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Zusammenfassung

Diese Dissertation behandelt zwei Hauptthemen: Visualisierung von Adaptive Mesh Refinement
Simulationen und topologiebasierte Visualisierung von Skalarfeldern. Adaptive Mesh Refine-
ment ist eine Simulationstechnik die 1984 von Berger und Oliger dilgefvurde. Seitdem

wird diese Technik zunehmend in physikalischen und ingenieurwissenschaftlichen Simulatio-
nen eingesetzt. Adaptive Mesh Refinementaspntiert den Definitionsbereich einer Simulation

als eine Menge regater Gitter bestehend aus Rechteckzellen. Diese Gitter sind in Hierarchie-
ebenen mit wachsender A@flung eingeteilt. Zur Zeit existieren nur wenige Visualisierungs-
algorithmen, die die hierarchische Struktur von AMR Simulationen zur effizienten Visualisie-
rung ausnutzen. Diese Dissertation erweitert einige Visualisierungstechniken mit dem Ziel, diese
Struktur zu nutzen. Ich entwickle eine Methode, um EBsciien ohne “Risse” (Diskontin@iten)

an Ubergangen zwischen Hierchieebenen aus AMR Daten zu extrahieren. Daraufhin betrachte
ich Volume-Rendering von AMR Daten. Indem ich eine AMR Hierarchie homogenisiere, das
heil3t, in Bbcke konstanter Adisung aufteile, entwickle ich einen Ansatz, der eine AMR Hier-
archie interaktiv darstellt. Zur Erzeugung hoch-qualitativer Darstellungen entwickle ich einen
Cell-Projection-basierten Ansatz, der es erlaubt, Volume-Rendering Bilder einer Hierarchie fort-
schreitend zu verfeinern, indem ein Bild hierarchiestufenweise erzeugt wird. Basierend auf mei-
nen Resultaten bei der Isafihenextraktion entwickle ich eirf&-stetige Interpolationsmethode,

die zur Generierung hochqualitativer Bilder verwendet wird. Zum Abschluss meiner Abhand-
lung von AMR Daten entwickle ich ein Framework zum verteilten Rendern von AMR Daten auf
Supercomputern und PC Clustern. Dabei entwickle und vergleiche ich unterschiedliche Vertei-
lungsstrategien.

Im zweiten Teil dieser Arbeit stelle ich Methoden zur topologiebasierten Visualisierung von
Skalarfeldern vor. Untersucht man ein Skalarfeld mit Hilfe von Egfen, so ist es oft schwierig
Isowerte zu identifiziereniif die aussagebftige Isofachen entstehen. Mit Hilfe der Morsetheo-
rie ist es nibglich, kritische Punkte und zugétige Werte zu identifizieren. An kritischen Punkten
andert sich die Topologie einer Isathe: neue Blchenkomponenten entstehergdflenkompo-
nenten verschmelzen, oder das Geschlecht eidhEhkomponenténdert sich (bcher entste-
hen oder verschwinden). Daher ist e8gtich, “interessantes” Is@thenverhalten aufgrund kri-
tischer Punkte aufzufinden. Ich entwickle ein Verfahren, um kritische Wert8Kalardaten auf
reguiiren Rechteckgittern mitigtkweise trilinearer Interpolation zu erkennen. Aul3erdem stelle
ich einen Ansatz vor, mit dem Benutzer das Verhalten vondsb#n mit Hilfe kritischer Punkte
untersuchen&nnen. Des Weiteren benutze ich die kritischen Isowerte zur automatischen Gene-
rierung von Transferfunktioneruf Volume-Rendering Anwendungen. Zum Abschluss meiner
Arbeit erweitere ich das Konzept von kritischen Punkten auf kritische Regionen. Dies erlaubt es,
Regionen mit konstantem Wert zu klassifizieren und meine Methadsrie gbRere Bandbreite
von Daten&tzen zu verwenden.
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Summary

This dissertation deals with two main topics: visualization of adaptive mesh refinement (AMR)
data and topology-based methods for visualization of volumetric data sets. AMR was introduced
in the computational physics community by Berger and Oliger in 1984 and has gained increasing
popularity in the computational physics community. AMR represents a domain as a set of struc-
tured, rectilinear grids at increasing resolution. Despite its inherent hierarchical nature, only few
visualization algorithms exist that directly use the AMR structure for visualization purposes. In
this dissertation | adapt several visualization techniques to make use of that hierarchical nature.
| present an isosurface extraction scheme that allows for the extraction of crack-free isosurfaces
from AMR data while representing each grid at the appropriate resolution. | subsequently con-
sider volume rendering of AMR data. By homogenizing an AMR hierarchy,partitioning it

into blocks of constant resolution, | define a scheme that renders an AMR hierarchy at interactive
speeds. To obtain high-quality volume-rendered visualizations, | develop a cell-projection-based
approach that allows progressive rendering of AMR hierarchies by rendering an image level-
by-level. Based on my work on crack-free isosurfaces, | develof-aontinuous interpolation
scheme, which | use to generate high-quality images. | conclude my work on AMR data by
developing a framework for parallel rendering of AMR data on supercomputers and PC clusters.
| develop and compare different distribution strategies.

The second part of this dissertation introduces methods for topology-based exploration of
scalar fields. When examining a scalar field using isosurfaces, it is often difficult to identify iso-
values where relevant isosurface behavior occurs. Using Morse theory, it is possible to identify
critical isovalues. Critical isovalues indicate isosurface topology changes: the creation of new
surface components, merging of surface components or the formation of holes in a surface com-
ponent. Therefore, they highlight “interesting” isosurface behavior and are helpful in exploration
of large trivariate data sets. | present a method that detects critical isovalues in a scalar field de-
fined by piecewise trilinear interpolation over a rectilinear grid. | then use the resulting list of
critical points to aid users in examining a data set with isosurfaces. | further use critical isovalues
to automatically generate transfer functions for direct volume rendering. | conclude my work by
extending the concept of critical points to critical regions. This allows me to classify regions of
constant value and use my method for a wider variety of data sets.
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Chapter 1

Introduction

Visualization is a crucial part in science and engineering. Since the amount of data collected in
simulations and experiments has grown (and continues to grow) exponentially, powerful methods
for understanding resulting data and gaining insight into underlying natural phenomena are also
of increasing importance. In this dissertation, | deal with the visualization of volumetric scalar
data. This type of data arises in a wide variety of application areas. In medical imaging, sampled
data from computerized tomography (CT) or magnetic resonance imaging (MRI) scan provides
density values within a volume. Simulations in computational fluid dynamics (CFD) compute
scalar values like pressure or density at locations in a volume.

The work on this dissertation started with the visualization of AMR data. AMR is a sim-
ulation technique that was introduced in the computational physics community by Berger and
Oliger in 1984 [7]. A modified technique was introduced by Berger and Colella in 1989 [6].
Since then, the popularity of this technique has grown. Today, it is commonly used in numerical
simulations of a wide variety of scientific and engineering phenomena or processes. Adaptive
mesh refinement aims at combining the simplicity and efficiency of regular, rectilinear grids with
the ability to adapt to changes in resolution normally inherent to unstructured meshes. By repre-
senting a domain as a set of regular, rectilinear grids at increasing resolution, AMR combines the
efficiency of simulations based on regular grids with the ability to adapt to changes in resolution
inherent in simulations based on unstructured meshes. Regions that cannot be represented with
sufficient accuracy by a coarse grid are refined by a set of higher-resolution grids. Recently,
AMR has been used for efficiently simulating astrophysical phenomena [8] that span several
orders of magnitudes and push AMR to its limits.

The inherent hierarchical nature of AMR data lends itself to be used in visualization appli-
cations. However, when the work on this dissertation started, only few visualization algorithms
existed that used this structure. The first goal was to visualize AMR data using direct volume
rendering and isosurfaces. | started by developing a cell-projection-based approach for direct
volume rendering of AMR data using constant interpolation. The goal was to support progres-
sive rendering of AMR hierarchies. A user should be able to start rendering a coarse level of an
AMR hierarchy. Subsequently, contributions from higher resolution level should be incorporated
in the resulting image while providing the ability to view intermediate results. | then used the
piecewise linear method for interpolation within cells to improve image quality. The use of the
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2 Introduction

piecewise linear method was motivated by the fact that it was one of the interpolation methods
used during simulation and that it worked on the original grid. It soon became obvious that a
pure software-based approach was too slow for choosing view points and transfer functions. By
“homogenizing” an AMR data set.e., partitioning it into blocks of constant resolution, it was
possible to render individual blocks using an arbitrary hardware-accelerated volume rendering
scheme. | implemented a new scheme that simulated my cell-projection approach in hardware at
a lower quality. | aimed to use the AMR hierarchy to achieve interactive frame rates by rendering
only parts of an AMR hierarchy.

| then considered the extraction of isosurfaces. AMR data is commonly given in cell-centered
format while visualization methods like marching cubes (MC) expect vertex-centered data. Re-
sampling AMR grids to vertex centered format leads to “dangling” nodes and results in cracks in
an extracted isosurface. Rather than fixing the cracks, which are caused by resampling, | decided
to avoid the resampling step completely. The fundamental idea was to use the original samples
in an isosurface extraction scheme. Within single grids of an AMR hierarchy, this is possible by
considering the locations of the samples as vertices of a grid that is “dual” to the original grid.
Using dual grids leads to gaps between hierarchy levels. By developing a procedural scheme to
fill these gaps with “stitch cells” and extending the case table of marching cubes, | was able to
extract crack-free isosurfaces from AMR data while fully considering the hierarchy and automat-
ically reacting to changes in resolution. The piecewise-linear method used during the simulation
is not continuous. This leads to artifacts in volume rendered images. By defining interpolants
for all cells produced by my grid stitching scheme, | was able to use dual grids and stitch cells to
produce high-quality volume rendered images.

In certain instances, for example while debugging, constant interpolation is well suited. |
developed a framework that uses an efficient re-implementation of the cell-projection volume
renderer to render AMR hierarchies on supercomputers and PC clusters. | implemented and com-
pared several distribution strategies. The aim was to provide a framework for testing distribution
strategies and determine whether PC clusters are a viable alternative to hardware-accelerated
methods.

The second part of this dissertation introduces methods for topology-based exploration of
scalar fields. When examining a scalar field using isosurfaces, it is often difficult to identify
isovalues where relevant isosurface behavior occurs. Topological methods have proved their
value in vector field visualization and initial work on topology-based methods for scalar fields
looked promising. Topology studies properties of a surface that do not change under deformation,
like number of components and the genis.,(the number of holes). Morse theory provides
ways to detect critical points where the topology of an isosurface changes. When considering
large data sets, critical isovalues with their associated topology changes are certainly of interest
to a user. The goal was to detect these topology changes for isosurfaces extracted by marching
cubes. The criteria for critical points in Morse theory are based on the first and second derivative
of an analytical function. However, trilinear interpolation is o6l§-continuous, thus preventing
the use of the original criteria from Morse theory. By considering alternate definitions based on
geometric properties of critical points, used by other researchers to detect critical points for linear
interpolation on tetrahedral meshes, | was able to detect critical points for piecewise trilinear
interpolation. By using a variant of MC that preserves that topology | am able to provide a user
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with information on a MC isosurface. It is possible to zoom in on critical points and examine
topological changes in detail. It turned out that it is also possible to use the resulting list of
critical isovalues for automatic transfer function design.

Morse theory defines critical points. However, in real data sets, regions often exist that as-
sume a constant value. In this case, it is necessary to classify whole regions. For example, a
torus can form around a polyline constituting a local minimum. | extended the concept of critical
points to critical regions and developed an approach to classify critical regions. This enables me
to handle a larger variety of data sets. The contributions of this dissertation are:

A hardware-accelerated volume rendering method for previewing AMR data [80]

A scheme for extracting crack-free isosurfaces from AMR data [81, 82].

A progressive, high-quality, cell-projection-based volume rendering scheme for AMR data [80]
that utilizes stitch cells to define a consistent interpolation scheme [83].

A framework for testing distribution strategies for parallel rendering of AMR data, and the
comparison of various distribution strategies [84].

¢ A scheme to detect critical isovalues for piecewise trilinear interpolation [85].
e The generalization of this scheme to the detection of critical regions [86].

The remainder of this dissertation is structured as follows: Chapter 2 describes the theoretical
foundations of my work. It gives a short introduction to topology, and it describes different data
formats for volumetric scalar data. Subsequently, | examine foundations of volume rendering
and isosurface extraction. An emphasis is put on the description of the marching cubes method,
as my work on topological analysis of scalar data depends on a thorough understanding of the
behavior of this standard visualization algorithm. Chapter 2 concludes with a description of the
format of Berger-Collela AMR data. Chapter 3 describes previous work on visualization of AMR
data and topology-based methods for the visualization of scalar data. Chapters 4 and 5 deal with
visualization of AMR data. Chapter 4 describes my crack-free isosurface extraction method, and
Chapter 5 various volume rendering schemes for AMR data. Chapter 6 introduces my methods
for detecting critical points and regions for scalar fields and presents ways to use them when
visualizing volumetric data. Chapter 7 provides conclusions and suggests possible avenues for
future work.
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Chapter 2

Theoretical Foundations

2.1 Topology

2.1.1 Introduction

Topology studies properties of a shape that do not change under deformation [34, 35, 87]. For-
mally, topology is defined via the concept@ien sets which are defined as follows:

Definition 1 (Topological Space)A pair (X, ) consisting of a seX and a collectionO of
subsets (called open sets)Xfis a topological space if the following axioms hold fo®:

Al) Arbitrary unions of open setse., sets inO, are openj.e., in O.
A2) The intersection of two open sets is open.
A3) The (trivial) subsetgs and X are open.

O is thetopology of the topological spacéX, O).

Usually, one omits the topology in notation and simply referskt@s the topological space.
Informally, topology deals with connectedness. The open seXsaéfine the concepts of neigh-
borhood and connectednessXn This fact is illustrated using metric spaces as an example.

Definition 2 (Metric Space) A metric space is a pair (X, d) consisting of a sek and a function
d: X x X — R, ie., the metric, with the following properties

M1) d(z,y) > Oforall z,y € X, andd(z,y) = 0 if and only ifx = y.
M2) d(x,y) = d(y,z) forall z,y € X.
M3) d(x,z) < d(z,y) + d(y, z) forall z,y, 2 € X (“Triangle Inequality”).

Definition 3 (Topology of a Metric Space) Let (X, d) be a metric space. A subsgtC X is
open if for everyr € V there exists an > 0 such that the “closed-ball” D.(z) := {y €
X|d(z,y) < €} aroundz lies completely withirl/. Thetopology of the metric space (X, d) is
the setO(d) of all these open sets of.
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6 Theoretical Foundations

Property M3 of the metric allows us to conclude that for each locatiafith d(z,y) < € there
exists a smaller closettball that is completely contained in the closetall aroundz. This is
analogous to the situation R with the Euclidean norm. In a metric space, the open sets are all
sets that contains anball.

A function f is continuous if it preserves topologie., open sets, leading to the following
definition

Definition 4 (Continuous Function) Let X andY be topological spaces. A functigh: X —
Y is continuous if the preimage of an open set¥nis an open set irX.

For metric spaces this definition is equivalent to the commonly known definition from analysis:
“For eache > 0 there existsa > 0 ...”

Homeomorphisms are one way to draw an equivalence between two shapes that share equal
connectivity. Two objectsi and B are homeomorphic (topologically equivalent) if there is a
mapping {.e., a function) f that transforms (deforms) into B satisfying the following require-
ments:

H1) F is onto (surjective),i.e., for each location onB there exists a location oA that is
transformed to it.

H2) F is one-to-one (injective),i.e., each point omd maps to a unique point oB
H3) F is bicontinuous, i.e., F' is continuous in both “directions.”

Properties H1 and H2 ensure that there is a unique correspondence between eachaimt on
each point onB. No “overlap” exists. Property/ 3 ensures that one cannot tedrjoin sections
of A together, poke holes intd, or seal up holes il. For example, a torus is topologically
equivalent to a coffee cup. A torus can be deformed into a cup by pulling one end of the torus out
and forming it into a cup. (The hole in the torus becomes the handle of the cup.) A sphere and
a torus, on the other hand, are not topologically equivalent. It is not possible to deform a sphere
into a torus without tearing it since it does not have a hole like the torus.

In computer graphics and visualization objects are commonly represented as surfaces. From
a topology viewpoint, these surfaces arenanifolds,i.e., they are locally euclidean and topo-
logically equivalent to a disk. In generaldamanifold is locally homeomorphic to the open unit
ball in R9. A property holds locally when for each point on the manifold a neighborhioeda
connected set of points with a maximum distance, @xists for which the property holds. The
open unit ball inR¢, indicated ag(?, is a ball of radius one, and is defined as

U= {x e R|z]| <1} . (2.1)

Another way to define topological equivalence is homotopy equivalence. Differing from a
homeomorphism, homotopy equivalence disregards the number of dimensions. Two shapes are
homotopy equivalent if they have the same number of components and holes. For example,
a circle and a solid torus are homotopy equivalent (the circle is a deformation retract of the
torus [34]) even though a circle is a 1-manifold and a solid torus is a 3-manifold.
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2.1 Topology 7
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Figure 2.1: Classical example illustrating Morse theory. (a) An “upright” torus, with a height
function defined as distance from the base plane, has four critical points. (b) At each critical point
the topology of the contour obtained by intersecting the torus with a horizontal plane changes.
(c) A Reeb graph encodes critical points and corresponding topological changes.

2.1.2 Morse Theory

Morse theory [34, 64] relates global topological properties of a manifold to differential critical
points of a smooth real-valued functigh Since values from this function are interpreted as
height, it is often referred to dsight function. Consider al-manifold M and a differentiable
real-valued functiory. By definition,M is locally topologically equivalent to a open unit ball in
R and one can choose a local orthonormal system of coordimatés< i < n. At a critical
point x on the manifold, the gradient gf with respect to a local coordinate system vanishes,

ie.,
_(9f of of _
Vix)= (5’%1 (x), s (x),..., B (X)) =0. (2.2)
The critical point type can be determined from the signs of the eigenvalues Hethian
ORI CN
H(x) = : : . (2.3)
o () - S

Morse theory only considers isolatedn-degenerate critical points. A critical pointx is non-
degenerate if all eigenvalues of the Hessla(x) differ from zero. A non-degenerate critical
point x can be classified based on the signs of the eigenvalues of the Hé&stan When all
eigenvalues are positive is a minimum. When all eigenvalues are negativis a maximum.
Otherwisex is a saddle.

The classical example for Morse theory is considering the surface of a torus standing on its
side, see Figure 2.1(a). The real-valued height function of a point on the torus is defined as the
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8 Theoretical Foundations

Figure 2.2: Components of a torus below a clipping plane. (Images courtesy of John C. Hart)

measured distance from the “base plane.” This function implies four critical points: a minimum

at the lowest point of the torus; two saddles at the lowest and highest points of the inner ring; a
maximum at the highest point of the torus. Morse theory examines the topology of a contour at

a certain height. The contour is the intersection of the shape with a plane consisting of all points

p that have equal heiglit with respect to the height functione., all points wheref (p) = h

holds. The fundamental statement of Morse theory is that the topology of this contour only
changes at heights of critical points, see Figure 2.1(b). For the torus in the example this contour
changes as follows: at the minimum, a contour appears; at the first saddle, this contour splits into
two separate components; at the second saddle these components merge; at the maximum, the
contour vanishes.

A Reeb graph, see Figure 2.1(c), encodes topological changes of contours at a certain height
and is obtained by associating two poiptandq on the shape when they belong to the same
component of the contour at a certain height. Edges in the resulting graph correspond to con-
nected components on a cross section at a certain height. Nodes in this graph correspond to
critical points. A Reeb graph is thepological skeleton of a surface.

When the surface of the torus is clipped with a plane at a certain height, the topology of
the “clipped” component changes only at the critical points. Hart [34] illustrates these changes
by “dunking” a torus-shaped donut into a cup of coffee and considering the donut component
below the coffee surface, see Figure 2.2. Initially, the clipped torus is the “empty set.” There
is no component below the clip plane. At the minimum, a new component that is topologically
equivalent to a disk appears, see Figure 2.2(a). At the first saddle this component changes into a
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Figure 2.3: A terrain data set associates each location in a domain with a scalar value, inter-
preted as height. Contouris., curves connecting points of equal height, are a commonly used
visualization technique. (Image courtesy of Kraus and Ertl [46])

cylinder, see Figures 2.2(b) and 2.2(c). At the second saddle the clipped component changes into
a “pierced torus,” see Figures 2.2(d) and 2.2(e). At the maximum the punctured torus is closed.

For the torus, the choice of a height function is arbitrary. Different choices for height func-
tions lead to different configurations of critical points and different Reeb-graphs. (Imagine, for
example, a lying torus instead of a torus standing on its side.) There are surfaces for which a
unique choice of a height function exists. 2Ad terrain data set, for example, is defined via
a function that assigns an elevation to each location 2fdadomain, see Figure 2.3. Thus,
the obvious choice for a height function is the function defining the terrain itself. For terrain
data, contours are a well-known visualization technique and are commonly used in geographical
maps. Again, contour topology changes only at critical points, points where the gradient
vanishes. The type of topology change depends on the type of critical point, determined by the
sings of the eigenvalues of the Hessian: at a minimum, a new component appears; at a maximum
a component vanishes; at a saddle components either merge or separate.

Morse theory can be generalized to higher dimensions. A three-dimensiesiied¢alar field
(or volume data set) can be treated as height fielddrspace defined on3ad domain. Contours
correspond to isosurfaces which are a common visualization technique for volumetric data, see
Section 2.2.5. It is possible to determine isosurface topology based on the relationship of the
isovalue (.e., height value) with respect to values of critical points. Contour behavior at minima
and maxima is equivalent to tied case. Contour behavior at saddles can differ. In addition
to merging and separating with other contour components, a contour component can change its
genus at a saddlée., a hole in a surface component can appear or vanish.

Banchoff [4] observed that while Morse theory defines critical points via differential prop-
erties they are also defined by inherent geometric properties. His approach considers a height
function ¢ which is obtained by choosing a vect®rand projecting points of the surface onto
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@) (b) (€) (d)

Figure 2.4: Classifying a point on a smooth surface by considering a “small circle” on the
tangent plane. Point is denoted by a small “x” in the image. (Images courtesy of Banchoff [4])

that vector. The height function for the example of the torus standing on its side on a plane is
obtained by choosing the plane normalgad-or a terrain model, given on a domain within the
xy-plane £ is collinear with thez-axis.

For a smooth surface, it is possible to classify a pgintoncerning a height functiog
by considering a “small disc neighborhood” and a “small circle” aropnoh the surface and
their relation to a horizontal plané.e., a plane of equal height, through The small disc
neighborhood consists of all points on the surface whose distansastemaller than a fixed
distance. The small circle is the boundary of the small disc neighborhood. At an ordinary (or
regular) point, see Figure 2.4(a), the tangent plang &t not horizontal. A horizontal plane
throughp intersects the small circle exactly twice and partitions the small disc neighborhood
in exactly two components. At a critical point, the tangent plane is horizontal. At a minimum
or a maximum, see Figures 2.4(b) and 2.4(c), the small circle does not meet the tangent plane
at all. All points of the small disc neighborhood (with the exceptiomppfie below or above
a horizontal plane. At a saddle, see Figure 2.4(d), the small circle intersects the horizontal
plane throughp more than two times (four times in the figure) and partitions the small disc
neighborhood into more than two regions.

On a polyhedral surface, critical points can only occur at vertices of the shape. For a poly-
hedral surface, the small disc neighborhood of a pqinan be defined as Stay), i.e., the set
of all vertices, edges and faces which inclugleThe small circle corresponds to the polygon
boundary of Stdky). In analogy to the smooth case, vertices are classified based on the number
of intersection points of the boundary polygon with a horizontal plane thrqugh

Edelsbrunneet al. [19] used the criteria developed by Banchoff for piecewise linear functions
defined on triangulated domains. By defining thever star Stafq) as the portion of Sté«)
lying below (or on) the horizontal plane throughand theupper star Starq) as the portion of
Starq) lying above (or on) the horizontal plane throughit is possible to distinguish between
critical point types based on the number of “wedges®.,(connected components consisting of
triangles) in Staiq) andStar(q). If Starq) = Starq) thenq is a minimum. If Stafq) = Starq)
thenq is a maximum. If neither Stéq) nor Star(q) equals Stdky), thenq is a regular point if
each consists of exactly one wedge. Otherwisis saddle with a multiplicity based on the
number of wedges in Staf) andStarq). Edelsbrunneet al. [18] subsequently extended their
definitions to3-d data on tetrahedral meshes.
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(@) (b)

Figure 2.5: Structured versus unstructured domain. (a) In a structured domain, an inherent re-
lationship between sample positiang., samples are located at fixed distances with respect to
another, exists. (b) In an unstructured domain, sample positions are arbitrary.

2.2 Foundations of Volume Visualization

2.2.1 Trivariate Data

A scalar fieldF' is a function that assigns a scalar valued quantity, like temperature, or pressure,
to each location in the domaib C R?, i.e.,

F:D—R.

In physics and mathematics, a scalar field is usually a function that is often a solution to a set
of differential equations. In scientific visualization, data is commonly given as a set of samples.
These samples can result from measurementsmedical CT or MRI scans, or are obtained by
numerical simulation. In numerical simulation, equations describing a physical phenomenon are
discretized and a numerical approximation to the analytical solution is computed.

Each samples; has a positiorp; and an associated function valug Values at arbitrary
positions in the domain are obtained hyerpolation. The sample domain can be classified by
considering sample positions, see Figure 2.5. hr@ctured domain, an inherent relationship
between sample positions exists. For example, samples are located within a fixed distance from
each other, see Figure 2.5(a). In the structured case, sample positions can be given implicitly
enabling very compact data storage. Only sample values and high-level information about po-
sitions, e.g., spacing, need to be stored. Structured domains also allow for quickly locating of
a sample, commonly in constant time. In unstructured domains, see Figure 2.5(b), sample po-
sitions are arbitrary. Locations must be stored explicitly along with sample values. Searching
samples for a given location is computationally more expensive and is commonly implemented
employing auxiliary space-partitioning data structures.

Data can be given in form dfcattered data, where no further “connectivity” information,
besides sample position, is given. (Foley and Hagen [22] surveyed methods used in scattered
data interpolation.) Alternatively, data is given on a mesh, where a neighborhood relationship
between samples is established by a grid consisting of cells that connect samples. Figure 2.6
shows commonly used cell types féid meshes. The cuboid cell, see Figure 2.6(d), is a special
case of the hexahedral cell, see Figure 2.6(e).
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@) (b) () (d) (e)

Figure 2.6: Cell types commonly used in meshes: tetrahedron (a), pyramid (b), triangle prism
(c), cuboid (d), and hexahedron (&}., a more general form of a cuboid.

Figure 2.7: 3-d unstructured mesh. (Image courtesy of CFD Research Corporation
http://www.cfdrc.com)

Meshes can be structured or unstructured. Unstructured meshes, see Figure 2.7, commonly
use tetrahedral cells, but can also use any of the cell types shown in Figure 2.6. This grid repre-
sentation requires more storage space than a structured grid, as both sample positions and grid
structure need to be stored.

Structured meshes are composed of hexahedral cells. Assuming that samples are accessible
via three indicegi, j, k), cells are given implicitly by connecting samples with adjacent indices
in each direction. The domain can be either structured or unstructured. Structured meshes on a
structured domain require the least storage since both sample positions and grid cells are given
implicitly.

Interpolation over meshes is done by specifying an interpolant for each cell type. The value
at an arbitrary position is interpolated by locating the cell that contains that position and then
computing the interpolated value from the values associated with the vertices of that cell. Finding
a cell for a given position is easy for structured meshes on a structured domain and can be usually
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performed in constant time. In an unstructured mesh, it is more difficult to locate a cell that
contains a given position.

2.2.2 Interpolation
Introduction

In a mesh, values are interpolated by locating the cell containing a point and then computing
the interpolated value as a combination of the values at the vertices (and additional locations
for higher-order cells). Distinguished positions in a cell, where values are given, are referred to
asnodes, and associated values are calledial values. An interpolation scheme for a cell is
commonly given by specifying a set éhsis functions. For each node, its corresponding basis
function assigns a weight within the interval 1] to each location within the cell. This weight
specifies the “contribution” of the nodal value to the interpolated value at that particular location.
If C'is a cell withn vertices, andB;(x) is the basis function belonging to nodéaving an
associated nodal value valug then an interpolated valugx) at a pointx within the cell is
computed as

I(x) = Z Bi(x)v; . (2.4)

At each positionx within a cell, all basis functions are positive and sum to ane, Vx €

C : Y ,Bi(x) = 1. Basis functions are often given ferandard elements. The standard
element for a cuboid cell, for example, is the unit cube. Interpolated values for arbitrary cells are
computed as follows: First, coordinates of a point within the cell are transformed to coordinates
within the standard element corresponding to that cell. Subsequently, an interpolated value is
calculated within the standard element. Considering, for example, univariate linear interpolation,
the standard element is the intery@l1]. Nodal values are, at position0 andw, at positionl.

An interpolated valud (z) for a positionz € [0, 1] within the standard element is computed as

I(z) = (1 — z)vg + zvy (2.5)
using the basis functions
By(x) =(1 —z) and (2.6)
Bi(z) =z .

Interpolating in arbitrary “cells,” defined by nodeg and z;, is achieved by computing the
interpolation coordinatewithin the standard element, obtained as

T — X
t=

2.7)

1’1—1’0'

The resulting coordinate is then used to compute an interpolated value using the standard element
functions,i.e.,
I(t) = (1 — t)U() + tv,. (28)
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Figure 2.8: Standard element for a linear tetrahedron.

Linear Tetrahedron

In a linear tetrahedron, values are obtained by linear interpolation from nodal values. Figure 2.8
shows the standard element for a linear tetrahedron. The basis functions for this standard element
are

By(z,y,2) =1 —x—y— 2z,
B —
1($,y72) x, (29)
By(z,y,2) =y, and
Bs(z,y,2) =z .

Assuming that a nodal value has an associated positipn, each positiorp within a tetra-
hedron can be expressedtasycentric combination of the node positiong;, defined as linear
combination

b= ﬁO(xv Y, Z)pO + ﬁl(‘rv Y, Z)pl + ﬁQ(xv Y, Z)pQ + ﬁ?)(‘rv Y, Z)pS . (210)

The ; are thebarycentric coordinates of p and are equivalent to the basis functidbs Within

a tetrahedron, each barycentric coordinate:, y, z) has a value between zero and one and the
sum of all barycentric coordinates equals one. For arbitrary tetrahedra, the barycentric coordinate
Gi(x,y, z) of a positionp can be computed as the fraction of the volume of the tetrahedron
obtained by replacing; with x with respect to the volume of the complete tetrahedron defined

by thep;, e.g.,

Vi
By = P1P2p3‘ (2.11)
VxP1P2Ps3
The volume of an arbitrary tetrahedr@his
To Yo 20 1
Loy g1z 1
\Vol(T) = = 2.12
(T) 6|r2 y2 22 1|7 ( )
r3 Y3 23 1
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@) (b)

Figure 2.9: On boundary faces, linear interpolation within a tetrahedron reduces to linear inter-
polation within a triangle. Interpreted as “height,” all interpolated values lie on a plane (a). Thus,
values at an arbitrary position (denoted by a solid disc) within the triangle can be obtained by
linear interpolation between the two edge values lying on a line passing through that position (b).

wherex;, y; and z; are the coordinates of thieth vertex defining the tetrahedron. Since the
determinant is linear with respect to each row, thef the barycentric combination are linear
with respect to the location of. As a result, an interpolated value is linearly dependent and
can be expressed as

I(X) = AZEO + BZL’l + O.I‘Q + D i (213)

whereA, B, C' and D are real coefficients.

Interpolated values can be thought of lying osrd-hyperplane. On boundary face triangles,
interpolation reduces to linear interpolation within a triangle, see Figure 2.9(a). (Which can
be defined analogously via a barycentric combination of points in a triangle. In fact, the same
concept holds for arbitrary simplices.) Interpreted as “height,” all interpolated values lie on the
plane defined by the three nodal values. Along edges, linear interpolation is used. Because
all interpolated values lie on a plane, values at an arbitrary pogitaithin the triangle can be
obtained by interpolating linearly between two edge values lying on a line passing thposegh
Figure 2.9(b). Within a tetrahedron, interpolated values can be obtained by linearly interpolating
between values on boundary faces lying on an arbitrary line passing thppughis property
is commonly used by cell-based volume rendering schemes operating on tetrahedra. During
cell-projection, for example, see Section 2.2.4, it is possible to interpolate values linearly when
scan-converting boundary triangles of a tetrahedral cell. Values within the cell can be obtained
by linearly interpolating between values at front- and back-face of a tetrahedron.
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Figure 2.10: Standard element for trilinear cuboid with vertex numbering scheme.

Trilinear Cuboid

The standard element for the trilinear cuboid is the unit cube, see Figure 2.10. The basis functions
for the trilinear cuboid are

Bo(z,y,2) = (1—-2)(1—-y)(1-2),
Bi(z,y,2) = z(1—y)(1-2),
By(z,y,2) = xy(l—2z),
Bi(z,y,2) = (1—2)y(l—2),
By(z,y,2) = (1—-z)(1-y)z,
Bs(z,y,2) = z(1—-y)z,
Bgs(z,y,2) = xyz,and

Br(z,y,2) = (1—-xz)yz.

Coordinates within an axis-aligned cubqi = (z/,v/, 2'), wherex’ € [xo, z1], ¥ € [yo, y1],
z' € |20, z1] can be mapped to the standard cube by the normalizatien;i:ﬁg, y = gljzg
z = ﬁ General hexahedral cells can be mapped to the unit cube using linear transformations.
Trilinear interpolation is equivalent to a series of subsequently applied linear interpolation
steps. Starting in-direction, values along each of the fouparallel edges are obtained by linear
interpolation. Subsequently, values on the tyeeplanes are obtained by linearly interpolating
in y-direction between the two values at the edges. (As a result, trilinear interpolation reduces
to bilinear interpolation when restricted to a boundary face.) Finally, a value within the cube is
obtained by linearly interpolating alongraaxis-aligned line between the two values on jhe
boundary planes. Any order in which these interpolations are performed yields the same result.
Trilinear basis functions anensor product functions of linear basis functions.
Differing from linear interpolation in a tetrahedron, trilinear interpolation reduces only to
linear interpolation when axis-aligned directions are used. One cannot just linearly interpolate

between two values at intersection points of a line with the cell's boundary faces, as in general
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Figure 2.11: Visualization of scalar volume data using a cutting plane. Using a color map each
point on the plane is colored according to the scalar value at that position.

this approach yields incorrect results. Correct results are only obtained when interpolating along
axis-aligned lines.

