining Results 

Although the different data mining techniques revealed different kinds of insights into 

students’ in-game performance (e.g., sequence mining gives insights into partitioning behavior, 

while classification gives insights into general performance), an important issue is whether the 

different data mining techniques categorized students differently. If students exhibiting a certain 

partitioning behavior (from the sequence mining) all showed a particular trajectory of general 

performance (from the classification), then the argument could be raised that the two data mining 

approaches were simply giving rise to different labels for the same group of students. 

Conversely, the lack of a one-to-one correspondence between the categorization of students 
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using sequence mining and the categorization of students using classification would suggest that 

the data mining techniques are giving rise to different aspects of in-game performance. 

To examine this issue, Table 22 shows the number of students who were categorized into 

each of the trajectories identified through the use of sequence mining and each of the trajectories 

identified through the use of classification.  

Table 22 

Comparison of Classification and Sequence Mining Results 

 Classification results 

Sequence mining results 

All 

Mastery 

Declined From 

Mastery 

Improved To 

Mastery 

Showed 

Improvement 

Showed 

Decline Mixed 

All Correct 12 2 0 0 0 0 

No Partitioning Errors 8 22 10 5 2 10 

Corrected Partitioning 23 10 60 9 3 15 

Abandoned Partitioning 0 5 13 39 35 8 

Repeated Partitioning 0 2 0 35 74 40 

Some Partitioning 4 10 0 8 13 9 

 

The results in Table 22 show that there is not a one-to-one correspondence between 

trajectories arising from the sequence mining and trajectories arising from the classification. For 

example, of the 47 students who never made partitioning errors during the game (No Partitioning 

Errors in the sequence mining results), only 8 (17%) were categorized as All Mastery using the 

classification data mining approach. The other 83% of students who never made partitioning 

errors showed improvement or declined in other respects. Similarly, of the 120 students who 

corrected partitioning errors over the course of the game (Corrected Partitioning), 50% were 

categorized in the trajectory Improved to Mastery in terms of general performance from the 

classification results. Many of the other students (31%) showed improvement (but not to 

mastery) or showed decline or showed mixed results. As a third example, of the 151 students 
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who made partitioning errors throughout the game (Repeated Partitioning), 35 students (23%) 

showed improvement in general performance from the classification results (Showed 

Improvement), 74 students (49%) showed a decline in general performance from the 

classification results (Showed Decline), and 40 students (26%) showed mixed general 

performance (Mixed). 
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CHAPTER5: DISCUSSION 

This study examined 1.2 million rows of log data generated by 855 students from 31 

classes playing an educational video game about fractions called Save Patch. This study 

successfully used three different educational data mining techniques (cluster analysis, sequence 

mining, and classification) to extract interpretable information from the game log data that could 

be used to form testable hypotheses. In this study, the hypotheses generated and tested concerned 

the relationship between in-game performance and performance on more traditional measures of 

content understanding (here, paper-and-pencil measures of fractions knowledge). Developing 

methods of extracting interpretable information from game log data is vital because without the 

ability to analyze in-game performance it is difficult if not impossible to use games or 

simulations as an indication of what students may know or understand. Testing the relationship 

between in-game performance and performance on more traditional measures of content 

understanding is important as a first step towards validating the information extracted from game 

log data. 

The game in this study was Save Patch, an educational video game about the 

identification of fractions. The game uses a representation similar to a number line and requires 

students to place fractional pieces (e.g., 1/3, 1/4, etc.) on sign posts located at various positions 

on the number line (e.g., 3/4) to move the game character successfully from one sign post to 

another in order to solve each level in the game. The levels in the game are organized in stages. 

All levels in a given stage address the same fractions content, and the stages progress in 

complexity throughout the game. Some of the sign posts in the game are required, others are 

optional, and all signs have a directional indicator that can be changed to make the game 

character move the indicated distance in the desired direction. There is no limit to the number of 
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times a student can attempt to solve a given level, but each level must be solved before the 

student can move on to the next level. 

Summary and Discussion of Cluster Analysis Results 

Using cluster analysis, individual student actions in each level were grouped into 

nameable action sets representing the different strategies students used to try to solve the game. 

This process led to the identification of valid solution strategies, strategies representing specific 

game-related errors, and strategies corresponding to specific mathematical misconceptions. 

