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Syndromic surveillance of
population-level COVID-19
burden with cough monitoring in
a hospital emergency waiting
room
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Brittany P. Chapman3, Rajesh K. Gupta2, Andrew A. Lover4,

Rhoel R. Dinglasan5, Stephanie Carreiro3 and Tauhidur Rahman2

1Manning College of Information and Computer Sciences, University of Massachusetts-Amherst,
Amherst, MA, United States, 2Halıcıoğlu Data Science Institute, University of California, San Diego,
San Diego, CA, United States, 3Department of Emergency Medicine, UMass Chan Medical School,
Worcester, MA, United States, 4School of Public Health & Health Sciences, University of Massachusetts
Amherst, Amherst, MA, United States, 5Infectious Diseases and Immunology, University of Florida,
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Syndromic surveillance is an e�ective tool for enabling the timely detection
of infectious disease outbreaks and facilitating the implementation of e�ective
mitigation strategies by public health authorities. While various information
sources are currently utilized to collect syndromic signal data for analysis, the
aggregated measurement of cough, an important symptom for many illnesses,
is not widely employed as a syndromic signal. With recent advancements in
ubiquitous sensing technologies, it becomes feasible to continuously measure
population-level cough incidence in a contactless, unobtrusive, and automated
manner. In this work, we demonstrate the utility of monitoring aggregated
cough count as a syndromic indicator to estimate COVID-19 cases. In our study,
we deployed a sensor-based platform (Syndromic Logger) in the emergency
room of a large hospital. The platform captured syndromic signals from audio,
thermal imaging, and radar, while the ground truth data were collected from the
hospital’s electronic health record. Our analysis revealed a significant correlation
between the aggregated cough count and positive COVID-19 cases in the
hospital (Pearson correlation of 0.40, p-value < 0.001). Notably, this correlation
was higher than that observed with the number of individuals presenting with
fever (ρ = 0.22,p = 0.04), a widely used syndromic signal and screening
tool for such diseases. Furthermore, we demonstrate how the data obtained
from our Syndromic Logger platform could be leveraged to estimate various
COVID-19-related statistics using multiple modeling approaches. Aggregated
cough counts and other data, such as people density collected from our
platform, can be utilized to predict COVID-19 patient visits related metrics
in a hospital waiting room, and SHAP and Gini feature importance-based
metrics showed cough count as the important feature for these prediction
models. Furthermore, we have shown that predictions based on cough counting
outperform models based on fever detection (e.g., temperatures over 39◦C),
which require more intrusive engagement with the population. Our findings
highlight that incorporating cough-counting based signals into syndromic
surveillance systems can significantly enhance overall resilience against future
public health challenges, such as emerging disease outbreaks or pandemics.

KEYWORDS

syndromic surveillance, ambient sensing, cough counting, emergency medicine,

respiratory illness
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1 Introduction

The act of coughing is part of the body’s defense system

that uses automatic reflex mechanisms to clear airways of foreign

substances, irritants and excessive mucus. Cough and related

complaints have been recognized as a cardinal symptom or

syndromic signal of respiratory illnesses, such as the SARS-CoV-

2, influenza and influenza-like illness, asthma, chronic obstructive

pulmonary disease (COPD), and lung cancer. Recent progress with

cough assessment has led to improved diagnosis and more effective

disease management for individual patients (1, 2). However, cough-

related signals have been largely absent in population-level disease

monitoring and public health surveillance. This is primarily due to

lack of efficacious, scalable and contactless sensing infrastructure

to gather cough event information (e.g., total occurrences at a

location) from specific target populations.

In this work, we present an ambient sensing platform to

capture different syndromic signals (e.g., daily cough counts)

from the emergency department (ED) waiting room of a large

hospital within a large metropolitan area. The deployed sensor

platform Syndromic Logger is the next-generation contactless

sensing platform (3). The Syndromic Logger platform captures

non-speech audio with a microphone array for the detection

of cough and speech events. With a built-in thermal camera,

it can continuously capture thermal video to detect number of

people in the hospital waiting areas (as a measure of waiting

room crowd size). Lastly, with a ultra-wideband radar sensor, the

platform can also capture human movements. In this work, we

specifically focus on the significance of aggregated cough count

as a syndromic signal for COVID-like illnesses. We collected

sensor data over a period of four months and obtained ground

truth data from electronic health record systems (EHR). Our

results demonstrate that aggregated cough count is a strong

indicator of total COVID burden within the hospital. Compared

to aggregated fever count, a widely used syndromic indicator for

population-level epidemiological models of respiratory diseases, we

found stronger associations between total cough count and total

COVID-19 case counts. Moreover, we show that the automatically

captured syndromic data from Syndromic Logger in a waiting

room can be used to develop a regression model for daily counts

of COVID-19 cases in a hospital emergency clinic. Inclusion

of such automatic syndromic signals/data using historical data

and manually extracted information from EHRs in a regression

model boosts the performance of daily COVID-19 case prediction.

Overall, the paper highlights the capability of automatic, passive

and contactless syndromic sensing for population-level COVID-19

burden monitoring in a hospital setting.