2.2.3 Visualization Methods

Volumetric data is usually visualized using one of three fundamental visualization techniques:

Cutting Planes Using acolor map, a color is assigned to each scalar value. The domain of the
scalar field is intersected with a plane, and each point on that plane is displayed in the color
associated with the scalar value at that location, see Figure 2.11. In the further course of
this work, cutting planes are not considered.

Direct Volume Rendering Using atransfer function, optical properties (emission/color, absorp-
tion/opacity,etc.) are assigned to each scalar value. Subsequently, a viewpoint is chosen
and a resulting image is rendered.

Isosurface extraction A surface connecting all locations where the scalar field assumes a cer-
tain isovalue is extractedj.e., f~'({v}) is computed and displayed.

2.2.4 Direct Volume Rendering
Introduction

Direct volume rendering visualizes volumetric scalar data sets by first assigning optical proper-
ties to scalar values usingtansfer function or color map and rendering a resulting image from

a given viewpoint. One can classify volume rendering methods by their underlying illumination
models {.e., the “optical properties” of transfer functions) and by their operatioiniage or

object space. Two illumination models are widely used in volume rendering: hh&orption

and emission light model described by Max [62] and the Phong-based light model introduced by
Levoy [51].
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Figure 2.12: The absorption light model: A slab with a base ardaanfd a thicknesgs.

Image generation is performed in image or object space. Image-space algorithms, including
the commonly used ray casting algorithm, see Sabella [73], operate on pixels in screen space as
“‘computational units,i.e., they perform computations on a per-pixel basis. Object-space meth-
ods, like cell projection, see Ma and Crockett [58], operatg-ongrid cells. Another example
for an object-space algorithm is splatting, see Westover [89]. Hybrid-approaches working in both
image and object space exist. Volume rendering using the shear-warp factorization, see Lacroute
et al. [49] and Lacroute [48], is the most prominent example.

Optical Models

Max [62] surveyed light-models used for direct volume rendering. The absorption and emission
light model described in that paper is commonly used in scientific visualization. To understand
the absorption and emission light model, one has to understand its componeatsptipéon

light model and theemission light model. All models are described in terms of achromatic light
using only luminance information. Color is added by sampling luminance for discrete spectral
colors. Even though physically inaccurate, most volume rendering approaches specify three
samples (a red, a green, and a blue component) for each color. They furthermore specify one
achromatic opacity or transparency component, thus assuming that absorption is uniform for all
colors/wavelengths.

The absorption light model assumes that a medium is filled with cold, perfectly black parti-
cles. Theparticle density p specifies the number of particles per unit volume in the medium. For
simplicity, it is assumed that all particles are identical spheres with a radiudfaine considers
a small cylindrical slab with a base aréaand lengthAs, see Figure 2.12, this slab has a volume
of EAs and containsV = EAsp particles. Each particle has a projected ared ef 72 on the
cylinder base. If the slab lengths is sufficiently small, it is unlikely that particle projections on
the base overlap. Consequently, the area of the base overlapped by particles can be approximated
asNA = FEAspA. Thus, the fraction of occluded Iigl%i, which is equivalent to the overlapped
fraction of the base area, is given as

Al EAspA

7 7 = —AspA . (2.14)
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Occlusion reduces the flux of light, indicated by the negative sigh bin the equation. Ag\s
approaches zero, the probability for overlap of particle projections also approaches zero. The
approximation of Equation 2.14 becomes exact when using the differential equation

# = —dsp(s)A , (2.15)
which can be rewritten as
T —p(s)Al(s) = €(s)I(s) . (2.16)
The solution to this differential equation,
I(s) = lyexp (—/ e(t)dt) , (2.17)
0

gives the intensity at parameter valualong the ray./; is the “background intensity/.e., the
intensity ats = 0. The “observer” is located at parameter vall*e> 0 along the ray and
perceives an intensity df{ D).

The emission light model assumes that particles in the medium are glowing and completely
transparent. Particles only add light to a ray through the medium. Each particle glows with
an intensity ofC' per unit projected area. Its projected aréaspA contributes a glow flux of
CEAspA to the base arefr, adding a flux olCpAAs. As As approaches zero, the differential
equation

U Os)o(s)A = Cls)r(s) = gls) (2.1
results. The terng(s) = C(s)7(s), calledsource term, specifies the added flux. By modifying
this term, it is possible to include additional effect as, for example, reflection, see Max [62]. The
solution to this differential equation is

I(s) =1y + /9 g(t)dt . (2.19)
0

“Real” particles occlude light as well as creating light. The corresponding differential equa-
tion is the combination of Equations 2.16 and 2.18 and is given as

% =g(s) —7(s)I(s) . (2.20)

Max [62] derived the solution to this equation as
D
I(D) = I,T'(D) —|—/ g(s)T"(s)ds , (2.21)
0

where

T/(s) = exp (— / ’ T(x)dx> (2.22)
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is the transparency between parameter valaad the “observer” located at parameter value
along the viewing ray.

The commonly usegarticle model is based on identical spherical particles and uses a source
termg(s) = C(s)7(s). In volume visualization, the glow intensity(s) and extinction coeffi-
cientr(s) are chosen according to a scalar value at the position in the data set associated with the
parametes. This choice is based on a transfer function that maps scalar values to valdes for
andr. Instead of specifying an extinction coefficienin the transfer function, it is common to
specify and use an opacity valués). Opacity specifies the percentage of light that remains af-
ter a ray has passed through a layer of material of unit thickness having an extinction coefficient
7(s). Thus, this opacity value(s) is defined as

afs) =1—exp(—7(s)) . (2.23)
The extinction coefficient can be obtained from the opacity by
7(s) = —In(1 — a(s)) . (2.24)

If one assumes constant glow (or coléf)and opacityx (implying a constant extinction coef-
ficient 7) along a ray segmenti.§., a continuous part of the ray) spanning a parameter interval
[to, 1], values for the integrals in Equation 2.22 and Equation 2.21 can be obtained analyti-
cally. Analogously tdl”(s), the transparency between the observer and a positadang the

ray segment/ ., is defined as transparency between segment start parametet a position

s € [to, t1]. This transparency can be obtained analytically using

Tsegs) = exp (_ /t: Tdk;) = exp(—7(s —t)) = (exp(—T))s’tO

=exp (ln(l — a))sito = (1 — acen)®™™
The opacity of the complete ray segment is calculated as
aseg= 1 — Tgeft1) =1 — (1 —a)70 . (2.26)

Using Equation 2.21, the color (intensity) of a ray segment can be computed as

(2.25)

tout t1
Cseg= CTTéeqs)ds = CT/ Tsed 5)ds

tin to

=—Cln(l — a) /ttl(l _ Oé)s_tods _ C'ln(1 Iﬂ(()gl)(_l ;)a)h—to) (2.27)

When combining contributions of two adjacent ray segments having constant €glarsl
C and constant opacities, anda;, the combined transparency is computed by

to t1 t2
TCombined= €XP (/ T(k)dk) = exp (/ Todk +/ Tldk)
to to t1

t t2 2.28
=exp (/ Todk) exp (/ Tldk) = Tsegdt1)Tseqi(t2) ( )
to t1

=(1 — asego) (1 — arsegy) -
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(One assumes that SegO0 ranges figro ¢; and Seg1l front; to ¢,.) The combined opacity of
the segments is

QCombined= 1 — (1 - aSegO)(l - aSeg]) = Qrsegot (1 - OZSegO)OZSegl- (2-29)

The combined color (intensity) is computed as

Ccombined= CSegO+ (1 - OéSegO)OSegl‘ (2-30)

(This is equivalent to compositing pixels using colors with pre-multiplied alpha values, see Porter
and Duff [72].)

If one considers arbitrary functions along ray segments, it may not be possible to evaluate
the integrals in Equation 2.21 analytically, and it becomes necessary to use numerical approx-
imations. The simplest numerical approximation for an integral is the Riemann sum, defined

as
D n
/ h(z)dx ~ Z h(z;) Az
0 i=1

The interval from zero taD is split inton segments of equal lengthz = 2. Within each
segment, a sample location € [(i — 1)Az,iAz| is chosen. The integral is approximated
assuming thak has a constant valug z;) within the complete interval. If one considers a whole

ray and approximate all integrals in Equations 2.21 and 2.22 using the same sample positions,
the Riemann sum is equivalent to splitting the ray intsegments and assuming constant color
and opacity within each segment. An approximation for the transparency between the observer
and a sample location is

i—1

T(;ppT’OLU( ) = H(l - aSamplE(Sj))Am . (231)

j=0
The intensity of the whole ray is given as

i—1

approz Z C 51 Si H( aSamplésj))Ax ) (232)

j=0

where
Ax

asampidsi) = 1 — (1 — a(s;))
This is equivalent to compositing the samples. It is possible to choose more complicated func-
tions as source term. Levoy [51] creates the impression of surfaces within a volume by using
the gradient as “surface” normal in a Phong-based shading model. Alternative light models are
evaluated analogously to the particle model. Ray segments are usually combined using the same
equations as abovée., by compositing samples. Light models only differ in the way in which
intensity and opacity for a single segment (or sample) are computed.

(2.33)
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Figure 2.13: Projection types commonly used for direct volume rendering. For orthographic
projection all rays are perpendicular to the image plane (a). For perspective projection all rays
originate in an eye-point are are traced through pixels in the image plane. (b)

Ray-casting

Ray casting generates an image on a per pixel basis. For each pixel of the resulting image,
one or more (if oversampling is used) rays are casted into the volume while evaluating a light
model along each ray. Two projection types are commonly use@rthographic projection,

rays are perpendicular to the image plane. p@gpective projection, a viewpoint is given in
addition to the image plane, and rays are then traced from this viewpoint through each pixel
of the image plane. As indicated in the previous section, evaluating the light model along a
ray is usually done by replacing the integrals in the equation describing the light model by the
Riemann sum approximation. Samples are placed uniformly along a ray, see Figure 2.14(a),
partitioning the ray into segments. Within each ray segment, constant optical properties are
assumed and intensity and opacity are computed. Individual ray segments are combined via
compositing, see previous section. An important consideration for ray casting using uniform
sampling is the distance between two samples. The necessary distance depends on the frequency
of the “signal” along the ray, which in turn depends on cell size and additionally on the transfer
function. For low-frequency transfer functions, one sample per cell is sufficient. Sample spacing
should be equivalent to the radius of a sphere inscribed in the cell. For rectilinear cells this radius
is equivalent to the smallest cell dimension. In general, it is beneficial to specify the sampling
distance in terms of the radius of the inscribed sphere, as it makes a specification of a sampling
rate more independent from the considered grid. High-frequency transfer functions may require
more than one sample per cell.

Under certain circumstances a ray should be subdivided in segments that span only a single
cell instead of segments of constant length. For example, when constant interpolation assigns
one value to all locations in a cell, a light model can be evaluated analytically within individual
cells. In this case, an enumeration of cells along a ray is desired, see Figure 2.14(b). A cell
enumeration can be computed by extending Bresenham’s algorithm, seesfaldg1], to the
3-d case.
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Figure 2.14: Ray casting evaluates the light model along a ray traced through a pixel. Commonly,
samples are spaced uniformly along a ray (a). Variations exist that generate an enumeration of
all cells along a ray (b). (Images courtesy of Schroedet. [74])
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Figure 2.15: The cell-projection process.

Cell Projection

Cell projection [58] is an object-space volume rendering method. Similar to ray casting, rays are
traced through the volume accumulating light along the way. Instead of tracing rays starting at
pixels of the image plane, cell-projection methods construct these ray segments cell-by-cell. For
each cell, all segments are constructed and merged with existing ray segments.

Ma'’s cell-projection approach [58] maintains a priority queue for each pixel that collects all
ray segments contributing to that pixel. Figure 2.15 shows the fundamental idea of the cell-
projection approach. Boundary faces of all cells are divided into three grupsfacing faces
(with normals directed toward the viewebuck-facing faces (with normals directed away from
the viewer), andview-perpendicular faces (with normals perpendicular to the view direction).
(View-perpendicular faces only exist when orthographic projection is used and are discarded as
they do not contribute to the final image.) First, the front-facing faces are scan converted into a
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Figure 2.16: Accelerating ray casting using texture hardware. When uniform sampling is used,
samples are located at equidistant positions along a ray (a). Consideringitisample on each
ray, all samples form a plane (b). (Images courtesy of Oliver Kreylos)

buffer. For each pixel influenced by the cell, this buffer holds a depth corresponding to an entry
parameter valug, along the ray and an interpolated scalar value at that position. Subsequently,
the back-facing faces are scan-converted. For each generated pixel, the depth corresponding to
the exit parameter valug,; along the ray and an interpolated scalar value are computed. The
entry parameter valug, and corresponding scalar value for that pixel are read from the buffer,
and the ray segment reaching frognto ¢, is constructed. This ray segment is then inserted into

the ray-segment queue of the corresponding pixel. If the ray segment is adjacent to existing ray
segments in that ray-segment queue, it is merged with them. Two ray segments are adjacent when
the union of their parameter intervals along the (&y,m, t0.out) @NA [t in, t1,0ut]) is continuous,

i.e., when eitherty;, = t10ut OF toout = t1in holds. When all cells are processed, each ray
segment queue contains only one ray segment which corresponds to the ray originating from
the pixel. Ma considers tetrahedral cells using linear interpolation. As shown in Section 2.2.2,
interpolated values in a linear tetrahedron can be obtained by linearly interpolating between
values on the triangular boundary faces. If arbitrary cells are used, this property no longer holds.
Additional information enabling interpolation must be stored instead of interpolated values. This
will be discussed in detail in Section 5.2.4.

Williams et al. [90] introduced a similar scheme that constructs ray segments within cells.
Instead of sorting ray segments using priority queues for all pixels, cells are pre-sorted, using,
for example, the scheme of Max [61]. Then, cells are rendered in either back-to-front or front-to-
back order. Newly generated ray segments are always adjacent to the previously computed ray
segments and can be composited directly in the frame buffer. Using a piecewise linear transfer
function, Williamset al. [90] evaluate the light model analytically for tetrahedra.

Hardware-accelerated Volume Rendering

Ray casting a scalar field over a rectilinear grid using uniform sampling can be accelerated utiliz-
ing standard graphics hardware [9, 77]. Figure 2.16(a) shows rays and samples generated when
orthographic projection is used. In ray casting, samples are taken on a per-ray basis. When
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Figure 2.17: Simulating ray casting by renderiiad slices. The volume is sampled by rendering
view-perpendicular slices clipped with the domain borders (left). Usii3gdatexture, color

and opacity at each location on a slice are chosen according to a scalar value at that location
(middle). By increasing the number of planés.( samples) a ray-casted image is computed.
(Image courtesy of Westermann and Ertl [20])

Figure 2.18: When axis-aligned slices are used instead of view-perpendicular slices, a viewing

direction deviating from one of the three coordinate axis directions leads to visible artifacts in a
rendered image. (Image courtesy of Oliver Kreylos)

considering the:-th sample along each ray, all those samples lie on a plane, see Figure 2.16(b).
Since ray segments are combined using compositing, it is possible to generate an equivalent im-
age to the one obtained using ray casting by rendering all these planes and compositing the result,
see Figure 2.17. Colors and opacities are obtained from samples at the grid vertices and loaded
as a3-d texture. Subsequently, view-perpendicular planes, which are clipped with the domain
borders, are rendered back-to-front. Interpolation and shading these planes is performed by the
graphics hardware. Resulting images are composited using hardware alpha blending. When us-
ing the particle light model, it is possible to load scalar values directly int@théexture. The
transfer function is loaded intolad texture. Transfer function lookup is achieved by cascading
two texture lookup operations.

A simplified method uses three sets of axis-perpendicular slices — one for each coordinate
axis. Based on the viewing vectare., the vector perpendicular to the image plane, the axis
which is “most parallel” to the viewing directione., the axis whose corresponding component
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NN .

Figure 2.19: When using perspective projection, samples on rays lie on concentric spherical
shells instead of planes.

of the viewing vector has the largest absolute value, is chosen. Subsequently, the corresponding
set of axis perpendicular slices is rendered back-to-front using alpha-blending. The advantage
of this method is that it can be used when oy textures are available on a platform. How-

ever, using this method leads to artifacts in a rendered image when the viewing direction deviates
from one of the three coordinate axis directions, see Figure 2.18. (When using perspective pro-
jection, sample positions lie on concentric spherical shells instead of planes, see Figure 2.19.
It is possible to simulate perspective projection by rendering these speherical shells instead of
view-perpendicular planes.)

2.2.5 Isosurface Extraction
Introduction

An isosurface is a surface representing all location¥-thspace, where a trivariate scalar field
f(z,y, z) assumes a given isovaluei.e., wheref = v holds. It partitions &-d volume into two

distinct regions: locations “inside” an isosurface have an associated value greater-than or equal-
to the isovalue; locations “outside” an isosurface have an associated value less than the isovalue.
By varying the isovalue, it is possible to visualize the entire scalar field. Isosurfacesmre

plicit surfaces, i.e., surfaces given in the formi(z, y, z) = 0, whereF(z,y, z) = f(x,y,z) — v.

Desired is a surface that connects all locatians, where F'(z,y, z) = 0 holds. Extraction of
implicit surfaces was first used in computer graphics to display surfaces defined by mathemat-
ical functions. Later, implicit functions (in form of isosurfaces) were introduced in scientific
visualization, which resulted in algorithms specialized for visualization purposes. The use of
isosurfaces in scientific visualization started with medical data sets. CT and MRI scanners create
data sets that are viewed as a set of slices along an axis, see Figure 2.20. Each slice is an image
of constant resolution. The resolution along the “scan” axis, which is perpendicular to the slice
images, is usually lower than within the slice imges. Initially, isosurface extraction schemes, see,
for example, Christiansen and Sederberg [13], extracted contoag stices and then connected
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Slice k+1
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Slice k-1

Figure 2.20: Data sets resulting from CT and MRI scanners are commonly viewed as a set of
axis-aligned slice images.

<..7
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Figure 2.21: Initially, isosurface extraction schemes computed contours in slices and connected
contours on adjacent slices using triangles.

these contours to form a triangulation of the isosurface, as illustrated in Figure 2.21.

Marching Cubes

The marching cubes (MC) method was introduced by Lorensen and Cline [56] in 1987 and
has become the de-facto standard isosurface extraction algorithm in scientific visualization. MC
assumes that data values are given at the vertices of a regular rectilinear grid. Lorensen and Cline
explicitly mention medical data, given in form of slices, and connect samples from adjacent slices
to form cubes. Today, medical volume data is already given in form of rectilinear cells (cubes).
MC extracts an isosurface cell-by-cell in a divide-and-conquer approach. All cells are “marched”
and in each “cube” (cell) a triangulation approximating the intersection of the isosurface with that
cell is computed. This construction is performed locally and only depends on the values at the
vertices of the current cell. In the remainder of this section, | will examine MC, emphasizing
topological properties and aspects of the method. | do this as our methods for topology-based
analysis of scalar fields, presented in Chapter 6, are motivated by this behavior and are only
applicable if an isosurface extraction scheme preserves the topology of trilinear interpolation.
MC constructs a triangulation using the intersection points between the isosurface and the
edges of a cell as vertices. Each cell vertex is classified as having either “positveigving
an associated value larger-than or equal-to the isovadloe‘negative” {.e., having an associated
value less-than the isovalug polarity. An edge between two cell vertices has an intersection
point when they differ in polarity. The edges that are intersected by the isosurface only depend
on the vertex configuration.e., which vertices are positive and which are negative. The original
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Figure 2.22: Numbering of vertices and edges of a hexahedral cell.

MC approach assumes that a unique triangulation for a given vertex configuration and stores
triangulations in a look-up table (LUT). An LUT index is determined based on the polarities of
a cell’s vertices by numbering vertices from zero to seven, see Figure 2.22, and computing an
LUT index using

1 if vertexi is positive,i.e., v; > v.

7 . L. . .

. 10 if vertexi is negativej.e., v; < v,

index = E 21{ ’ g f-€. Ui s v
=0

This is equivalent to constructing an eight-bit integer with each bit corresponding to a vertex. If
a vertex is positive, its corresponding bit is set. This view leads to an efficient implementation
using bit operations. The resulting index references oré®possible triangulations in an LUT.
Using rotational symmetry and “inversion” of vertex polaritiés.( exchanging the vertex classi-
fication for positive and negative) it is possible to reduce2fitecases td 5 basic configurations
shown in Figure 2.23.

Each triangulation consists of a list of indices of edges (edges in a cell are numbered from
zero to eleven, see Figure 2.22) referencing the intersection point of that edge with the isosurface
as vertex in the triangulation. Using a second LUT that contains a bit mask where each edge
corresponds to a bit that is set if that edge is intersected, it is possible to efficiently precompute
these intersection points.

Topological problems in MC were discovered by, for examplétdD[17], who pointed out
that MC can produce holes in isosurface triangulations. For certain configurations, contour
topology in a cell is not completely determined by vertex polarities. Holes arise when a cell
face implies ambiguous topology. Faces with alternating vertex polarities cause ambiguity prob-
lems. Three cases are possible, see Figure 2.24. Contours can separate negative vertices, see
Figure 2.24(b), positive vertices, see Figure 2.24(c), or all vertices resulting in a non-manifold
contour, see Figure 2.24(d).

All basis configurations of Lorensen and Cline’s paper separate positive vertices of ambigu-
ous faces. Identical triangulations are used for an inverse case. The resulting triangulation sepa-
rates negative vertices. If a cell whose triangulation is derived from a basis configuration without
inversion and a cell whose triangulation is derived from a basis configuration using inversion
share an ambiguous face, a crack in the extracted isosurface triangulation arises, see Figure 2.25.
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Figure 2.23: All256 entries for the LUT used by MC can be constructed from the shiddase
cases by using rotational symmetry and inversion.

B

Figure 2.24: An ambiguous face configuration consists of vertex of alternating polarities (a).
Different contour topologies on that face are possible, separating negative vertices (b), positive
vertices (c), or all vertices (d) resulting in a non-manifold contour.

ok

Figure 2.25: Adjacent cell configuration resulting in a crack in an isosurface extracted by an
unmodified MC approach.

)
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AN

Figure 2.26: Additional cases used by implicit disambiguation.
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Figure 2.27: Trilinear interpolation within a cell. Opposite cell vertices can be separated (a) by
two isosurface sheets or (b) connected by one isosurface.

Montani et al. [65] proposed an extended set of basis configurations, see Figure 2.26. For
each MC basis configuration containing an ambiguous facebasis configurations, 6, 7, 10,
12, and 13, they add its inverse to the set of basis configurations. The LUT created by their
method, which is used, for example, in the Visualization Toolkit (VTK) [74], consistently sep-
arates positive vertices, preventing holes arising due to inconsistent topology on faces between
cells. Closer examination shows that basis configurations2, 13 are redundant since it is pos-
sible to derive them from configurations, 12, 13 by means of rotational symmetry instead of
inversion. Thus, extending the set of basis configurations from Figure 2.23 with configurations
3, 6 and7 from Figure 2.26, and avoiding inversion for all basis configurations that contain an
ambiguous face, will lead to a consistent case table.

Montaniet al.’s implicit disambiguation chooses an arbitrary contour topology on ambigu-
ous faces. In addition to ambiguous contour topology on a cell’s face, there exist configurations
where the topology within a cell is ambiguous. The two positive vertices in MC basis configu-
ration4, see Figure 2.27, for example, can either be separated or connected by a tunnel. While
Montaniet al.’s approach guarantees that a resulting isosurfaces has no cracks due to topolog-
ical problemsi,i.e., it produces econsistent triangulation, it fails to preserve correct isosurface
topology,i.e., it does not always producecarrect triangulation. This property causes problems
when time dependent isosurfaces are considered as incorrect isosurface topology in a time step
can result in abrupt topology changes.

To reproduce isosurface topology correctly, this topology must be defined, thereby providing
a way to choose between possible configurations in ambiguous cases. Thus, producing topo-
logically correct isosurfaces requires assumptions about the scalar function in a cell’s interior.
Hamann [31] and Nielson and Hamann [68] pointed out that bilinear interpolation on a cell’s
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faces is a natural extension to linear interpolation along edges and use bilinear contour topology
to resolve ambiguities on faces.
The equation for bilinear interpolation on a face normalized to the unit sqoarex [0, 1]
is
bi(z,y) = (1 — z)(1 — y)vo + (1 — y)our + zyvs + (1 — z)yvs . (2.34)
The nodal valuesy, vy, v5, andwvs are located ato0,0),(1,0),(1,1) and (0,1), respectively.
Equation 2.34 can be rewritten as

bi(z,y) = ary +bxr +cy+d, (2.35)
with
a = vV — U +vy—03,
b = U1 — o,
c = v3—1y,and
d Vo -

If « equals zero, the bilinear interpolant degenerates to linear interpolation and the contour is a
straight line segment. No critical points and ambiguities exist. Otherwise, according to Equa-
tion 2.2, one can find critical points as points where the gradient vanishes. The partial derivatives
of Equation 2.35 are

obi

— = ay+0b,and (2.36)
(9;1:.
9bi = ar+c. (2.37)
Ay
Setting Equation 2.36 and 2.37 to zero yields a unique solution at
c b
Pcrit = (__, __) . (2.38)
a a

The type of the critical point can be determined by considering the Hessian, see Equation 2.3.

The Hessian for is
02bi 9%bi 0
Oxdx  Ozdy _ a
02bi 9%bi “\a 0/
oydxr  Oydy

The eigenvalues of the Hessiantofat p.i; are

A a
a —A

= )\2 — CL2 — ALQ = +a. (239)

Two eigenvalues of opposite sign exist for the Hessigp.atindicating thatpg,i; is a saddle of
bi. The value of the saddle point is

bi <_E, _é) _da—bc _ wovy —vyus . (2.40)

a Vg — V1 + Vg — Vg
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%} Saddle point
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Figure 2.28: For an ambiguous face, the bilinear interpolant has a saddle (a). Contour topology
depends on the relation of the isovalue with respect to the saddle value. For isovalues smaller
than the saddle value, negative vertices are separated (b). For isovalues larger than the saddle
value, positive vertices are separated (c).
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Figure 2.29: Ambiguous face: Considering bilinear interpolation contours for isovalues less than
the saddle value are hyperbolic arcs separating negative vertices (a). For an isovalue equal to the
saddle values, contours degenerate to a pair of axis aligned-asymptotes (b). For isovalues larger
than the saddle value, contours are hyperbolic arcs separating positive vertices (c).

If bilinear interpolation does not reduce to linear interpolation, contours are a pair of hy-
perbolic arcs with coordinate-axis-parallel asymptotes that intersect in the saddle point. In the
degenerate case, when the isovalue equals the value at the saddle point, these asymptotes become
the contour. If the saddle point is inside a cell’s face, isovalues exist for which both hyperbolic
arcs intersect all four face edges, see Figure 2.28(a). In these cases, the contour on a face depends
on the relation of the isovalue with respect to the saddle value. If the isovalue is smaller than
the saddle value, the contour separates the negative vertices, see Figures 2.28(b) and 2.29(a). If
the isovalue is larger than the saddle value, the contour separates the positive vertices, see Fig-
ures 2.28(c) and 2.29(c). If the isovalue is equal to the saddle value, the contour degenerates
to the non-manifold set of axis-aligned asymptotes separating all vertices, see Figure 2.29(b).
Nielson and Hamann determine connectivity for such ambiguous faces correctly by comparing
isovalue and value at the intersection point of the asymptotes (which corresponds to the sad-
dle point) and define an appropriately extended LUT. Ignoring the degenerate case, two choices
for contour topology are possible on each ambiguous face of a configuration. Consequently,

a basis configuration witlf ambiguous faces haX sub-configurations. MC basis configura-
tion 10, for example, has two ambiguous faces, the bottom and the top face, resulting in four
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Figure 2.30: Sub-cases for MC basis configuraiiomas used by the asymptotic decider [31,68].
(lllustrations courtesy of Nielson and Hamann [68])

sub-configurations, see Figure 2.30. Nielson and Hamann also showed that for certain configu-
rations, sub-configurations (b) and (d) of basis configuratigrfor example, it is necessary to
use points in a cell’'s interior to generate a valid triangulation.

Nielson and Hamann [68] solved the problem of ambiguous faces, but did not consider ambi-
guities in a cell’'s interior, for example, the possible tunnel for MC basis configurétisiiown
in Figure 2.27. For this configuration, an isosurface can separate the opposite cell vertices or
can “connect” them via a tunnel. To distinguish between the two cases, it is necessary to define
isosurface topology in a cell’s interior. Trilinear interpolation is commonly used in visualization,
e.g., for Direct Volume Rendering (DVR). Thus, the topology of contours of a trilinear inter-
polant lends itself as choice of “reference topology.” A trilinear interpolant may contain up to
two saddles in a cell’s interior, see Nielson [67]. Similar to the determination of contour topol-
ogy on a face, the topology of an isosurface within a cell can be determined by considering the
relationship of a specific isovalue with regard to the values at saddle points. Several authors used
the topology of trilinear interpolation to determine isosurface topology in a cell’s intewqr,
the existence of tunnels.

The trilinear interpolant for the unit cube, 1] x [0, 1] x [0, 1] can be written as

T(x,y,z) =azxyz + bry + cyz + dez +ex + fy+gz+h. (2.41)
Considering the Hessiali; of T

0 az+b ay+d
Hr(x,y,z)= | az+b 0 ar+c | (2.42)
ay+d axr—+c 0

its eigenvalues,; can be found as solutions to the equation

— X+ KN+ kN + kN + 2k, kyk, =0, (2.43)
where
k, = ax+c,
k, = ay+d,and
k, = az+b.
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Since Hr(x,y, z) is symmetric, three real-valued eigenvalues always exist. Examining Equa-
tion 2.43 leads to the following lemma.

Lemma 1 A non-degenerate critical point of piecewise trilinear interpolation is always a saddle.

Proof: By definition of a non-degenerate critical point, all three eigenvalyes, and\; differ
from zero. It is possible to write Equation 2.43 as

— A=) A=2)A=2A3) = =N+ A1+ X2+ 23) A7 = (A da+ M A3+ A d3) A+ A Ao hs . (2.44)
Comparing the coefficients of Equation 2.44 with those of Equation 2.43 yields the equation
AMAa 4+ Az 4 Aod3 = 0. (2.45)
Since all); differ from zero, it is not possible to satisfy this equation ifglhave the same sign.

Consequently, one eigenvalue must have a different sign than the other two eigenvalues and the
critical point is a saddle. O

The location of the saddle of trilinear interpolation can be calculated as

aay ) a aay ? a aay

(2.46)

Loy VTELE 4 /T _gi@> if @ # 0
Psaddle= (

e dl Al baerd) =0,
wherea, = ae — bd, a, = af — bc, anda, = ag — cd. Section 6.9.2 provides a derivation of
Equation 2.46.

Natarajan [66] used saddle points (face saddles and an interior saddle) to determine the topol-
ogy of an isosurface in a cell. His method only uses contour points on a cell’'s edges and no inte-
rior contour points, which produces incorrect triangulations in certain cases. Natarajan does not
explicitly specify how to triangulate an isosurface according to his connectivity determination.
He gives one example in form of Figure 5 in his paper. In that example, the triangulation in the
lower-middle diagram is incorrect since a correct triangulation would require the use of internal
points in a cell. An additional problem of this approach is that it assumes that there exists at most
one saddle in a cell.

Chernyaev [11] used the asymptotic decider [31, 68] to resolve ambiguities on faces. Within
a cell, saddle points are not considered explicitly. Instead, Chernyaev’s method uses a criterion
based on the asymptotic decider, see Figure 2.31. Chernyeav derived an analytical, quadratic
function that traces the results of the asymptotic decider on bilinear slices within a cell. A tunnel
exists if there is a slice that connects two areas of equal sign within the cell that are separated on
the cell's faces. Chernyaev’s approach uses additional points in a cell’s interior to specify valid
triangulations for some casesg., Case7.3 (in his case numbering scheme [11]). However,
it does not use additional points for all configurations that require them. This leads to several
invalid triangulations. For example, cagé .2 (in his numbering scheme) incorrectly separates
positiveand negative vertices on the cell’s right side, see Figure 2.32.
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Figure 2.31: Ambiguity resolution according to Chernyaev [11]. On boundary faces the asymp-
totic decider [31, 68] used. Vertices are always ordered so that vdlwesl C' are larger than

the isovalue and3 and D are smaller than the isovalue (a). To resolve internal ambiguities,
Chernyaev considers the results of the asymptotic decider on axis-perpendicular slices through
the cell (b). (lllustrations courtesy of Chernyaev [11])

Figure 2.32: Even though Chernyaev’s method accurately detects internal topology of a cell, his
approach can produce invalid triangulations for some configuratiogs,basis configuration
6.1.2 which separates positive and negative vertices on the right side of the cell.