There were six different types of valid solution strategies identified by the cluster 

analysis, accounting for 45.5% of attempts to solve levels in the game. The most common valid 

solution strategy was the standard solution (wherein students solved the level as anticipated, 

using the correct fractional pieces for fractional distances and whole unit pieces for whole unit 

distances), followed by the fractional solution (wherein students used fractional pieces for whole 

unit distances, such as 4/4, instead of using whole unit pieces). 

There were three different types of game-related errors, accounting for 6.9% of attempts 

to solve levels in the game. The most common game-related errors occurred either because 

students skipped a required stop (e.g., placing 2/3 on the first sign instead of placing 1/3 on the 

first sign and 1/3 on the second sign as required by the game) or students placed all fractional 

pieces correctly but moved their game character in the wrong direction (usually because they 

forgot to change the direction of the sign from its default position). 

There were five different types of strategies corresponding to specific mathematical 

misconceptions, accounting for 29.4% of attempts to solve levels in the game. The most common 

strategy corresponding to a mathematical misconception was the partitioning error, wherein 

students identified the denominator of the fraction incorrectly because they counted the number 
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of dividing marks to determine the denominator rather than counting the number of pieces the 

unit was broken into. Other common mathematical misconceptions were the iterating error 

(wherein students determined the denominator correctly but were unable to determine the 

numerator of the represented fraction) and the unitizing error (wherein students were unable to 

determine the number of units represented because they assumed that the entire representation 

consisted of a single unit, regardless of the actual number of units represented). 

Extracting substantively meaningful information from game log data is a significant 

challenge (Frezzo et al., 2009; Garcia et al., 2011; Mislevy et al., 2004; Mostow et al., 2011; 

National Research Council, 2011). Using fuzzy feature cluster analysis to identify in-game 

strategies rose to this challenge, resulting in substantively meaningful categorizations of 82% of 

all attempts made to solve problems in the game.  

The identification of substantively meaningful in-game strategies accounting for a 

majority of attempts to solve levels in the game allows for the formulation and testing of 

hypotheses that were not feasible prior to the extraction of this information. Without access to 

information about how students solve problems in the game, the game is a black box which 

cannot be directly assessed. Opening up the black box by the identification of in-game strategies 

allows not only for the formation of hypotheses about the relationship between in-game 

performance and pretest and posttest performance (as addressed in this study) but about a variety 

of other relationships as well. For example, a number of hypotheses can now be formulated 

about the relationship between background variables and in-game strategy use in order to 

determine whether the game is a fair measure for all students (e.g., Are students with little 

gaming experience more likely to make game-related errors?), the relative effect of cluster 

membership on in-game learning in order to determine areas in need of remediation (e.g., Do 
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students who make partitioning errors in the game have lower posttest scores controlling for 

pretest scores than students who make unitizing errors?), or the effects of different classroom 

instructional techniques on in-game performance in order to make practical recommendations for 

classroom instruction (e.g., Are students who were taught fractions using circular representations 

more likely to make in-game partitioning errors than students who were taught using linear 

representations?). 

The specific hypotheses generated from the cluster analysis results involved the 

relationship between errors made in the game (as identified by the cluster analysis) and the same 

errors made on paper-and-pencil measures to determine whether both behaviors were indicative 

of the same underlying misunderstanding. The specific relationship examined was between in-

game unitizing errors and pretest and posttest scores on items requiring an understanding of 

unitizing. Because the game was not designed to remediate unitizing errors, the relationships 

between pretest, in-game, and posttest performance were expected to be strong and there was 

expected to be no change in performance on unitizing between the pretest and the posttest. 

This expectation was borne out. The number of unitizing errors made in-game was 

significantly correlated with both pretest and posttest unitizing performance, but there was not a 

significant change in performance between the pretest and the posttest, and the number of 

unitizing errors made in-game was not correlated with gain scores. Students who had high prior 

knowledge of unitizing made few if any in-game unitizing errors and had relatively high posttest 

scores. On the other hand, students who had low prior knowledge of unitizing made a fairly large 

number of in-game unitizing errors and had relatively low posttest scores. 

The finding that strategies as an in-game measure of performance were significantly 

related to both pretest and posttest scores has implications for the use of educational video games 
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as assessments. This finding indicates that educational technology can potentially produce valid 

measures of student understanding and makes it possible to speculate that game or simulation 

components might be able to play a role in large-scale, high-stakes standardized testing 

environments. The U.S. Department of Education (2010, 2012) has called for research into the 

use of games and simulations as assessments of the complex skills delineated in state and 

national standards, and the findings of this study indicate that such research may be fruitful. 