1.1 Primer on syndromic surveillance and
the need for contactless syndromic sensing

As the world manages the staggering global public health

crisis of COVID-19 and begins to move toward a “new normal,”

our vulnerabilities to another outbreak of SARS-CoV-2 (or an

equally devastating pathogen) are ever apparent. The ability to

keep society safe and functional in the event of a resurgence

is of paramount importance (4). The state-of-the-art disease

monitoring and public health surveillance by the US Center

for Disease Control and Prevention (CDC) primarily relies on

aggregated reports from sentinel reporting sites including hospitals

and selected outpatient clinics. However, there exists a substantial

time lag in the reporting of such data (e.g., 7–14 days reporting

lag time for influenza-like illness) (5, 6). The lack of real-time

information on the infection dynamics and symptom dynamics of

the target population is a fundamental gap that limits our ability to

monitor and forecast disease trends to mobilize early interventions.

Smart and connected syndromic surveillance with state of the art

sensor systems to capture objective syndromic signals (e.g., cough,

fever) unobtrusively from target population to enhance predictive

intelligence and pandemic resilience strategies represent a prime

opportunity. Such a syndromic computing framework can help

to mobilize a rapid public health response, limiting the spread of

infection, and consequent morbidity and mortality.

2 Related work

2.1 Syndromic surveillance for COVID
pandemic

While syndromic surveillance has been long utilized in public

health, it is an emerging area in computational epidemiology,

due to the accessibility of high-resolution data sources. This

paradigm aims to gather general symptom-related information

(prior to any clinical diagnosis) of an infectious disease to allow

for rapid responses. Several recent works aimed to achieve such

goals especially in the context of the recent COVID pandemic

using both active and passive monitoring of syndromic signals.

Examples of active monitoring include self- reported body

temperature and presence of symptoms relevant to COVID using

a mobile application (7, 8); symptom and demographic data from

people searching about COVID symptoms through a chatbot (9);

symptom and testing data using internet and phone surveys (10);

and voluntarily-reported symptom data (11). These approaches

require active participation from the target population, may be

clinically unreliable due to self-reporting, and may not capture

subsets of vulnerable populations (e.g., older and less technology

savvy demographics). Examples of passive monitoring include

monitoring of emergency room activity in hospitals (12, 13),

monitoring occupancy, and crowd size (14). These approaches

might be subject to reporting delays, require active human effort

(e.g., manually measuring and logging data) andmay fail to capture

objective and relevant syndromic signals.

2.2 Cough based syndromic surveillance
for COVID

Current cough-based COVID-19 detection methods

predominantly focus on individual diagnoses. These approaches

utilize traditional machine learning (ML) techniques, including

Logistic Regression, Support Vector Machine (SVM), Random

Forest, and Gradient Boosted Trees, to classify COVID-19 from

audio data (15–19). Additionally, deep learning models have
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been employed, encompassing RNN/LSTM-based classifiers (20)

and CNN-based classifiers (21–26). However, these methods

are primarily designed for individual-level COVID-19 detection

and do not extend to population-level monitoring. Moreover,

studies have revealed limitations in the practical application of

these techniques for accurate, real-world, individual COVID-19

diagnosis (27).

To address these limitations, it is desirable to capture crowd

level syndromic signals in a passive, contactless and automated

manner. In addition, for genuine public health impact, syndromic

surveillance platforms need to be scalable and to provide objective

and real-time metrics informative of the total burden of specific

disease burden in the target population or community.

3 Materials and methods

3.1 Study overview

This study was reviewed by the Institutional Review Board

(IRB) at the University of Massachusetts Amherst. The study

collected information about anonymous syndromic event in the

room and aggregate daily data about the hospital testingmetrics. As

no individual level data or individually identifiable information was

collected, UMass IRB determined that the research project is not

human subject research and does not meet the definition of human

subject research under federal regulations [45 CFR 46.102(d)].

The UMass IRB determination document is attached with this

submission (ref #237; May 4, 2021).

We deployed our device in the emergency department (ED)

waiting room of a large, tertiary-care, academic medical center with

a census of over 135,000 emergency visits per year. Figure 1 shows

the layout of our waiting room, which includes the direction of

typical foot traffic and seating locations and our sensor location

and orientation. A written placard containing information on the

objectives and protocol of the study was placed right next to the

device. The ED operates 24 h a day, seven days a week. The

waiting room space is occupied by hospital staff (nurse, patient care

technicians, and security personnel), adult and pediatric patients,

and accompanying visitors during the triage process. On busier

days, patients and visitors may spend several hours in the waiting

room prior to a bed becoming available in the main treatment

area, which is in a separate location from the waiting area. We

placed our sensor in the ED waiting room from August 1, 2021 to

November 30, 2021, and then again from March 1, 2022 to April

30, 2022 for continuous syndromic data collection. Within the

emergency department waiting area, the specific location for our

device placement was determined based on the availability of power

outlet, maximal capture area of thermal camera with its limited field

of view, and high signal to noise ratio audio data recording. Routine

checks of the device were performed during the data collection

process to ensure proper positioning in the waiting room.

3.2 Syndromic surveillance platform

Our Syndromic Logger platform (depicted in Figure 2)

integrates a range of sensors and hardware components

(microphone array, thermal camera, radar sensor, and Raspberry

PI). It also incorporates a software system that leverages multiple

machine learning models and ensures secure data storage. We

provide detailed descriptions of the various hardware and software

components and discuss the security and privacy aspects of the

platform below.

3.2.1 Hardware
Our Syndromic Logger platform includes the following

hardware modules:

• ReSpeaker Microphone Array V2.0: A microphone array

containing four microphones (28).

• SEEK CompactPRO: An inexpensive thermal camera (29) that

can be used for people counting using thermal video.

• Intel Neural Computing Stick: A hardware platform (30) that

is used for accelerating Deep Neural Network computation.