Cignoniet al. [14] presented a hierarchical isosurface approximation approach. Their method
recursively refines a triangulation obtained by a modified MC approach. To ensure that recur-
sive refinement produces correct results, their method relies on topological correctness of the
initial triangulation. Triangulations for ambiguous faces are described in termysenf tunnels
Additional points that are required to generate valid triangulations are obtained by intersect-
ing these tunnels. Open tunnels are well suited to obtain initial triangulations for a refinement
scheme. If they are used without subsequent refinement, the resulting triangulations are not ideal
for isosurface representation. Still, the set of topological configurations underlying this method
is incomplete. Differences in the number of considered cases in comparison to Chernyaev’s
work [11] have three reasons: First, Chernyaev's method uses inversion of vertex polarities to
reduce the number of sub-cases for those cases that have four positive vertices. It always ensures
that, on at least one boundary face, positive vertices are separated. Second, &ighaie
two sub-cases for MC case numlge(Table6 in their paper) that are topologically equivalent.
Last, when compared to the comprehensive work of Nielson [67], Cigeraedi missed some
sub-cases. Particularly, a sub-case of Configuratim which a tunnel connects the positive
vertices is missing (the complementary case to the case shown on the lower left side dfiTable
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Figure 2.33: Shoulder points used by Lopes [55] and Lopes and Brodlie [54]: A shoulder point
on a conic curve connecting two poif®sandQ has a maximum distance from the line segment
connectionP andQ. (lllustrations courtesy of Lopes [55])

in their paper). Furthermore, like Natarajan, Cignenal. consider only the possibility of one
saddle point within the cell which can lead to incorrect results.

Topologically Correct Marching Cubes

In his dissertation, Lopes [55] discussed methods for improving “accuracy in scientific visual-
ization” and introduced a MC variant that uses additional points on a cell’s face and in its inte-
rior to improve the accuracy of an extracted isosurface. More recently, Lopes and Brodlie [54]
described a slightly altered version of this approach using an altered and more concise terminol-
ogy. | describe the original approach and its modification using the terminology from Lopes and
Brodlie [54]. Lopes [55] improved the accuracy of isosurface extraction by using three types of
additional points on a cell’s faces and within its interior:

Face Shoulder PointsThe contour on a boundary face is a hyperbolic arc. MC approximates
this hyperbolic arc with a line segment. It is possible to increase the accuracy of the
approximation and better capture the “shape” of the hyperbola by using a polyline that
includes theshoulder point. At the shoulder point the conic has maximum distance from
the line segment, see Figure 2.33.

Tangent Points If a face is intersected twice by the same isosurface component, there exists a
point within the cell, where the isosurface “loops” back to “leave” the cell by the same
face by which it “entered” it, see Figure 2.34. At the correspondingent point, a slice
parallel to that face is tangential to the isosurface.
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Figure 2.34: When a cell face is intersected twice by an isosurface (as the bottom face in the
figure), a point within the cell exists, where the isosurface “loops back” to “leave” the cell by the
same face by which it “entered” it. This occurs akagent point where the slice parallel to the

cell face is tangential to the isosurface. On the tangential face, the contour degenerates to a pair
of axis-aligned asymptotes.

Bi-shoulder points A bi-shoulder point provides an additional interior point for isosurface com-
ponents that intersect each cell face at most once. A bi-shoulder point is located within a
cell and is a shoulder point of the contours on two orthogonal, axis-perpendicular slices
through the cell.

Lopes [55] constructed an isosurface in several subsequent steps: First, similar to the standard
MC approach, a basis configuration is chosen based on vertex polarity. In addition to rotational
symmetry and inversion, Lopes’ approach reduces the number of base cases by considering “mir-
ror’” symmetry,i.e., mirroring vertex configurations at axis-perpendicular faces dividing a cell at
its middle, leading td4 basis configurations (one less then the standard MC method), see Fig-
ure 2.36. By using the asymptotic decider on each ambiguous face, a sub-configuration is chosen
that correctly reflects the topology on boundary faces, see Figures 2.37 — 2.42. To reduce the
number of sub-cases, Lopes proved that certain sub-configurations of MC basis configurations
cannot occur. If one considers two pairs of opposite faces, it is impossible that, for one pair,
the positive vertices are separated and, for the other pair, the negative vertices are separated, see
“crossed out” cases in Figure 2.42. For each configuration, the intersection of the isosurface with
the cell is specified as a set bdundary polygons, which are read from an LUT. Resulting from
connecting the edge intersection points along the boundary faces, a boundary polygon is spec-
iflied as non-triangulated, not necessarily planar polyline that completely specifies topology on
boundary faces of a cell. (In Lopes’ original work, these boundary polygons are eaadg-
ical polygons.) Boundary polygons are independent of interior cell topolagy, the existence
of tunnels. For example, the two quadrilaterals shown in Configurafiqa), see Figure 2.40,
can either separate the diagonally opposite bold vertices or can connect them with a tunnel. In
addition to a list of intersected edges, the entry for a boundary polygon in the LUT contains ad-
ditional information specifying the number of vertices and the number of so-called “loop-back”
faces intersected by the polygon. A loop-back face is a face that is intersected twice by the same
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Figure 2.35: A bi-shoulder point within a cell’s interior is a shoulder point on two perpendicular
slices through the cell. (lllustration courtesy of Lopes [55])

boundary polygoni.e., that contains two edges of the same boundary polygon, see, for example,
casel0 (b) in Figure 2.40. A trilinear isosurface corresponding to this case is shown in Fig-
ure 2.34. In this case, the isosurface loops back within the cell and leaves the cell by the same
face by which it entered it.

After selecting the appropriate configuration, corresponding boundary polygons are refined
by adding shoulder points of the conic (hyperbolic arc) implied by bilinear interpolants defined
on cell faces, see Figure 2.33. The shoulder point can be computed as the intersection of a line
connecting the midpoint of a linear contour approximaidrand the location of the face saddle
S with the contour, see Figure 2.33. IetandQ be the intersection points of the hyperbolic arc
with the boundary edges. The shoulder point of the hyperbolic arc lies on the line connecting
the midpointM of the line segment connectidg andQ, i.e., the linear approximation of the
contour used by MC, and the intersection point of the two tangents to the hyperbolidaenth
Q. This line segment also runs through the saddle point of the bilinear interpolant. (If the bilinear
interpolant does not have a saddle point, it degenerates to linear interpolation and no shoulder
point exists as the hyperbolic arc degenerates to a straight line.) The parametric representation
of the lineMS is

r=uxy+ta, y=ym +1t0, (2.47)
with
oa=xg— TN, B=ys—ym,and te€]0,1].
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Figure 2.36: Boundary polygons for the MC base cases used by Lopes [55] and Lopes and
Brodlie [54]. Note that MC basis configuratidd is omitted as it can be obtained by mirroring
MC basis configuration. (lllustration courtesy of Lopes [55])

Lopes shows [55] thatcan be obtained as the solution of the quadratic equation
(caB)t? + (aa + bB + c(xa B + yara))t + bi(zar, yar) = 0. (2.48)

Solving Equation 2.48 results in two values folUsing the value of € [0, 1] in Equation 2.47,

one can obtain the shoulder polRt The shoulder point moves toward the saddle as the contour
behavior approaches the degenerate case (two perpendicular lines). In the degenerate case, the
shoulder point becomes the saddle point. By merging the shoulder points of the two hyperbolic
arcs, an exact representation of a degenerate contour is possible. The gradual movement of
two shoulder points toward the location of a face saddle supports a smooth transition between
different topologies on a face.

In his dissertation Lopes [55] handled tunnels during the triangulation step. Each “enhanced”
boundary polygon is triangulated individually by connecting its vertices to one or more internal
contour points. Boundary polygons that contain at least one loop-back face cannot be part of tun-
nels and are always triangulated using tangent points. A tangent point is a point on the isosurface
where the tangential plane to the isosurface is parallel to a loop-back face. The contour on the
bilinear slice through the tangent point, which is parallel to the loop-back face, degenerates to a
pair of axis-aligned asymptotes, see Figure 2.34. Thus, the tangential face can be determined as
the face where the contour topology of a bilinear contour changesthe face where the two
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(@) (b)

Figure 2.37: Boundary polygons for sub-configurations of MC basis configuratissed by
Lopes [55] and Lopes and Brodlie [54]. (lllustration courtesy of Lopes [55])

(@) (b)

Figure 2.38: Boundary polygons for sub-configurations of MC basis configurétised by
Lopes [55] and Lopes and Brodlie [54]. (lllustration courtesy of Lopes [55])

(a) (b) () (d)

Figure 2.39: Boundary polygons for sub-configurations of MC basis configuratissed by
Lopes [55] and Lopes and Brodlie [54]. (lllustration courtesy of Lopes [55])

(a) (b) (c) (d)

Figure 2.40: Boundary polygons for sub-configurations of MC basis configurafiaised by
Lopes [55] and Lopes and Brodlie [54]. (lllustration courtesy of Lopes [55])
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Figure 2.41: Boundary polygons for sub-configurations of MC basis configurd®iarsed by
Lopes [55] and Lopes and Brodlie [54]. (lllustration courtesy of Lopes [55])

partial derivatives of the trilinear interpolant, with respect to the two face parallel axes, vanish.
All tangent points of a cell can be computed as points where at least two of the three partial
derivativesg—i, %—5, %—f vanish. Lopes [55] used this criterion to derive equations for the tangent
points.

Figure 2.44 shows an example for triangulating a boundary polygon containing one loop-
back face. All segments of the polyline forming the boundary polygon are connected to the
tangent point belonging to that face via a triangle fan. Triangulations for polygons containing
more than one loop-back face are more complicated. Lopes and Brodlie [54] provided an LUT
for triangulations in Figure 12 of their paper. If a boundary polygon does not contain loop-back
faces, two cases are possible:

1. All six tangent points lie in a cell’s interior forming a polyline along the edges of a cuboid.
A tunnel exists in the cell’'s interior, boundary polygons without loop-back faces are con-
nected to the polyline formed by the inflection points.

2. Atunnel does not exist. A triangulation for a boundary polygon is obtained by connecting
all its edges to a bi-shoulder point. A bi-shoulder point is a point that is a shoulder point
on a pair of perpendicular planes passing through a cell and being parallel to coordinate-
system planes. Lopes’ method computes bi-shoulder points in an iterative approach by
sweeping planes through a cell, starting from faces intersected by the boundary polygon.
Since bi-shoulder points are not unique, a selection scheme is needed for two sweep faces
that locates the most appropriate bi-shoulder point.

If a tunnel exists, all boundary polygons containing no loop-back face are triangulated by con-
necting them to the polyline defined by the tangent points. This approach yields correct results
for all sub-configurations except sub-configurati®a. In his dissertation, Lopes stated that he

did not observe any tunnels in any sub-configuration of ¢dseélowever, in sub-configuration

13b two tunnels are possible: Either the positive or the negative regions can be connected by a
tunnel. When a tunnel occurs, Lopes’ original approach incorrectly connects all three polygons
to form a tunnel, resulting in an invalid triangulation. Lopes and Brodlie [54] modifed the orig-
inal approach to handle this case correctly. Tunnels are no longer detected based on the number
of tangent points within a cell. Instead the isovalue is compared to the values of the saddles
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Figure 2.42: Boundary polygons for sub-configurations of MC basis configuraliarsed by
Lopes [55] and Lopes and Brodlie [54]. Crossed out sub-configurations are not possible. The
framed configuration is new with respect to Nielson and Hamann’s asymptotic decider [31, 68].
(IMustration courtesy of Lopes [55])
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Figure 2.43: Incorporating shoulder points. (a) Using shoulder point, shown as “*,” increases

approximation quality of a contour (dashed) by replacing its one-segment approximation (solid)

with a two-segment approximation (bold). (b) In the degenerate case, both shoulder points coin-
cide with the location of the face saddle. If the shoulder points are merged, polyline approxima-
tions (bold) and contours coincide at the saddle. Without adding a shoulder point, the topology
of a contour approximation is incorrect (solid).
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(a) (b)

Figure 2.44: Triangulation of a boundary polygon consisting of six vertices containing one loop-
back face. The bottont{perpendicular) face is the only loop-back face. In the resulting trian-
gulation, all polyline segments on the cell boundary are connected to the corresponding tangent
point7’,.

of the trilinear interpolant. Based on this decision, isosurface topology in a cell is completely
determined before the triangulation begins.

Nielson [67] has recently provided a comprehensive analysis of the behavior of the trilinear
interpolant. This analysis leads to an extension of the MC algorithm to accurately extract topo-
logically correct contours of the trilinear interpolant. Differing from the original MC approach,
Nielson does not use inversion to reduce the number of basis configurations. Unlike Lopes he
also does not consider mirror symmetry to reduce the number of configurations. This leads to
22 basis configurations, see Figure 2.45. Nielson described two marching cubes variants: A
consistent and a topologically correct variant. By specifying triangulations fae diasis con-
figurations, Nielson’s consistent approach creates a consistent case table similar to a case table
obtained by using implicit disambiguation [65] approach. Nielson also described a topologi-
cally correct approach. Like Lopes [55] and Lopes and Brodlie [54], Nielson used additional
points in the interior to obtain valid triangulations. Nielson’ approach first determines the basis
configuration based on vertex polarities. Subsequently, the asymptotic decider is used to deter-
mine topology on the cells boundary faces. To detect tunbel&lla’s necklace is considered.
Nielson noted that axis-perpendicular planes exist where the intersection of the contour with
that plane degenerates to two perpendicular, axis-aligned lines (asymptotes). DeVella’s necklace
comprises of the lines connecting the intersection points of these asymptotes. These intersec-
tion points are, in fact, the same points as the tangent points used by Lopes [55] and Lopes
and Brodlie [54]. Similarly to Lopes’ original approach [55], tunnels are detected by checking
whether all these points are located inside the cell. Whenever internal points are necessary to
obtain a valid isosurface triangulation, Nielson’s approach uses points on DeVella’s necklace.
Unlike Lopes’ method which uses all tangent points, Nielson’s approach only uses the minimum
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Figure 2.45: Additional basis configurations introduced by Nielson [67] by avoiding inversion in
basis configuration reduction.

number of additional points to specify a valid triangulation. Nielson’s method also distinguishes
between the two possible tunnels in ca3éy comparing the isovalue to the value at the centroid
of DeVella’s necklace.

Lopes and Brodlie’s [54] and Nielson’s [67] approaches both produce correct isosurface
topology for trilinear interpolation and specify correct triangulations for all resulting cases.
While Nielson’s method produces fewer triangles for all cases, Lopes’ approach produces smoother
transitions between different isosurface topology. Alternate topology definitions differing from
the topology of the trilinear interpolant are possible. Van Gelder and Williams [27] defined the
concepts of locally-linear and locally-quadratic configurations. A configuration is locally linear,
if there is a linear function whose values at the cell’s vertices result in the same classification
of positive and negative vertices. It is locally quadratic if the same holds for a quadratic func-
tion. Van Gelder and Williams observed that MC basis configuratipfsb, 8 and9 are locally
linear and that all MC basis configurations, except basis configurasioare locally quadratic.
Continuing from this observation, they considered values from quadratic functions to address
topological correctness. Considering these functions, cells exist where the topology of a contour
of the original function cannot be correctly determined based only on values at cell vertices. In
fact, functions with different contour topology can result in cells having exactly the same vertex
values. Van Gelder and Williams discussed several heuristics aimed at correctly reproducing the
topology of quadratic functions, which, in their opinion, constitutes a satisfying local represen-
tation of the topology on ambiguous faces.

Alternate Isosurface Extraction Schemes

Hamann [32] described another, alternative approach to construct consistent triangulations in
the interior of a cell by incorporating points into the triangulations that lie in a cell’s interior
and not exclusively on its edges. Hamatrul. [33] analyzed the exact behavior of contours

on cell faces leading to a method that approximates a trilinear isosurface with rational-quadratic
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Figure 2.46: Visualization of AMR solution of a problem described by Poisson’s equation.

Bézier patches. For their construction, they considered points lying on an isosurface and normals
(gradients) at these points.

2.3 Adaptive Mesh Refinement

2.3.1 Introduction

Physical phenomena can vary widely in scale. Large regions in space can exist where a quantity
varies only slightly, and thus can be adequately represented at a low resolution. Other regions
may require higher resolutions to capture rapid changes. This characteristic is particularly notice-
able in simulations of astrophysical phenomena that span several orders of magnitudes, covering
vast regions of “empty” space. Physical phenomena are commonly simulated by considering
a finite set of points in space connected by a mesh and discretizing the underlying equations
accordingly.

Due to their simple topology, structured, rectilinear grids are frequently used in numerical
simulations. While their implicitly given structure simplifies grid handling, allowing efficient
parallelization, it also prevents adaption to localized changes in scale of the phenomenon. Con-
sequently, a rectilinear grid which represents a physical phenomenon at adequate resolution in
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high-variance areas constitutes a considerable waste of computational time in low-variance re-
gions. Unstructured grids are highly adaptive to local resolution changes. However, they require
the explicit storage of grid structure along with data values. Resulting algorithms are often com-

plicated and difficult to parallelize.

Adaptive Mesh Refinement (AMR), introduced by Berger and Oliger [7] in 1984, combines
the topological (structural) simplicity of regular, rectilinear grids with the adaptivity to local
changes in resolution: The domain is discretized using one or more coarse grid grigtsin a
level. During the simulation, an error estimate is computed for each cell of this root level. All
cells whose error estimate exceeds a given threshold are tagged for refinement. Subsequently, a
set of rectilinear grids with an increased resolution is created, that overlaps all tagged cells. This
is done recursively until all regions are represented at adequate resolution. Simulation results
from higher-refined levels are propagated back to the coarser levels, resulting in a consistent
representation of the domain. In Berger and Oliger’s original approach [7], newly created grids
are structured, rectilinear grids that can be rotated with respect to the parent level. Berger and
Collela published a modified version [6] of this algorithm where newly created grids are axis
aligned with respect to the parent level. AMR has also become increasingly popular outside the
computational physics community. Today, it is used in a variety of applications. For example,
Bryan [8] used a hybrid approach of AMR and particle simulations to simulate astrophysical
phenomena. Figure 2.46 show2-a AMR simulation of a problem described by Poisson’s
equation.

2.3.2 Berger-Colella AMR Data Format

Figure 2.47 shows a simpled AMR hierarchy produced by the Berger-Colella method. The
basic building block of @-dimensional Berger-Colella AMR hierarchy is an axis-aligned, struc-
tured rectilinear grid. Each grig consists of:; hexahedral cells in each axial direction. | treat

this number as an integer resolution veatér The grid spacingi.e., the widths of grid cell in

each dimension, is constant in a specific direction and given as a Wgctotd, o, 9,1, 9,2), S€E€

Figure 2.47. Figure 2.47 illustrates that the distance between two samples is equal to the grid
spacing. Each grid is positioned by specifying its origjn The simulation method typically
applied to AMR grids is a finite-difference method. Consequenttyliacentered data format is
used,.e., dependent function values are associated with the centers of cells. Thus, the dependent
function value associated with a cg]l with 0 < i, ; < n;, is located at

. . 1
posy j(ig) = 045 + (Zj + 5) 0j (2.49)

see Figure 2.47. Since sample locations are implicitly given by the regular grid structure, it
suffices to store dependent data values in a simple array using a fixed ordering sefzeme,
row-major order. The region covered by a ggics denoted by’,.

An AMR hierarchy consists of several levels comprising one or multiple grids. All grids
in the same level have the same resolutios, all grids in a level share the same cell width

For convenience, thgth component of a vectox is denoted as;.
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Figure 2.47: AMR hierarchy consisting of four grids in three levels. The root level consists of
one grid. This grid is refined by a second level consisting of two grids. A fourth grid refines the
second level, which overlaps both grids of the second level. Boundaries of the grids are drawn
as bold lines. Locations at which dependent variables are given are indicated by solid discs.

vectord, = dr,. The region covered by a levEl,, is the union of regions covered by the grids
of that level. In most AMR data sets, only the root level covers a contiguous region in space,
while all other levels typically consist of several disjoint regions.

The hierarchy starts with the root lev&), the coarsest level. Each lev&l may be refined
by a finer levelA;, . A grid of the refined level is commonly referred to asaarse grid and
a grid of the refining level as fne grid. The refinement ratio r; specifies how many cells of a
fine grid contained in levelfit into a coarse-grid cell along each axial direction. (The refinement
ratio is specified as a positive integer rather than a vector, as it is usually the same for all axial
directions.) A refining grid can only refine complete grid cells of the parent léeeljt must
start and end at the boundaries of grid cells of the parent level. A refining grid refines an entire
level A;, i.e., it is completely contained iy, but not necessarily in the region covered by a
single grid of that level. (This is illustrated in Figure 2.47, where the grid comprising the second
level overlaps both grids of the first level.) Thus, in many cases, it is convenient to access grid
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ig=(2,3)
li = (22,9)

io = (6, 6) io = (20, 6)

Figure 2.48: To specify the index of a cell with respect to a level rather than a single grid, it is
assumed that an entire level is covered by a level grid with a cell width eqaa).téndividual

grids within a level cover rectangular sub-regions of that level grid. An index of a grid cell can
either be specified with respect to the level giijl ¢r with respect to a grid containing that cell
(i;). The integer origin of a grid is the level index of the grid cell with indewithin the grid.

cells on a per-level basis instead of a per-grid basis.

To obtain the index of a cell within a level, it is assumed th&tval grid with a cell width
equal tod,, covers the entire domain,,, see Figure 2.48. This level grid starts at the minimum
extent of a bounding box surrounding the root levgl, where

0n,; = min{oy jlo, € A}, (2.50)

as shown in Figure 2.49. Since all grids in a level are placed with respect to boundaries of grid
cells in a parent level, grid cells in the level grid coincide with grid cells in a grid of that level or
are outside the region covered by the levgl. Thelevel index li of a grid cell is its index in the
level grid. Using the level index, the origin of a grid in a level can be defined as&er origin.
The integer originio, of a grid g is the level index of the cell with inde® within the grid, see
Figure 2.48. Its components are defined by

(0g.; — Ono,5)

109, = — , Whereg € A, . (2.51)
l
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g

Figure 2.49: The AMR hierarchy shown in this figure contains three grids in the root level.
Regions that are not covered by any grid are shaded. The origin of a level grid is the minimum
extent of the bounding box enclosing all grids in the root level.

Since all grid cells of a fine grid must start and end at boundaries of cells of a coarse level,
the components of the integer originy, ; and the number of cells, ; along an arbitrary axial
direction of a gridg, belonging to level, are always integer multiples of. Individual grids
in a level correspond to rectangular sub-regions of the level grid. To access a cell with a given
level indexli, first the gridg that contains that level index has to be found, provided that such a
grid exists. Second, the indéxof the cell within that grid is obtained by subtracting this grid’s
integer originio, from li.

The Berger-Colella scheme [6] requires a layer with a width of at least one grid cell between
a refining grid and the boundary of the refined level. Bryan's scheme discards this requirement
in his simulations.
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Chapter 3

State of the Art

3.1 State of the Art of AMR Visualization

Initial work on AMR visualization focused on converting AMR data to suitable conventional
representations and then visualizing these. Norenah [69] described a method for visualizing
AMR data using standard toolkits like VTK [74], AVSand IDL2. Their method converts an
AMR hierarchy into an unstructured grid composed of hexahedral cells. The resulting unstruc-
tured grid is then visualized utilizing standard AVS, IDL, and VTK algorithms. By converting
AMR data to an unstructured mesh, its main advantage, the implicit definition of grid connec-
tivity, is lost. Overhead resulting from the required separate storage of grid structure results in
poor scaling to large AMR data sets. Furthermore, this approach prohibits the use of the hierar-
chical nature of AMR data for efficient visualization algorithms. Recognizing these fundamental
problems, Normart al. continue by extending VTK to handle AMR as first-class data struc-
ture. They do not describe their extensions in detail, but cite slicing planes as an implemented
example.

Max [61] described sorting schemes for cells during volume rendering including one method
specifically geared toward AMR data. Ma [57] described and compared two approaches for
parallel rendering of structured AMR data using the PARAMESH framework, see Macbteice
al. [60]. A PARAMESH hierarchy consists of grids of increasing resolution using a cell-centered
data definition. PARAMESH grids are organized as blocks in a quadtrezdispace) or an
octree (in3-d space) structure. Ma described two approaches for volume rendering of AMR data.
One method resamples a hierarchy on an uniform grid at the finest resolution. The resulting grid
is evenly subdivided and each part rendered on an individual processor. Computed images are
composited using binary-swap composition, seediid. [59]. A second method preserves the
AMR structure. Individual blocks,e., leaves of the octree, are distributed among the processors
in a round-robin fashion to achieve static load balancing. Since a block structure can lead to many
small ray-segments, Ma buffers these segments into larger messages to decrease communication

1Product of Advanced Visual Systems, $g://www.vas.com/products/AVS5/avs5htm
2Interactive Data Language (IDL). Product of Research Systems, Indtpeldvww.rsinc.com/idl/
index.asp
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overhead. Individual blocks are rendered using ray-casting. Two sampling schemes are used: A
simple approach using a fixed, constant sample distance and an adaptive approach that decreases
sample distance in finer resolution blocks.

Kreylos et al. [47] described a framework for remote, interactive rendering of AMR data.
The framework consists of a “lightweight” viewer and a renderer running on one or several re-
mote machines. The method of Kreylersal. “homogenizes” an AMR hierarchy.e., partitions
it in blocks of constant resolution, using a k-d tree. The resulting blocks of constant resolution
are distributed among processors and rendered using either a texture-based hardware-accelerated
approach or a software-based cell-projection renderer. Two distribution strategies are imple-
mented: One strategy attempts to distribute cost evenly among processors, the other variant tries
to minimize data duplication.

Kahler and Hege [37, 38] introduced a method that partitions Berger-Colella AMR data
into homogeneous regions and visualizes it using hardware-accelerated volume rendering based
on textures. Their partitioning scheme aims to minimize the number of generated constant-
resolution blocks utilizing a heuristic based on assumptions concerning the placement of refining
grids by an AMR simulation. Generally, this approach generates fewer blocks than the approach
described in this dissertation (which was published priorablér and Hege’s work [80]) and the
approach described by Kreylesal. [47], which is beneficial when data is rendered on a single
machine. Kahleret al. [39] developed a method that uses AMR hierarchies for rendering sparse
volumetric data. Given a transfer function, this method computes a transfer-function-specific
AMR hierarchy for a volume data set. Their approach starts by representing the whole volume
with a coarse mesh. Subsequently, all cells that contain data with an opacity exceeding a spec-
ified threshold are marked as relevant for refinement. The resulting AMR hierarchy is rendered
using the algorithm of Bhler and Hege [37, 38]. The performance of the resulting algorithm is
compared to an octree-based approachhl&ret al. [36] used a set of existing tools to render
results of a simulation of a forming star. Data was obtained by a simulation using the frame-
work developed by Bryan [8]. Usin¥irtual Director, a virtual reality interface, camera paths
were defined within a CAVE environment. Animations of the AMR simulation were rendered
using the hardware-accelerated approachadil&r and Hege [37,38]. To enhance depth percep-
tion, rendered images are augmented with a background that is obtained by rendering a particle
simulation of the formation of the early universe.

By specifying a transfer function, and a range of isovalues, Btaik[70] produced volume-
rendered images of AMR data based on hierarchical splatting, see Laur and Hanrahan [50].
Their method converts an AMR hierarchy to a k-d-tree structure consisting of blocks of constant
resolution. Each node of this k-d tree is augmented with an octree. Octree and k-d-tree nodes
contain a32-bit field, where each bit represents a continuous range of isovalues. Using the
k-d tree and the octree, regions containing values within the specified range are identified and
rendered back-to-front using hierarchical splatting.

Ligocki et al. [53] describedChomboVis 2, a framework for the visualization of hierarchical
computations using AMR. Their paper contains a brief summary of AMR visualization efforts to

3Joint effort of the Applied Numerical Algorithms Group and of the Visualization Group at LBNL h&pe
/[seesar.lbl.gov/anag/chombo/chombovis.html for further details.
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date.

3.2 State of the Art of Topology-based Data Analysis

Topology of level sets for data given on simplicial meshes using linear interpolation in cells
has been a subject of research in computational geometry. Related to our work is the concept
of contour trees that encode topological changes of level sets. A contour tree is a graph that
describes how contours in a level set appear, join, split, or disappear when changing the isovalue.
Van Kreveldet al. [78] used contour trees to speed up isosurface extraction. Using a contour
tree, their approach computes a minimum seed set for isosurface reconstruction. Starting from
the resulting seed points, all isosurface components are tracked and computeet. aC§ti0]
introduced a new scheme for efficient computation of a contour tree. Their method constructs a
join and a split tree and combines them into a contour tree. Join trees are constructed starting
from the largest value (highest peak) and adding points one at a time in order of decreasing
height. While adding points, a set of growing contours is traced. Whenever two contours merge,
the nodes in the join tree that correspond to their peaks are connected and subsequently treated
as a unit. Split trees are computed by starting at the smallest value (lowest valley) and adding
points in order of increasing height.

Bajaj et al. [1] also considered tetrahedral meshes. They introducech@ur spectrum
specifying properties like-d contour length3-d contour area and gradient integral as functions
of the isovalue. The contour spectrum is displayed along with the contour tree of a data set
aiding a user in identifying interesting isovalues. Bajajl. [3] also developed a technique that
uses topology to enhance visualizations of trivariate scalar fields. Their method emgldys a
continuous interpolation scheme for rectilinear grids and approximations for the first and second
derivative to detect critical points of a scalar field. Subsequently, integral curves (tangent curves)
are traced starting from locations close to saddle points. These integral curves are superimposed
onto volume-rendered images to convey structure of the scalar field.

Topology is also important in the context of data simplification to preserve important features
of a data set. Bajaj and Schikore [2] extended previous methods to develop a compression scheme
preserving topological features. Their approach detects critical points of a piecewise-linear bi-
variate scalar field. In this approach, “critical vertices” are those vertices for which the “normal
space” of the surrounding triangle platelet contains the veéétar, 1). Integral curves are com-
puted by tracing edges of triangles along a “ridge” or “channel.” Bajaj and Schikore’s method
incorporates an error measure and can be used for topology-preserving mesh simplification.

Fujishiroet al. [24] used ahyper-Reeb graph for exploration of scalar fields. A Reeb graph
encodes topology of a surface, see Section 2.1.2. A hyper-Reeb graph encodes changes of topol-
ogy in an extracted isosurface. For each isovalue that corresponds to an isosurface topology
change, a node in the hyper-Reeb graph exists that contains a Reeb graph encoding the topology
of that isosurface. Fujishiret al. [24] constructed a hyper-Reeb graph using “focusing with
interval volumes,” an iterative approach that finds a subset of all critical isovalues, which has
been introduced by Fujishiro and Takeshima [25]. Considering just the images shown in their
paper, it seems that their approach does not detect all critical isovalues of a scalar field. Initial
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work [24, 25] used a hyper-Reeb graph for automatic generation of transfer functions. Fujishiro
et al. [26] extended this work and used a hyper-Reeb graph for exploration of volume data. In

addition to automatic transfer function design, their extended method allows them to generate
translucent isosurfaces between critical isovalues.

Gerstner and Pajarola [28] defined a bisection scheme that enumerates all grid points of a
rectilinear grid in a tetrahedral hierarchy. Using piecewise-linear interpolation in tetrahedra, crit-
ical points can be detected using a criterion derived from Banchoff’s work [4], see Section 2.1.2.
Data sets are simplified by specifying a traversal scheme that descends only as deep into the
tetrahedral hierarchy as necessary to preserve topology within a certain error bound. The method
incorporates heuristics that assign importance values to topological features, enabling controlled
topology simplification.

Kraus and Ertl [46] used topology guided downsampling to simplify data sets while consid-
ering their topological behavior. Based on [28] they developed a heuristic indicating whether a
vertex in a rectilinear regular grid is an ordinary point, minimum, maximum, or saddle. This
heuristic is used to guide a down-sampling scheme while trying to preserve some topological
properties of the original data set.

Konkle et al. [45] introduced a method to compute Betti numbggsto (3, for isosurface
triangulations. Loosely definedy is the number of connected componentsis the number of
independent tunnels, antj is the number of closed regions defined by a two-manifold surface
in three-dimensional space. Konkdeal. show, that Betti numbers provide valuable information
to a user that can be displayed along with an isosurface.

Pascucci and Cole-McLaughlin [71] extended work on contour trees. Based on the contour-
tree construction algorithm presented in [10] they developed an algorithm that computes an aug-
mented contour tree containing additional nodes corresponding to genus changes of contour
components and specifies Betti numbers at each node. They subsequently developed a divide-
and-conquer algorithm for contour-tree construction that improves efficiency. The central part of
this new algorithm is independent from a specific interpolant used within grid cells. The authors
used this ability to extend their algorithm to trilinear interpolation on hexahedral cells.

Cox et al. [15] considered topological changes of isosurfaces extracted b§pikder Web
algorithm [41, 42]. Using linear interpolation, the Spider Web algorithm determines intersec-
tion points along edges of all cells intersecting the isosurface. Each face of a cell has either
two or four intersection points of its edges with the isosurface. If a face has two intersection
points, the Spider Web algorithm assumes that they are connected. If a face has four intersec-
tion points, a criterion similar to the asymptotic decider [68] is used to determine which edge
intersection points are connected. In a second pass, a so called articulation point is computed for
each connected set of intersection points within a cell. An isosurface triangulation is obtained by
connecting the articulation point to all pairs of connected intersection points. By analyzing the
results of the Spider Web algorithm, Cexal. [15] developed a set of criteria to detect critical
points in a volume data set when a so called admissible interpolant is used within cells. Both, iso-
lated critical points and “critical isosets” (or regions) are detected. d€ak considered vertices
to detect critical points or isosets. A single vertex is classified using a criterion similar to that
used in this work. Critical isosets are detected by considering vertices that are edge connected to
the isoset and counting connected components. é€ak also considered and detected saddles
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on cell faces. However, their approach does not allow for critical points in a cell’s interior which
are ruled out by their admissibility criterion. Thus, their approach cannot be used for scalar fields
defined by interpolation, and it ignores any possible topological changes within cells. It further-
more does not consider extended face saddles. After detecting critical points and critical isosets,
Coxet al. devloped a method that partitions a volume into regions of equal topological behavior
using a criticality tree which is related to a contour tree.
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Chapter 4

Crack-free Isosurfaces for Adaptive Mesh
Refinement Data

4.1 Introduction

Due to the hierarchical nature of AMR simulations, AMR data lend themselves to hierarchical
visualization. One of the problems encountered, when isosurfaces are extracted using an MC
method, is the cell-centered AMR format. MC methods expect that dependent data values are
associated with a cell’s vertices instead of its center. One possibility to deal with this incompat-
ibility is using a resampling step to compute values at the vertices of the grid and convert the
data to a vertex-centered format. If a resampling step is used to replace the values at a cell’s
center with values at its vertices, “dangling” nodes arise at level boundaries. Even if a consis-
tent interpolation scheme is used;,, one that assigns the same value to a dangling node as is
assigned to its location in the coarse level, a crack in an isosurface extracted by MC can result,
see Figure 4.1. MC approximates contours on boundary faces by line segments connecting inter-
section points of the contour with a face’s edges. When a coarse face and a subdivided face with
a dangling node are adjacent, two differing approximations of the bilinear contour are used on
the same face. On the coarse face, the contour is approximated by a line segment connecting its
intersection points with the face’s edges. On refined face, a line segment is used to approximate
the contour on each “sub-face,” resulting in a polyline capturing the bilinear contour at a higher
resolution. Coarse and fine contour only match up, when all vertex values are collinear and the
bilinear contour degenerates to a line segment. In general cases, this does not happen, thus caus-
ing a crack between coarse and fine approximation of the bilinear contour, see Figure 4.1(a). An
additional problem arises, when an MC approach based on implicit disambiguation is used. If
the coarse face has an ambiguous configuration, the arbitrary choice of contour topology used by
implicit disambiguation may be incorrect. Subdivision of the face in the finer level can resolve
the ambiguity, and contour topology on the refined face is correct. Topology of coarse and fine
contour differ, resulting in a crack, see Figure 4.1(b).