Additionally, the identification of in-game strategies allows for the development of a 

deeper understanding of how students solve different kinds of problems, as Bejar (1984), Rahkila 

and Karjalainen (1999), Merceron and Yacef (2004), and Quellmalz and Pellegrino (2009) 

posited would be possible if the black box of in-game performance could be opened. First, the 

identification of a variety of correct solution strategies provides detail about how successful 

students reached their answers, rather than just identifying such students as correctly solving the 

game levels. Second, the identification of a variety of in-game strategies reflecting mathematical 

misconceptions provides detail about why and how students answer incorrectly that could be 

used to provide targeted remediation of the content (e.g., providing information about how to 

identify the denominator to students who make partitioning errors and providing information 

about how to identify the numerator to students who make iterating errors) or support diagnostic 

claims about student understanding (e.g., identifying not just that a given student does not know 

the correct answer, but determining which specific skills the student lacks). Finally, the 

identification of in-game strategies reflecting game errors rather than mathematical 

misconceptions allows for the separation of the impact of the format of the problem from student 

understanding of the content area. For example, students using the wrong direction strategy were 
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mathematically correct but did not solve the level on that attempt because they made a game-

related error. 

Summary and Discussion of Sequence Mining Results 

Using sequence mining, frequent sequences of strategies students used to solve levels in 

each stage were identified to provide a summary of student behavior in each stage of the game. 

This process led to the identification of strategy sequence types reflecting continuous use of the 

valid solution strategies, movement from one erroneous strategy to another erroneous strategy, 

and movement from erroneous strategies to valid solution strategies. Examination of strategy 

sequences across levels addressing partitioning (by far the largest portion of the game) led to the 

identification of different types of partitioning behavior in the game. 

There were very few students who used only valid solution strategies in all attempts at all 

levels of the game addressing partitioning (the All Correct sequence strategy, consisting of 3% of 

students). There were two different types of strategy sequences reflecting movement from one 

erroneous strategy to another erroneous strategy. Students either repeatedly made partitioning 

errors (Repeated Partitioning, 29% of students) or moved from making partitioning errors to 

errors that did not involve partitioning (Abandoned Partitioning, 27% of students). There were 

two different types of strategy sequences reflecting movement from erroneous strategies to valid 

solution strategies. In levels addressing partitioning, students either moved from partitioning 

errors to valid solution strategies as they moved through the stages (Corrected Partitioning, 23% 

of students) or moved from errors that did not involve partitioning to valid solution strategies as 

they moved through the stages (No Partitioning Errors, 9% of students). Overall, using sequence 

mining to identify in-game strategy sequences resulted in substantively meaningful 

categorizations of 91% of in-game behavior. 
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The identification of substantively meaningful in-game strategy sequences accounting for 

a majority of attempts to solve levels in the game allows for the formulation and testing of 

hypotheses that were not feasible prior to the extraction of this information. The identification of 

in-game strategy sequences allows not only for the formation of hypotheses about the 

relationship between in-game performance and pretest and posttest performance (as addressed in 

this study) but about a variety of other relationships as well. For example, remedial instruction 

could be provided between stages addressing the same targeted concepts and in-game strategy 

sequences in the stage before the instruction and after the instruction could be examined to 

determine whether students moved from the strategy sequence representing repetition of the 

targeted error to the strategy sequence representing correcting the error. This could allow for the 

testing of the effectiveness of various forms of instruction (e.g., Does text instruction or video 

instruction result in the most students moving to the strategy sequence representing correcting 

the error?) or specific wording (e.g., Does using the word “unit” or using the word “whole” in 

the instruction result in the most students moving to the strategy sequence representing 

correcting the error?). 

The specific hypotheses generated from the sequence mining results in this study 

involved the relationship between in-game behavior (as identified by the sequence mining) and 

performance on paper-and-pencil measures to determine whether in-game behavior was 

indicative of student understanding of the content. The specific relationship examined was 

between in-game partitioning behavior and pretest and posttest scores on items requiring an 

understanding of partitioning. In-game partitioning behavior was chosen rather than in-game 

unitizing or iterating behavior because a large number of stages targeted partitioning, while none 

targeted unitizing and only one targeted iterating. Therefore there was expected to be a 
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relationship between in-game partitioning behavior and pretest and posttest performance, and 

certain behaviors (such as the Corrected Partitioning behavior) were expected to correspond to 

gains in scores from pretest to posttest.  