• PulseON 440 UWB radar: A radar sensor for monitoring

movements and motions in the deployment area (31).

• Raspberry PI: A fully Linux-based embedded platform used

for managing the sensors and processing and storing the data

securely in real-time.

3.2.2 Software system
3.2.2.1 Audio processing

We developed our speech and cough recognition classifier

using the dataset and model architectures described in Al Hossain

et al. (3). For the construction of the cough and sneeze recognition

model, we utilized the dataset sourced from FluSense-data (32),

which was also used by the authors of Al Hossain et al. (3).

To ensure consistency, we adhered to the data augmentation

procedure outlined in Al Hossain et al. (3) and generated

corresponding training, testing, and validation datasets.

For cough detection, we used the VGGish model (33).

The VGGish was trained on AudioSet data (34). AudioSet

is a massive collection of Youtube videos containing 10

seconds of weakly-labeled video segments; it includes 70 million

videos collected from YouTube. The VGGish architecture is

a variant of VGGNet architecture (35), with only the last

layer changed and the Local Response Normalization (LRN)

layers changed with BatchNormalization layers (33). To use

the model with audio signals, we used the same dataset and

augmentation pipeline from FluSense authors (3) and converted

each 1 second long audio snippet into log-mel spectrograms of

size 96× 64.

Table 1 shows the performance of our cough model in different

environments compared to the model used in prior work (3).

We considered three environments: testing data without any

augmentations, testing data with speech inserted in it, and testing

data with hospital noise collected from YouTube. We also used

the same dataset as Al Hossain et al. (3), which is the real-world

hospital data containing cough and non-cough sounds. The list

of non-cough sounds includes sounds that are abrupt in nature,

similar to cough, such as door-slamming and dropped objects. The

original model in Al Hossain et al. (3) had many false positives

for these sounds. As evident in Table 1, our model works robustly
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FIGURE 1

(A) Deployment location sample with an actor simulating the patient’s sitting location; (B) top view of the Syndromic Logger device from outside (C)

3D-render of internal components of the Syndromic Logger device.

FIGURE 2

Emergency department waiting area: a schematic overview. This diagram illustrates the spatial layout and foot tra�c flow in the Emergency
Department’s waiting room. Red arrows depict the usual movement patterns of patients: entering through the main entrance, proceeding to the
triage nurse’s desk and/or registration area, followed by moving to the designted seating locations.

in all testing conditions and outperforms the original model in Al

Hossain et al. (3), achieving the best results during testing with real-

world data samples even in the case when the training data did not

include any such real world data.

For deployment, we first converted the models to 16-

bit floating point precision model and then deployed the

optimized model using OpenVino (36) framework. We used

Intel NCS (version 2) to process the audio data stream in

real time.

3.2.2.2 Thermal data processing

We captured thermal video data from SEEK Thermal Pro

camera. The resolution of our camera was 320 × 240 pixels, and

our capture frequency was 5 frames per second.
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TABLE 1 Performance comparison of our cough classifier(VGGish) with previously proposed cough classifier (3) in di�erent acoustic settings.

Testing sound type Current model (VGGish) Al Hossain et al. (3)

R (%) P (%) F1 (%) R (%) P (%) F1 (%)

No background noise 91.5 91.5 91.5 90.2 90.2 90.2

With speech 87 85.5 86 82.4 82.3 82.4

With hospital noise 87 88 86 84.5 85.4 84.4

With all augmentations 89.5 90.5 89.5 87 87.3 86.9

FluSense dataset (3) 93.1 93.2 93 89 87 88

Similar to the authors of Al Hossain et al. (3), we used a trained

Faster-RCNN model (37) to detect the number of people from

the video data. With the trained model, extract bounding boxes

containing people and then use the bounding box areas to extract

various features from the video data.

3.2.2.3 UWB radar data processing

We used PulseON 440 UWB radar in the monostatic mode for

collecting UWB radar data. The radar operates within bandwidths

of 3.8 to 4.8 GHz with a center frequency of 4.3 GHz. It has

a transmitter antenna that emits millions of very short duration

pulses. These pulses are reflected both by stationary objects and

moving objects. A co-located receiver antenna receives these

backscattered signals and multiple scans of such received signals

are stacked together to form an image representation, which is also

known as a “radargram.” One dimension of the image corresponds

to different range bins, which are generated by collecting reflected

signals with varying time of flight. This time of flight, multiplied by

the speed of light, estimates the round trip distance to a specific bin.

The second dimension represents time, often referred to as slow

time. Objects or humans in motion exhibit distinct signatures that

fluctuate or traverse different range bins over the course of time.

To extract movement-related features, we removed the static

clutter part of the radargram caused by static objects from the

radargram. To achieve this, we first calculate the mean for each

range bin of the radargram and then subtract the mean from each

radargram. Afterwards, the radargram contains only the signals

caused bymovements from non-static elements in the environment

(mostly people). After clutter removal, we apply the Fast Fourier

Transform to each range bin to get a Fourier spectrum from each

range bin.

3.2.3 System security and preservation of privacy
Finally, to store all of the saved data in a secure manner, we

used a 2-phase encryption scheme to store the data in a hard

drive attached to our system. In the first phase, a random key

is generated, and this key is used for encrypting captured data

(i.e., audio snippet, video clip, or radar data) using symmetric

encryption schemes. Using symmetric encryption ensures that our

CPU load is low during this data chunk encryption process. After

that, this randomly generated key itself gets encrypted with a public

key, and it gets stored with the encrypted captured data. To decrypt

data snippets, at first, we use a private key that is only available to

us to decrypt the symmetric encryption key that was stored with

the data snippet, and then we use that symmetric key to decrypt the

stored sensor data. This 2-phase encryption scheme ensures that

our data is secure, and in the case of theft or vandalism, data in our

platform remains inaccessible without the private key.