Using an MC approach that reproduces correct bilinear topology on boundary faces, for ex-
ample, the asymptotic decider [68], avoids cracks due to inconsistent contour topology. Cracks
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8

Figure 4.1: Whenever dangling nodes occur, an isosurface extracted by MC can contain cracks,
even if the dangling nodes has the same value as interpolation assigns to it in the coarse level. (a)
MC approximates contours on boundary faces by line segments. The polyline on the subdivided
face does not match up with the line segment on the coarse face, resulting in a crack. (b) Implicit
disambiguation chooses arbitrary contour topology on ambiguous faces. When refining a face
resolves the ambiguity, contour topology on the refined face may differ from contour topology
on the coarse face.

due to differences in approximation accuracy are also encountered by approaches that try to deci-
mate the number of triangles produced by marching cubes by using grids at different resolutions.
Shekhatet al. [76] used an octree for hierarchical data representation. By adaptively traversing
the octree and merging cells that satisfy certain criteria, their method reduces the amount of tri-
angles generated for an isosurface. Their scheme removes cracks in a resulting isosurface by
moving fine-level vertices at boundaries to a coarser level to match up contour approximations
with those of the coarse level. Westermanral. [88] modified this approach by adjusting the
traversal criteria and improving the crack-removal strategy. Their method replaces triangles in
the coarse cell by a triangle fan that matches up with the polyline in the finer level.

Since in the case of AMR data dangling nodes only occur because of the resampling to the
vertex-centered case, it is best to avoid resampling completely. This is achieved by interpreting
the locations of the samples, see Equation 2.49, as vertices of a new grid that is “dual” to the
original one. Cell centers become the vertices of the vertex-centietdcrid. The implied
connectivity information between these centers is given by the neighborhood configuration of
the original cells.

The dual grids for the first two levels of the AMR hierarchy shown in Figure 2.47 are shown
in Figure 4.2. 1t is important to note, that the dual grids have “shrunk” by one cell in each
axial direction with respect to the original grid. The result is a gap between the coarse grid
and the embedded fine grids. Due to the existence of this gap, there are no dangling nodes
causing discontinuities in an isosurface. However, to avoid cracks in extracted isosurfaces as a
result of gaps between grids, a tessellation scheme is needed that “stitches” grids of two different
hierarchy levels.

| fill those gaps in an index-based stitching step. Vertices, edges and faces of a fine grid are
connected to vertices in the coarse level using a look-up table (LUT) for the possible refinement
configurations. The resulting stitch mesh consists of tetrahedra, pyramids, triangular prisms
and hexahedral cells. By extending an MC method to these additional cell types, | define an
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Figure 4.2: Dual grids for the three AMR grids comprising the first two hierarchy levels shown
in Figure 2.47. The original AMR grids are drawn in dashed lines and the dual grids in solid
lines

isosurface extraction scheme that avoids cracks in an isosurface at level boundaries.

The original Berger-Colella scheme [6] requires a layer with a width of at least one grid cell
between a refining grid and the boundary of the refined level. Even though Bryan [8] eliminates
this requirement, my method still requires it. This is necessary, as this requirement ensures
that only transitions between a coarse level and the next finer level occur in an AMR hierarchy.
Allowing transitions between arbitrary levels would force it to consider a large number of cases
during the stitching process. (The number of cases would be limited only by the number of levels
in an AMR hierarchy, since transitions between arbitrary levels are possible.) These requirements
are equivalent to requirements described by Geoas [30] who also do not permit transitions
between arbitrary levels.

4.2 Stitching 2-d Grids

A stitch mesh, used to fill gaps between different levels in the hierarchy, is constrained by the
boundaries of the coarse and the fine grids. In order to merge levels seamlessly, the stitch mesh
must not subdivide any boundary elements of the existing grids. I2-thease, this is achieved

by requiring that only existing vertices are used and no new vertices generated. Since one of the
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Figure 4.3: Stitch cells for first two levels of AMR data set shown in Figure 4.2

reasons for using the dual grids is to avoid the insertion of new vertices, whenever possible, this
causes no problems.

In the 2-d case, a constrained Delaunay triangulation, see, for example, Chew [12], can be
used to fill the gaps between grids. For two reasons, | do not do this. First, while iadhe
case only edges must be shared between the stitching grid and the dual grids, entire faces must
be shared in th&-d case. The boundary faces of rectilinear grids are rectangles that cannot
be shared by tetrahedra without being subdivided, thus causing cracks when used in an MC-
based isosurface extraction scheme. Second, an index-based approach is more efficient, since it
takes advantage of the regular structure of the boundaries, while avoiding problems that might
be caused by this regular structure when using a Delaunay-based approach.

The stitching process for a refinement ratio of two is shown in Figure 4.3. Stitch cells are
generated for edges along the boundary and for the vertices of the fine grid. The stitch cells
generated for the edges are shown in dark gray, while the stitch cells generated for the vertices
are drawn in light gray. For the transition between one fine and one coarse grid, each edge
of the fine grid is connected alternatingly to either a vertex or an edge of the coarse grid. This
yields triangles and quadrilaterals as additional cells. The quadrilaterals are not subdivided, since
subdivision is not unique. (This in turn would cause problems ir3tdease when quadrilaterals
become boundary faces shared between cells.) The vertices are connected to the coarse grid via
two triangles. A consistent partition of the deformed quadrilateral is possible. The obvious
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Figure 4.4: Possible cases for connecting a boundary egige cases (a)-(d), or a boundary
vertexwv, cases (e)—(h), to a coarse grid. If cells of the coarse grid are refined, the coarse grid
points (circles) are replaced by the corresponding refining point (solid black discs)

choice is to connect each vertex to the two coarse edges that are “visible” from it.

In the case of multiple grids, a check must be performed: Are the grid points in the coarse
grid refined or not? If a fine edge is connected to a coarse point, this check is simple. If the
coarse point is refined, the fine edge must be connected to another fine edge; this yields a recti-
linear instead of a triangular cell. The case of connecting to a coarse edge is more complicated
and is illustrated in Figures 4.4 (a)—(d). If both points are refined, see Figure 4.4(d), the fine edge
is connected to another fine edge. As a result, adjacent fine grids yield the same cells as a “con-
tinuous” fine grid. Problem cases occur when only one of the points is refined, see Figures 4.4(b)
and 4.4(c). Even though it is possible to skip these cases and handle them as vertex cases of the
other grid, a more consistent approach is to include them in the possible edge cases. However,
the same tessellations should be generated for both cases, as shown in Figure 4.4.

The cases arising from connecting a vertex are illustrated in Figures 4.4 (e)-(h). In addition
to replacing refined coarse grid points by the nearest fine-grid point, adjoining grids must be
merged. If either of the coarse grid poifitssee Figure 4.4(f), A, see Figure 4.4(h), is refined,
it is possible to change the border vertex to a border-edge segment by connecting it to the other
refined grid point and treating it as an edge, and using the connection configurations from the
previous paragraph.e., those shown in Figures 4.4 (a)—(d). (This case occurs along the bottom
edge of the fine grids shown in Figure 4.3.)

Even though arbitrary integer-refinement ratigsare possible for AMR grids, refinement
ratios of two and four are the most common ones used. The stitching process can be generalized
to more general refinement ratios. Instead of connecting edge segments of the refining grid
alternatingly to a coarse-grid edge segment and p@int,1) consecutive edge segments must be
connected to one common coarse-grid point. Eveth fine edge must be connected to a coarse
edge. The same connection strategy results from connecting each fine grid edge to a parallel
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“phantom edge” that would exist if the grid continued in that direction. If both end points of
the phantom edge are within the same grid cell in the parent level, the edge is connected to the
coarse grid point within that cell. If the phantom edge crosses a boundary between two coarse
grid cells, the fine edge is connected to the edge formed by the two grid points in those cells.

Even though the valence of the grid points of the coarse grid is increased, this is not a problem
with the commonly used refinement ratios. Furthermore, it is important to note that arbitrary
refinement ratios would not add more refinement configurations. The fundamental connection
strategies remain the same. A fine-grid edge is connected to a coarse-grid vertex or a coarse-grid
edge. A fine-grid vertex is connected to two coarse-grid edges. The cell subdivisions shown in
Figure 4.4 can be used for arbitrary refinement ratios.

4.3 Stitching 3-d Grids

The index-based approach can be generalizeédd@®MR grids. In the simple case of one fine
grid embedded in a coarse grid, boundary faces, edges and vertices of the fine grid must be
connected to the coarse grid.

Each of the six boundary faces of a grid consists of a number of rectangles defined by four
adjacent grid points on the face. A boundary face is connected to the coarse mesh by connecting
each of its comprising rectangles to the coarse grid. For each quadrilateral, the level indices
of the four grid points that would extend the grid in normal direction are computed. These are
transformed into level indices of the parent level by dividing them by the refinement-yatio
the fine level. In each of the two directions implied by a rectangle, these transformed points
may have the same level index component. If they have the same index for a direction, the fine
rectangle must be connected to one vertex in this direction; otherwise, it must be connected to
an edge in that direction. The result is the same as the combination @ftexige cases. The
various combinations result in rectangles being connected to either a vertex, a line segment (in
the two possible directions) or another rectangle. The cell types resulting from these connec-
tions are pyramids, see Figure 4.5(a), deformed triangle prisms, see Figure 4.5(b), and deformed
hexahedral cells, see Figure 4.5(c).

An edge is connected to the coarse grid by connecting its comprising edge segments to the
grids in the parent level. For each segment, the level indices of the six grid points that would
extend the grid beyond the edge are computed. These indices are also transformed into level
indices of the parent level. Depending on whether the edge segment crosses a boundary face of
the original AMR grid or not, the edge must either be connected to three perpendicular edges
or two rectangles of the coarse grid. This is equivalent to a combination of the vertex and edge
connection types of the-d case. If the viewing direction is parallel to the edge segment (such
that it appears to the viewer as a point), it must always be connected to two perpendicular edges
of the coarse grid. In the direction along the edge, one connects it to a point or a parallel edge.
Connecting an edge segment to the coarse grid results in two tetrahedra, shown in Figure 4.5(d),
or two deformed triangle prisms, shown in Figure 4.5(e), as connecting cells.

A vertex is connected by calculating the level indices of the seven points that would extend
the grid. These are transformed into level indices of the parent level. The result is the same as the
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Figure 4.5: Possible connection types for quadrilateral, edge and veideX tase

combination of twa2-d vertex cases. The vertex is connected to three rectangles of the coarse
grid via pyramid cells, as shown in Figure 4.5(f).

When the coarse level is refined by more than one fine grid, one must check each coarse-grid
point for refinement and adapt the generated tessellation accordingly. The simplest case is given
when a fine-grid boundary rectangle is connected to a coarse-grid point, see Figure 4.5(a). If this
coarse-grid point is refined, an adjacent fine grid exists and the fine-grid boundary rectangle must
be connected to the other fine grid’s boundary rectangle. This case illustrates that it is helpful
to retain the indices within the fine level in addition to converting them to the coarse level. In
the unrefined case, the rectangle was connected to a coarse point, because transforming the four
level indices from the fine level to the coarse level yielded the same coarse-level index. If the grid
point corresponding to that coarse level-index is refined, the “correct” fine boundary rectangle
can be determined using the original fine level indices. (For a refinement ratjo-ef2 the
correct choice of the fine-level rectangle is also implied by the connection type, but for general
refinement ratios the fine-level index must be retained.)

Connecting a fine rectangle to a coarse edge, see Figure 4.5(b), is slightly more difficult. Each
of the endpoints of a coarse edge can either be refined or unrefined. The resulting refinement
configurations and their tessellations are shown in Figure 4.6. Refinement configurations, the
cases in Figure 4.6 and subsequent figures are numbered as follows: For each connection type
shown in Figure 4.5, the coarse-grid points that are connected to a fine grid element are numbered
according to the corresponding sub-figure. A case number is obtained by starting with case
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Figure 4.6: Refinement configurations for connecting a fine-grid rectangle to a coarse-grid edge
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Figure 4.7: If coarse-grid vertexis refined, when a fine-grid edge is connected to two coarse-
grid edges, see Figure 4.5(d), two pyramids are generated instead of two tetrahedra

0

For each refined coarse-grid vertex2* is added to the number associated with this case. To
determine to which refining grid points the fine rectangle should be connected, the fine-level
indices are retained in addition to converting them to coarse level indices.

When connecting a fine-grid edge to two perpendicular coarse-grid edges, eight refinement
configurations arise. If all coarse-grid vertices are unrefined, two tetrahedra are generated, as
illustrated in Figure 4.5(d). If either coarse-grid vertear 2 is refined, the fine-grid edge must
be upgraded to a coarse-grid rectangle and the corresponding tessellation function called with
appropriate vertex ordering. (This procedure ensures that adjacent fine grids produce the same
stitch tessellation as a continuous fine grid.) In the remaining case, when only coarse-grid vertex
0 is refined, two pyramids are generated instead of tetrahedra, see Figure 4.7.

For connection types where a fine-grid quadrilateral, see Figure 4.5(c), edge, see Figure 4.5(e),
or vertex, see Figure 4.5(e), is connected to coarse-grid rectangles, eight points are considered.
These points form a deformed hexahedral cell. One must congigerssible refinement config-
urations when a fine-grid rectangle is connected, since the four vertices belonging to the fine-grid
rectangle are always refined, see Figure 4.8. More cases arise when a fine-grid edge or a ver-
tex is connected to the coarse level. It is important to devise an efficient scheme to determine
the tessellation for a given refinement configuration. Each cell face corresponds to a possible
2-d refinement configuration as shown in Figure 4.4. It is important to note thatdhefine-
ment configurations that produce subdivided quadrilaterals are the same configurations that yield
non-planar cell boundariese., boundaries that must be subdivided. The subdivision informa-
tion alone is sufficient to determine a tessellation for any given refinement configuration. It is
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Figure 4.8: Refinement configurations for connecting a fine-grid rectangle to a coarse-grid rect-
angle

not necessary to consider the positions of the points. Each cell face Figure 4.8 and subsequent
figures is subdivided using the canonical tessellations depicted in Figure 4.4, illustrated by the
dotted lines in a figure illustrating tessellations of a connection &ge, Figure 4.8.

The subdivision of cell faces implies subdivisions of hexahedral cells into pyramids, triangu-
lar prisms and tetrahedra. In certain cases, see, for example, Figure 4.8(e), a cell type arises that
does not correspond to the standard cells (hexahedra, pyramids, triangle prisms and tetrahedra),
and that cannot be subdivided further without introducing additional vertices. Even though it is
possible to generate a case table to extend MC to this cell type, the asymmetric form of this cell
makes this extension difficult. Symmetry considerations that are used to reduce the number of
cases that need to be considered cannot be applied. Therefore, cells of this type are handled by
generating an additional vertex at the centroid of the cell. By connecting the centroid to all cell
vertices one obtains a tessellation consisting of pyramids and tetrahedra.

Edges are connected to the coarse grid by considering eight vertices forming a deformed
hexahedral cell. When an edge is connected, two of these eight points belong to the edge. The
other six vertices are coarse-grid vertices and can be either refined or unrefined. Thus, it is
necessary to considéd possible refinement configurations. It is necessary to consider all six
coarse-grid points at once, since the boundary faces need not always be subdivided faces, as
Figure 4.5(e) implies. If, for example, all coarse-grid points are refined, a single, not-tessellated
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(c) Cases3and 12

(d) Cases5and 10 (e) Cases 6 (f) Cases 7,11, 13 and 14
and 9

%

(g) Case 15

Figure 4.9: Possible refinement configurations and corresponding tessellations for triangle prism
cell

cell must be produced. However, in certain refinement situations (©a8e$§, 7, 10, 11, 15,

17, 19, 27, 34, 35, 39, 51), the two cell faces perpendicular to the fine-grid edge segment must
be divided as shown in Figure 4.5(e). In these cases, it is possible to connect the fine-grid edge
segment to the coarse grid by handling each of the triangle prisms separately. Each triangle prism
is tessellated according to the refinement configurations shown in Figure 4.9. When connecting
a fine-grid edge to two coarse-grid rectangles, see Figure 4.5(c), it must be upgraded to the
rectangle case if either grid poirt&@nd3 or grid points4 and5 are refined. In these cases (Cases
12—15, 28-31 and44—63) the refinement configurations for connecting a fine-grid rectangle are
used according to Figure 4.8. The tessellations for the remaining cases are shown in Figure 4.10.
In Figure 4.10, | only considered symmetry with respect to a plane perpendicular to the edge to
reduce the number of cases. The cases in Figures 4.10(i) and 4.10(j) differ only by rotation but
yield the same tessellation. It is important to note, that only the partition of the boundary faces
matters in determining a valid tessellation. Even though the refinement configurations shown
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Figure 4.10: Remaining refinement configurations for connecting fine-grid edge to coarse-grid
rectangles

Figures 4.10(d) and 4.10(f) differ, they yield the same patrtition of a cell's boundary faces and,
thus, the same tessellation.

Vertices can be upgraded to edges, or even quadrilaterals, when more than two grids meet
at a given location. The fine vertex shown in Figure 4.5(f) can be changed to an edge, if any of
the coarse grid points, 5 or 6 is refined. In these cases, the procedure used to connect an edge
segment is called with appropriate vertex ordering. As a result, the same tessellations are used as
in the case of a continuing edge. Furthermore, this procedure ensures that an additional upgrade
to the rectangle case is handled automatically when needed. In the remaining cases, each of the
pyramids of the unrefined case can be handled independently. If the base face of a pyramid is not
planar, it is subdivided using the corresponding configuration from Figure 4.4, and the pyramid
is split into two tetrahedra.

4.4 |sosurface Extraction

Within individual grids, a slightly modified MC approach is used for isosurface extraction. In-
stead of considering all cells of a grid for isosurface generation, only those cells are considered
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--

Figure 4.12: Basis configurations for triangulating a triangle prism.

that are not refined by a finer grid. This is done by pre-computing a map with refinement infor-
mation. For each grid cell, this map contains an index of a refining grid or an entry indicating
that the cell is unrefined. This makes it possible to quickly skip refined portions of the grid. For
the generation of an isosurface within stitch cells, the MC method must be extended to handle
the cell types generated during the stitching process. This extension is achieved by generating
case tables for each of the additional cell types. These new case tables must be compatible with
the one used in the standard MC approach. For rectilinear cells, the case table from VTK [74] is
used, which is based on implicit disambiguation. (On ambiguous faces, positive vertices are al-
ways separated.) By defining triangulations for tetrahedral cells, pyramid cells, see Figure 4.11,
and triangle prism cells, see Figure 4.12, crack-free isosurfaces can be extracted from an AMR
data set. For all cell types, implicit disambiguation is used, consistently separating positive ver-
tices. Pyramids and triangle prisms are not rotational symmetric. To reduce the number of base
cases, one can use symmetry concerning mirroring a configuration at faces perpendicular to the
x- andz-axis, subdividing a cell along its center in that direction. When a configuration contains
no ambiguous face, inversion can be used to further reduce the number of basis configurations.
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4.5 Results

Figure 4.13 shows isosurfaces extracted from an AMR data set. This data set is the result from
an astrophysical simulation of star clusters performed by Bryan [8]. Figure 4.13(b) shows an
isosurface extracted from two levels of the hierarchy, and Figure 4.13(c) one extracted from
three levels. To highlight the transitions between levels, the parts of the isosurface extracted
from different levels of the hierarchy are colored differently. Isosurface parts, extracted from the
root, the first and the second levels, are colored red, orange and light blue, respectively. Portions
extracted from the stitch meshes between the root and the first level are colored in green, and
portions extracted from the stitch meshes between the first and second levels are colored in
yellow. The root level and the first level of the AMR hierarchy each consist oBone32 x 32

grid. The second level consists tf grids of resolution® x 12 x 6,6 x 4 x 2, 8 x 12 x 10,
6x4x4,14x4x10,6x6x12,12x10x12,10x4 x8,6x6x 2,16 x 26 x 52,14 x 16 x 12

and36 x 52 x 36. All measurements were performed on a standard PC witthslHz Pentium

Il processor.
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(b) Stitch cell generation: approximatehpms;
isosurface generation: approximat@iOms

(c) Stitch cell generation required approximately
340ms; isosurface generation: approximately
600ms

Figure 4.13: Isosurface extracted from AMR hierarchy simulating star clusters using only the
root level (a), two of seven levels (b) and three of seven levels of an AMR hierarchy (c). (Data set
courtesy of Greg Bryan, Massachusetts Institute of Technology, Theoretical Cosmology Group,
Cambridge, Massachusetts)
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Chapter 5

Direct Volume Rendering of Adaptive
Mesh Refinement Data

5.1 Hardware-accelerated Volume Rendering of AMR Data

5.1.1 Introduction

Visualizations based on direct volume rendering require the specification of meaningful view-
points as well as transfer functions emphasizing features in a data set. Even though approaches
for the automatic creation of transfer functions are known, there is still a need for generating cus-
tomized transfer functions. Finding a “good” transfer function is often done on a trial-and-error
basis. It is desirable to have a means for visualizing a volumetric data set at interactive speed
as this greatly enhances a users understanding of data. Therefore, | have adopted hardware-
accelerated volume-rendering schemes for AMR data.

5.1.2 Rendering a Single Grid

Instead of using a hardware-accelerated volume-rendering approach based on texture hardware,
see Section 2.2.4, cell projection is simulated using graphics hardware. This approach is re-
stricted to orthographic projection, ensuring that front-facing and back-facing faces are the same
for all cells. When dealing with more general grid cells, each boundary face must be checked
individually whether it is back-facing or front-facing. This step can be done, for example, by us-
ing the scalar product between face normal and a veet¢a vector directed toward the viewer,
see Figure 5.1(a)). For axis-aligned rectilinear grids, this test can be performed based on the
viewing direction. Figure 5.1 shows the numbering of the faces of a cell of a rectilinear grid, and
Table 5.1 lists the criteria used to determine whether a face is front- or back-facing. Front- and
back-facing faces are the same for each cell in all grids. It is sufficient to determine front-facing
faces once.

Within cells, constant interpolation is used. A value associated with the cell is assigned to
all locations within the cell. Using a transfer function, corresponding color and opacity values
for the cell are determined. The set of front-facing faces defines a “footprint” of cells. The
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Figure 5.1: Determining front- and back-facing faces. (a) The vastas perpendicular to the
viewing plane, pointing toward the viewer. (b) Face numbering used in Table 5.1.

Face #| Front-facing| Back-facing| Perpendiculal
0 tv, <0 tv, >0 tv, =

1 tv, >0 tv, <0 tv, =

2 tv, >0 tv, <0 tv, =0

3 tv, <0 tv, >0 tv, =0

4 tv, <0 tv, >0 tv, =

5 tvy, >0 tvy, <0 tv, =

Table 5.1: Criteria used for checking whether a cell face is front-facing, back-facing, or should
not be rendered.

(@) (b) (©)

Figure 5.2: Rendering order of grid cells — all componentswibeing positive. The order

in which axes are handled (firstthen«-theny order) is arbitrary. Only the order according

to which cells are handled along an axis is important. This order is determined based on the
corresponding component tf.
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cell footprint is rendered by displaying all front-facing faces of the current cell with constant
color and opacity. This is similar to splatting, see Westover [89], using a convolution kernel that
assigns a constant value to all positions within the cell outline. Cells are rendered in back-to-
front order using three nested loops, one loop for each axis. The order according to which axes
are handled is arbitrary. Along each axis, cells must be handled in correct order. This order can
be determined based on the sign of the component of the veetoorresponding to the axis
handled by the loop. If it is positive, cells are enumerated in ascending axis direction. If it is
negative, cells are enumerated in descending axis direction. If it is zero, an arbitrary choice is
made. Figure 5.2 shows the rendering order of cells when all componentsaoé positive.

In order to account for differing cell lengths in different AMR levels, a transfer function
specifies opacity per unit length. Before rendering a grid, a transformed transfer function is
computed and subsequently used for color and opacity lookup during rendering of front-facing
faces. This transformed transfer function specifies colors and opacities for a ray segment with the
length of a cell viewed along the coordinate axis “most parallel” to the viewing direction. First,
the individual components of the viewing vecterare considered, and the axis corresponding to
the component with the largest absolute value detemined. Subsequently, the cell size along that
direction is used as cell lengttfor the transformed transfer function. The transformed opacity
is computed as

Q'Transformed= 1 — (1 - Oé)l . (5.1)

(The color component is the same as in the original transfer function since color in the transfer
function are specified without pre-multiplied alpha value.) Rendering all front-facing faces with
constant color ignores the fact that the length of ray-segments in a cell generally varies with their
location and produces artifacts in addition to the “blockyness” of constant interpolation. This
is illustrated in Figure 5.3. When a cell is viewed in axis direction, all rays traverse the same
distance in the cell (equal to the length of the cell in that direction), shown in Figure 5.3(a).
When the cell is not viewed in an axis direction, the length of the segment of the ray within
this cell depends on the position of the ray. The quick-preview method ignores this fact. It is
important to note that the resulting artifacts are similar to the artifacts produced by a slicing
approach that uses axis-perpendicular planes to composite volume images. If an image rendered
by this method is viewed in the direction of an axis, the results are “correct.” The more a viewing
direction deviates from an axis direction, the more the individual planes are visible. The resulting
renderings are similar to those one would obtain when rendering all three sets of planes at the
same time rather than choosing the set that is most perpendicular to the viewing direction. This
results in slightly different artifacts. The cell based-approach allows one to render only those
cells whose opacity is above a given threshold and generate less geometry.

5.1.3 AMR Partition Tree

Structured-rectilinear grids allow the use of hardware-based schemes to accelerate rendering,
and AMR data consists of structured-rectilinear grids. However, when viewed over the whole
domain there are changes in resolution. In order to apply hardware-accelerated schemes to AMR
data, | partition a given data set into blocks of constant resolution using a generalized k-d tree [5].
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A B C D
(@) (b)

Figure 5.3: Different lengths of ray traversing cell. (a) Rays axis-aligned. (b) Rays not axis-
aligned.

Each grid is partitioned into two types of blocks of adjacent cells: A block consists completely of
cells for which no refined representation is available or all cells of the given block are available
in a higher resolution. In the latter case, the block contains a pointer to the finer representation.
The resulting blocks are rendered from back to front. During rendering, it is determined for each
block whether it is rendered at low or high resolution to achieve interactive frame rates.

The partition tree consists of nodes of different types. All nodes share certain common in-
formation, regardless of type. Each node specifies a region of an AMR grid. Thus, each node
contains at least a reference to this AMR grid and information regarding which cells of the grid
are used by this node. These regions are always rectilinear and axis-aligned, allowing their
specification by the minimum and maximum cell indices. All cells with indices between these
indices belong to the region described by this node. This information alone is sufficient for the
“unrefined-grid-part” node. Nodes of this type describe regions in an AMR grid for which no
further refinement information is available, regions that can always be rendered at the fixed res-
olution of the current level. The “completely-refined-grid-part” node describes a region that is
completely available at a higher resolution and thus indicates a transition between two hierarchy
levels. The corresponding region of the AMR grid is completely available at a higher resolution.
Consequently, it is possible to render the resolution of the current level or alternatively render it
at a higher resolution. This higher-resolution representation is a pointer to a sub-tree describing
that region. A “partition” node splits a given region into “stripes” along an axis. Each stripe
is an unrefined-grid-part node, a completely-refined-grid-part node, or a partition node (with a
different partition direction).

Figure 5.4 shows the partition tree for the AMR hierarchy from Figure 2.47. To render the
complete hierarchy, this partition tree is traversed. Partition nodes are handled by rendering their
children in correct ordet,e., by traversing their children lists back-to-front. (I use orthographic
projection.) Thus, back-to-front traversal can be achieved by checking the component of the
view-direction vector corresponding to the partition direction and rendering the child nodes in
a direction according to the sign of the component. Unrefined-grid-part nodes are handled by
rendering the corresponding region of the AMR grid using a hardware-accelerated approach.
Completely-refined-grid-part nodes are rendered by traversing their sub-trees.
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Figure 5.4: Partition tree for hierarchy shown in Figure 2.47. Completely refined grid-part nodes
are denoted by “CP,” unrefined grid-part nodes are denoted by “CU,” and partition nodes are
denoted by “PN.”

5.1.4 Adaptive Tree Traversal

By using heuristics it is possible to adaptively traverse the partition tree and render images that
take certain criteria into account. Two types of criteria governing the traversal of the partition tree
exist: viewpoint-dependent criteria aim at minimizing rendering time while retaining quality of
generated imagesime-constraining criteria aim at maintaining interactive rendering rate, sacri-
ficing image quality if necessary. Two viewpoint-dependent criteria to modify tree traversal are
employed. During the traversal of a partition node, a check is performed for each child whether
the region corresponding to that node is visilile, whether it intersects the viewing frustum. If

the answer is negative, the corresponding child is skipped, thus culling the corresponding part of
the volume. Since an intersection test for bounding box and viewing frustum is too expensive to
be performed in real time, a heuristic is used: An arbitrary diagonal of the region (the line seg-
ment spanning from one vertex of3ad cell to the opposite-corner vertex) is projected to view
coordinates and a check performed whether the bounding box of that diagonal intersects the view
region. (In normalized view coordinates this region is givefras 1] x [—1, 1] x [-1, 1].) When

a completely refined-grid-part node is traversed, a choice must be made: Should the correspond-
ing region be rendered at the resolution of the current level or should it be rendered at a higher
resolution? The decision is based on an estimated footprint of the voxel. If each cell of a refining
grid covers only sub-pixelg,e., only fractions of pixels, it is sufficient to render the data with
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the resolution of the parent level. Again, to perform this decision efficiently enough for real-time
rendering this region is estimated by using the bounding box of the projected diagonal of a cell.

Considering viewpoint-dependent criteria alone only avoids unnecessary rendering time but
does not necessarily ensure interactive rendering speed. When it is not possible to use the full
resolution of an AMR data set and achieve interactive frame rates, greater speed can be obtained
by sacrificing rendering quality. Currently, a traversal depth of the partition tree for interactive
rendering is specified. For each frame, the time necessary to render it is measured, and an
achieved frame rate estimated. If the estimated frame rate is too low, the traversal depth is
decreased; if it is higher than the desired frame rate, the traversal depth, and thus the quality of
the rendered image, is increased.

5.1.5 Results

Figure 5.5 shows images used for interactive preview purposes for AMR data. The considered
AMR data set is the same astrophysical data set used in Section 4.5. On an SGI Onyx with
InfiniteReality2 graphics, a frame rate of five frames per second can be achieved while using
almost the entire AMR hierarchy (five to six of eight levels). Even on an Indigo2 with Solidlm-
pact graphics four to five of eight levels can be rendered with five frames per second, since my
method requires no hardware acceleration of textures. Using an NVIDIA GeForce board, only
two to three levels can be rendered at five frames per second. The result is shown in Figure 5.5(a).
For merely choosing a viewpoint, this quality is sufficient. The best possible quality using the
hardware-accelerated approach is shown in Figure 5.5(b). This image utilizes all levels in the
AMR hierarchy and uses the view-dependent criteria merely to avoid unnecessary computation
time. This image requires about two seconds on an SGI Onyx with InfinityReality2 graphics and
about ten seconds on a PC with NVIDIA GeForce board.

5.2 Progressive high-quality rendering using cell projection

5.2.1 Introduction

After choosing a suitable viewpoint and transfer function, it becomes necessary to render higher-
quality images. | have developed an approach based on cell projection, that utilizes different
interpolation schemes. In some caseg,, for debugging purposes, it is desirable to use only
data values that were computed in an AMR simulation. For these purposes, constant interpola-
tion which assigns the data value associated with a cell to all locations within that cell, is most
suitable. To improve the quality of rendered images, | examined the suitability of the piece-
wise linear method (PLM), one of the interpolation schemes used during simulation, for visu-
alization purposes. PLM is ndt’-continuous, resulting in visible artifacts in rendered images.
This problem can be resolved by using trilinear interpolation and dual grids to defife a
continuous, consistent interpolation scheme that can be used to obtain high-quality images. My
cell-projection-based rendering scheme allows for progressive rendering of an AMR hierarchy.
Constant interpolation and PLM operate on original grids of an AMR hierarchy. My scheme al-
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(b)

Figure 5.5: Images generated by hardware-accelerated volume renderer. (Data set courtesy of
Greg Bryan, Massachusetts Institute of Technology, Theoretical Cosmology Group, Cambridge,
Massachusetts) (a) Data set rendered during user interaction based on two coarsest-level grids in
AMR hierarchy. (b) Data set rendered at full resolution.
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lows one to refine a rendered image grid-by-grid when using these interpolation schemes. When
using dual grids, it is not possible to refine on a per-grid basis. Consequently, | modify my
approach to allow refinement on a per-level basis.