A significant relationship between in-game partitioning behavior and pretest and posttest 

performance was found. Students with the lowest levels of prior knowledge of partitioning 

continued to make partitioning errors in all three stages of the game addressing partitioning. 

Students with the next lowest prior knowledge of partitioning made in-game partitioning errors 

that they did not correct by the end of the game. In contrast, students with high prior knowledge 

of partitioning either did not make partitioning errors in the game or made partitioning errors 

early in the game and corrected those errors by the end of the game. 

However, there was no significant relationship between in-game partitioning performance 

and gains in scores from pretest to posttest. There was a significant gain of about 6% from 

pretest to posttest, but the amount of gain did not differ based on in-game partitioning behavior.  

The findings that strategy sequences as an in-game measure of performance were 

significantly related to both pretest and posttest performance has a number of positive 

implications for the use of educational video games as assessments. In a game addressing 

multiple targeted concepts (such as partitioning, unitizing, and iterating), analysis of in-game 

behavior could allow for the identification of the strengths and weaknesses of individual students 

in each targeted concept (as posited in Mehrens, 1992). Additionally, examining in-game 

strategy sequences could allow game designers to provide individualized in-game feedback for 

students who continue to struggle with a specific concept (Brown et al., 2008) or create 

instruction in additional stages that adapts to the changing needs of each student (Bejar, 1984; 

Clark et al., 2009; Radatz, 1979). 
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Summary and Discussion of Classification Results 

Using classification, the change in the number of attempts required to solve each level as 

students move through each stage was plotted to form performance trajectories for each student 

in each stage of the game. Examination of performance trajectories across stages led to the 

identification of performance trajectory types indicating consistently good performance 

throughout the game, performance that improved over time, and performance that declined over 

time. 

There were few students who demonstrated consistently good performance throughout 

the game (the All Mastery sequence strategy, consisting of 9% of students). There were two 

different types of performance trajectories reflecting performance that improved over time. 

Students either required a large number of attempts to solve earlier levels and solved later levels 

in only one attempt (Improved To Mastery, 16% of students) or required a large number of 

attempts to solve earlier levels and solved later levels in fewer attempts, without solving any 

levels in only one attempt (Showed Improvement, 18% of students). There were also two 

different types of performance trajectories reflecting performance that declined over time. 

Students either solved earlier levels in only one attempt but required multiple attempts to solve 

later levels (Declined From Mastery, 10% of students) or required multiple attempts to solve 

early levels and required more attempts to solve later levels (Showed Decline, 27% of students). 

Overall, using classification to identify in-game performance trajectories resulted in 

substantively meaningful categorizations of 80% of in-game behavior. 

The identification of substantively meaningful in-game performance trajectories 

accounting for a majority of attempts to solve levels in the game allows for the formulation and 

testing of hypotheses that were not feasible prior to the extraction of this information. For 
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example, the percentage of students falling in each performance trajectory type for two different 

concepts could be examined to determine which is more difficult for students to learn (e.g., Are 

there significantly more students in the Improved To Mastery trajectory type in the stage 

consisting of proper fractions than in the stage consisting of improper fractions?) or the order of 

stages could be changed and the resulting performance trajectories examined to determine which 

ordering is more effective (e.g., Are there significantly more students in the Improved To 

Mastery trajectory type if the unitizing stage precedes the partitioning stage than if the 

partitioning stage precedes the unitizing stage?). 

The specific hypotheses generated from the classification results involved the relationship 

between in-game performance (as identified by the classification) and performance on paper-

and-pencil measures to determine whether in-game performance was indicative of student 

performance on paper-and-pencil measures. In-game performance trajectories on specific 

concepts (such as partitioning or unitizing) could not be examined because the performance 

trajectories contain information only on the number of errors made, not the type of error. 

Therefore, there was expected to be a relationship between in-game performance trajectory and 

overall pretest and posttest performance, rather than performance on specific concepts, and 

certain trajectories (such as the Improved To Mastery trajectory) were expected to produce larger 

gains in pretest to posttest scores than other trajectories (such as the Showed Decline trajectory). 