As the US Federal Health Insurance Portability and

Accountability Act (HIPAA) of 1996 forbids collecting any

privacy-sensitive data within the scope of a non-HIPAA compliant

framework, we explicitly did not save any speech data during our

deployment. To omit these speech data from our saved dataset, we

built the same model as the authors of Al Hossain et al. (3), which

was shown to be very effective in a real-world deployment. During

runtime, we detected whether we had speech content in each 1-sec

slice of audio data. We only saved data for future analysis if it

didn’t contain any speech. Otherwise, we skipped saving the data

to preserve user privacy. Prior to deployment, various aspects of

our research protocol, including security, privacy and data storage

policies, were thoroughly scrutinized by an Institutional Review

Board (IRB) committee. Following careful deliberation, the IRB

deemed the data collected in this study to not qualify as human

subjects research.

3.3 Ground truth data collection

For ground truth data, aggregate daily data points were

abstracted from electronic health record (EHR) andmanaged using

REDCap (Research Electronic Data Capture) tools (38) hosted

at the University of Massachusetts Chan Medical School. The

ground truth data includes daily information about the ED patient

volume, wait time, number of viral tests (COVID and non-COVID)

ordered, and the number of positive viral tests (COVID and non-

COVID).

Of note, COVID testing is done for a variety of reasons

in the hospital (e.g., for diagnosis in symptomatic patients, to

screen asymptomatic patients before a procedure, or before entry

into a group care setting). For the purpose of this study, we

excluded COVID tests ordered on asymptomatic patients for

screening purposes, as their volume was more likely related

to hospital policy and other factors as opposed to changes in

community prevalence of SARS-CoV-2 infections. Symptomatic

testing includes both immunoassays (commonly referred to as

“Rapid” tests) and polymerase chain reaction-based (PCR) assays.

We collected the following ground truth data fields.

• Number of people: This number of patient visits the

emergency department (ED) for a given day.
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• Average wait time: The average time an ED patient waited

prior to being placed in a bed in the main treatment area

• Any COVID test: The total number of COVID -19 tests

ordered on symptomatic ED patients. This number includes

COVID tests as ordered within a Respiratory Viral Panel

(RVP) and standalone COVID tests.

• Positive COVID: The total number of positive symptomatic

ED COVID-19 tests. This includes tests ordered as part of

Respiratory Viral Panel (RVP) and non-RVP).

• Positive flu: The total number of positive ED Flu Type-B using

RVP testing methods.

• Positive RSV results: The number positive ED RSV

(Respiratory Syncytial Virus) tests using RVP tests.

• Fever (> 38◦C): The total number of unique ED patients that

had a fever recorded on their triage vital signs: fever is defined

as temperatures greater than or equal to 38◦ degrees Celsius.

3.4 Feature extraction

In our study, we utilized our Syndromic Logger platform to

gather syndromic signal data from audio, thermal, and UWB radar.

We extracted the following features from the collected data.

3.4.1 Audio-based features
We process ambient audio using an on-device machine

learning model and used the following features for analysis:

• Total cough count (Total cough): The total daily cough count

detected by our sensor platform.

• Total speech count (Total speech): This feature is the total

number of speech snippets detected by our system on a daily

basis.

3.4.2 UWB radar-based features
The Ultra-Wideband (UWB) radar data captures movement-

related features from the radar signals as described earlier. We

extracted the following features for each day.

• Filter bank features: Human movement generates relatively

low frequency responses and broadband radar signals, while

machinery such as a fan and air conditioning units generate

high frequency monotonic signals. Consequently, the spectral

analysis of the radar signal can allow us to look at different

types of movements captured by the UWB radar. We take

a filter bank approach to quantify the energy in different

frequency ranges or filter banks. To be specific, the cut-off

frequencies associated with the filter banks are respectively

0.25–0.50 Hz, 0.5–0.75 Hz, 0.75–1.0 Hz, 1.0–1.25 Hz, 1.25–1.5

Hz, 1.50–1.75 Hz, 1.75–2.0 Hz, 2.0–2.25 Hz, 2.25–2.5 Hz, 2.5–

2.75 Hz, 2.75–3 Hz. We observed in our analysis that human

movement is associated with low frequency filter banks.

• Total energy(tot_energy): The total energy in the radar signals

capture the total human movement related activities that

occur in the waiting room. A crowded waiting room where

the occupants are moving will consequently increase the

magnitude of this total energy feature.

• Standard deviation of energy per bins (std_energy): We

also extract the standard deviation of total average energy in

different range bins which captures a measure of waiting room

crowd dispersion.

3.4.3 Thermal camera-based features
We captured thermal video data from SEEK Thermal Pro

camera. The resolution of our camera was 320× 240 pixels, and our

capture frequency was 5 frames per second. Similar to prior work

outlined here (3), we used a trained Faster-RCNN model (37) to

detect the number of people from the video data. With the trained

model, extract bounding boxes containing people and then use the

bounding box areas to extract various features from the video data.

• Person time (Person-Time): Upon detecting the number of

people in the waiting room based on the total number of

bounding boxes in every frame (captured at a rate of 5 frames

per second), we aggregate the total number of bounding boxes

for the entire day to derive the “Person Time” feature. This

Person-Time feature informs the model about crowd density.