5.2.2 Progressive Refinement Cell Projection of AMR Data

An AMR hierarchy is rendered by subsequently cell-projecting its constituent grids using the
ray-segment-queue-based cell-projection approach introduced by Ma and Crocket [58], see Sec-
tion 2.2.4. Two schemes are possible: Bottom-up rendering starts with rendering the finer grids
and proceeds with filling gaps by rendering the corresponding portions of the coarser grids. In
a top-down approach, a coarse grid is rendered first. The result can be displayed and used as an
intermediate visualization. The rendered image is refined by proceeding to the finer grids and
replacing portions of the already rendered image with a version at higher resolution. A simple
bottom-up rendering scheme starts by cell-projecting the grids of the finest level. Subsequently,
grids of the coarser levels are cell-projected. While rendering these coarser grids, special care
must be taken of those cells overlapped by a finer grid. Ray segments for the regions covered
by these cells are already computed. Thus, these cells must be skipped during the rendering
process to obtain a correct result. This is done by usinip@mnsection map. The intersection

map contains an entry for each cell in the grid that specifies the index of the grid that overlaps
this cell, should such a grid exist. During the rendering process, the intersection map entry for
the current cell is read. If it specifies an overlapping grid, the cell is skipped. A straightforward
extension is to render only a subset of refining grids. In this case, a cell is skipped only when the
grid overlapping that cell is already rendered.

By adding supplemental information to each ray segment that is inserted into the ray-segment
gueues, it is possible to use a top-down rendering approach for AMR hierarchies. For each ray
segment, indices of two grids are stored: One index specifies the grid in which the segment
was created;i.e., the grid to which the cell belongs. The other index specifies by which grid
in the child level the segment is affectad,, it specifies rendering which grid would define a
more accurate representation of that ray segment. This is the index of the grid refining the cell in
which the ray segment was created and can be obtained by reading the corresponding entry in the
intersection map. Ray segments are only merged when they are adjacent (see Section 2.2.4) were
created in the same and are affected by the same grid. Figure 5.6 shows three rays traced from a
specific viewpoint. When the coarsest gfid is rendered, all ray segments are tagged as being
created in grid=7,. Ray A is not affected by any grid, since it does not intersect any refined grid
cells. Ray B is divided into four segments: the first is not affected by another grid; the second is
affected by grid&; the third is affected by gridr,; and the fourth is not affected by any grid.

Ray C consists of three segments: the first is not affected by another grid; the second is affected
by grid G;; and the third is not affected by another grid. After rendering giidcompletely,

the ray-segment queue for ray A contains exactly one ray segment. The queues for rays B and C
contain four and three segments, respectively. Ray B consists of a segment from the viewpoint
to grid G; (solid line segment), one segment that is contained in@rigdashed line segment),

a segment that is contained in grig (solid line segment), and a segment after leaving gtid
(dashed line segment). Ray C is comprised of a segment from the viewpoint t&'g(gblid
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A

Figure 5.6: Progressive rendering of AMR hierarchy.

line segment), a segment that is contained in gfid(dashed line segment), and the segment
after leaving grid=; (solid line segment). Since ray segments can only be merged when they are
affected by the same grid, these segments cannot be merged. It is important to note that, even
though ray B intersects also grig;, this intersection is not considered until grids andG,, are
rendered. Only grids of the next-finer level are considered as affecting a given ray segment.

Using this approach of partitioning rays into segments that are affected by finer grids and
those that are not, it is straightforward to refine an already rendered image by rendering a finer
grid. Before the finer grid is rendered, all ray segments affected by that finer grid are erased from
the ray-segment queues. When the finer grid is rendered, the gaps in the ray segments resulting
from this step are filled with more accurate ray segments, resulting in an improved image.

5.2.3 Constant Interpolation and Piecewise-Linear Method

One way to render grids of an AMR data set is not to use interpolation at all and use only
original data values. This approach assigns the value at a cell’s center to the whole extent of
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Figure 5.7: Computing interpolated values using PLM. (a) The first derivative is approximated
as the difference between the values at the centers of the two adjacent cells divided by their
distance. Values within the cell are interpolated linearly by adding the approximated derivative
multiplied by the distance from the cell center to the value at the cell center. (b) If the cell value is
a local extremum, the first derivative is set to zero (bold solid line) instead of using the difference
between adjacent cell values (solid line). (c) If necessary, the absolute value of the approximated
derivative (solid line) is reduced (heavy solid line) to restrict the values in a grid cell between the
average levels (dashed lines) of its neighbors.

the cell. Scientists who perform simulations favor this approach, as it might make it easier to
identify problems in a simulation.

If an interpolation scheme is used, it should be compatible with the interpolation scheme
applied during the simulation. Unfortunately, this is complicated by the fact that the underlying
finite-difference method has no “inherent” interpolation scheme. Differentiation is approximated
by differencing function values of neighboring grid points. The simulation does not use any val-
ues besides those at cell centers. AMR, however, uses an interpolation scheme to initialize values
of newly created grids. Itis possible to use an interpolation scheme based on the piecewise-linear
method (PLM), commonly used in AMR simulations, for visualization. PLM can be used with
simulations of arbitrary dimension. In the following, the basic method is described f@rdhe
case. PLM estimates the partial derivatives at the center of a grikcell(ko, k;) using the
difference between grid-cell values;.,

0

9o

_ U(ko+1,k1) — U(ko—1,k1) and i

U(ko,k1+1) — Y(ko,k1—1)
= 5.2
250 aZL'l ( )

201 ’

X=Pk X=Pk

whered, andd, denote the cell size in the corresponding directions. Figure 5.7(a) illustrates this
approximation for the -d case (considering one component). The scalar value associated with
the cell center is denoted by and its positionj.e., the center of celk, denoted bypy. Scalar
values in a cell are approximated linearly by adding the first derivative multiplied by the distance
from the cell center to the scalar value at the cell’'s center:

+ (21 —Pl)%f . (5.3)

X=Pk X=Pk

0
PLM(x) = vk + (x —p)V f :Uk+(370—1?0)a_f
X=Pk Zo
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Using the first derivative according to Equation 5.2 can result in the introduction of new extrema.
PLM prevents this from happening by imposing a limit on the absolute value of the first derivative
(“van Leer Limiting [79]"). This is done by extending Equation 5.2 in the following way: First,

a decision is made whether a local extremum is present at the cell center of the current cell.
A local extremum in direction) is present when the two differenceg,, ) — v(,-1.4,) and
Uko+1,k1) — U(ko,k1) NAVeE different signg,e., when

(U(ko,kl) - v(ko—l,kl)) (U(k0+1,k1) - U(k07k1)) <0. (5-4)

In this case, the corresponding partial derivative is set to zero, see Figure 5.7(b). Otherwise, the
absolute value of the slope is set to

it

0

8:100

v(ko—‘rl,kl) - U(ko—l,kl)
200

U(ko+1,k1) — Ulko,k1)

do ’

,2

)

The last two terms ensure that interpolated values in a cell lie between the average malues (
the values at the cell centers) of adjacent cells, see Figure 5.7(c). When the condition stated in
Equation 5.4 holds, all three terms in the “min” expression have the same sign. The sign of the
approximated derivative is set to this sign. The other directipis handled analogously. This
approach generalizes to higher dimensions. (If the values iZ+thease are interpreted as height
values over the grid, the interpolant defines a plane with slgpe8x—p, and ;- flx—p, in zo—
andz,—direction, respectively, passing through the scalar value at the cell center.)

PLM is well suited for interpolation of border values for a new grid. When used for visual-
ization purposes, PLM can cause problems, since it is not continuous at cell boundaries. Even
though for most viewing angles integration smooths out artifacts in volume renderings, distract-
ing artifacts can still result when the view direction is along one of the three major axes and two
neighboring rays pass through two different “stacks” of cells. Each cell intersected by the ray has
a significantly different color value compared to the color value of the neighboring cells. This
effect is accumulated by the integration along the ray.

When using constant interpolation or PLM an unmodified cell-projection approach can be
used. Constant interpolation assigns a single value to all locations within a cell. When boundary
faces are scan converted, this constant value is assigned to all pixels as interpolated value. (In
fact, an optimized cell-projection approach that only deals with constant interpolation need not
compute and store interpolated values for individual pixels.) All locations along a ray segment
have the same value and optical properties. Consequently, it is possible to evaluate a particle light
model analytically, see Section 2.2.4. For the piecewise linear model, all interpolated values
lie on a3-d hyperplane. Interpolated values can be obtained by linearly interpolating within
boundary polygons and subsequently interpolating along a ray segment. This is equivalent to the
standard cell-projection approach for linear tetrahedra.

X=Pk

(5.5)
Ulkok1) — Ulko—1,k1)

2
0o
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(c) Standard pyramid (d) Standard tetrahedron

Figure 5.8: Base elements for interpolation.

5.2.4 Cell Projection of Stitch Cells

Rendering rectilinear, pyramid, and triangle prism cells which are produced by grid stitching,
see Chapter 4, requires modifications to the standard cell projection approach. For these cell
types, interpolated values cannot be obtained by linear interpolation on boundary faces followed
by linear interpolation along ray segments.

To define interpolation for these cell types titendard elements shown in Figure 5.8 are
considered. Interpolated values are computed by mapping all cells generated in the stitching
process to the appropriate standard element. All cells generated in the stitching step have either
triangular or quadrilateral faces. On boundary faces it must be ensured that interpolation yields
consistent results, regardless of element type. Bilinear interpolation is used for quadrilateral
faces and linear interpolation (based on the barycentric coordinates of the interpolated point) for
triangular boundary faces.

Values in the unit cube, see Figure 5.8(a), are interpolated using standard trilinear interpola-
tion which corresponds to bilinear interpolation when restricted to the boundary faces.

In the case of a triangular prism cell, see Figure 5.8(b), values at the vertices of the triangle
containing the poinp (i.e., the triangle that is obtained by intersecting the prism with a plane
being parallel to its two triangular end faces and contaimihgre computed by linear interpo-
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Screen

Figure 5.9: The transformation between a stitch cell and its standard element is linear. Line ray
segments in the stitch cell are mapped to line segments in the standard element.

lation in z-direction. Subsequently, the valuerats obtained by linear interpolation within this
triangle.

Interpolation in pyramid cells, see Figure 5.8(c), is done by a combination of bilinear and
linear interpolation. To obtain a function value for a pgntvalues along the four side edges
emanating from the poirid, 1, 0) are computed by linear interpolation: this step interpolates the
values at the vertices of a square in the constant plane containing Subsequently, the value
for p within that plane is obtained by bilinear interpolation in the: constant plane.

For tetrahedral cells, linear interpolation is used. The ppiig expressed in term of its
barycentric coordinates and these are used as interpolation weights. Linear tetrahedra are handled
correctly by the standard cell-projection approach. In order to handle all cell types uniformly,
tetrahedra are also handled by mapping them to the standard tetrahedron element.

To create ray segments, interpolated values must be computed along these segments. This is
done by mapping each cell to its corresponding standard/unit element and using the interpola-
tion function for that element. Mapping a cell to its associated standard element can be easily
integrated into cell projection. For each vertex, its physical coordinates and corresponding co-
ordinates in its standard element are stored. When cell faces are scan converted using physical
coordinates, the standard-element coordinates are linearly interpolated on the face and stored
along with depth values. Thus, poirdg ands,,; are known for a ray segment in standard-
element space along with its entry and exit parameter valyemdi, .. All cells generated
by my stitching approach, and the specific AMR meshes that | am dealing with, can be mapped
to standard elements by a linear mapping: Line segments within a cell are mapped to line seg-
ments within a standard element. Thus, it is possible to obtain values along a ray segment by
linearly interpolating the position in the standard element betwgeands,,; and using the
standard-element interpolation function for this position, see Figure 5.9.

5.2.5 Progressive Cell Projection of AMR Data Using Stitch Cells

For constant and PLM interpolation the original grid is used to calculate interpolated values.
Thus, for each cell, there exits a unique finer grid that refines it. Each cell of the used dual grid
is defined by eight vertices. Each of these vertices corresponds to a cell of the original AMR
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Figure 5.10: Progressive rendering of AMR hierarchy.

grid and can be refined by a different grid. It is no longer possible to specify a single grid that
refines a given cell. However, it is still possible to specify, for each cell, whether it is refined by
finer levels. If at least one of the original AMR cells corresponding to one of the vertices of a
cell is refined, then that cell must be skipped. Unfortunately, this fact prevents refinement on the
basis of single AMR grids. In a new approach, complete levels must be used when generating a
refined image.

The top-down approach is modified in a similar way. The supplemental information added
to each ray segment specifies the level in which a segment was created and the level that affects
it (either the next finer level or no level) rather than specifying grid indices. Ray segments are
merged only when they are adjacent, were created in the same level and are affected by the same
level. Figure 5.10 shows a ray traced from a specific viewpoint. After rendering the root level
Ly, the ray-segment queue corresponding to this ray contains three ray segments: one spanning
from the entry point inp, to the beginning of the first leveb(), one that is contained within the
first level (fromp; to p;) and one after the exit point from the first level (frgmto p3). The
region fromw to p, is “empty” and contains no cells. No ray segments are created for this region.

Using an approach of partitioning rays into segments that are affected by finer grids and those
that are not, it is straightforward to refine an already rendered image by rendering a finer level.
Before a finer level is rendered, all ray segments affected by the finer level are erased from the

FB Informatik, Universiat Kaiserslautern



5.2 Progressive high-quality rendering using cell projection 85

ray-segment queues. When the level grid is rendered, the gaps in the ray segments resulting from
this step are filled with more accurate ray segments, resulting in an overall improved image.

5.2.6 Level-dependent Transfer Functions

When rendering a hierarchical data set, it is often desirable to emphasize or de-emphasize certain
levels. For example, it is possible that a coarser level is used to specify only the “context” within
which a finer level resides, but otherwise this coarser level might be of little interest. In this
case, the coarse level should not hide relevant information present in the finer level. One way to
achieve this is to de-emphasize the coarse level and render it with lower opagityg, scale the

opacity portion of the transfer function by a level-specific constant. By specifying a constant for
each level, and modifying the transfer function for that level accordingly, it is possible to specify
how much a level influences the final image.

Another possibility to de-emphasize a level is to scale its color saturation. This can be done
by converting RGB color values from the transfer function into HLS or HSV color space and
scale the saturation by a second, level-dependent color map. Decreasing the saturation of a level
does not prevent it from hiding details of a finer level, but this method adds the possibility to
distinguish levels and illustrate their presence in a final image.

5.2.7 Results

Figure 5.11 shows a volume rendered image obtained by using cell-projection interpolating us-
ing the PLM. Data set, view point and transfer function are identical to the ones used during
hardware-accelerated preview rendering, see Figure 5.5.

Figures 5.12 and 5.13 show results from rendering the “Argon Bubble” data set, which
is courtesy of Center for Computational Sciences and Engineering (CCSE), Ernest Orlando
Lawrence Berkeley National Laboratory, Berkeley, California. This data set is a time sequence
resulting from simulating a shock wave passing through an Argon-bubble surrounded by another
gas. The visualized scalar field is gas density. The simulation result is stored in AMR format
with a80 x 32 x 32 root-grid resolution. In the initial time step, this grid is refined2oy grids
in a three-level hierarchy. Rendering all levels of the initial time step takes about two minutes
and23 seconds. Figures 5.12(b), 5.12(c) and 5.12(d) show the results from rendering one time
step near the end of the simulation. This time step consists of three hierarchy levels containing
682 grids in total. Rendering the root level required approximai&lgeconds, rendering the first
level one minute and2 seconds and rendering the second level three minutedlaselconds.

The improvement in image quality by using the finer levels is clearly visible.

Figure 5.13 shows another time step form the same data set. Rendering tinieé seasnds
for the root level, one minute arg® seconds for the first level and two minutes a®dseconds
for the second level. This time step consisted23 grids in total. Rendering times were one
minute and23 seconds for the root level, one minute &idseconds for the first level and four
minutes for the second level. The quality improvement from using finer representations is clearly
visible. (All time measurements were done ofil® MHz Pentium Il processor and using a
Linux system.)
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Figure 5.11: Final higher-quality rendering using cell-projection with interpolation via the PLM
and with the same viewpoint and transfer function used for Figure 5.5.

Figure 5.14 shows images generated from an astrophysical simulation of a star cluster. Fig-
ures 5.14(a), 5.14(b) and 5.14(c) show images resulting from rendering one, two and three levels.
Here, the quality improvement is not so obvious, because features of the coarse root level hide
details from the finer levels. In Figure 5.14(c), the opacity of the root level is scaled by a factor
of 0.6 and the opacity of the first level by a factor @B. Details of the finer level are clearly
visible while retaining features from the coarse levels as orientation aid. In Figure 5.14(d), the
saturations of root and first level are scaled by a factdr.»fn addition to the opacity weights.

This further de-emphasizes these levels and allows me to clearly distinguish between the details
in the third level and the “context” provided by the first two levels.
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(b)

(d)

Figure 5.12: Images generated from “Bubble” data set. (Data set courtesy of Center for Com-
putational Sciences and Engineering (CCSE), Ernest Orlando Lawrence Berkeley National Lab,
Berkeley, California) (a) Initial time step at full resolution. (b) Time step near end of simulation
using only coarsest level of hierarchy. (c) Time step near end of simulation using two levels of
hierarchy. (d) Time step near end of simulation using all levels of hierarchy.

(a) (b)

Figure 5.13: Different view of the “bubble” data set. (Data set courtesy of Center for Computa-
tional Sciences and Engineering (CCSE), Ernest Orlando Lawrence Berkeley National Labora-
tory, Berkeley, California) (a) Coarsest level only (b) Two levels (c) Entire AMR hierarchy
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(@) (b)

(c) (d)

Figure 5.14: Images generated from cosmology simulation. (Data set courtesy of Greg
Bryan, Massachusetts Institute of Technology, Theoretical Cosmology Group, Cambridge, Mas-
sachusetts) (a) Coarsest level only. (b) Three levels. (c) Three levels using opacity Weights

0.8 and1 for levels0, 1 and2, respectively. (d) Three levels using same opacity weights as in
Figure 5.14(c) and a saturation weight of valufor levels0 and1.
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5.3 Parallel Volume Rendering of Adaptive Mesh Refinement
Data

5.3.1 Introduction

Based on an optimized version of software cell-projection presented in Section 5.2.2 | have
developed a framework for parallel volume rendering of AMR data was developed. An AMR
hierarchy is partitioned using a k-d tree [5]. This partition is view-independent and computed
offline in a preprocessing step. Several partition strategies have been developed and compared,
which are briefly summarized.

Uniform root-level subdivision ignores the hierarchical nature of AMR data and partitions a
root level into blocks of constant size. Refined cells are handled during rendering by
recursive descending into finer levels.

Weighted root-level subdivision partitions a root level into blocks at approximately constant
computational cost. The AMR hierarchy is only considered to compute weights. Loca-
tions for subdivision are chosen independently from boundaries of refining grids. During
rendering refining grids are handled by descending recursively.

Homogeneous subdivisionsubdivides AMR levels recursively until each part only covers one
grid of a given levelj.e., until it corresponds to a region represented at constant resolution.
The resulting grid parts are distributed evenly among processors.

Weighted homogeneous subdivisiorpartitions AMR levels in the same way as homogeneous
subdivision. The computational cost for rendering a constant-resolution region is estimated
and associated with that region aswisight Grid parts are distributed among processor
such that the sum of associated weights is approximately the same for all processors.

Images are computed on parallel supercomputers or PC clusters. This class of machines is the
same as that used to perform the AMR simulations. Thus, the used resources are readily available
to users. The framework supports rapid development and testing of new distribution strategies
and volume rendering techniques.

5.3.2 Design Considerations

The foremost design concern was efficiency and rendering times. The particle light model was

chosen as it leads to efficient implementations. Within cells, constant interpolatiothe sam-

ple value located at the cell center is assigned to all positions within the cell, is used. This allows

an exact evaluation of the light-model and preserves the AMR hierarchy in rendered images. To
achieve more efficiency, orthographic projection is chosen over perspective projection. Based
on my experiences with the software-based cell-projection approach described in Section 5.2.2,
an optimized renderer was developed. Instead of sorting ray segments in priority queues, cells
are rendered in back-to-front order. Newly generated ray segments are always adjacent to al-
ready computed ray segments and can be composited directly in the frame buffer eliminating the
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need to sort ray segments. Another advantage of this method is that it allows to avoid dupli-
cate scan conversion of a cell’s boundary faces. When rendering unsorted cells, back-facing and
front-facing faces must be rendered to determine correct ray-segment length. In contrast, when
rendering presorted cells, it is sufficient to render the front-facing faces of a cell. All back-facing
faces are already rendered as front-facing faces of cells “behind” the current cell.

Parallelizing volume rendering can be done in image space or in object space, see Crock-
ett [16]. Image-space parallelization subdivides the image plane to distribute computing among
multiple processors. Each processor renders a subset of pixels in an image. Object-space paral-
lelization subdivides the domain of a data set and assigns grid cells to processors. Object-space
parallelization was chosen, as the hierarchical nature of AMR data facilitates efficient subdivision
of the grids. Cell-projection was chosen as an object-space rendering method, as it leads to an
elegant implementation of subdivision of the domain. Furthermore, using cell-projection eases
reaction to changes in resolutiarg., it is possible to render finer grids at a higher resolution.

For implementation of the parallel renderer the Message Passing Interface (MPI) library was
chosen over the Parallel Virtual Machine (PVM) framework. MPI is commonly used in AMR
simulations, thus making my framework more compatible with other applications, including
numerical simulation. Furthermore, MPI is a de facto standard for parallel supercomputers.
Vendor-specific adaptations for different architectures exist, supporting the utilization of spe-
cific hardware optimizations by linking to a vendor-provided library. Instead of adopting the
classic master-slave model, a symmetric implementation was chosen to avoid communication
bottlenecks. Each processor computes the complete distribution of grid parts and selects a subset
based on its index. However, a binary-tree image compositing scheme is used that pairs proces-
sors in each compositing step. In each step, one processor of each pair receives an intermediate
partial image from its “neighbor” and performs a compositing operation. The final composited
image resides in the buffer of processor zero.

Cell Sorting and Front-face Determination

Correct back-to-front order is determined based on view direction using the same criteria as in the
hardware-based approach described in Section 5.1.2. Cells are enumerated by three nested loops,
one loop for each axis. The order according to which axes are handled is arbitrary. Along each
axis, cells must be handled in correct order. For each loop, this order can be determined based
on the sign of the component of the vecter(a vector directed toward the viewer), according to

the axis handled by the loop. If it is positive, cells are enumerated in ascending axis direction. If

it is negative, cells are enumerated in descending axis direction. If if is zero, an arbitrary choice

is made.

Before rendering cells and generating ray segments, all cell faces lying on the up to three
back-facing boundary-faces of the overall AMR grid that are not view-perpendicular must be
scan-converted. These are the back-facing faces of cells that do not lie in front of any grid cell.
Figures 5.15 (a)—(c) illustrate the procedure for a choiaarafihere all components are positive.

If one component ofv is zero, the corresponding face is perpendicular to the viewing direction
and discarded. Subsequently, the front facing faces of all cells are scan-converted. Ray segments
are generated and composited in the frame buffer. Figure 5.15 shows the order of scan-conversion
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Figure 5.15: Rendering order of grid cells — all componentsvdieing positive. First, all back-
facing faces of the first layer of cells in each direction are rendered (a) — (c). Second, all cells
are rendered. The order in which axes are handled €firsthen«—-then+ order) is arbitrary.

Only the order according to which cells are handled along an axis is important.

used for boundary faces and cells when all components afe positive.

Boundary Face Scan-conversion

Cell boundary faces are rendered using a modified version of the polygon scan-conversion algo-
rithm developed by Gordoer al. [29] that is based on a method developed by Kaufman [43].
Before rendering a polygon, its vertices are projected onto the viewing plane, and point coordi-
nates are rounded to integers. During the scan-conversion process it is assumed that coordinates
are specified counter-clockwise. Gordemal.’s method starts by determining “critical points”

of a polygon,i.e., vertices that constitute a local minimum or are first of a set of vertices that
together form a local minimum ig-direction. Boundary faces of rectilinear cells are convex
guadrilaterals and have only one minimum. If two adjacent vertices share the same value for the
y-coordinatej.e., if they are connected by a horizontal line segment, the vertex with the lower
index is considered to be the critical point. During the determination of critical points, polygons
that span one pixel ip-direction are detected and discarded.
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Figure 5.16: Scan-converted polygon illustrating rules used to determine whether a pixel belongs
to the polygon.

The algorithm starts by inserting the left minimum and right maximum edge originating from
the critical point vertex into an active-edge table (AET). During the scan-conversion process this
data structure holds the left and right edge intersecting the current scan-line. For general poly-
gons, considered by Gordan al. [29] this is an array, as the scan-line can intersect several
polygons. The scan-converter is optimized for convex quadrilaterals and only stores two pointers
to AET elements since a convex quadrilateral intersects a scan-line only twice, except for hori-
zontal boundary lines coinciding with a scan-line. For each scan4dimeordinates and depth
on the left and the right side of the polygon are calculated by linear interpolation. Depth infor-
mation is not rounded, as exact values are needed for the determination of ray-segment lengths.
If a scan-line consists of only one pixel of the polygon it is discarded; otherwise, depth values
are computed for all pixels between thecoordinates by linear interpolation. Ray segments are
created by reading the previous depth value and applying the illumination model. If a scan line
coincides with the end of an edge, the corresponding pointer referring to the AET is replaced
with its successor until that turns down.

When generating images with a cell-projection method it is important that rasterized poly-
gons sharing an edge do not overlap. Thus, special care must be taken at polygon boundaries.
The following rules are used:
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R1) Integer intersection points of a polygon edge with a scan-line belong to a polygon, if they
lie on its left edge. If they lie on its right edge, they do not belong to the polygon.

R2) Non-integer intersection points of a polygon edge with a scan-line are rounded down. The
corresponding pixel belongs to a polygon if it lies on its right edge. If it lies on its left
edge, it does not belong to the polygon.

R3) If a pixel corresponds to intersection points on the left and right edges of a polygon it lies
outside the polygon.

The white center polygon in Figure 5.16 illustrates these rules: The pixel at the lower-left corner
of the polygon has an integer intersection point and lies on its left edge. Consequently, according
to R1, it belongs to the polygon. According to R1, the pixel at the upper right corner of the
polygon does not belong to the polygon. Considering R2, all pixels with non-integer intersection
points on the left and lower polygon edge do not belong to the polygon. (They belong to the
neighboring polygon.) All pixels bordered by the upper and right polygon edges do belong to
the polygon. The pixel at the upper-left corner lies on the left and the right edges of the polygon
and does not belong to the polygon (R3). During scan-conversion, a list of all positions that are
modified,i.e., covered by a cell, is maintained . This list is used in the compositing scheme, see
Section 5.3.4, and to speed up clearing the frame buffer by only erasing pixels modified during
rendering.

Ray-segment Generation

Constant interpolation is used within individual cells,, the sample value associated with a cell

is assigned to all positions in the cell. Consequently, all points in a cell have the same optical
properties,.e., emission color and opacity. It is possible to solve the differential equations for
light absorption and emission analytically in a cell and obtain “correct” opacity and emission
values for a ray segment intersecting the cell. Each ray segment in a cell is characterized by an
entry parameter valug,, i.e., the distance from the viewing plane at which a ray “enters” the cell
measured along the ray, and an exit parameter vglyé.e., the distance from the viewing plane

at which the ray “exits” the cell. The value gf is obtained by scan-converting the front-facing
faces of a cell. The value @f is read from the frame buffer containing the results from scan-
converting the front faces of cells (behind the current cell) that coincide with the back-facing
faces of the current cell. Emission color and opacity are defined by the cell's associated scalar
value via a transfer function.

5.3.3 Partitioning and Load-balancing
Overview

A domain patrtition is stored as a k-d tree [5]. A k-d tree is a generalization of a binary search-
tree to arbitrary dimensions. Each level partitions a domain in two regions along an axis-
perpendicular plane. The “left” sub tree corresponds to points in space whose coordinates in
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Figure 5.17: Example grid used to illustrate subdivision strategies.

partition direction have values smaller than or equal to the partition position. The “right” sub
tree corresponds to points whose coordinates in partition direction have values larger than the
partition position. The subdivision direction is usually alternated between the three coordinate
axes in the3-d case. | skip subdivision directions, when no “sensible” subdivision position
along that direction exists. When using an object-space-based subdivision for parallelizing vol-
ume rendering, regions must be rendered in correct order. Using k-d trees makes it possible to
determine this order simply. At each node of the k-d tree, the domain is subdivided along an axis-
perpendicular plane. The compositing order can be determined by considering the component
of tv corresponding to the partition direction. If it is positive the left sub tree must be rendered
first; if it is negative the right sub tree must be rendered first; and if it is zero both sub trees can
be rendered in arbitrary order. | assume that subdivision schemes are view-independent. 1t is
sufficient to compute a k-d tree subdivision once per data set. Subdivisions are computed offline
in a pre-processing step. To assign regions of the domainleaves of the k-d tree, to individ-

ual processors they are numbered in rendering order. A set of sequentially adjacent regions is
assigned to each processor.

Uniform Root-level Subdivision

Given an AMR hierarchy, this scheme constructs a k-d tree with a user-specified number of
levels. Each node of the tree splits its associated region into two parts of nearly equatsize,
number of cells. Figure 5.18 shows uniform subdivision of the AMR hierarchy from Figure 5.17.
Since uniform subdivision ignores grid boundaries, refined cells must be handled during
rendering. This is done by recursively descending the hierarchy. While rendering a data set, a
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Figure 5.18: Uniform subdivision of root level into equal-sized blocks.

test is performed for each grid cell checking whether it is refined by the next finer level. If a finer
level exists, the* (r being the refinement ratio) refining grid cells are rendered instead of the
current coarser cell. The correct rendering order of refining cell is determined using the criteria
described in Section 5.1.2. Each refining cell is checked recursively to determine potential further
refinement.

Weighted Root-level Subdivision

Similarly to uniform subdivision, this scheme ignores grid boundaries of an AMR hierarchy dur-
ing subdivision. The goal of this approach is to obtain a subdivision of a given AMR hierarchy
into regions that will imply approximately equal computational cost. Each region is associated
with an estimate of computational cost for rendering, used as a weight. A subdivision plane is
chosen using a greedy method as follows: Initially, the subdivision plane is placed in the middle
of the current domain. Weights are computed for the two subdomains. If both subdomains have
equal weight, the subdivision plane has optimal position and the algorithm terminates. Other-
wise, the plane is moved into the subdomain with the larger associated weight. Moving the plane
in this way decreases computational cost for that subdomain while increasing computational cost
for the other one. The weight difference is calculated before and after moving the plane, and the
plane is moved as long as it decreases the weight difference. The algorithm terminates when
moving the plane increases the difference instead of decreasing it, or the partition plane would
reach the border of a subdomain.

The computational cost of a subdomain is estimated based on the number of cells in it. Itis
also necessary to consider the fact that rendering refined cells is computationally more expensive
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Figure 5.19: Weighted subdivision of root level, ignoring grid boundaries.

CPU type Co c1 Co

1.0 GHz AMD Athlon | 1.00 | 0.60 | 0.50
1.2 Ghz AMD Athlon | 1.00 | 0.65 | 0.54
1.4 GHz AMD Athlon | 1.00 | 0.71 | 0.58
2.4 Ghz Intel Xeon 1.00 | 0.63 | 0.54
375 MHz IBM Power 3| 1 0.77 | 0.71

Table 5.2: Constants for weighted distribution for different processors.

than rendering unrefined cells. Therefore, a weight of one is assigned to unrefined cells of the
root level,i.e., ¢c = 1. Based on an application specific benchmark it is possible to determine
relative weights for refined cells. Table 5.2 shows weights for an AMR hierarchy consisting of
three levels. The constants specify the times necessary to render a single cell of a given AMR
level with respect to rendering times for a single cell of the root level. These constants are
measured by rendering a cell of the appropriate level from a viewing direction-ef(1, 1, 1).

Viewing a cell in this direction no cell faces are axis-perpendicular. A maximum number of faces
must be rendered and the “footprint” of the cell on the screen has maximum size. The associated
weightw of a subdomain is

#Level

w= Z nc (5.6)
=0
wheren, is the number of level cells. This sum is computed by recursively descending in the
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Figure 5.20: Homogeneous subdivision of AMR hierarchy.

hierarchy. Figure 5.19 shows weighted subdivision of the root level for the AMR hierarchy from
Figure 5.17, using relative cell weights@f= 1, ¢; = 0.75 andc, = 0.7.

Homogeneous Subdivision

Both sub-division strategies discussed so far ignore the hierarchical nature of AMR data during
subdivision. Only the impact on computational cost for rendering a grid part is considered when
using weighted root-level subdivision. Resulting regions usually encompass several grids of the
original hierarchy, leading to data duplication and poor memory utilization. By considering grid
boundaries during the subdivision step, it is possible to partition an AMR hierarchy into “homo-
geneous” blocksi.e., blocks represented at constant resolution. Each block contains only cells
from one grid of the original AMR hierarchy. This property allows me to avoid data duplication.
Due to the homogeneous nature of blocks, it is possible to render them efficiently, avoiding tests
for refinement of individual cells and recursion.

Subdivision of an AMR data set uses only information about the hierarchical structure of
AMR data. Actual data values for individual grids do not need to be loaded, and subdivision
can be performed on a single machine, requiring only a small amount of memory. The k-d tree
is constructed level by level. For levglall leaf nodes of the current k-d tree are located that
correspond to grids of levél- 1. Each of these leaves is replaced by a k-d tree that is constructed
as follows: All grids of levell that overlap the leaf regiorni.e., the region associated with the
current leaf, are determined. Since grids may only partially overlap the leaf region, they are
clipped against the leaf region to obtain the grid part contained in the leaf region. Along the
current subdivision direction, every position in subdivision direction is stored where a refining
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grid starts or ends.

After sorting the resulting list and removing duplicate elements, the middle element of the
resulting list is chosen as subdivision position. (If the list contains an even number of elements,
the smaller of the two middle elements is chosen as subdivision position. If the list is empty,
the corresponding subdivision is skipped direction.) For each of the two regions associated with
a subtree of the current leaf, all grids are found that overlap that region and cliped against the
boundaries of that region. Alternating between the three axis directions, this process is repeated
recursively until all leaf regions are homogeneous and overlap only a single grid. For the root
level, construction starts with an empty tree that covers the complete domain and construct a k-d
tree analogously to creating the tree for a leaf.