A significant relationship between in-game performance trajectory and pretest and 

posttest performance was found. Students with the lowest levels of prior knowledge of fractions 

do not achieve mastery at any point in the game. Students with moderately high prior knowledge 

of fractions made in-game errors that they corrected by the end of the game. Students with high 
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prior knowledge of fractions showed mastery in early stages and either continued to show 

mastery or slipped from mastery in later stages of the game. 

However, there was no significant relationship between in-game performance and gains 

in scores from pretest to posttest. There was a significant gain of about 10% from pretest to 

posttest, but the amount of gain did not differ based on in-game performance trajectory types.  

While, as hypothesized, the All Mastery trajectory had the highest gain scores (followed by the 

Improved To Mastery trajectory) and the Showed Decline trajectory had the smallest gain scores, 

the average gain scores for the different trajectories were not significantly different. 

The finding that performance trajectories as an in-game measure of performance were 

significantly related to both pretest and posttest performance has a number of positive 

implications for the use of educational video games as assessments. Though the in-game 

performance trajectories cannot be used to provide detailed measures of the extent to which 

players have mastered specific learning goals as called for by the National Science and 

Technology Council (2011), the findings of this study indicate some promise that educational 

technology might be able to be used to provide information about the level of student 

performance related to the complex skills delineated in state and national standards, as called for 

by the U.S. Department of Education (2010, 2012). That is, educational games or simulations 

might yield in-game performance trajectories that reflect certain degrees of student 

understanding. 

Additionally, the findings that the performance trajectories only partially correspond to 

the strategy sequences indicate that the performance trajectories are not simply relabeling the 

same students as identified in the strategy sequences. Rather, the performance trajectories 

identified from the classification results appear to provide information about in-game 
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performance that is different from the information provided about in-game partitioning behavior 

by the sequence mining. 

Implications, Limitations, and Future Work 

In summary, all three educational data mining techniques were used successfully to 

extract meaningful information about student understanding of fractions from the game log data. 

Additionally, the groupings of students from the three data mining techniques were found to be 

systematically related to student performance on the paper-and-pencil pretest and posttest. 

Therefore this study successfully addressed the single biggest challenge to embedding 

assessment in educational games and simulations, extracting meaningful information about 

student performance from game log data, as put forth by the National Research Council (2011) 

and Mislevy et al. (2004). 

This study offers initial support for the use of educational games and simulations as direct 

assessments of complex tasks (Linn et al., 1991) that can capture problem-solving strategies and 

mistakes (Merceron & Yacef, 2004; Quellmalz & Pellegrino, 2009; Rahkila & Karjalainen, 

1999) in order to identify the strengths and weaknesses of individual students (Mehrens, 1992). 

The identification of valid in-game measures of student performance could allow educational 

video games and simulations to be used to provide detailed measures of the extent to which 

players have mastered specific learning goals (National Science and Technology Council, 2011) 

in order to assess complex skills identified in state and national standards (U.S. Department of 

Education, 2010). 

Contrary to expectations, neither strategy sequences nor performance trajectories 

systematically related to gain scores (all strategy sequences and performance trajectories yielded 

the same average gain from pretest to posttest), and thus could not be interpreted as 
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corresponding to levels of in-game learning (either high or low). There are three possible reasons 

for this result: (1) these in-game measures of performance were not adequately sensitive to 

learning that occurred during the game, (2) no measureable learning occurred during the game, 

or (3) the paper-and-pencil pretest and posttest were not sensitive to the kind of learning that did 

occur during the game.  

Option 1 (that the data mining results were not sensitive to learning that occurred during 

the game) is the simplest explanation. However, such an interpretation would indicate that there 

are issues with the interpretation of the resulting groups of students. For example, the Improved 

To Mastery and Showed Improvement performance trajectories clearly lend themselves to the 

interpretation that in-game learning occurred for students in those trajectories (as opposed to, 

say, the Showed Decline performance trajectory). Before assuming that the data mining results 

were not sensitive to the learning that occurred during the game, other likely options should be 

ruled out. 

Option 2 (that no learning took place during the game) seems unlikely at first glance, as 

there were significant pretest/posttest gains for students who played the game. However, there is 

a distinct possibility that the learning that took place did not occur during the game itself. The 

administration of the pretest and posttest occurred several weeks apart, during which time the 

students played other educational games and received regular mathematical instruction. It is 

possible that the learning that occurred between pretest and posttest was not due to the game, but 

to the other instruction students received in the interim. If in-game learning was not the primary 

contributor to the learning that occurred between the pretest and the posttest, that would explain 

why the in-game measures of learning (such as the Improved To Mastery performance trajectory) 

were not related to the learning gains on the test. If true, this would indicate that the results of the 
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sequence mining and/or classification might actually be valid measures of learning, but that what 

they measured was not captured on the posttest score. In order to test this possibility, another 

study would have to be run in which the posttest immediately followed the game to rule out other 

causes of learning. 