• We did not extract body temperature feature from the thermal

camera. This is primarily because of the relatively high

temperature measurement error range (i.e., low precision)

of the specific affordable thermal sensor that we used. More

sophisticated (and costlier) thermal cameras exist in today’s

market that can reliably estimate human body temperature

in a contactless manner. In fact, these thermal cameras are

used in airports and transit stations to screen travellers with

specific symptoms. We did not incorporate such an expensive

equipment in our device considering the high cost and to

maximize scalability of our syndromic surveillance system.

4 Results

4.1 Correlation analysis: syndromic signals
and population-level disease metric

Table 2 presents the Pearson correlation coefficients between

different sensor-based syndromic signals captured by our device

and ground truth population-level disease burden metric extracted

from the hospital’s EHR system. which includes the number of

people counted per day and total positive COVID, Flu, and RSV

patient count.

Key Observation 1: Total daily cough count has statistically

significant correlation with positive COVID-19 case count.

When examining the correlation coefficients, we observe the most

significant correlation between total daily COVID positive patients

and the total number of coughs captured by our device (.40 with a p-

value of 0.0001). This relationship is visually depicted in Figure 3A.

Moreover, we also observe relatively high correlations between total

cough and total daily positive RSV patients (0.27 with a p-value

of 0.01). However, we did not observe any strong correlation with

positive influenza count. This can be attributed to the fact that

flu has generally more variable with the presence or absence of
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TABLE 2 (a) Pearson Correlation between di�erent syndromic features and Positive SARS-CoV-2, Influenza and RSV counts; p-value in parenthesis.

Modality Features Positive COVID Positive Flu Positive RSV

Audio Total Cough 0.40(<0.001) –0.11(0.30) 0.27(0.01)

Total Speech 0.20(0.06) 0.03(0.80) 0.00(1.00)

Thermal Person-Time –0.06(0.56) 0.00(0.98) –0.07(0.53)

num_peaks –0.20(0.06) 0.25(0.02) 0.05(0.63)

std_energy 0.18(0.10) 0.23(0.03) 0.19(0.07)

Radar tot_energy 0.15(0.15) –0.23(0.03) 0.17(0.12)

0.0–0.25 Hz 0.13(0.23) –0.16(0.14) 0.13(0.21)

0.25–0.50 Hz 0.13(0.22) –0.23(0.03) 0.15(0.15)

2.50–2.75 Hz 0.15(0.16) –0.23(0.03) 0.17(0.13)

# of People Fever(> 38 C) Positive COVID Positive Flu

# of People -

Fever(> 38 C) 0.45(<0.001) -

Positive COVID 0.28(0.01) 0.22 (0.04) -

Positive Flu 0.04(0.72) 0.15 (0.16) –0.02(0.86) -

Positive RSV 0.07(0.51) 0.07(0.51) 0.38(<0.001) –0.17(0.12)

(b) Pearson correlation coefficient between different infections andwaiting room crowd-related variables extracted from the hospital EHR systems. The p-value is reported within the parenthesis.

The bold values are p-values which are ≤ 0.01 (which is considered as the threshold for significant p-value).

FIGURE 3

(A) Scatter plot showing correlation between Total cough and positive COVID. (B, C) Scatter plot highlighting Pearson Correlation between Average
wait time (from EHR) and two features extracted respectively from (B) radar and (C) thermal camera.

respiratory symptoms (e.g., some people have only gastrointestinal

symptoms or muscle aches without cough).

To quantify time series trends with adjustment for serial

correlation, multivariable models with negative binomial

distribution and robust (Huber-White “sandwich” errors)

were used. Additional sensitivity analyses were performed using

bootstrapped errors with 2,000 replicates. All exploratory factors

with p < 0.20 were taken into multivariable models, with model

building guided by lowest AIC/BIC. “Day of week” was forced

into all models regardless of significance. All tests were t-tailed,
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with α = 0.05. Analyses used Stata 17 (College Station, TX). To

quantify the association between sensor-based metrics and positive

SARS-CoV-2 tests, multiple cough-based measures were assessed,

including “total coughs;” “total coughs” normalized to ln(low-band

radar signal, 0.25–0.50 Hz); and “total coughs” normalized to

thermal-sensor person-time.

The results from multivariate time series models are shown in

Table 4. For each 13% increase (95% CI: 6% to 20%) in captured

cough sounds (standardized to the lowest frequency radar bound

output) there was a one-unit increase in positive SARS-CoV-2 tests,

with adjustments for day-of-week.

Key Observation 2: Total number of people visiting ED

waiting room and total daily RSV count has a statistically

significant correlation with positive SARS-CoV-2 tests. Table 2

shows the correlation between the ground-truth variables. We can

see high correlation coefficients between daily positive COVID

patient count and the number of patients with positive RSV (0.38

with a p-value of 0.0003). This could be because the viruses peaked

in the community around the same time and because people were

co-infected (39, 40). Additionally, we can see that the number

of people, and the number of positive COVID patients has a

correlation coefficient of 0.22. Another important metric, fever

> 38oC, which is often used an screening measure for detecting

COVID, showed a stronger correlation with the number of people

in the waiting room compared to the number of positive COVID

cases. Specifically, we found correlation coefficient of 0.22 between

fever and total COVID case count. In contrast, the correlation with

number of people is 0.45, which is much higher than the value for

positive COVID tests.