By terminating k-d tree construction after a user-specified fixed level-number it is possible
to render only a part of an AMR hierarchy. Figure 5.20 shows the results of homogeneous
subdivision of the AMR hierarchy from Figure 5.17. Grid parts are numbered in back-to-front
order and distributed among processors. Each processor loads the complete partition information
and renders nearly the same number of sequentially numbered grid parts.

Weighted Homogeneous Subdivision

Weighted homogeneous subdivision uses the same k-d tree subdivision as homogeneous sub-
division. Instead of distributing resulting grid parts evenly among processors, an estimate of
computational rendering cost is used as a weight for each leaf of the k-d tree. This weight is
obtained by multiplying the number of grid cells in the leaf region by the weight of a single cell
of the appropriate level. The weight of a single cell is the same as the one used in weighted root-
level subdivision, see Section 5.3.3. Regions are distributed among processors using a greedy
method. To achieve nearly equal processor utilization, each processor needs to render regions
with a total weight ofwgeas = n;‘”—m' wherewro IS the computational cost for rendering the
complete AMR hierarchyje., the sum of all weights of all leaves of the k-d tree. Each processor
has an assigned set of sequentially adjacent leaves. Progessiects its assigned regions as
follows: If £ is the last leaf rendered by procesgor 1, processop adds the remainder of that
region,i.e., the part that was not rendered by the previous processor, to its “assignment list.” (An
exception to this rule applies to the first processor. It does not need to render any partial regions.)
Starting with regiork + 1, processop adds regions to its assignment list until the weight of the
current region exceeds the differencgea — weyrr. During each stepyc, denotes the sum of
weights of all regions already assigned to procegsor

To achieve a more uniform distribution of weights, this region is subdivided as follows: First,
the direction perpendicular to the plane consisting of the least number of cells is chosen as parti-
tion direction. The differenceqea—weur IS divided by the weight of a slice in partition direction
(i.e., , the number of cells in the slice multiplied by the cell weight of the appropriate level). The
result is rounded to obtain the number of slices rendered by the current processor. The remaining
slices are rendered by the next processor. (An exception to this rule applies to the last processor
which renders all remaining regions.)

Each processor computes assignments for all processors. This avoids the need for waiting for
the previous processor to finish its own assignment computation. The indliethe last region
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Figure 5.21: Parallel compositing scheme.

rendered by the previous processor and a potential remainder of a subdivided region are deter-
mined locally. Performing this computation in parallel, avoids added time for communication
between processors.

5.3.4 Compositing

When all regions are rendered, the partial images are composited. Compositing is done by using
alpha blending/compositing of the partial images, see Porter and Duff [72]. The compositing
scheme is illustrated in Figure 5.21. In the first step, each odd processor sends its partial image
to its lower-indexed neighbor processor that performs the compositing operation. In each subse-
guent step only those processors that composited an image in the previous step are considered,
i.e., processors with an index of the fork!. Each processor having an associated odd value of

k sends its intermediate partial image to procegkerl)2‘ which performs the next compositing
operation. Because regions are assigned to processors in back-to-front order, each processor can
composite the partial image received from the other processor “over” the region in its own buffer.
At the end of the compositing process, the final image is resides in the buffer of processor zero.
When transferring partial images between processors for compositing, only pixels that have been
altered during rendering are transmitted: position, color and alpha value for each altered pixel
are transferred. In the “fetch buffer” stage this representation is converted to a bitmap.

5.3.5 Results

The distribution strategies were tested by rendering the last time step of the “Argon-bubble”
data set described in Section A.5.2.7 This time step is stored in AMR format using a hierarchy
consisting o885 grids in three levels. All grids in total consist ©401504 grid cells. Homoge-
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| Subdivision Strategy | Time [s] Speedup

Uniform 14.90 2.56
Weighted Root-level 14.67 2.61
Homogeneous 12.35 3.10
Weighted Homogeneous 11.95 3.20

Table 5.3: Rendering times on Linux Cluster using four CPUs.

neous subdivision of the AMR hierarchy yiel6@02 grid regions. Figure 5.22(a) shows the grid
structure. Figure 5.22(b) shows the final volume-rendered image.
Distribution strategies were tested on the following machines:

Linux Cluster This configuration is a Linux cluster consisting of fou2 GHz Dual-Athlon
machines connected via a Gigabit network. For measurements with four processors, a
single CPU was used on each machine. For measurements with eight processors, both
CPUs on each machine were used. Each machin&l2aglB main memory.

Shared-memory machineThis is a PC-based server equipped with ttvé GHz Intel Xeon
CPUs using hyper-threading to obtain four “virtual” CPUs. The used machine has a total
memory of2 GByte RAM. A version of MPICH that supports the shared memory envi-
ronment on that machine was used.

IBM SP2 Seaborg is a0 Teraflop IBM SP RS/6000 located at NERSC's high-performance
computing facility. It consists o416 NightHawk 1l nodes. Each node contaihs IBM
Power3+ processors running3ab MHz and16—64 GBytes of shared memory. The nodes
are interconnected using dual0 Megabyte/s SP/“GX BusColony” switch adaptors form-
ing a fat-tree topology. IBM’s native MPI implementation was used.

Figures 5.23 — 5.26 show processor utilization for rendering on a four-processor Linux clus-
ter. As expected, uniform subdivision achieves an uneven utilization of processors. Weighted
root-level subdivision achieves a comparatively even processor utilization, but it requires longer
rendering times than subdivisions working on homogeneous grid parts. This behavior is due to
the overhead by recursively descending into the hierarchy. Recursive descend also causes non-
local memory access pattern resulting in poor cache utilization. Working only on data of a sin-
gle grid and avoiding overhead due to data inhomogeneity, homogeneous subdivision performs
better than weighted root-level subdivision, even though computational cost is not as evenly dis-
tributed. Weighted homogeneous subdivision resolves this problem and achieves good rendering
speed while near-uniformly utilizing all processors.

Tables 5.3 — 5.5 show rendering times and speedups for rendering on a Linux cluster and a
shared memory machine. Speedups are measured with respect to rendering the data on a sin-
gle processor using homogeneous subdivision. As expected, weighted homogeneous subdivision
leads to best results of all considered subdivision schemes. It is important to note, that times
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(b)

Figure 5.22: (a) Grid structure of “Argon Bubble.” The hierarchy consist&6fgrids in three

levels with a root grid 080 x 32 x 32 cells. (b) Volume-rendered image of “Argon Bubble.” (Data

set courtesy of Center for Computational Sciences and Engineering (CCSE), Ernest Orlando
Lawrence Berkeley National Laboratory, Berkeley, California)
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Figure 5.23: Processor utilization for uniform root-level subdivision.
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Figure 5.24: Processor utilization for weighted root-level subdivision.
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Figure 5.25: Processor utilization for homogeneous subdivision.
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Figure 5.26: Processor utilization for weighted homogeneous subdivision.

| Subdivision Strategy | Time [s] Speedup

Uniform 7.83 4.89
Weighted Root-level 7.50 5.10
Homogeneous 7.10 5.39
Weighted Homogeneous 6.21 6.16

Table 5.4: Rendering times on Linux Cluster using eight CPUs.

| Subdivision Strategy | Time [s] Speedup

Uniform 14.76 2.59
Weighted Root-level 14.60 2.62
Homogeneous 12.16 3.14
Weighted Homogeneous 11.23 3.40

Table 5.5: Rendering times on shared-memory machine.
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Weighted Root-leve| Homogeneous | Weighted Homogeneous

No. of CPUs| Time [s] Speedup Time [s] Speedup Time [s] Speeduy
1 142.10 1.00 125.45 1.00 124.98 1.00
4 39.87 3.56] 36.25 3.46/ 33.83 3.69
8 21.67 6.55 19.81 6.33] 17.89 6.98
16 11.61 12.23 12.93 9.70 8.79 14.21
32 7.88 18.03 7.31 17.16 6.24 20.02
64 5.42 26.21 6.22 20.16 2.97 42.08
128 3.09 45,98 3.83 32.75 1.98 63.12
256 2.07 68.64 1.48 84.76 1.53 81.68
512 1.66 85.60 1.27 98.77 1.37 91.22

Table 5.6: Rendering times on IBM SP2.

vary between subsequent runs of the framework, and timings are only accurate within approx-
imately one second. Considering these facts, the speedup achieved by weighted homogeneous
subdivision is satisfactory.

Table 5.6 shows rendering times on an IBM SP2. These measurements are of “strong scal-
ing” behavior whereby the problem size remains fixed as the number of processors is increased.
This typically results in less flattering scaling efficiency than if the problem size was scaled to be
proportional to the number of processors as is the case for “weak scaling” studies. Timing gran-
ularity for large-scale parallel applications is typically on the order of approximately one second.
Thus, results utilizing more thal28 processors on that system have a lower degree of confidence
than the smaller tests. Starting with6é processors, homogeneous subdivision surprisingly per-
forms better than weighted homogeneous subdivision. The difference in the performance of the
models for the very large scale runs is less than the timing granularity, so | only have limited con-
fidence that these effects are actually real rather than being timing artifacts. However, that being
said, | believe these timings are consistent with the observation that the time required for as-
signing regions to processors is higher for weighted homogeneous subdivision. While rendering
time on each processor decreases for a larger number of processors, the time spend computing
the subdivision becomes the dominant computational cost. It is also possible that the granularity
of work that can be assigned becomes large compared to the total amount of work that is assigned
to each processor — offering less benefit to these fine-grained optimizations.
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Figure 5.27: Speedup as function of number of processors (IBM SP2).
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Chapter 6

Topology-based Scalar Data Analysis and
Visualization

6.1 Introduction

Trivariate data is commonly visualized using isosurface extraction or direct volume rendering.
When exploring scalar fields by isosurface extraction it is often difficult to choose isovalues that
correspond to “interesting” isosurface behaviat,, result in isosurfaces conveying “meaning-

ful” information about the data. Features of a scalar data set can be easily missed when certain
isovalues are not considered. The significance of visualizations using direct volume rendering
depends on the choice of good transfer functions. Understanding and using isosurface topology
can help in identifying “relevant” isovalues for visualization via isosurfaces and can be used to
automatically generate transfer functions.

Isosurface topology provides insight into the fundamental structure of isosurface behavior
across isovalues. By treating a volume data set as “height” function o8ed domain and
using Morse theory, see Section 2.1.2, in four dimensions, it is possible to track topological
changes of an isosurface by looking at critical points of that function. Three types of critical
points exist: At a local minimum a closed surface component is created. At a saddle either the
genus of an isosurface changas;., holes appear or disappear in a surface component, or surface
components separate or merge. At a maximum a closed surface component vanishes. Classical
Morse theory classifies any given position of a data set by examining a small neighborhood
around it. Considering @2-continuous functiory, critical points can be determined analytically
as points where the gradiewtf vanishes. An associated type of the critical point is determined
by the signs of the eigenvalues of the Hessian at that point.

| consider the common case of data sets with data values given at vertices of a uniformly
spaced rectilinear grid and define isosurface topology by assuming that trilinear interpolation is
used within individual cells. The topology of the level set of the trilinear interpolant in each cell is
used to define the level set topology for the whole data set. For geffeaintinuous functions,
including those given by piecewise trilinear interpolation (at mesh vertices, on mesh edges and
on mesh faces), gradient and Hessian are undefined. Based on the work of Banchoff [4], who
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observed that critical points are intrinsic geometrical in nature, it is possible to “emulate” these
criteria for discrete data sets by looking at a neighborhood around a point and checking how
many regions with a larger and how many regions with a smaller value than the value at the
considered location exist. This definition has been used in computational geometry to detect
critical points of piecewise linear scalar fields defined on simplicial complexes, see Edelsbrunner
et al. [18,19] and Gerstner and Pajarola [28].

Detected critical points are utilized to aid a user in data exploration with isosurfaces and for
automatic transfer function design for direct volume rendering. An “isosurface navigator” lists
all critical points along with their type. When a critical point is selected, its location is marked
in the data set. It is possible to center the view on the corresponding critical point and set the
currently considered isovalue to a value slightly below, equal to, or slightly above the critical
value. Critical isovalues are also used to generate transfer functions using schemes presented
by Fujishiroet al. [24, 26]. Resulting transfer functions either emphasize on zones of equal
topological behavior or values close to critical isovalues.

To handle general data sets it is necessary to extend the concept of critical points to critical
regions. While Morse theory requires that only isolated points can be critical, it is possible that
a data set contains entire regions that are critical: A torus can form around a circle constituting a
minimum, a new component can appear around a constant value sub-volume, or two surfaces can
merge along a line denoting a saddle. By considering the neighborhood around a region instead
of a point, | extend the concept of criticalities to regions in a data set. This allows me to capture
isosurface topology changes in data sets that contain regions of constant value.

The remainder of this chapter proceeds as follows. After motivating the use of the topology
of piecewise trilinear interpolation as reference topology, a definition of critical points that can be
used for piecewise trilinear interpolation is introduced. Subsequently, a method is presented that
detects critical points for data given on a rectilinear grid when piecewise trilinear interpolation is
used and the requirement that two edge-connected vertices differ in value holds. Subsequently,
the original definition is extended to consider and classify regions of constant value. This allows
to discard the requirement that edge-connected vertices must differ in value and handle a wider
variety of volumetric data sets.

6.2 Topology Definition for Samples on Rectilinear Grids

When considering data on a rectilinear grid, values within cells are obtained by interpolation.
Different choices of interpolants lead to different contour topologies. The topology of piecewise
trilinear interpolation was chosen as “reference topology.” Marching cubes (MC) is a de-facto
standard for isosurface extraction on rectilinear grids. My goal is to provide information about
an isosurface extracted by the MC method. In the course of this work | considered different vari-
ants of the MC algorithm, see Section 2.2.5. The original MC algorithm could produce cracks
in an extracted isosurface triangulation. Today, implicit disambiguation is the most commonly
used MC variant, as it only requires minor modifications to the MC case table. Using “implicit

disambiguation” leads to problems when detecting critical isovalues. By “merging” minima and

maxima at vertices with saddles on boundary faces and in a cell’s interior it causes “discontinu-
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Figure 6.1: Bilinear interpolation. A vertexis a minimum, if its four edge-connected neighbors
have larger values (gray). (a) If no saddle within a face exists, this is correctly determined by
an unmodified MC method. (b) If a saddle exists within a face and “implicit disambiguation”
always separates positive vertices, a topologically incorrect isosurface results. The minimum
is no longer origin of a new, connected component. It is “merged” with the saddle. (c) The
asymptotic decider extracts a correct isosurface that preserves the minimum.

ous” topology changes. This necessitates to consider more than the neighboring, edge-connected
vertices to classify a vertex of the grid, see Figure 6.1.

The assumption of MC, that an edge is intersected once if and only if its vertices differ in
polarity, remains sound. Essentially, this assumption states that the sampling rate of the grid is
sufficiently high to capture an isosurface. Using linear interpolation to determine an edge inter-
section point with the isosurface is an obvious choice. Bilinear interpolation on cell faces and
trilinear interpolation within a cell are natural extensions of linear interpolation. Trilinear inter-
polation is commonly used in scientific visualization. A variety of MC extensions exist that use
contours of the trilinear interpolant to determine isosurface topology within a cell. Thus, using
the topology of piecewise trilinear interpolation is a sensible choice for an critical point detec-
tion scheme. Furthermore, it allows to classify a vertex based on its edge-connected neighbors.
Consequently, the critical isovalues detected are only meaningful if a MC scheme is used that
extracts a topologically correct isosurface triangulation of a trilinear function.

An alternative to trilinear interpolation is computing a tetrahedrization of the domain and
using linear interpolation within tetrahedra. Figure 6.2 illustrates a problem arising from this
procedure: Figures 6.2(a) and 6.2(b) show two possible triangulations of samples on a rectilin-
ear, regular grid. In each figure, interior points are classified as ordinary point (“Or”), minimum
(“Mi”), or saddle (“Sa”). Possible contours are shown as bold dashed lines. Contour topology
and the classification of vertices depends on the chosen, arbitrary triangulation. Figure 6.2(c)
shows the same classification for piecewise bilinear interpolation. Saddles may exist in the inte-
rior of cells, leading to “smooth” transitions between contour topologies.
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—_

Figure 6.2: (a), (b) When a rectilinear grid is triangulated, contour topology and critical points
depend on the choice of the triangulation. (c) Topology of trilinear interpolation.

6.3 Detecting Critical Points

The goal of this work is to detectitical isovalues of a piecewise trilinear scalar field given on a
regular rectilinear grid. Gerstner and Pajarola [28] developed criteria for detecting critical points
of piecewise linear scalar fields defined on tetrahedral meshes and used them in mesh simplifi-
cation. These criteria are related to the work of Banchoff [4] and Edelsbruamar [18, 19],

see Section 2.1.2. | provide a comprehensive analysis of the topological behavior of piecewise
trilinear interpolation and develop criteria to detect critical isovalues for these scalar fields. |
further develop methods to use these critical isovalues for volume data exploration.

6.3.1 Definitions

For aC?-continuous functiory, critical points occur where the gradievitf assumes a value of
zero,i.e., Vf = 0. The type of a critical poinp is determined by the signs of the eigenvalues
of the Hessian off at x. Piecewise trilinear interpolation when applied to rectilinear grids,
in general, produces only°-continuous functions. Therefore, it is necessary to define critical
points differently. This is possible using a criterion based on the work of Banchoff [4] and
Edelsbrunneet al. [18, 19], see also Section 2.1.2. Instead of considering upper and lower star
of a triangulation, a neighborhood around a point is examined and partitioned into “positive”
and “negative” regions (corresponding to the upper and lower star), leading to the following
definition.

Definition 5 (Regular and Critical Points) Let F : R? — R, d > 2, be a continuous function.

A pointz € R? is called a (a) regular point, (b) minimum, (c) maximum, (d) saddle, or (e) flat
point of F, if for all ¢ > 0 there exists a neighborhodd C U, with the following properties:

If U?;Pi is a partition of the preimage dff'(s), +o00) in U — {z} into “positive” connected
components andj?iij is a partition of the preimage dfoo, F'(s))] in U — {z} into “nega-
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(@) (b) (©) (d)

Figure 6.3: Classification of a point based on connected regions in its neighborhood: (a) Around
a regular point € R3, the isosurfacé’~!(F(z)) divides space into a single connected volume

P with F > 0 (gray) and a single connected volumewith F' < 0 (white). (b) Around a
minimum, every point iV has a larger value thak(x). (c) Around a maximum, every point

in U has a smaller value thafi(x). (d) In case of a saddle, there are more than one separated
regions with values larger or smaller than the vale).

tive” connected components, then (@) = n,, = 1 andP;, # Ny, (b)n, = 1 andn,, = 0, (c)
n, = landn, =0, (d)n, +n, > 2,0r (e)n, =n, =landP, = N;.

Remark 1 For (a) — (d), see Figure 6.3. Concerning case (e), all pointé/imave the same
value asF'(x). Itis possible to extend the concept of being critical to entire regions and classify
regions rather than specific locations, see Section 6.6.

Remark 2 The cases, = 2, n, = 0 andn, = 0, n,, = 2 are not possible fod > 2.

Piecewise trilinear interpolation reduces to bilinear interpolation on cell faces and to linear
interpolation along cell edges. All values that trilinear interpolation assigns to positions in a
cell lie between the minimal and maximal function values at the cell's vertices (convex hull
property). In fact, maxima and minima can only occur at cell vertices. If two vertices connected
by an edge have the same function value, the entire edge can represent an extremum or a saddle,
see Section 6.6. It is even possible that a polyline defined by multiple edges in the grid, or
a region consisting of several cells, becomes critical. In these cases, it is no longer possible
to determine, locally, whether a function value is a critical isovalue. To avoid these types of
problem, a restriction on the data is imposed requiring that function values at vertices connected
by an edge must differ. Saddles can occur at cell vertices, on cell faces of a cell, and in a cell's
interior, but not on cell edges. This fact is due to the restriction that an edge cannot have one
constant function value.

Lemma 2 (Regular Edge Points)Every point on an edge of a trilinear interpolant with distinct
edge-connected values is a regular point.

Proof: By assumption, the two endpoints of the edge have different values. Interpolation along
edges is linear, and the derivative differs from zero. The implicit function theorem defines neigh-
borhoods; x V; and a height function; : U; = V; in each of the four cubes around the edge,
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Figure 6.4: Possible partitions of a linear tetrahedron into connected positive and negative com-
ponents.

such that the isosurface is a height field in the direction of the edge. Séttinghe smallest
interval and determining suitablé defines a neighborhood such that the larger and smaller val-
ues are above and below a single height field. Therefore, a point on an edge is a regular point,
because it is possible to start the construction with an arbitrary small neighborhood araund

Thus, in order to detect critical isovalues of a piecewise trilinear scalar field, it is only nec-
essary to detect critical values at vertices of a grid and saddle values within cells and on their
boundary faces.

6.3.2 Ciritical Values at Vertices

Based on the work of Gerstner and Pajarola [28] a vertex is classified based on the polarity of its
“surrounding” vertices. When values are obtained by piecewise linear interpolation applied to
tetrahedral grids, critical points can only occur at mesh vertices. A mesh vertex can be classified
based on its relationship with respect to vertices in a local neighborhegdegrtices connected

to it via an edge. Classification is performed by constructing an “edge graph” whose connected
components correspond to connected regions in a neighborhood around that vertex. Values in
this neighborhood are defined by all linear tetrahedra sharing that vertex forming a “surrounding
polyhedron.” A linear tetrahedron consists of one negative, one negative and one positive, or
one positive connected region, see Figure 6.4. Each of these regions contains at least one vertex
of the tetrahedron. Consequently, these regions can be “represented” by vertices of that tetrahe-
dron. Since at most two regions of opposite polarity occupy a linear tetrahedron, two vertices
of same polarity always belong to the same region. A graph representing the neighborhood can
be constructed having the vertices of the surrounding polyhedron (without the classified vertex)
as nodes. These vertices are marked with a “+” if their associated function values are greater
than the value of the classified vertex; or they are marked with a “-” if their associated function
values are less than the value of the classified vertex. Equal values are not considered. Edges
of the surrounding polyhedron define an edge graph. In this graph, all edges connecting ver-
tices of different polarities are deleted as their corresponding regions also differ in polarity and
are never connected. Each connected component in the remaining graph consists of tetrahedron
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vertices that belong to the same connected region in the neighborhood. Consequently, a vertex
is classified according to the number of connected components in this graph. If this number is
one, the classified vertex is a maximum or minimum (depending on the sign of the connected
component). If it is two, the classified vertex is a regular point. Otherwise, the vertex is a saddle
point.

In the remainder of this section, it is shown that, when restricted to a small neighborhood
around a vertex, trilinear interpolation partitions that neighborhood in similar way as linear in-
terpolation partitions tetrahedra. Consequently, it is possible to classify a vertex in a hexahedral
mesh based on its edge-connected neighb@sgix surrounding vertices) by applying a crite-
rion similar to the one used to classify a vertex in a tetrahedral mesh.

Lemma 3 (Local Maximum) Consider a celC with vertex numbering as shown in Figure 2.22.
If vo > max{vy, ve,v4}, thenuy is a local maximum irC.

Proof: Choosen := max{v; — vy, v — v, v4 — o} < 0 @ndM := max{vs — v, v5 — Vg, Vg —

Vo, V7 — g, 1} > 1. Letv] = v, — v f 0 < x,y,2 < e:= %,then

Fle,y,2) — o =(1— 2)(1 = g)(1 — 2)0) + 2(1 — y) (1 — 2)0} + (1 — )y(1 — )t
zy(1 — z)vg + (L — 2)(1 — y)2v) + (1 — y)avf + (1 — x)yzvg + yen}
<z(1—y) (1 —2zm+ (1 —2)y(l — 2)M + x2y(1 — z)m+
(1—2)(1—y)zM +z(1 —y)zm+ (1 — x)yzM + zyzM
<mel(1—y)(1—2) + (1= 2)(1 = 2) + (1 - 2)(1 - y)] +
MeEl—z4+1—a+z2+1—y]
<3me(1 — €)? + 3Mé?

m| ml \’ m|
=3—- [ sgn(m)m| |1 ———~ ) + M-——
3| M| 3| M| 3| M|

jm| 2m|  mPE |ml
= =|m] + S — M
mlt g ar o M

ml (2 20wl P
= — ——\m _
M|\ 3 3[M| 9[MP
Im| m?
<—1-9 < 0. ]
~ M| | MJ?

Lemma 4 (Linear Cell Partition) Consider a cellC' with vertex values; and vertex positions
p; numbered as shown in Figure 2.22.0lf= vy # v, v # vy, v # v4 holds, then for alk > 0
there exists & < e such that for the intersectioR = Us(p,) N C the following statements hold:
(@) If v > max{vy, vs,v4} thenn,, = 1 and N; = R, i.e., all values in the region are less than
(b) Ifthere exist, j,k € {1,2,4}, i # j # k, i # k, suchthab > max{v;,v;} andv < v, then
n, = n, = 1 and R completely contains a surface divididg and P,. Furthermore, all values
on the trianglep,p;p, are less than. (c) If there exist, j,k € {1,2,4}, i # j # k, i # k,
such thatv < min{v;,v;} andv > vy, thenn,, = n, = 1, and R completely contains a surface
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Figure 6.5: Edge-connected vertices as part of an implicit tetrahedrization.

dividing N; and P,. Furthermore, all values on the trianglp,p;p; are less tharw. (d) If
v < max{v, vs,v4}, thenn,, = 1 and N; = R, i.e., all values in the region are greater than

Proof: Cases (a) and (d) are symmetrical and follow from Lemma 3. Cases (b) and (c) are
symmetrical as well, and it is sufficient to prove one of them. Similarly, the same holds when
any othern; is chosen as and its edge-connected neighbor vertices are considered.

Lete > 0. The derivative off" atpy is (v; — vg, v2 — vg, v4 — vg). There exists an > § > 0
such that the derivative has rahkn the whole neighborhoo& = U;s(po) N C. In this case, the
regular value theorem guarantees the existence of an isosurface with functiomnydivieing
Us(po) into a single region with larger and a single region with lower function values. If the
surface intersects outsidepg, R is split into exactly two parts. If nop, is a local maximum or
minimum. This fact proves the first part of (b) and (c). For small § > 0, a calculation similar
to the proof of Lemma 3 demonstrates that the face wittp;, p; is not intersected insidg by
the isosurface in cases (b) and (c). O

Using theL;-normt, the intersection of a neighborhood with a cell corresponds to a tetrahe-
dron. According to Lemma 4, this tetrahedron is partitioned in the same way as a tetrahedron
using linear interpolation (even when, as in this case, partitioning surfaces are not necessarily
planar), see Figure 6.4. A vertex can be classified by considering its edge-connected neighbor
vertices. These vertices are treated as part of a local implicit tetrahedrization surrounding a clas-
sified vertex, where the classified vertex and three edge-connected vertices belonging to the same
rectilinear cell imply a tetrahedron, see Figure 6.5. Using the criterion developed for linear on
tetrahedral meshes, a vertex can be classified by considering the implicit tetrahedrization of its
neighborhood. Computing the connected components in an edge graph for all possible vertex po-
larity configuration using this implicit tetrahedrization, an LUT with= 64 entries is obtained
that maps a configuration of “+” and “-” of edge-connected vertices to a vertex classification. |
decided to generate this relatively small LUT manually.

6.3.3 Ciritical Values on Faces

When linear interpolation is used, critical points can only occur at grid vertices. When piecewise
trilinear interpolation is used, critical points can also occur on boundary faces. On a boundary
face piecewise trilinear interpolation reduces to bilinear interpolation and the interpolant on a
face can have a saddle. This face saddle is not necessarily a saddle of the piecewise trilinear

Yl =32, il

FB Informatik, Universiat Kaiserslautern



6.3 Detecting Critical Points 113

Figure 6.6: Vertex numbering scheme used in Lemma 5.

interpolant. The following lemma provides a criterion to whether a face saddle is a saddle of the
trilinear interpolant:

Lemma 5 (Face Saddle)Let p be a point on the shared face of two cells, where both trilinear
interpolants degenerate to the same bilinear interpolant. The pwiista saddle point when
these two statements hold:

1. The poinfp is a saddle point of the bilinear interpolant defined on the face.

2. With the notations of Figure 6.6, where, without loss of generality, the saddle value is zero,
and cells are rotated such that and C' are larger than zer@onnected; and connected,
both differ from zero and have the same sign.

ci1 ifein 3"é 0
C12 |f Ci1 = O

connected; = { , With (6.1)

Cl1 = C(Al — A) + A(Cl — C) — D(Bl — B) — B(Dl — D) , and
crs = (A — A)(Ci — C) — (B, — B)(D1 — D) .

C21 if C21 3"é 0

Co9 |f Co1 = 0

connectedy = { , With (6.2)

Coy1 = C(A_l — A) + A(O_l — C) — D(B_l — B) — B(D_l — D) , and
trs = (A1 — A)Y(C_y = C) = (B_y — B)(D_, — D).

Otherwisep is a regular point of the trilinear interpolant.

Proof:

1. If p is not a saddle of the bilinear interpolant on the face, one partial derivative on the
face is different from zero. The regular value theorem implies the existence of a dividing
isosurface in both cells in a small neighborhdédp) C U.(p), leading to a single iso-
surface in the whole neighborhood that splits into one connected component with values
larger thanf(p) and one connected component smaller tligm). Consequentlyp is a
regular point of piecewise trilinear interpolation.
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2. Letp be a saddle point with respect to the bilinear interpolant on the face. (This proof

adopts an idea from Chernyaev [11].) Without loss of generality, assume that the saddle
value is zero. If the saddle value differs from zero, it can be subtracted from all vertex
values reducing this case to the case of the saddle value being zero. To simplify notation,
assume that the face is perpendicular to theoordinate axis. If any slice = const,

x € |0, 1], parallel to the face, is considered the functiotrecomes

Fo(y,2) = Ae(1 —y)(1 — 2) + Boy(1 — 2) + Chyz + D, (1 — y)z , with
A=Al —x) + Az,
B, = B(l —x)+ Bz, (6.3)
C(1 —z)+ Ciz ,and
D —D(l—x)—l—Dlw.

As pointed out in Section 2.2.5, the sign of the saddle value at the intersection of the
asymptotes

Ay +Cp — B, — D,
determines whether positive or negative regions are connected on that slice. By the choice
of “cell rotation,” A andC' are larger than zero. Since the boundary face contains a saddle
with a value of zero within its boundarie® and D must be smaller than zero. Conse-
quently,A + C' — B — D is always positive. When bilinear slices are considered that are
sufficiently close to the considered cell fac¢e,, for small values oft, the same holds for

A, + C, — B, — D,. Consequently, it is sufficient to consider the sign of the denominator
A,C, — B, D, of Equation 6.4 to determine which regions are connected on the slice. For
x = 0, this expression is zero since the saddle value is computed as

SV (z) =

(6.4)

AC - BD
A+C—-B-D

is zero. For an arbitrary slice at distanc&om the face, the value of the denominator can
be expressed as

Den(x) —az? + bz + ¢, with
a=(A—A)(C1—=C) = (B —B)(D1— D),
b=C(A —A)+ A(C;, —C)—D(B, — B)— B(D;— D) ,and
c=AC—-BD =0.

(6.5)

Computing the first derivative of,C, — B, D, with respect ta: atp, i.e., for x = 0, which
turns out to bef’(0) = 2a0 +b = C(A, — A) + A(C, — C) — D(B, — B) — B(D, — D),

it is possible to determine whethdr,C', — B, D, is positive or negative above If it is
positive, the negative regions are connected alpovéit is negative, the positive regions
are connected aboye If the first derivative is zero, the sign of the second derivative for
x = 0 can be used, which i8’(0) = 2a = 2(A; — A)(C, —C)— (B, — B)(D,— D) (which
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Figure 6.7: In some cases, face saddles can be connected within a cell’s interior. The saddle is no
longer localized and isosurface components meet along straight lines. In the figure, isosurface
components meet along axis-aligned lines. (Vertex valuesyatel, v; = —1, v, = 1, v3 = —1,

vy =—1,v5 =1,v5 = —1, andv; = 1)

has the same sign &4, — A)(C; — C) — (B, — B)(D; — D)). Ifitis positive, the positive
regions are connected abopelf it is negative, the negative regions are connected above
zero. All higher derivatives are zero. If first and second derivative are both zero, it follows
thata = 0, b = 0 andc = 0. ConsequentlyDen(xz) = 0 holds, i.e., the denominator

is zero for locations within the cell. If slices close to the face containing the saddle are
considered, the nominator differs from zero (because it is positive). This implies that the
saddle value is zero for this slices. Consequently, a saddle with the same value as on the
considered face exists on these slices. The considered saddle is not localized to a point and
no critical point in the classical sense. The final criterion results from application of this
idea to both cells sharing the face. If the negative or positive values are connected around
p in both cubesp is a saddle of the piecewise trilinear interpolant, otherwise not a

critical point of the piecewise trilinear interpolant. O

Thus, face saddles of piecewise trilinear interpolation can be detected effectively by considering
all cell faces for a saddle of the bilinear interpolants on faces and checking whether the criterion
stated in Lemma 5 holds. If eithebnnected; or connecteds is zero, a non-localized saddle
occurs in the corresponding cell. Figure 6.7 shows an example of a cell where isosurface compo-
nents meet along axis-perpendicular lines. Strictly speaking, no critical point occurs. However,

it can be useful to permit and consider extended criticalities, see Section 6.6. However, in these
cases it is no longer possible to classify a saddle on a boundary faces based on the two adjacent
cell. Instead, the saddle must be traced through the cell, and additional cells must be considered,
see Section 6.9.1.