Option 3 (that the paper-and-pencil tests were not sensitive to the kind of in-game 

learning that occurred) is almost certainly a factor. The game is broken into six well-defined 

stages addressing specific fractions content, almost none of which is directly represented on the 

pretest or posttest. That is, many if not most of the test items are far transfer for the content 

taught in Save Patch. Therefore, it is not entirely surprising that the in-game measures of 

learning were not related to learning gains on the paper-and-pencil tests. Had the pretest and 

posttest consisted of items matched to each stage of the game, it is possible that the groups that 

showed greater in-game learning would have also shown greater pretest/posttest gains. It order to 

test this possibility, another study would have to be run in which the pretest and posttest were 

more directly aligned with the game content. 

In addition to questions about the in-game measures of learning, the generalizability of 

the findings of this study are limited by how representative the Save Patch game is of other 

educational video games. The data mining techniques employed in this study depend on the 

presence of certain game design mechanics and will not work as intended if those design 

considerations are not met. First, as used in this study, all three data mining techniques rely on an 

easily definable delineator between attempts, such as a character death or the press of a Reset 

button. While these delineating events are almost always present in puzzle games such as Save 

Patch, they are uncommon in other game styles. In more open-world games or games that allow 
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for the recovery from an error without resetting the level, it could be a non-trivial task to identify 

with certainty where one attempt ended and another began. 

Secondly, the sequence mining and classification techniques both rely on the presence of 

stages in the game which target different concepts, sub-concepts, or difficulty levels and which 

consist of a minimum of three (preferably at least four) levels of substantively similar content. In 

games wherein the difficulty progresses linearly throughout the game or the levels addressing 

similar content are spread out through the game rather than blocked into stages of similar levels, 

an overall summary of the change in performance over a given stage would be meaningless as 

the stage itself either would not exist or would not be substantively meaningful.  

Finally, the cluster analysis technique employed in this study (and, therefore, the 

meaningful sequencing of the resulting clusters) requires the in-game actions to have meaning in 

the context of the subject of the game and depends on log files that record each of those actions. 

If in-game actions are divorced from the content (e.g., a game such as MathBlasters wherein 

students control a gun that they use to shoot the correct answer and there is nothing in the game 

that tracks their problem-solving process), clustering actions will result, at best, only in the 

identification of the correct answer or the incorrect answer and will not result in the 

identification of misconceptions because the problem-solving actions that would serve as 

evidence are not valid actions in the game. Even if the game’s actions are meaningful, each 

individual action must be recorded in the log files. Game logs that consist solely of summary 

information about student in-game performance or simply record the overall state of the game 

every second of game play are not suitable for this type of analysis. 

If games or simulations are to be used as stand-alone assessments, the next steps in this 

research should focus on the measurement property of games. For example, key features 
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impacting the difficulty of individual levels and/or the amount of measurement error introduced 

by each feature must be identified. When examining in-game performance, it can be difficult to 

differentiate between an understanding of game mechanics and an understanding of the content 

being measured. Some features of game play might interfere with students’ ability to 

demonstrate knowledge of the academic content (e.g., solving a level incorrectly due to problems 

with game mechanics rather than problems with content), while others might allow skilled 

gamers to demonstrate proficiency in the content area that they do not actually possess (e.g., 

solving a level correctly due to an understanding of the game mechanic rather than an 

understanding of the content). If the impact of various game mechanics on student performance 

can be identified and modeled, then it is possible for games and simulations to be used as 

assessments of student knowledge of complex academic content. 
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Appendix A: Stages and Levels in Save Patch 