Key Observation 3: The syndromic features extracted from

radar (e.g., 0.0–0.25 Hz filter band energy feature) achieves

statistically significant correlation with reference daily average

wait time (a measure of crowd density) extracted from EHR.

However, the Person-Time feature extracted from the thermal

camera fails to show any statistically significant relationship

with the average wait time in the waiting room as illustrated

in Figures 3B, C. The radar has a significantly greater sensing

coverage area and can capture any movement in circle with 5 meter

radius. The thermal camera, on the other hand, can capture thermal

images with a 320× 240 pixel resolution and a 32o field of view. The

limited field of view impact the thermal camera’s ability to capture

the entire waiting room crowd and consequently the estimated

Person-Time from the limited field of view thermal images fail to

capture the waiting room crowd behavior such as average wait time.

We can also observe that 0.0–0.25 Hz filter band energy feature

and std_energy achieved a statistically significant correlation (of

correlation coefficient of 0.58) as well. All these point to the fact that

radar-based features can effectively inform COVID burden model

about average wait time and crowd density (as a high average wait

time indicates a crowded emergency waiting room).

4.2 Modeling COVID burden using
sensor-based features

We aim to demonstrate the effectiveness of incorporating

cough count as a feature in modeling COVID burden in the

hospital, emphasizing its value as a syndromic signal. First, we

develop baseline models that do not incorporate any sensor-based

features. Subsequently, we show the utility of sensor-based features,

particularly cough count, in enhancing the modeling of COVID-

related statistics compared to the baseline. We evaluate the models

using Mean Average Error (MAE) and correlation coefficient.

Table 3 summarizes the different feature sets we use for the models.

We chose the weekday index, a categorical variable that represents

the day of the week, as our first baseline feature set B1. The

remaining baseline feature sets (B2–B4) include positive COVID

case counts from up to three previous days, enabling models to

perform autoregression with historical data. We explored different

models with baseline feature set and random forest yields the best

performance when trained on baseline feature sets. We can see

the results in Table 3. Among all the baseline feature-based model,

the random forest trained on B4 feature set achieves the best

performance with a correlation coefficient ρ of 0.13 and an MAE

of 2.14. However, compared to the sensor-informed syndromic

feature-based models, the baseline models achieves a significantly

lower performance.

To assess the performance of sensor-based features compared

to the baseline features, we selected three highly correlated

input features for modeling the count of positive COVID cases:

“Total Cough,” “Total Speech,” and “std_energy” (correlation

coefficients of 0.40, 0.20, and 0.15, respectively). We conducted

experiments employing various models, including Linear models

(Linear Regression, Poisson Regression), Tree based models

(Random-Forest, Gradient boosted trees), and Support Vector

Machines with an “RBF” kernel. The Gradient-Boosted trees

achieve the best results in terms of Pearson Correlation ρ

(0.45), while the Support Vector Regression (SVR) model

achieves the best MAE of 1.66. Overall, models using syndromic

features (i.e., S1 and S2) from the Syndromic Logger platform

substantially outperform the models using baseline features

for the task of predicting the total COVID positive patient

count.

In addition to the total number of COVID patients per day,

we also modeled the prevalence of COVID as a percentage. To

normalize the COVID count, we considered two scenarios: (a) the

percentage of COVID-positive cases among the number of ED

waiting room visitors, and (b) the percentage of COVID-positive

cases among the total number of tests conducted. In both cases,

our models utilizing sensor-based syndromic features exhibited

significant improvements over the baseline models. For predicting

the ratio of Total Positive COVID cases to the total number of

people, our best model achieved a correlation coefficient of 0.53.

It is significantly better compared to the baseline, which reached

a correlation coefficient of 0.25 (with B2 feature set). Similarly,

for predicting the percentage of COVID-positive patients among

the total number of tests performed, our best model achieved a

correlation coefficient of 0.43, in contrast to the baseline results of

a correlation coefficient of 0.02 (with B4).

Furthermore, our analysis with Multivariable Negative-

Binomial model (as demonstrated in Table 4) reveals a statistically

significant relationship between the number of COVID positive

tests and total cough normalized by radar based crowd density

metric (i.e., a proxy variable for total cough per person time). In

fact, the total cough metric was found to be a strong indicator
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TABLE 3 (a) List of features in baseline and sensor-based feature sets, (b) Leave one day out cross-validation results for di�erent models with di�erent

feature sets for three target variables: total COVID-positive cases, COVID cases as a percentage of hospital visits, and COVID cases as a percentage of

number of tests done.

Feature set List of features

B1 Day of week

B2 Day of week, positive COVID (previous 1 day)

B3 Day of week, positive COVID (previous 2 days)

B4 Day of week, positive COVID (previous 3 days)

S1 Day of week, 0.0–0.25 Hz, Total Cough

S2 Total cough, Total speech, std_energy

Model Feature
Set

Total COVID COVID /People ratio COVID / Test ratio (%)

MAE Pearson
corr

MAE Pearson
corr

MAE Pearson
corr

Random forest B1 2.1 –0.24 0.95 -0.32 4.63 –0.25

B2 2.08 0.25 0.89 0.25 4.85 –0.02

B3 2.2 0.19 0.96 0.17 5.09 –0.1

B4 2.14 0.13 0.92 0.16 4.55 0.02

S1 1.8 0.41 0.76 0.47 4.30 0.26

S2 1.78 0.43 0.75 0.49 3.65 0.38

Linear regression S2 1.91 0.29 0.82 0.34 3.99 0.24

Poisson Regression S2 1.89 0.29 0.8 0.34 3.99 0.22

Grad-Boost S2 1.77 0.45 0.75 0.53 3.66 0.43

SVR S2 1.66 0.42 0.76 0.37 3.86 0.36

TABLE 4 Multivariable negative binomial model quantifying relationship

between SARS-CoV-2 positive tests, and cough-based syndromic signals

(IRR, incidence rate ratio (exponentiated coe�cients).