6.3.4 Ciitical Values inside a Cell

Saddles of the trilinear interpolant in the interior of a cell are easy to handle as they are always
saddles of the piecewise trilinear interpolant as well. Interior saddles are already used by various
MC variants to determine isosurface topology within a cell. These saddles are computed using
the equations given by Nielson [67], see Equation 2.46 in Section 2.2.5. Inner saddles of a trilin-

ear interpolant that coincide with a cell's boundary faces or vertices are not necessarily saddles

FB Informatik, Universiat Kaiserslautern



116 Topology-based Scalar Data Analysis and Visualization

2.45956

Min [Vtx] for value -2.80938 [#]

Min [Vix] for value -0.0754 [

Saddle [Vtx] for value -0.0025

Saddle [Vtx] for value 0.565625

Saddle [Vtx] for value 2.1746

Saddle [Vtx] for value 2.1746 E|
-0.0854 | - i = I + J
49533 | View Criticality J

Rotx Roty RS T oaw Dolly ave ima (5.0

(@) (b)

Figure 6.8: The *“critical isovalue navigator” (b) allows to explore a volumetric data set using
critical isovalues. Resulting isosurfaces are displayed in the “isosurface viewer.”

of a piecewise trilinear interpolant. Trilinear interpolation assigns constant values to locations
along coordinate-axis-parallel lines passing through the saddle. Currently, the possibility of an
internal saddle coinciding with a vertex or an edge is ruled out. Otherwise, the requirement that
edge-connected vertices differ in value would be violated. Saddles of trilinear interpolants that
coincide with cell faces are also saddles of the bilinear interpolant on the face. As such they are
discussed in Section 6.3.3.

6.4 Data Exploration Using Critical Points and Isovalues

A convenient way to use critical isovalues is to provide a user with a navigational tool in addition
to an isosurface viewer. Prior to starting an isosurface viewer, critical isovalues are computed and
displayed in an “isovalue navigator,” see Figure 6.8. In this window, critical isovalues are listed
along with a corresponding type (minimum, maximum, saddle, face saddle, interior saddle).
When a user selects a critical isovalue, its corresponding critical point is marked by a sphere
whose color depends on the type (blue, red and green representing a minimum, a maximum or
a saddle, respectively). Buttons allow a user to set the isovalue of a displayed isosurface to a
value slightly below, equal to, or slightly above a critical isovalue. The isovalue offset for the
isosurfaces below and above a chosen critical isovalue is specified in a text field.
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Figure 6.9: Transfer function emphasizing topologically equivalent regions.

In data sets containing several “nested isosurfaées,tata sets where one isosurface com-
ponent is completely contained within another, it can be difficult to locate a critical point, even
if its position is marked. The “isovalue navigator” contains a button that positions the camera so
that the viewing focus is the critical point.

Isosurfaces are extracted using a MC approach based on the works of Lopes [55] and Niel-
son [67]. Lopes’ MC approach is extended to correctly handle tunnels for Configui&tipn
where two different tunnel connections are possible, see Section 2.2.5. (This extension pre-
dates Lopes and Brodlie’s [54] correction of Lopes’ method.) Lopes’ original approach correctly
detects the tunnel, but connects three boundary polygons to the tangent points, resulting in an
invalid triangulation. By using Nielson’s criterion to distinguish between the two sub-cases, it
is possible to correct this flaw. Nielson’s method uses the sign of the trilinear interpolant in the
cuboid containingDeV[T'] to determine whether the positive or negative vertices must be con-
nected. To correct Lopes’ original approach, a flag is added to the LUT that specifies for each
boundary polygon whether it is used only for a tunnel connecting positive or negative vertices.
Since problems only arise in ca$gyj, this flag can also have a value of “irrelevant,” indicating
that a boundary polygon is part of both tunnel types. If a tunnel is detected by the presence of six
tangent points, its type is determined by Nielson’s criterion. Only those boundary polygons are
connected to the polyline formed by the tangent points whose flags indicate that they are part of
that particular tunnel type. Nielson [67] explicitly computes DeVella’'s necklace by considering
bilinear contours on axis-perpendicular slices, finding slices where the contour degenerates to a
pair of axis-aligned asymptotes and using the intersection points of these asymptotes as points
of DeVella’s necklace. Since the points of DeVella’s necklace are identical to Lopes’ tangent
points, Nielson’s equations are used instead of Lopes’ resulting in a more concise computation
scheme.

Critical isovalues can also help in automatic transfer function design. Given a list of critical
isovalues, a corresponding transfer function is constructed based on the methods described by
Fujishiro et al. [26]. The domain of the transfer function corresponds to the range of scalar
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Figure 6.10: Transfer function emphasizing details close to critical isovalues.

values[s,.in, Smaz] OCCUrring in a data set. Outside this range the transfer function is undefined.
Given a list of critical isovaluesy;, either a transfer function emphasizing volumes containing
topologically equivalent isosurfaces or a transfer function emphasizing structures close to critical
values is constructed.

Figure 6.9 shows the construction of a transfer function that emphasizes on topologically
equivalent regions. The color transfer is chosen such that hue uniformly decreases with the
mapped value, except for a constant drop,0ét each critical valuev;. The opacity is constant
for all values except for hat-like elevations around each critical valu&aving a width ofw,
and a heighb,.

Figure 6.10 shows the construction of a transfer function emphasizing details close to critical
isovalues. The hue transfer function is constant except for linear descents of a fixed amount
within an interval with a widthv, centered around each critical isovalue. The opacity is
constant for all values except in intervals with a widthcentered around critical isovalues;
where the opacity is elevated by.

When several isovalues are so close together that intervals with awjdthw, would over-
lap, all isovalues except the first are discarded to avoid high frequencies in the transfer function
that could cause aliasing artifacts in the rendered image.

6.5 Results of Critical Point Analysis

Figure 6.11 shows the “Drip” data set, obtained by sampling the analytic funEtiony, z) =

224+ y? —0.5(0.99522 + 0.005 — z3). (This function was provided by Terry J. Ligocki, Lawrence
Berkeley National Laboratory.) The function was evaluatedfaor, = € [—1.5, 1.5], sampled on

a 403 uniform rectilinear grid. Figure 6.11(a) shows the isosurféce- 0. My method can be

used to detect critical values of this scalar field and show how this “drop” evolves. Originally,
there exists just one component evolving from the boundary of the domain of the scalar field. An
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Figure 6.11: Exploration of “Drip” data set.

“inner minimum” exists for a value of0.0754. Figure 6.11(b) shows an isosurface for a value

of —0.0754 + 0.01, where the isosurface component around the minimum already has grown to
a visible size. An inner saddle of the scalar field exists for a value(®®025, shown in Fig-

ure 6.11(c), where a small green sphere marks the saddle position. The isosurface components
are still distinct, but touch at the saddle position. For an isovaluedad025 + 0.01, i.e., a value

slightly above the saddle value, both components have merged. Additional critical points arise
on faces lying on the domain boundary. Figures 6.11(e) and 6.11(f) show a saddle that occurs
as a result of the isosurface intersecting the domain boundary. A hole in the isosurface is clearly
visible in Figure 6.11(f) as a result of domain boundary intersection. In this example, critical
vertices on boundaries are detected by obtaining “missing” neighbor vertices by “mirroring” the
other neighbor vertex in that direction. While this strategy correctly classifies minima and max-
ima on the grid boundary, it can lead to the detection of saddles where, in fact, none exist, see
Figure 6.12. The solution is to generate independent case tables for all possible configurations,
i.e., classified vertex lying on a grid boundary face, a boundary edge, or coinciding with a grid
corner. | did not implement this, as critical points on the mesh boundary can be viewed as “sam-
pling” artifacts where the isosurface intersects the boundary of the domain. The neighborhood
of a vertex is partially outside the domain.

Figure 6.13 shows a data set obtained by simulating a two-body distribution probability of
a nucleon in the atomic nucleus “160” when a second nucleon is known to be positioned at
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Figure 6.12: Mirroring vertices to classify boundary vertices can lead to the detection of saddles
at locations where, in fact, none exist. The figure shows the classification of a vertex (shown as
solid black disc) coinciding with the “corner” of the grid defining the domain. “Missing” neigh-
bor vertices are obtained by mirroring the other neighbor vertex in the corresponding direction.
The resulting “ghost” vertices are denoted by dotted lines. Vertices having a value larger than
the classified vertex are colored gray. Vertices having a value smaller than the classified vertex
are colored white. As a result of mirroring its neighbor the vertex is classified as saddle, while
contour behavior suggests a regular point. Linear approximation of contours are shown as bold
lines. Figure (a) shows a contour approximation for a value slightly below the value of the clas-
sified vertex. Figure (b) shows a contour approximation for a value slightly above the value of
the classified vertex.

distance of2 Fermi. This41? data set is courtesy of the Sonderforschungsbereich (SFB) 382
of the German Research Council (DFG). It can be obtainddtpt//www.volvis.org

The isovalue navigator indicates a minimum for an isovalué%f From a greater distance,
special contour behavior for this value cannot be perceived, see 6.13(a). By using the isovalue
navigator to define a viewpoint close to the minimum and looking at the minimum, a second
component forming inside the outer isosurface component becomes visible, see Figure 6.13(b).
Several saddles exist. Among them is a saddle for the isovallEpivhere one inner isosurface
component merges with the outer component. A clipping plane is used in the figure to make the
saddle location visible, see Figure 6.13(c). Figures 6.13(d) and 6.13(e) show a saddle inside the
outer isosurface component. Several saddles exist for the same value; one of them can be seen in
the background of the saddle, marked by a small green sphere.

Figure 6.14 shows the results of rendering the same data set with automatically generated
transfer functions. Figure 6.14(a) emphasizes on volumes containing topologically equivalent
isosurfaces. Details close to these critical isovalues are more visible in Figure 6.14(b).

Figure 6.15 shows the results of rendering a data set resulting from simulating the spatial
probability distribution of the electrons in a high potential protein molecule. Figure 6.15(a)
emphasizes on volumes containing topologically equivalent isosurfaces. Details close to these
critical isovalues are better visible in Figure 6.15(b).

Figure 6.16 shows the results of rendering a data set resulting from a simulation of fuel
injection into a combustion chamber. (Data set courtesy of SFB 382 of the German Research
Council (DFG), sedttp://www.volvis.org for details.) Figure 6.16(a) emphasizes on

FB Informatik, Universiat Kaiserslautern



6.5 Results of Critical Point Analysis 121

(b) (c)

(d) (e)

Figure 6.13: “Nucleon” data set. (Data set courtesy of SFB 382 of the German Research Council
(DFG), seéhttp://www.volvis.org )

volumes containing topologically equivalent isosurfaces. Details close to these critical isovalues
are more visible in Figure 6.16(b).
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(a) Transfer function emphasizing topologically) Transfer function emphasizing structures
equivalent zones. close to critical isovalues.

Figure 6.14: “Nucleon” data set. (Data set courtesy of SFB 382 of the German Research Council
(DFG), seehttp://www.volvis.org )

(a) Transfer function emphasizing topologically Transfer function emphasizing structures
equivalent regions. close to critical isovalues.

Figure 6.15: “Neghip” data set. (Data set courtesy of VolVis Distribution of SUNY Stony Brook,
NY, USA, seehttp://www.volvis.org )
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(a) Transfer function emphasizing topologically equivalent regions.

(b) Transfer function emphasizing structures close to critical isovalues.

Figure 6.16: “Nucleon” data set. (Data set courtesy of SFB 382 of the German Research Council
(DFG), seéhttp://www.volvis.org )
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6.6 From Critical Points to Critical Regions

To handle general data sets, it is further necessary to extend the concept of critical points to
critical regions. While Morse theory requires that only isolated points can be critical, itis possible
that a data set contains entire regions that are critical: A torus can form around a circle, which
could be a minimum, a new component can appear around a constant value sub-volume, or two
surfaces can merge along a line denoting a saddle. By extending the concept of isolated critical
points to critical regions in a data set, it becomes possible to detect topology in data sets that
contain regions of constant value.

In addition to a “flat region,” see Definition 5 (e), it is possible to have “extended” maxima,
minima, or saddles. Figure 6.7, for example, shows an extended saddle, where several isosurface
components meet along axis-aligned lines. An extended minimum or maximum can be differen-
tiated from its “localized” variant by the fact, that locations in its neighborhood exist that assume
the same value as the considered locations. An extended saddle can be differentiated from a lo-
calized saddle by the fact that contours meet along an extended region instead of a single points.
Definition 5 added locations with the same value as the classified point to both positive and neg-
ative regions. By modifying the definition to treat locations with the same value as the classified
point independently, it becomes possible to differentiate between localized and extended critical
points:

Definition 6 (Regular and Critical Points (extended)) Let M C R3 be a mesh and’ : M —

R be aCP-continuous function that i€>°-continuous in each grid cell. A point € R3 is
called (a) regular or ordinary, (b) minimum, (c) maximum, (d) saddle, (e) extended minimum,
(f) extended maximum, (g) extended saddle, or (h) flat pmﬁt affor all ¢ > 0 there exists a
neighborhood’ C U, (x) with the following properties: IUZ Pisa part|t|on of the preimage

of (F(x),+o0) in U — {x} into “positive” connected componentU ; is a partition of the

preimage of —oo, F(x)) in U — {x} into “negative” connected components, a@ilek is the
partition of the preimage of F' (x)} in U — {x} into “zero set” connected components, then (a)
n, =n, =n, =1, (b)n, = 1andn, = n, = 0 (and U contains only ordinary points), (c)
n, = landn, = n, = 0 (and U contains only ordinary points), (&), + n,, > 2, n,,n, > 1,

n, > 1 (and U only contains ordinary points), (&), = 1, n,, = 0, n, > 1 (and U contains
non-ordinary points), (fi, = 1, n, = 0, n, > 1 (and U contains non-ordinary points), (g)
n, + n, > 2,n, = 1 (and U contains non-ordinary points), and (h) = 1 andn, = n,, = 0.

Remark 3 The zero set corresponds to the level set for the value at

Remark 4 Definition 6 is a modified form of Definition 5. The original definition added the zero
set to both positive and negative sets. However, to extend the concept of critical points to critical
regions it becomes necessary to consider the zero set individually.

Remark 5 Cases (a) — (d) describe localized critical and regular points and are illustrated in

Figure 6.3. These definitions are equivalent to those used in topology and Morse theory. Cases
(e) — (g) extend these concepts to extended regions. An extended minimum, maximum, or saddle
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corresponds to a region where each point in the region is a minimum, maximum, or saddle,
respectively, according to Definition 5. Concerning case (h), all pointé iave the same value
as F'(x), i.e., the region has constant value.

Remark 6 WhenU is small enough, the non-ordinary points insideall have the same value
F(z): Inside a cell, this stems from the fact that the derivative is zero at a non-ordinary point
and one can separate the regions with zero derivative. At faces, this fact holds since critical
points on a face are also critical points for the bilinear interpolant, and the derivative of the
bilinear interpolant is used to provide the answer. On an edge, it suffices to consider the linear
interpolant, which leads to the same result. Finally, vertices of the grid have a neighborhood of
points on edges, faces and cell interiors.

For a localized minimum (or maximum) the minimum (or maximum) is completely sur-
rounded by larger (or smaller) values. In both casess zero. Ifn, is one, each neighborhood
contains points with the same function value. Each of these points of same value would also be
a minimum according to the original definition in [85]. (In that definition the zero set is also
included in the positive and negative components.) At a saddle, surface components merge at a
point or along a region. The zero set corresponds to the level set of the saddle value with the
currently considered location “cut out.” For a localized saddle, the level set at a saddle corre-
sponds to several surface components that meet in a point. If this point is removed, these surface
components become disconnectesl, n, > 1. If the saddle is along a region, the surface com-
ponents meet along that region. If one location is cut out, these components remain connected,
ie., n, = 1. Thus, the number of components of the zero set determines whether there are non-
ordinary points in each neighborhood. This fact holds for the 3D case, but it does not hold for
the 2D case. In the 2D case, the zero set would be partitioned into more than one components
when a saddle is “cut out,” regardless whether it is a face saddle or not.

The concepts of an extended minimum, maximum, and saddle in combination with flat points
can be used to define larger regions that are critical larger regions around which isosurface
topology changes. Therefore, the definitions of distance and neighborhood are extended to re-
gions as follows:

Definition 7 (Region Distance)Let R be a connected region arjk|| be a norm. The distance
|x — R|| of a pointp to a region is the infimum of distancespfto all locations inside that
region,ie., ||x — R|| := inf {||z — y||,y € R}.

Definition 8 (Region Neighborhood) Let R be a connected region. Theneighborhood/.(R)
of R consists of all locationd/.(R) := {z, ||x — R|| < €}, i.e., that have a distance less than
from R.

Definition 9 (Classification Region) A connected regiork C R? in space is aclassification
regionif the following statement holds: Each potatc R is a flat point, an extended minimum,

an extended maximum, or an extended saddle according to Definition 6, and R has maximal size,
i.e., each point in are neighborhood around is an ordinary point according to Definition 6.
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(@) (b) ()

Figure 6.17: Different configurations for a constant edge: (a) The whole edge is a saddle. (b)
Only a part of the edge is a saddle. (c) Only an isolated point on the edge is a saddle. Vertices of
the classification regions are drawn as solid black disks. Vertices with an associated value larger
than the value of the vertices of the classification regions are drawn as gray discs. Vertices with
an associated value smaller than the vertices of the classification region are drawn as white discs.

Remark 7 A Classification Region consists of points that cannot be classified locally but must
be classified by also considering surrounding locations.

Definition 10 (Regular and Critical Regions) Let M C R? be amesh and’ : M — R be a
C°-continuous function that i§€°>°-continuous in each grid cell. A classification regiénc R?

is called (a) regular, (b) minimum, (c) maximum, or (d) saddléoif for all ¢ > 0 there exists a
neighborhood’ C U.(R) with the following properties: IUZIPZ» is a partition of the preimage

of (F(R),+o0) in U — R into “positive” connected component@?ijl\/j is a partition of the
preimage of(—oo, F(R)) in U — R into “negative” connected components, atl'ji;Zk is the
partition of the preimage of F (R)} in U — R into zero set connected components, then (a)
n, =n, =n, =1, (b)n, > landn, =n, =0, (¢)n, > 1 andn, = n, = 0, and (d)

n, +n, > 2andn, = 1.

6.7 Representing Region Connectivity with Graphs

My method classifes regions consisting of grid vertices that have equal value and are connected
via grid edges. This approach correctly detects extended minima and maxima since minima and
maxima are always separated from other regions of equal viadughey are always surrounded

by regions of a different value. Saddles, on the other hand, pose a problem. The neighborhood
of a saddle always contains regular points that have the same associated value as the saddle.
Figure 6.17 shows an example for this in two dimensions. Even though it is possible that the
whole classified edge constitutes a saddle, see Figure 6.17(a), it is also possible that only a part
of the edge, see Figure 6.17(b), or an isolated point on the edge, see Figure 6.17(c), constitutes a
saddle. If one considers a saddle point coinciding with the edge of a cell, both boundary vertices
of the edge have the same value. It is possible that my method classifies a region that is too
large as saddle, or it may even merge several saddles, see Figure 6.18(a), and considers them as
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Figure 6.18: Limitations of my method: (a) When classifying a region consisting of edge con-

nected vertices, it is possible that my method “merges” two (or more) distinct saddle points (or
regions). (b) When a classified region has non-trivial topology, it is possible that a saddle is
missed. When considering this image in 3-d by revolving it around the center, it consists of
one positive and one negative region separated by a “torus” whith a disc in its middle. When
classified the whole constant region is classified it is considered a regular region. When only
the classification region consisting of extended minima, maxima, saddles and flat peirttse

disc region at the center is classied, a saddle is detected.

one classification region. When a classification region has “non-trivial” topology, it is possible
that a saddle is missed, see Figure 6.18(b). My approach detects saddles, when the “extended
classification region,i.e., the classification region and all edge connected “regular” vertices of

the same value, does not contain a set of regular points that connects both negative and positive
regions of a saddle. | suspect my algorithms fails, when a close non-manifold classification
region occursi.e., when a closed isosurface component for an isovalue equal to the saddle value
coincides with grid vertices. | assume that the region has to be closed to connect both positive
and negative regions of a saddle. Furthermore, as it corresponds to an isosurface component for
the saddle value, it must be non-manifold. Though very unlikely, this situation can theoretically
occur.

Lemma 6 The union of a connected s&t of regular points of equal value considered as whole
is regular.

Proof

In the context of my method, a connected region means a pathwise-connected region. Each point
x in the set is a regular point. Consequently, eitseighborhood/,(x) contains exactly one
positive and one negative (pathwise-)connected region. Without loss of generality, assume that
the Euclidean norm is usedeg., the neighborhood is a sphere. It is necessary to show that the
neighborhood arounfly consists of exactly two pathwise-connected regions. This is shown for
the positive region. The same holds for the negative region by analogy. Around each point in
exists are-sphere such that the isosurface for the valug;ppartitionsU, (x) into three parts: the
isosurface, a positive region, and a negative region. Considering the union of all positive parts of
all U.(x) for all x in Sg it must be shown that they are path-connecied,that a path between

two arbitrary positive in the union of all positive regions exists. Agtinda, be these points.
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By choice of these points they both lie in a neighborhood of two points Sk andx, € Skg.
SinceSy is path-connected, there exists a path betwegeandx,. Since a path is the image of
a continuous function of the compact inter{@l1], the path is compact. Consequently, the path
lies within the union of a finite number of spher@s i.e., , the path lies completely within the
setsU.(xy) = Uy, Us, ... U, = U.xz). The path betweea; anda, is constructed as follows.
A positive positionp; € U; N U;; is chosen. Since the positive parts of each neighborhood
are pathwise-connected, there exists a path betweamdp;,; as they both lie withinU; ;.
Furthermore, there exists a path betweerandp,; as they both lie withii/;, and there exists
a path between, andp,,_; as they both lie withir/,,. Consequentlya; anda, are pathwise
connected. O

Regions are classified by constructing a graph whose connected components correspond to
connected regions in a neighborhood around a region. This is done by considering all cells
that have at least one vertex that belongs to the classification region. A graph whose nodes
corresponds to edges of these cells and whose connected components correspond to connected
positive and negative regions in space is constructed. Within a cell, one is concerned with one
trilinear function. In the following, it is shown that when restricted to the trilinear interpolant
in a cell, each connected region in the neighborhood contains at least one edge of that cell.
Consequently, it is possible to represent these regions by cell edges.

Lemma 7 LetC be arectilinear cell with trilinear interpolation applied to it andbe an arbi-
trary value. Each maximum-extended connected positive regianf ! ((v, +oo)) contains at
least one vertex af’.

Proof:

A maximum-extended connected region with valae® contains a local maximum within its
compact closure. Since trilinear interpolation only allows a maximum in the vertices of a cell to
exist, R contains a vertex. O

(The same lemma holds for negative connected regions.)

Lemma 8 LetC be atrilinearly interpolated rectilinear cell that intersects the classification re-
gion R, i.e., a cell that contains a number of vertices that belong to the classification region with
a value ofv. Each connected positive or negative region in the neighborhodtlinfersecting
C,ie., U(R) N C, contains a part of an edge of the cell that starts at a vertex belonging to the
classification region. (The vertex itself does not belong to the region.)

Proof (sketch) Consider theL>°-norm. A neighborhood around a point is a cube, and a
neighborhood around an edge or a face is a (rectilinear) cuboid/box. The neighborhood around a
collection of points, edges, and faces is a set of boxes. The intersection of the neighborhood with
the cell is also a set of boxes, see Figure 6.19. Values are trilinearly interpolated within each box.
Vertices of a box coincide with vertices of the cell, its edges, or lie in its interior. If a sufficiently
small neighborhood is chosen, the vertices in the interior have the same polarity as one of their
edge-connected neighbor vertices. Each connected region in one of the boxes is connected to
one of the vertices of that box. This vertex, in turn, is connected to a vertex that lies either on
an edge of”' or coincides with one of its vertices belonging to the classification region. Thus,
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Figure 6.19: With respect to the>*-norm, the intersection of the neighborhood with a cell is a
collection of boxes. If the neighborhood is chosen sufficiently small, vertices of the boxes that
do not coincide with cell vertices or faces have the same polarity as an edge-connected vertex,
and their corresponding region is also connected to one of the cell’'s edges.

each positive- and each negative-connected component within the neighborhood is connected to
an edge emanating from a vertex of the classification region. O
Furthermore, if two edges of same polarity are connected within the intersection of a cell’s face
with the neighborhood of the classification region, their corresponding regions are also con-
nected. Additionally, “being connected” is a transitive propeify, , if edge (region)A is
connected to edge (regiol) and edge (regionp is connected to edge (regio6), then edge
(region) A and edge (region)’ are connected as well.

6.8 Detecting Critical Regions

6.8.1 Overview

My algorithm detects critical regions in a two-pass approach. First, a pass is performed that clas-
sifies all grid vertices that can be classified locaily, all grid vertices whose edge-connected
neighbors differ in value. This local classification is performed as described in Section 6.3. Us-
ing the polarities of the six edge-connected neighbor vertices, an indexttoeatry LUT is
computed. The type of vertex is then read from a manually generated LUT. Vertices that cannot
be classified locally are marked by setting an associated flag, see Figure 6.20(a).

Second, this flag is used in a subsequent pass that handles global classification. The next
vertex that belongs to a region that needs to be classified is located. Starting with this seed vertex
a “flood fill” operation is performed that recursively adds all vertices having the same associated
scalar value as the seed vertex and are edge-connected to the current vertex. While adding these
vertices to the classification region, the associated flag that marks the vertex as belonging to an
unclassified region is cleared. In addition, an updated bounding box that contains all marked
vertices is maintained. After applying the flood-fill process this bounding box, shown as dotted
rectangle in Figure 6.20(b), contains all vertices belonging to the current classification region.
All vertices belonging to this region are flagged. The bounding box containing all vertices of the
classification region is extended to a bounding box of grid cells such that no vertex belonging to
the classification regions lies on the boundary of this bounding box, shown as dashed rectangle
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Figure 6.20: Stages of the algorithm: (a) After the local pass all vertices that cannot be classified
locally are marked with a flag (indicated by a rectangle around these vertices in the figure). Once
the first flagged vertex is determined a flood fill is performed that marks all vertices belonging to
the classification section (solid black disks in the figure). The region is classified by constructing
two graphs, one representing positive- and one representing negative-connected regions in the
neighborhood around the classification region. For each edge originating in a vertex belonging
to the classification region, a corresponding node in the graph exists (shown as dark and light gray
solid rectangles). Two nodes in the graph are connected when the corresponding edges belong
to the same connected region in a cell. A region can be classified by counting the connected
components in the two graphs.

in Figure 6.20(b).

A region is classified by constructing two graphs whose connected components correspond
to connected regions in a neighborhood around that region. One graph corresponds to positive
regions, and another graph corresponds to negative regions. These graphs are constructed by
traversing all cells of the extended bounding box and adding nodes and edges to this graph cell-
by-cell. It follows from the observations in Section 6.7 that for each cell a connected region in
the neighborhood of the classification region contains at least one edge starting from a vertex of
the classification region. Thus, connectivity of these regions can be represented by considering
all edges that originate in a vertex belonging to the classification region. For each of those edges,
a node in one of the graphs representing the classification region neighborhood is created. To
add edges as nodes to one of the graphs, a unique identification number is assigned to each edge
in a grid by effectively numbering all edges of the grid. This step ensures that the same node in
the neighborhood graph is accessed for two cells sharing that edge.

Once the two graphs representing the neighborhood of a region are constructed, a region can
be classified by counting the connected components in them. The graph in Figure 6.20(c), for
example, indicates that the classified region is a saddle. When a region is classified, the search
for the next vertex belonging to an unclassified region proceeds until all vertices of the grid are
checked.
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6.8.2 Constructing the Connectivity Graphs within a Cell

Within a cell the graph is constructed based on the vertex configuration within the cell. A main
case is determined based on which vertices of the current cell belong to the classification region.
The vertices of a cell are numbered according to Figure 2.22, and a look-up index is computed
by setting the corresponding bit for each vertex belonging to the classification region. This step
results in an index referencing one2dit possible cases. Considering rotational symmetry, this
number can be reduced 23 base cases, shown in Figure 6.21. (This approach is similar to
symmetry considerations for the MC method, and my numbering of base cases corresponds to
the numbering scheme used in [67].)

An LUT that contains the base case number and permutations of vertices, edges, and faces is
referenced that map vertex, edge, and face numbers of the current case to vertex, edge, and face
numbers of the corresponding base case. Subsequently, the edge graph for a cell is constructed by
calling a function that handles the corresponding base case. Whenever this function references
a vertex, edge, or face of the cell it does so via the corresponding permutation function for the
current topology case index.

All edges connecting the classification region to positive vertices are added as nodes to the
positive-components graph and all edges connecting the classification region to negative vertices
to the negative-components graph. If a pair of edges belongs to the same connected region in a
cell, their corresponding nodes in the positive or negative edge graph are connected. When cell
marching terminates, the connected components in one graph correspond to positive-connected
regions, and the connected components in the other graph correspond to negative-connected
regions.

First, consider caseS0 and(C22. For caseC0, a cell does not contain any vertices of the
classification region and thus does not intersecttheighborhood of the classification region. A
C22 cell belongs completely to the classification region and does not intersect the neighborhood
either. Cells of these types can be skipped during graph construction.

Caseg’3, C4, C6, C7, C10, andC'13 are handled by considering them as a combination of
single vertices or single edges belonging to the classification area. If one considers, for example,
case('3, one observes that two vertices belong to the classification region. Both vertices have
edge-connected neighbor vertices that do not belong to the classification region. Thus, it is
possible to handle them independently and construct the neighborhood graphs for each vertex
individually. Similarly, case”'6, for example, can be handled by constructing the graphs for an
edge and for a vertex.

Constructing the neighborhood graph for a single vertex corresponds t@’d¢ase&his is
equivalent to the situation in a single cell as described in Section 6.3. The neighborhood around
the vertex in the classification region is partitioned in the same way as in a linearly interpolated
tetrahedron. Thus, in this case all vertices of the same polarity are always connected, and it is
only necessary to add edges between all edges of equal polarities in the corresponding graph.

For the construction of the neighborhood graph of an edge, it is necessary to cdisider
cases. (The edge is connected to four vertices that do not belong to the classification region.)
By using symmetry and reversing polarities, it is possible to reduce the number of cases to four
possible sub-cases, see Figure 6.22. Figure 6.22 shows possible configurations for the edge-
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C18 C19 C20 C21 C22

Figure 6.21: Base cases for constructing graphs that represent positive and negative regions
around a classification region. A case number is determined according to which vertices belong
to the classification region (marked as solid black disks). The other vertices can assume arbitrary

values different from the value of the classification region.

Figure 6.22: Sub-cases for connecting an edge.
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Figure 6.23: Disambiguation for cag&.4.

connected vertices that have either positive (gray) or negative (white) polarity. Each edge has a
corresponding node in the classification graph (shown as white rectangles for the negative graph
and gray rectangles for the positive graph). Two nodes are connected by a line segment when
they must be connected in their graph.

Caseg'2.0 to (2.3 are derived from this observation: Nodes of the same polarity are on a
face, and they are connected on the intersection of that face with the neighborhood of the clas-
sification region. Since connectivity is transitive, the actual connectivity graph is the transitive
hull of the graphs shown in the figure. However, only the number of connected components in
a graph is of interest. Consequently, it suffices to add those edges to the graphs that are shown
in the figure. For cas€'2.4 two diagonally opposite vertices have the same polarity. In this
case, it is necessary determine whether the positive vertices are conriézied)( whether the
negative vertices are connected(4.1), or whether all regions are separaté®(4.2). To dis-
tinguish between these cases, it is determined, for which parameter valaedtz along the
edges “A” and “B” the value of the classification region is taken on. (For both parameter values,
zero corresponds to the “left” end of the edge and one to the “right” end of the edge Xl
then the regions belonging tg anduy, i.e., the negative regions, overlap.tlf > ¢z, the regions
belonging to vertices; andus, i.e., the positive regions, overlap. #f; = ¢, the bilinear slice
through the cell at that parameter value contains three vertices with the value of the classifica-
tion region. The remaining vertex on edge “C” determines the polarity of the whole face. If it
is positive, the positive verticag andvs, along with their corresponding edges, are connected
(C2.4.0); if it is negative, the negative vertices andv,, along with their corresponding edges,
are connected({2.4.1). If it also has the value of the classification region, all vertices and edges
are separated’2.4.2). The remaining sub-cases can be derived from these base cases.

For the remaining base cases, those vertices that do not belong to the classification region, but
are connected to one of its vertices by an edge, are numbered. Subsequently, a topology sub-case
number is computed by setting the bit for each positive vertex. These sub-cases can be derived
from a number of base sub-cases. Figure 6.24 shows base sub-configurations for topology base
caseCh. (Edgeseg ande, lead to the same non-classification region vertex on a face and are
connected within the intersection of a neighborhood of the classification region with that face.
Thus, their corresponding nodes in the classification graph are always connected.)

Similarly to the construction of the classification graph for an edge, the graphs for most cases
can be derived from the fact that nodes for edges on the same face are connected within the in-
tersection of the region neighborhood and that face if they have the same polarity and using tran-
sitivity of the graph. Similarly to the edge case, only a minimum number of edges needed to
obtain a correct number of connected components is given for the neighborhood graphs. The ac-
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Figure 6.25: Sub-cases for topology base c@se

tual neighborhood graphs are the transitive closure of the graphs in the figure. Sub-configuration
C5.4 is interesting: In contrast to sub-configuratiéa.4 no ambiguity exists. The bottom face

has always the same polarity as vertgx Since trilinear interpolation is continuous, a bilinear

slice close to the bottom face connects the vertices of the same polatify &s, v, andvg.

Thus, nodes for edges leading from the classification region to these vertices must be connected
in the classification graph.

CaseC'8, see Figure 6.25, is similar to the case of handling an edge belonging to the classi-
fication region. For casesS8.0 — 8.2 the same arguments can be used to derive the classification
graphs in each cell. It differs from the edge case in the way ambiguities) are resolved: All
vertices of the bottom face have the same value. Thus, contours on all bilinear slices parallel to
the top face are topologically equivalent to contours on the top face. The asymptotic decider [68]
is used to determine connectivity on that face and connect negative nodes, or positive nodes.
If the saddle on the top face has the same value as the classification region, each bilinear slice
parallel to that face has the same saddle value. In this case, the saddle on that face is connected
to the classification region via an “extended” internal cell saddle (see Section 6.9.1). To classify
the region correctly, it must be determined, which regions are connected beyond that face, see
Section 6.9.1.