Stage Content Level Denominator Knowledge specifications 

1 Wholes 1-3 1 1.3 

2 
Unit 

Fractions 

4 2 3.0, 3.1 

5 4 3.0, 3.1, 3.2, 3.3 

6 5 1.0, 1.1, 1.3, 3.0, 3.1, 3.2, 3.3 

7 3 1.0, 1.1, 1.3, 3.0, 3.1 

8 2 3.0, 3.1 

3 

Whole 

Numbers 

and Unit 

Fractions 

9 2 1.0,1.1, 1.3, 3.0, 3.1, 4.0, 4.1, 4.3 

10 3 1.0,1.1, 1.3, 3.0, 3.1, 4.0, 4.1, 4.3 

11 4 1.3, 3.0, 3.1, 4.0, 4.1, 4.3 

12 5 1.0,1.1, 1.3, 3.0, 3.1, 4.0, 4.1, 4.3 

4 

Wholes 

Across the 

Unit Mark 

13 2 1.0,1.1, 1.3, 3.0, 3.1, 4.0, 4.1, 4.3 

14 3 1.0,1.1, 1.3, 3.0, 3.1, 4.0, 4.1, 4.3 

15 4 1.0,1.1, 1.3, 3.0, 3.1, 4.0, 4.1, 4.3 

5 
Proper 

Fractions 

16 4 2.2, 3.0, 3.1, 4.0, 4.1, 4.2 

17 5 1.0, 1.1, 1.3, 2.2, 3.0, 3.1, 4.0, 4.1, 4.2 

18 3 1.0, 1.1, 1.3, 2.2, 3.0, 3.1, 4.0, 4.1, 4.2 

19 4 2.2, 3.0, 3.1, 4.0, 4.1, 4.2 

6 
Improper 

Fractions 

20 2 1.0, 1.1, 1.3, 2.0, 2.1, 2.2, 2.3, 3.0, 3.1, 4.0, 4.1, 4.4 

21 3 1.0, 1.1, 1.3, 2.0, 2.1, 2.2, 2.3, 3.0, 3.1, 4.0, 4.1, 4.4 

22 4 1.0, 1.1, 1.3, 2.0, 2.1, 2.2, 2.3, 3.0, 3.1, 4.0, 4.1, 4.4 

23 3 1.0, 1.1, 1.3, 2.0, 2.1, 2.2, 2.3, 3.0, 3.1, 4.0, 4.1, 4.4 

7 Test Levels 

24 4 Same as Level 11 – Whole Numbers and Unit Fractions 

25 3 Same as Level 14 – Wholes Across the Unit Mark 

26 5 Same as Level 17 – Proper Fractions 

27 3 Same as Level 21 – Improper Fractions 
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Appendix B: Strategy Sequence Graphs 

Strategy Sequence Graph for Level 01 

 

Strategy Sequence Graph for Level 02 

 

Strategy Sequence Graph for Level 03 
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Strategy Sequence Graph for Level 04 

 
 

Strategy Sequence Graph for Level 05 
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Strategy Sequence Graph for Level 06 

 
 

Strategy Sequence Graph for Level 07 

 
 

Strategy Sequence Graph for Level 08 
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Strategy Sequence Graph for Level 09 

 
 

Strategy Sequence Graph for Level 10 
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Strategy Sequence Graph for Level 11 

 
 

Strategy Sequence Graph for Level 12 
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Strategy Sequence Graph for Level 13 

 

Strategy Sequence Graph for Level 14 

 

Strategy Sequence Graph for Level 15 
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Strategy Sequence Graph for Level 16 

 
 

Strategy Sequence Graph for Level 17 

 
 

Strategy Sequence Graph for Level 18 
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Strategy Sequence Graph for Level 19 

 
 

Strategy Sequence Graph for Level 20 

 
 

Strategy Sequence Graph for Level 21 
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Strategy Sequence Graph for Level 22 

 

 

Strategy Sequence Graph for Level 23 
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Appendix C: Sequence Group Type Coding for Stage 4 

Strategy sequence type Level 13 sequence type  Level 14 sequence type Level 15 sequence type 

Correct Correct Correct Correct 

Correct to Partitioning Correct 

Correct 

Correct 

Correct 

Other Error to Partitioning 

Partitioning to Correct 

Correct to Other Error Correct 

Correct 

Correct 

Correct 

Other Error to Correct 

Other Error to Other Error 

Partitioning to Correct Correct 

Other Error to Correct 

Other Error to Other Error 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Correct 

Other Error to Correct 

Other Error to Other Error 

Partitioning to Correct 

Correct 

Correct 

Correct 

Correct 

Correct 

Correct 

Correct 

Partitioning to Other Error Correct 

Correct 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Other Error to Partitioning 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Partitioning 

Correct 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Partitioning 

Other Error to Other Error 

Other Error to Other Error 

Partitioning to Correct 

Partitioning to Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Partitioning to Partitioning Correct 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Other Error 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Other Error 