Exploratory
factor

IRR 95% CI p-value

Total Cough per

loge(0.25-0.50 Hz)

signal

1.13 1.06 to 1.20 <0.001

Day of Week

Sunday (ref) - -

Monday 1.73 1.04 to 2.88 0.036

Tuesday 1.45 0.85 to 2.49 0.174

Wednesday 1.51 0.89 to 2.57 0.130

Thursday 1.43 0.84 to 2.44 0.188

Friday 1.33 0.78 to 2.29 0.296

Saturday 1.46 0.87 to 2.47 0.155

and was the only syndromic variable that yielded a statistical

significance in this multivariate negative-binomial analysis. We

also observed that for each unit increase in cough-per-person

there’s a 86 increase in positive SARS-CoV-2 tests.

4.3 Comparing with body temperature
based surveillance

Traditionally, “Fever (> 38C◦)” is used as a biomarker for

screening respiratory illnesses. However, in our data, the number of

patients with fever “Fever (> 38C◦)” fail to achieve any statistically

significant correlation with daily positive COVID cases as shown

in Table 2. The ‘Total Cough’ count, on the other hand, achieves

a higher statistically significant correlation with postive COVID

count (ρ = 0.40, p < 0.001). To compare the effect of these

two measurements as feature in our COVID models, we used two

different feature sets for training random forest-based model since

it performed better than most of the other models we tried. Both

of these sets contain the features “Total Speech,” “std_energy.” The

main difference is in the third feature which is “Fever(> 38oC)” and

“Total cough” respectively for the two sets. We can see from Table 5

that models with the “Total cough” feature perform notably better

than models with “Fever(> 38oC)” for the three target variables

across all the evaluation metrics.

4.4 Feature importance analysis

We analyze the importance of the features in our best

performing models to get a clear idea of which features play the

most important role in the model prediction. Figure 4 shows Gini

feature importance in our models for predicting COVID related

statistics. We can observe that “Total Cough” has the highest

importance for predicting both positive COVID count and positive

COVID count as fraction of total number people visiting the

hospital. This shows the prominence of total cough as feature in

the models.

To compare with body temperature-based feature, we trained a

Random Forest model using four specific features: “Total Cough,”

“Total Speech,” “std_energy,” and “Fever (> 38oC),” to predict total

COVID cases. To demonstrate the impact of features on model

output, we utilized SHapley Additive exPlanations (SHAP) with

TreeExplainer (41). SHAP analysis helps determine how individual

feature values impact the output of a model. We observe similar
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TABLE 5 Leave one day out cross-validation results with Random Forest model with two di�erent feature sets; fs1 indicates {“Fever(> 38C)”, “Total

Speech”, “std_energy”} and fs2 indicates {“Total cough”, “Total Speech”, “std_energy”}.

Target
variable

MAE RMSE Pearson corr

fs1 fs2 fs1 fs2 fs1 fs2

Positive COVID (#) 2.26 1.78 3.44 2.53 0.03 0.43

COVID/People

ratio(%)

0.96 0.75 1.47 1.05 0.05 0.49

COVID/Test

ratio(%)

4.5 3.65 6.13 5.2 0.15 0.38

pattern for the “Fever (> 38oC)” feature, however it contributes

to a lesser extent compared to “Total Cough.” From Figure 4C,

we can observe that high values for the cough count correspond

to increased SHAP values. Overall, it indicates that the predicted

COVID values tend to increase as the total cough increases.

5 Discussion

Our analysis revealed a significant and positive correlation

between aggregated cough count and the total number of COVID-

19 cases. Cough count exhibited a much stronger correlation

compared to other syndromic indicators, such as the count of

individuals presenting with fever. We also observed a strong

correlation between the total number of individuals visiting the

emergency department waiting room and the count of positive

COVID cases. We demonstrated how cough count, along with

other signals from our Syndromic Logger platform, could be

useful for modeling the daily COVID case counts by developing

regression models. Notably, the inclusion of cough count as

a feature yielded the highest model performance boost as we

observed with respect to multiple evaluation metrics. Feature

importance analysis of our models highlighted cough count as the

most influential predictor, based on Gini importance and SHAP

value metrics.

Our results contribute to the growing body of evidence on how

syndromic surveillance can improve our resilience to emerging

public health crises (such as the COVID-19 pandemic and potential

future outbreaks of similar infectious diseases). But they also

provide compelling evidence that monitoring aggregated cough

count serves as a reliable syndromic signal, which has the potential

to complement existing population-level syndromic surveillance

methods. The paper presents the design and architecture of a low-

cost computational platform Syndromic Logger platform, which can

be used for passive monitoring of total cough count in a public

space (e.g., a public waiting room) in a privacy-sensitive manner.

Currently, the majority of syndromic surveillance is conducted

by collecting data directly from Electronic Health Record (EHR)

systems. This data aggregation from multiple hospital networks

is complex and limited in scale. Other alternatives, such as

social media analysis, do not capture syndromic signals directly,

rendering them unreliable (42). With our current platform, we

can monitor and capture COVID-19 or other syndromic signals

directly from the crowd with greater granularity.

While body temperature screening has been widely adopted

in hospitals and public spaces as a preventive measure against

the spread of COVID-19 and similar diseases, our analysis reveals

a stronger correlation between COVID burden and aggregated

cough count compared to the count of individuals with fever. This

finding aligns with previous observations noted in the literature

(43–45). This underscores the significance of monitoring cough

count related signals, which can be accomplished in a contactless

and unobtrusive manner using our Syndromic Logger platform.

By highlighting the association between aggregated cough count

and COVID-19 burden, our finding emphasizes the importance of

incorporating this signal into public health surveillance strategies

which is consistent with previous findings such as Al Hossain

et al. (3).

The monitoring of cough count holds significant relevance as

a syndromic signal, and several key advantages make it highly

advantageous to track. The measurement of cough count can

be done with very high accuracy using machine learning-based

models, which we discuss in detail in the methods section. With

this capability, monitoring cough count provides a more objective

signal compared to other signals such as trends in search engines

or social media websites. Unlike the aforementioned signals,

monitoring of cough offers several distinct advantages. It can be

achieved without requiring active human participation or active

effort. Our proposed approach enables real-time insights without

any reporting delays. Additionally, we prioritize the security of the

captured data and the preservation of privacy by collecting only

aggregated information.

However, our study is not without limitations. One such

limitation is its use in a hospital’s emergency room waiting

area, selected due to the convenience of accessing ground-truth

from the hospital Electronic Health Record (EHR) data. In this

setting, every patient was screened for COVID-19, simplifying

the acquisition of ground truth for our target population

and enhancing our research findings’ reliability. However, the

characteristics and proportion of patients, including those suffering

from COVID-19 and/or other respiratory diseases, differs from

other outpatient settings, potentially introducing bias into our

study. Additionally, our results were validated in only a single

season and setting, constrained by the challenges of deploying

and collecting data across multiple locations and timescales. We

also anticipate variability in the predominant virus strains over

time [e.g., the Delta variant (46)], which may exhibit different

syndromic profiles compared to other SARS-CoV-2 variants (47,

48). Another potential limitation arises from using cough as a

primary indicator as it is not necessarily specific to respiratory

illnesses. Cough based syndromic surveillance will also fail to

capture asymptomatic occurrence and transmission of COVID

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1279392
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Al Hossain et al. 10.3389/fpubh.2024.1279392

FIGURE 4

Gini feature importance for COVID burden estimation models: (A)
modeling total Positive COVID cases and (B) modeling
COVID-positive cases as fraction of the number of people, and (C)

SHAP value for Total Cough feature. Overall, it shows that the
increase in the total cough metric leads to a positive change (i.e.,
increase) in total COVID burden prediction.

cases. Also, the prevalent cause of coughing may vary seasonally

due to factors such as allergens, flu outbreaks, or other respiratory

disease outbreaks, therefore, there will be variations in the

frequency of coughing across different seasons, such as summer and

winter. Furthermore, our present research does not differentiate

between various cough types, such as dry or wet coughs, nor

does it examine the correlation between individuals who cough

frequently and those who do not. Consequently, a multi-year,

multi-location study protocol with a multivariate approach with

other factors and variables, including air quality index, community-

level demographics, comorbidity information and various cough

related classifications, may be necessary to fully develop and

validate cough-based syndromic surveillance.

Our system comprises affordable components, facilitating

its scalability for public health monitoring and multi-location

longitudinal studies. The cough sensing part of our system

(excluding the thermal camera and radar) costs less than 50 USD

in today’s market which lend itself well for potential large-scale

deployment in a developing country scenario. Prior to large-

scale deployment, it is essential to establish a proper cloud-

based infrastructure for monitoring and aggregating data from

these sensors. Additionally, maintaining edge devices pose a

significant challenge, potentially requiring dedicated manpower to

effectively address issues arising from such large-scale deployment.

Geographical diversity may also present challenges in power

and connectivity. However, with the increasing affordability and

power efficiency of edge computing devices and deep-learning

accelerators (49), future deployments of such platforms at scale

are likely to be more cost-effective, even with low power

requirements (e.g., using a battery pack or alternative power

sources). Continuous improvement should also be feasible through

insights gathered from real-world deployments, enhancing the

reliability of our system. Additionally, to integrate our system

efficiently with various governmental bodies, aspects such as data

standardization and interoperability, secure data transmission,

API management, and a continuous feedback collection system

for governmental bodies should be considered. Establishing a

pipeline for training and support is also essential to facilitate

proper integration with these bodies. One such example of how

this type of system can be integrated with governmental bodies

can be found in Valentim et al. (50). This study demonstrates

how a syndromic surveillance platform can be integrated into a

broader information technology ecosystem during a pandemic.

Given that our current Syndromic Logger can collect data in real-

time while maintaining privacy at a more granular level, it has

the potential to enhance any governmental response system in the

future.

6 Conclusion

Based on our findings, we propose the integration of a

sensor-based, contactless, and unobtrusive platform as a valuable

augmentation to existing approaches, such as body temperature-

based screening, in diverse public environments. Our results

demonstrate that sensor-based platforms have the ability to capture
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clinically relevant syndromic signals, specifically the aggregated

cough count. This capability allows us to overcome the limitations

of existing methods which include reliance on manual human

logging and reporting, as well as associated reporting delays. By

embracing the adoption of sensor-based platforms, we can enhance

the effectiveness and efficiency of public health surveillance,

providing a superior solution for detecting and monitoring

public health situations to overcome potential challenges in

the future.
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