Partitioning to Other Error 

Partitioning to Partitioning 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Partitioning 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Other Error 

Partitioning to Correct 

Partitioning to Correct 

Other Error to Partitioning 

Partitioning to Correct 

Other Error to Partitioning 

Partitioning to Correct 

Other Error to Partitioning 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Other Error to Partitioning 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Other Error to Partitioning 

Partitioning to Correct 

Partitioning to Correct 
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Strategy sequence type Level 13 sequence type  Level 14 sequence type Level 15 sequence type 

Other Error to Correct Correct 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Correct 

Other Error to Correct 

Other Error to Other Error 

Correct 

Other Error to Correct 

Other Error to Other Error 

Correct 

Correct 

Correct 

Correct 

Correct 

Correct 

Correct 

Correct 

Other Error to Partitioning Correct 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Correct 

Other Error to Correct 

Other Error to Other Error 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Partitioning to Correct 

Other Error to Partitioning 

Partitioning to Correct 

Other Error to Partitioning 

Partitioning to Correct 

Other Error to Other Error Correct 

Correct 

Correct 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Correct 

Correct 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 

Other Error to Correct 

Other Error to Other Error 
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Appendix D: Paper-and-Pencil Pretest and Posttest Items 

The following are the paper-and-pencil items related to content in Save Patch. Specific skills the 

items are intended to measure are listed in the box to the right. All items were on both the pretest 

and posttest. Both tests also consisted of additional items not related to Save Patch. 

 

Write a fraction that describes the shaded part of the figure below. 

 
 

The figure below shows 3/7 of a whole unit shaded. Complete the figure to show where the 

whole unit ends. Be sure to draw lines (“|”) to show where each piece is. 

 

 
 

The shaded part of the block below shows 1/3 of a whole unit. Mark where 1/6 of a whole unit is. 

 

 

 

 

What does the bottom number (4) tell you in ? 

a. It tells you there are four fourths in this fraction 

b. It tells you the whole unit is broken into four pieces 

c. It tells you there are four whole units in this fraction 

d. It tells you to add 3 four times 

3

7

3

4

3

1
 

0
 

1
 

Question 1: 

Unitizing & 

Partitioning 

Question 2: 

Unitizing 

Question 3: 

Partitioning 

Question 4: 

Partitioning 
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At what number is the “?” located? 

 

 
 

 

At what number is the “?” located? 

 

 
 

 

At what number is the “?” located? 

 

 
 

 

In the figure below, use the “unit ruler” to measure the distance between the puppet and its 

home. 

 

 

 

 

 

 

“unit ruler” 

 

 

For the questions below, fill in each box with a number that will make the statement true. The 

fractions DO NOT need to be simplified! 

 

Question 5: 

Unitizing & 

Partitioning 

Question 6: 

Unitizing & 

Partitioning 

Question 7: 

Unitizing & 

Partitioning 

Question 8: 

Unitizing & 

Partitioning 

Question 9: 

Adding 
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Question 10: 

Adding 

Question 12: 

Adding 

Question 11: 

Adding 

Question 13: 

Unitizing & 

Partitioning 
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Appendix E: Percentage of Identified Information Across Stages 

   Percentage identified 

Stage Level Students Strategies Sequences 

1: Wholes 

1 851 98.1% 88.5% 

2 851 80.9% 94.6% 

3 851 82.4% 87.2% 

2: Unit 

Fractions 

4 851 97.1% 95.6% 

5 848 62.6% 98.6% 

6 844 72.8% 90.9% 

7 842 84.0% 92.0% 

8 841 95.3% 89.8% 

3: Whole 

Numbers 

and Unit 

Fractions 

9 840 81.6% 79.2% 

10 837 86.3% 89.3% 

11 831 77.5% 83.1% 

12 824 66.6% 85.2% 

4: Wholes 

Across the 

Unit Mark 

13 814 87.5% 69.4% 

14 812 83.0% 89.1% 

15 810 76.2% 91.7% 

5: Proper 

Fractions 

16 803 69.7% 96.1% 

17 797 95.2% 83.0% 

18 790 98.2% 90.5% 

19 784 96.8% 92.6% 

6: Improper 

Fractions 

20 779 92.4% 93.6% 

21 774 79.3% 93.2% 

22 759 80.5% 90.9% 

23 754 85.0% 91.7% 
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