The neighborhood graphs for base ca&k see Figure 6.26, can be constructed using the
same arguments as for casé.
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C11.2 C11.3

Figure 6.27: Sub-cases for topology base case

Figure 6.27 shows the classification graphs for sub-cases of topology’'tasdhe graphs
for casesC11.0-C'11.4 can be constructed using the same observations as for bas€’'gase
Observe, that for sub-cagel 1.5 all positive regions are connected since the complete bottom
and back faces have positive polarity.

Case(C'12 is a combination of base caé& and vertex casé€’l. CaseC'14 can be obtained
by “mirroring” base cas€’'11. Base cas€’'l5 is a combination of base caé® and vertex case
C'1. Base casé'16 has only three vertices that do not belong to the classification region. If a pair
of vertices has the same polarity, it is alway connected in the neighborhood of the classification
region. For base casésl7, C'19, andC20, all vertices not belonging to the classification region
lie on a single face. Furthermore, on this face they are always connected, when they have the
same polarity. Thus, in these cases vertices of equal polarity are always connected. Base case
(C'18 contains only two vertices that do not belong to the classification region. If these vertices
have the same polarity, they are connected. C&seconsists of only one vertex. In this case,
it is necessary to connect the nodes in the classification graph that correspond to its incoming
edges.

6.8.3 Computing Connected Components in the Connectivity Graph

To compute the number of connected components in the neighborhood graph, a variant of the
union-find algorithm is used see [44, 75]. Since only connected components of the graph are
of interest, connectivity information between notes is not explicitly stored. Instead, the graph

is treated as as a set of connected components. Each connected component is a set of node
identifiers (ids) of all nodes belonging to that connected component. As a new nodes is added
to the graph, a new connected component, a set with a the node index as single element, is
added to the list of connected components. If an edge between two nodes belonging to different
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connected components is added, the union of these sets is computed and replaces the two sets
corresponding to the individual connected components.

Those sets are managed with the union-find algorithm [44, 75]. The sets are stored as a
forest of trees, i.e., each set is stored as a tree consisting of all elements of the set. Each set
is represented by the root of its storage tree. To determine whether two elements belong to the
same set, the root for the tree containing each element is determined. If both roots are the same,
the elements belong to the same set. If they are different, they belong to different sets. Since
it is only necessary to traverse trees toward their root node, individual trees are stpaechin
representation;e., each tree node contains a data entry listing the element and a pointer to the
parent of that node. The root contains a null-pointer indicating that it does not have a parent. To
find the representing element of a s&t,, the root node of the tree corresponding to that set, for
a given element, the parent pointers are followed, until the root is found. Two sets are joined in a
union, by replacing the null-pointer in the representer of one set with a pointer to the representer
of the other set. Two optimizations of the union-find algorithm, described by Sedgewick [75],
are usedpath-length compression reduces the height of a tree. Whenever the representing node
for a set element is determined, the path toward the root is followed a second time replacing the
parent pointer with a direct pointer to the root of the tree representing the set. Furthermore, a
weight is maintained for each root-node that counts the number of elements in the tree below it.
Whenever join two trees are joined, choose the tree with the larger number of elements is chosen
as the new root instead of making an arbitrary choice.

Instead of counting the number of components (or sets) after generating the graph, the number
of currently existing sets is stored and updated. This number is initialized as zero. Whenever a
new set/connected component is added, this number is increased by one. When two independent
sets/connected components are joined, it is decreased by one. A hash-table is maintained to
locate the corresponding element entry for a given node identifier efficiently.

6.9 Extended Interior Saddles and Face Saddles

6.9.1 Introduction

Section 6.3 stated that a saddle of the bilinear interpolant on a boundary face of a cell may or
may not be a saddle of piecewise trilinear interpolation. By determining whether the positive or
negative regions of the boundary face saddle are connected within both adjacent cells, it was pos-
sible classify a face saddle as saddle or regular point of piecewise trilinear interpolation. Even if
vertex values along an edge are unique, it is possible that neither positive or negative connections
are connected within a cell, see, for example Figure 6.7. Section 6.3 discarded these “extended”
saddles as it was only concerned with isolated critical points. When detecting critical regions,
one must reconsider extended saddles. Furthermore, if the requirement that vertices connected
by an edge differ in value is discarded, additional extended saddles in a cells interior can occur,
see Figure 6.28. In these cases, a cell has more than one face containing a saddle of equal value.
When examining the gradient7" of the trilinear interpolant within a cell, it turns out that it
vanishes along a straight line, see Figure 6.28(a) or a hyperbola on a face, see Figure 6.28(b).
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Figure 6.28: Extended interior saddle of a cell connecting two faces with saddles having the
same associated value. (a) Opposite faces are saddle-connected. (b) Two neighboring faces are
saddle-connected.

Each location on this curve is a saddle of a bilinear slice through the cell. This extended interior
saddle “connects” two boundary faces with equal saddle value. Consequently, it is not possible
to treat face saddles and interior saddles independently. (Only internal saddles that are isolated
points can still be classified individually.) Whenever the criterion from Lemma 5 fails to de-
termine whether positive or negative regions of the saddle on the boundary face are connected,
an extended interior saddle exists, and neither positive nor negative regions of the face saddle
are connected within that cell. It is not possible to determine, locally, whether the face saddle
is a saddle of piecewise trilinear interpolation. Instead, this saddle must be “traced” through
cells, constructing graphs that represent positive and negative regions in its neighborhood. This
is analogous to the scheme used to classify regions consisting of vertices of constant value.

The remainder of this section proceeds as follows. First, the solutioRgte= 0 that do

not correspond to isolated critical points are examined. Subsequently, it is shown that if the
criterion from Lemma 5 fails to determine whether positive or negative regions are connected
in a cell, in fact neither regions are connected. Instead, the gradient of the trilinear interpolant
vanishes along a curve connecting the saddle on that face with one or more saddles of equal value
on other faces of the cell. Subsequently, this analysis is used to derive a scheme that allows the
classification of face saddles by tracing an extended saddle region by following extended internal
saddles and constructing two graph representing positive and negative connected components in
a neighborhood around that saddle.

6.9.2 Extended Interior Saddles

Lets reconsider interior saddles. Within a cell, trilinear interpolationd§*a-continuous func-
tion and can be written in the form

T(x,y,z) = axyz + bry + cyz + dez + ex + fy+ gz + h , (6.6)
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assuming that the domain is the unit cubel]®>. The coefficients can be calculated from the
vertex values as

a=v1+v3+ v+ Vg — Vg — V7 —Us — Vg,

b:UO—Ul+U2—U3,

C=Vg— VU3 — Vg + U7,

d =vy — vy — V4 + v,

0 1 4 5 (67)

€ =v1 — 7,

f =U3 — Vg ,

g =vy — 19 ,and

h:U().

The vertex values can be computed from the coefficients as

vo =h ,

vy =e+h,

vpo=b+e+ f+h,

vs=f+h,

vy =g+h,

vs=d+e+g+h,
vs=a+b+c+d+e+f+g+h,and
vr=c+f+g+h.

(6.8)

Critical points occur at locations where the gradient vanishes, see Section 2.1.2. Using this
criterion on Equation 6.6 obtains

T 3
— =ayz+by+dz+e=0
ox
or
a—:axz—irbx—l—cz—l—f:() =VT(z,y,z) =0 (6.9)
Y
oT
— =axy+cy+dr+g=0
0z J

Desired are solutions of this equation. The Hessiaf of
0 az+b ay+d
H(z,y,z)=|az+b 0 ar+c| . (6.10)
ay+d ax—+c 0
Eigenvalues\; of the Hessian are the solutions to the following equation

N 2N kN 4 B A+ 2k kk, =0 (6.11)
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where
k, = ax+c, (6.12)
k, = ay+d,and (6.13)
k, = az+b. (6.14)

SinceH (z,y, z) is symmetric, it has three real-valued eigenvalues. The determinant of the Hes-
sian equals to the product of the eigenvalues,

0 az+b ay+d
az+b 0  ar+c|=2(ar+c)(ay+d)(az +b) = AMAA; . (6.15)
ay+d axr—+c 0

As aresult of Lemma 1, all points for which the determinant of the Hessian differs from zero are
saddles.

If a z-axis perpendicular slice is considered, trilinear interpolation reduces to bilinear inter-
polation on that slicei,e., interpolated values are obtained as

bir,(z,y) = vp(2)(1 — 2)(L = y) + vi(2)x(1 — y) + vy(2)ay + v5(2) (1 —x)y,  (6.16)
where
vy(z) =(1 — 2)vg+ 204 = gz + h |
v(2) =(1 = 2)vy + 205 =dz+gz+e+h, (6.17)
vh(2) =(1 — 2)vg + 2v6 =az+cz+dz+gz+b+e+ f+h,and '
vy(2) =(1—2)vs+zvr=cz+gz+ f+h.
This equation can be written as
bil (x,y) = d'(2)ay +V (2)x + (2)y + d'(2) , (6.18)
with
a'(z) = wvp(z) —vi(2) +05(2) —v4(2) =az+0,
V(z) = wvi(z) —vi(z) =dz+e,
d(z) = v4(2) —vi(z) =cz+ f,and (6.19)
d(z) = vy(z) =gz+h.
The derivatives of the bilinear interpolant are
8523 =d Ry +b(z)=ayz+by+dz+e= (Z—F , and
fE * (6.20)

obt’ oF
8;2 =dr+d(z)=arz+br+cz+ f= e
The first derivatives on the bilinear slice are equal to the first derivatives of the trilinear interpolant
in that direction. By symmetry this property also holds ferand z-axis perpendicular slices.

The eigenvalue of the Hessian of the bilinear interpolants are according to Equation 2.39

A1y = £d'(2) = £(az + b) = £k, . (6.21)
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Analogously, one obtains

>\r 1/2 - :l:/fx y and (622)
)\y 1/2 = j:ky y (623)
as eigenvalues for the Hessian of the bilinear interpolant-candy-axis perpendicular slices.

Case lia #0
Equation 6.9 can be rewritten as

=:ay

oT d b bd
—:ayz+by+dz—|—e:a(y+—) (z+—)+ae_ =0 (6.24)
ox a a a
Z ~———
ayz—i—by-i—dz-&-% 6_%
T _
a—:axz+ba:+cz+f:a<m+f> (z+é)—|—af bc:() (6.25)
dy a a a
T d —cd
8—:axy+cy—|—dx+g:a<x+f) (y+—>+ag “C_0 (6.26)
0z a a a

Case 1.1a, #0;a, #0;a, #0
If follows thatz # —<,y # —4 andz # —2, otherwise there is a contradiction.
From Equation 6.25 it follows that

b @y
e — 6.27
e ) o
From Equation 6.26 it follows that
d a
= 6.28
YT a? (z + <) (6.28)
Using Equations 6.27 and 6.28 in Equation 6.24 yields
4 0 %y
@@+s) @rs)
This equation can also be written as
2
(g; n E) LY (6.29)
a a“Qy
Analogously, one obtains
2
(y N il) = %% ang (6.30)
a a ay
b\ > Ay @y
Z+ - = ———. (6.31)
a a=ay
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Case 1.1.1a,a,a, > 0
= No solution exists.

Case 1.1.2a,a,4a, <0
From Equation 6.29 it follows that

Ty = _ 4 VT Aalyz (6.32)
a aa,
Using Equation 6.32 in Equations 6.26 and 6.25 yields
d Vv Yz z
yp = —— o YW ang (6.33)
/ a Ay
vy = U VTl (6.34)
/ a aa,

Sincex # —2,y # —g and:z # —g holds, the determinant of the Hessian, see Equation 6.15,
differs from zero and both solutions are saddles of the trilinear interpolant. Both saddles are not
necessarily within the cells boundaries: There are up to two isolated saddles of the trilinear
interpolant within the cell.

Case 1.2:a, = 0;a, # 0;a, # 0
Froma, = 0 it follows by Equation 6.24 that

a (y + g) <z + g) =0 (6.35)

holds. From this equation it follows that eithge —g orz = —g (or both) holds. Frony = —<

it follows by Equation 6.26 that= = 0 which leads to a contradiction. From= —2 it follows

by Equation 6.25 that* = 0 which also leads to a contradiction. Consequently, no solution
exists for this case.

Case 1.3:.a, # 0;a, = 0;a, # 0
Froma, = 0 it follows by Equation 6.25 that

a (x n 2) (z v g) —0 (6.36)

holds. From this equation it follows that either= —< orz = —2 (or both) holds. From: =—

it follows by Equation 6.26 that= = 0 which leads to a contradiction. From— —? it foIIows

by Equation 6.24 that: = 0 which also leads to a contradiction. Consequently, no solution
exists for this case.

Case 1.4:.a, # 0;a, # 0;a, =0
Froma, = 0 it follows by Equation 6.26 that

a (x + 2) <y + g) —0 (6.37)
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holds. From this equation it follows that either= —< ory = —g (or both) holds. From

x = —< it follows by Equation 6.25 that: = 0 which leads to a contradiction. Frogn= —g

it follows by Equation 6.24 that= = 0 which also leads to a contradiction. Consequently, no
solution exists for this case.

Case 1.5.a, = 0;a, = 0;a, #0

Froma, = 0 it follows according to Equation 6.24 that either= —< or = = —2 (or both) holds.
Sincey = —g implies that®= = 0, which leads to a contradiction,= —g must hold. (The case
z = —g implies that=* = 0 which is true.) All solutions lie on the-axis perpendicular plane

z= —g. Further, Equation 6.26 must hold ferandy yielding the relationship
Cz,y) =azxy+de+cy+g=0 (6.38)

The curve consisting of all positions where Equation 6.38 holds is a bilinear contour. It is impor-
tant to note, that the degenerate cdse, all positions lie on a pair of axis-aligned asymptotes,
cannot occur. The partial derivatives f0fz, y) are

8_0 =ay+d,and
£ (6.39)
a_y =axr + cC.

Thus,C(z,y) has a critical point at—<, —4), which is a saddle, see Section 2.2.5. The corre-

a
sponding critical value is

cd cd cd dc ag—cd a,

@ ————+tg=g——= =—#0.
a a a a a

Consequently, the saddle value differs from zero, and the degenerate case does not occur for
C(x,y) =0.

Classical Morse theory does not apply for locations along this curve. The criticality is not
localized and degenerate. Only two of the three eigenvalues of the Hessian differ from zero.
However, if a bilinear slice through the cell at an arbitrary position of the curve is considered, the
intersection point of the curve with that slice is a saddle on that slice. If one considers the slice
z = —g of the trilinear interpolant that contains the criticality, one obtain the following:

b b bd b
T(x,y,——>:——Cy——x+6x+fy—g—+h. (6.40)
a a a a

Froma, = 0 anda, = 0 follows bd = ae andbc = a f, respectively. Using this relationship in
Equation 6.40 yields

b b b
T(way,—a>=—ﬂy—%x+e:ﬂ+fy—g +h:h—%. (6.41)

a a a
All positions within the slice, and, consequently, all saddles along the critical curve have the
same value. According to Definition 6, consists of extended saddle points. Whether the whole
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curve is a saddle, depends on which regions are connected in adjacent cell. (This is analogous to
saddles on boundary faces.)

Case 1.6:.a, = 0;a, # 0;a, =0

Froma, = 0 it follows according to Equation 6.24 that either —g orz = —g (or both) holds.
Sincez = —g implies that®> = 0 which leads to a contradictiop,= —g must hold. (The case
y = —< implies that%= = 0 which is true.) All solutions lie on thg-axis perpendicular plane

y = —g. Further, Equation 6.25 must hold ferandz yielding the relationship
arz+br+cz+ f=0. (6.42)

This case is analogous to Case 1.5.

Case 1.7:a, # 0;a, = 0;a, =0

Froma, = 0 it follows according to Equation 6.25 that either= —£ or z = —% (or both) holds.
Sincez = —g implies that®s = 0 which leads to a contradiction,= — ¢ must hold. (The case
r = —< implies that®= = 0 which is true.) All solutions lie on the-axis perpendicular plane

r = —£. Further, Equation 6.26 must hold fgandz yielding the relationship
ayz +by +dz+e=0. (6.43)

This case is analogous to Case 1.5.

Case 1.8.a, = 0;a, = 0;a, =0
From Equations 6.24 to 6.26 follows that

( d b) ( c b) ( c d)
y=—Vz=—|AN|l2=—Vz=—|A|lz=—"Vy=—1],
a a a a a a

where *v” indicates a logical or, andA” indicates a logical and. This statement is equivalent to

( c d) ( ¢ b> < d b)
r=—Ny=——|Vizr=—-ANz=—|V|y=—-"ANz=—-1] .
a a a a a a

All potential critical points lie on three axis-aligned linés,,

e C y—-2. c=teo,1], (6.44)
a a
c b
T y=tecl0,1]; z=--,and (6.45)
a a
r=t€el0,1]; yz—g; p=-2 (6.46)
a a

If one considers slices perpendicular to one of these three lines, the bilinear interpolant on that
slice has a saddle at the intersection point with that plane provided it does not contain the other
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two lines, ag:; # 0 along ani-axis aligned line. At the intersection point if the three axis-aligned
lines, all eigenvalues of the Hessian are zero. As shown in Case 1.5, it followsfren® and

a, = 0 that thez = —g slice has constant value. Analogously, it follows framn = 0 and
a, = 0, that they = —g slice has constant value, and framp = 0 anda, = 0 follows that the
r = —¢ slice has constant value. All saddles of the bilinear slices along the three axis-aligned

lines have constant value. According to Definition 6 each point on these lines is a saddle (with
the exception of the intersection point which is a flat point). Whether the whole “saddle region”
is a saddle depends on how the regions are connected outside the cell.

Case 2:a =0
Equation 6.9 reduces to

oT

— = by+dz+e=0, (6.47)
ox
T
2— = br+cz+ f=0,and (6.48)
Y
oT
— = dr+cy+9g=0. (6.49)
0z
The Hessian reduces to
0 b d
H(z,y,z)=1b 0 c| , (6.50)
d ¢ 0

implying thatk, = ¢, k, = d, andk, = b.

Case 2.1b# 0;¢ # 0;d # 0 = bed # 0
Multiplying Equations 6.47, 6.48, and 6.49 byd, andb, respectively, results in the equations

(6.47) - c:  bcy + cdz = —ce (6.51)
(6.48)-d: bdzx + cdz = —df , and (6.52)
(6.49) - b: bdx + bcy = —bg . (6.53)

Adding two of the above equations and subtracting the remaining equation results in

(6.48) + (6.49) — (6.47) : 2bdx = ce — df —bg =z = W , (6.54)
(6.47) 4+ (6.49) — (6.48) :  2bcy =df —bg —ce =y = W , and (6.55)
(6.47) + (6.48) — (6.49) : 2cdz = bg —ce — df = 2 = W . (6.56)

The solution is an isolated saddle point since the determinant of the Hessian differs from zero.

Case 2.2 =0;¢#0;d #0
From Equation 6.47 it follows thatz + ¢ = 0 must hold implying that = —£ holds. From
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Equation 6.48 it follows thatz+ f = 0 must hold implying that = —£ holds. If—< # —{ then
no solution exists. Otherwise, all possible solutions lie on a straight line withinthe- £ = —{
plane that satisfies the equation

dr+cy+g=0 (6.57)

which is derived from Equation 6.49. Like in Case 1.5, this case represents an extended, degen-
erate criticality. If one considers- or y-axis perpendicular slices through the cell, the bilinear
interpolant has a saddle at the intersection with the straight line implied by Equation 6.57, since
k, = c# 0andk, = d # 0. Fromz = —$ = —L it follows that

d

T<x,y,—9):—iy——ex+e;c+fy—@+h:h—@. (6.58)
d c d c c

All values in the slice, and, consequently, all bilinear saddle values are constant. Each point
along the line is an extended saddle by Definition 6.

Case 2.30# 0;c=0;d#0

From Equation 6.48 it follows thdtr + f = 0 must hold implying that: = —% holds. From
Equation 6.49 it follows thatiz + g = 0 must hold implying that: = —£ holds. If—{ # 4
then no solution exists. Otherwise, all possible solutions lie on a straight line within the
—% = —2 plane that satisfies the equation

by +dz+e=0 (6.59)

which is derived from Equation 6.47. Analogously to Case 2.2, all locations along the straight
line implied by Equation 6.59 are saddles of the bilinear interpolant @md z-axis perpendic-
ular slices.

Case2.4b#0;c#0;d=0

From Equation 6.47 it follows thaty + e = 0 must hold implying thaty = —3 holds. From
Equation 6.49 it follows thaty + g = 0 must hold implying thay = —¢ holds. If—7 # —¢ then
no solution exists. Otherwise, all possible solutions lie on a straight line withinthe-; = —¢
plane that satisfies the equation

br+cz+ f=0 (6.60)

which is derived from Equation 6.48. Analogously to Case 2.2, all locations along the straight
line implied by Equation 6.60 are saddles of the bilinear interpolant-and z-axis perpendic-
ular slices.

Case 250 =0;c=0;d#0

From Equation 6.48 it follows thgt = 0 must hold. Iff # 0 then no solution exists. Otherwise,
Equation 6.47 implies that = —¢ holds, and Equation 6.49 implies that= — holds. All
possible solutions lie on a straight line

z=—7 y=te|0,1];and =z

(6.61)
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Like in Case 1.5, this is an extended, degenerate criticality. If one congiaetis perpendicular
slices through the cell, the bilinear interpolant has a saddle at the intersection with the straight
line implied by Equation 6.61, sindg, = d # 0. Sincea = 0,b =0,c =0, andf = 01itis
possible to obtain values along the line implied by Equation 6.61 as

g, _ey_dg e e , _, ¢
T( 2t d)_d2 2 en=n-2. (6.62)

All bilinear saddles along the line have the same value.

Case 2.6b=0;c#0;d=0

From Equation 6.47 it follows that= 0 must hold. Ife # 0 then no solution exists. Otherwise,
Equation 6.48 implies that = —{ holds, and Equation 6.49 implies that= —¢ holds. All
possible solutions lie on a straight line

r=tel0,1]; y:—g;and z:—i. (6.63)
&

C

Like in Case 1.5, this is an extended, degenerate criticality. If one considetis perpendicular
slices through the cell, the bilinear interpolant has a saddle at the intersection with the straight
line implied by Equation 6.63, sinde. = ¢ # 0.

Case 2.70# 0;¢c=0;d=0

From Equation 6.49 it follows that = 0 must hold. Ifg # 0 then no solution exists. Otherwise,
Equation 6.47 implies that = —7 holds, and Equation 6.48 implies that= —% holds. All
possible solutions lie on a straight line

Like in Case 1.5, this is an extended, degenerate criticality. If one considedis perpendicular

slices through the cell, the bilinear interpolant has a saddle at the intersection with the straight
line implied by Equation 6.64, sinde = b # 0.

Case2.8b=0;c=0;d=0

From Equations (6.47, 6.48 and 6.49 it follows that 0, f = 0, andg = 0 holds. It follows
thatT'(z,y, z) = h holds. All positions within the cell have constant value, and no critical point
exists within the cell.

Lemma 9 LetC with vertex values\, B, C, D,A;, B;, Cy, andD;, numbered as shown in 6.6.
Let the face bounded by the verticésB, C', and D have a saddle with value zero, and let the
cell be rotated in such a way that and C' are larger than zero. If the criterion from Lemma 5,
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ie.,

if .
connected; = {CM e 70 , With (6.65)

cr2 ifci1 =0
i1 =C(A — A) + A(C, — C) — D(B, — B) — B(D; — D) , and
Cio — (Al — A)(Cl — C) — (Bl — B)(Dl - D) s

yields a value of zero indicating that neither positive or negative regions are connected in that
cell, then the within the cell the gradient of the trilinear interpolant vanishes along a curve that
contains this face saddle.

Proof:

Without loss of generality, assume that the cell is oriented in such a wayltkat,, B = vs,

C =wv;,, D = vy, Ay = vy, By = 13, C1 = vy, and Dy = uvs, i.e., the “left” boundary face
contains the saddle that is under consideration. The precondition states that the saddle value
on the faceSV'(0), see Equation 6.4, equals zero. Consequently, the numerator isi.zero,

AC — BD = 0. Using Equation 6.7 it is possible to express this requirement in terms of the
coefficients of Equation 6.6 resulting in the equation

ch—fg=0 = «ch=fg. (6.66)

Since the saddle exists on the face, the denominate3 + C' — D must differ from zero. From
this requirement follows # 0. If connected, is zero it follows that both:; ; and¢, , are zero.
Expressing this in terms of the coefficients of Equation 6.4 yields

ah —bg — df + ce =0, and (6.67)
ae—bd=0 = ae=0bd, (6.68)

respectively.

Case Aia # 0
From Equation 6.68 follows that, = ae — bd equals zero. Considering the produgt.. one
obtains

2 2
AyQ, :(af - bc) (ag - Cd) =a° fg —acbg — acdf 4+ ¢~ _bd |
=ch (Equation 6.66) =ae (Equation 6.68)

=ac (ah — bg — df + ce) . (6.69)

(& J

TV
=0 (Equation 6.67)

It follows thata, = 0, ora, = 0.

Case A.lia, =0;a, #0

Sincea, = 0, the gradient behavior in the the cell’s interior follows Case 1.5. The curve of
bilinear saddles lies in the= —g plane that intersects the plane containing the saddle. The curve
on that face is described by Equation 6.38. To show that the curve intersects the plane containing
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the saddle it is necessary to show that it intersects the edge resulting from the intersection of the
plane containing the bilinear saddles and the boundary curve. Within theLg plane this is
the edge connectin), 1, —2) and (0, 1, —2). The values at the locations are

C(0,0) =g , and
C(0,1) =c+g.

From the precondition followsthat = h >0, B=f+h < 0,C=c+ f+g+h > 0,and

D =g+ h < 0. Thus, it follows thaty < —h < 0 andc+ g > —(f + h) > 0. It follows,

that the curve containing all bilinear saddles indeed intersects the boundary face. Since a bilinear
interpolant contains at most one saddle, this saddle coincides with the considered saddle and this
saddle is connected to another face via an extended internal saddle.

(6.70)

Case A.2:a, # 0;a, =0

Sincea, = 0, the gradient behavior in the cell’s interior follows Case 1.6. The proof that the
curve containing the bilinear saddles intersects the boundary face containing the considered sad-
dle is analogous to Case A.1 and follows from symmetry.

Case A.3ia, = 0;a, =0

Sincea, = 0, the gradient behavior in the cell’s interior follows Case 1.8. All boundary faces

are intersected by the three axis-aligned lines. Since the bilinear interpolant on the considered
face has at most one saddle, this saddle is connected to the other faces via the three axis-aligned
lines.

Case B:a =0
Sincea equals zero it follows from Equation 6.68 that equals zero. It follows that, or d
equals zero.

CaseB.1:b=0;d #0

Sincec # 0, the gradient behavior in the cell’'s interior follows Case 2.1. cdAsnd b equal

zero, it follows from Equation 6.67 that — df equals zero. From this observation follows that
—< = Ji All bilinear saddles lie on the ling(z, y) = dov+cy+g = Owithinthez = —£ = —f

plane. To determine, whether it intersects the boundary face containing the saddle under consid-
eration one can check the values at the ends of the line segment resulting from intersection the
plane containing the line with the boundary face of the é¢ell, the edge connectin@), 1, —g)

and (0,1, —%). It follows that L(0,0) = ¢ + g > 0 (see Case A.1) and(0,1) = g < 0 (see

Case A.1). The line intersects the plane. Since the boundary face contains a unique saddle, it is
connected to another face via an extended internal saddle.

CaseB.2b#0;d =0

Sincec # 0, the gradient behavior in the cell’s interior follows Case 2.4. The proof that the
line of bilinear saddles exists an intersects the boundary face containing the considered saddle is
analogous to Case B.1 and follows from symmetry.
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Face number Enclosing vertices
fo Vo321
fi V1V2V6V5
fa V4V5V6V7
f3 VU4 U7V3
f4 VoV1V5V4
s VaU3V7Vg

Table 6.1: Numbering scheme used for cell faces.

(b)

Figure 6.29: Edges added between nodes representing vertices in connectivity graph. (a) The
opposite face is saddle-connected. (b) A neighboring face is saddle-connected. A bold line
indicates that an edge in the neighborhood graph is added between the nodes corresponding to
the vertices.

CaseB.3:b=0;d=0

Sincec # 0, the gradient behavior in the cell’s interior follows Case 2.6.¢A8, andd equal

zero, it follows from Equation 6.67 that equals zero. Sinceis not equal to zero; must be

zero and a solution for a line containing saddles of bilinear slices exist. This line connects the
boundary face containing the considered saddle with the opposite cell face.

6.9.3 Classifying Extended Saddles

Extended interior saddles are classified by tracing them through cells and constructing a graph
that represents connected positive and negative regions around them. Using an indexing scheme
that effectively numbers all faces of a rectilinear grid a bit vector is maintained that contains

a bit for each face of the grid. When set, this bit indicates that a potential saddle on the face
has already been handled. The index for a face can be obtained by specifying a cell index and
a face number within a cell, see Table 6.1. Faces that are shared between cells yield the same
index in both cells. In addition, an indexing scheme that numbers all vertices of a rectilinear grid

is employed. The vertices are used as nodes in the graphs corresponding positive and negative
regions in the neighborhood around a saddle. Each extended interior saddle connects two or
more faces of a cell. Each of these faces has a saddle, partitioning that face into four regions,
each containing a face vertex. Consequently, those face regions can be represented by face
vertices. In order to differentiate between connectivity graph nodes that correspond to vertices
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and nodes that correspond to edges, positive integers are used for numbering edges, and negative
integers are used for numbering vertices. If it is possible to classify a face saddle, locally, a flag

is set, indicating that the corresponding face was handled. Otherwise, nodes corresponding to
the positive and negative vertices of the face are added to the positive and negative neighborhood
graph respectively, and the flag indicating that the face has been handled is set. Subsequently,
the considered face is treated as two “half faces,, each side of it that lies in one of the two
adjacent cells is considered independently, and the extended saddle is traced recursively in the
corresponding direction.

First, it is checked if the face has already been handled during tracing an extended saddle by
using the corresponding flag in the bit field. If the face has been handled, the recursion termi-
nates. Otherwise, the corresponding flag is set. Using the criterion from Lemma 5 it is deter-
mined whether the positive or negative regions of the face saddle are connected in the considered
cell. If positive or negative regions are connected, an edge is added between the graph nodes cor-
responding to the positive or negative vertices of the face containing the saddle, and the recursion
terminates. Otherwise, according to Lemma 9, at least one saddle-connected face exists. This is
either an unique cell face differing from the currently considered face (Cases 1.5- 1.7; Cases 2.2—
2.7), or, all faces of the cell are saddle-connected (Case 1.8). If a unique saddle-connected face
exists, its vertices are added to the neighborhood graph. Additionally, edges are added to both
neighborhood graphs connecting the nodes corresponding to the positive and negative vertices of
the face, reflecting the internal connections between the corresponding regions, see Figure 6.29.
Two configurations are possible: A face can be connected to its opposite face, see Figure 6.29(a),
or a neighboring face, see Figure 6.29(b). The corresponding face is handled recursively like the
original face. If all faces are saddle-connected, the cell is partitioned into eight disjoint regions
(four positive and four negative regions). Nodes for all vertices (but no connection between them)
are added to the neighborhood graph and the saddle is recursively traced through all faces. When
tracing the saddle terminates, the number of connected components in the resulting connectivity
graphs are used, to determine whether the connected region is a saddle or a regular point.

6.9.4 Determining Saddle-connected Faces

The face containing the saddle is either connected to the opposite face, one neighboring face, or
all other boundary faces (Case 1.8). Saddle connected faces are determined as follows: First, a
distinction is made between caseand2 by examining the value of. If « differs from zero,

a sub-case is determined based on the values,of,, anda.. By Lemma 9, one of the cases
1.5-1.8 arises.

For Case 1.5, the curve containing the saddles of bilinear slices lies in the-2 plane,
see Figure 6.30. On this plane, the locations of saddles on bilinear slices through the cell are
described by the bilinear contour given by Equation 6.38. Values at the vettices, vs of
the rectangle, obtained by intersecting the —g slice with the cell’'s boundary, are computed.
These vertices have the positiof 0, —2), (1,0,—2), (1,1,-2), (0,1,-2), respectively.
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Figure 6.30: To compute interior connections for Case 1.5, a bilinear slice perpendicular to the
z-axis is considered.

Values at these vertices are obtained as

UO:O(07O) =9,
=(C(1,0) =d
U1 (7 ) +9, (671)
ve=C(1,1)=a+d+c+g,and
UgZO(O,].) =c+g

A case table approach is used to determine which edges of the bilinear slice are connected. A
case number is computed as

caseNo= ~ [0 <0 (6.72)
; 20 jfu, >0 '

Using this case number, Table 6.2 is referenced to determine which edges of the bilinear slice
are connected by the curve. For Caseand 10 it is necessary to consider the value of the
saddle of the bilinear interpolant, obtained by using Equation 2.40 to disambiguate between
two possible connection configurations. The edges coincide with cell boundary facesjge
eo, - - ., €3, CcOiNcide with faces, fi1, f5, and f; respectively. Thus, it is possible to determine
which faces are saddle-connected to the current face. Since neither positive nor negative regions
are connected within the cell, a saddle-connected face must exit according to Lemma 9. As
observed in Case 1.5, the degenerate case where the contour on the slices is a pair of axis aligned
asymptotes does not occur. Consequently, the face containing the considered saddle has a unique
saddle-connected face. Cases 1.6 and 1.7 are handled analogously to Case 1.5. For Case 1.8,
all six faces are saddle-connected. This is the only case where more than two faces are saddle-
connected.

Whena equals zero, a sub-case is determined according to the valiges, @ndd. One of
the Cases 2.2—-2.7 must occur. For Cases 2.2-2.4, all saddle of bilinear slices lie on a line segment
within a plane. As for Case 1.5, the values at the four vertiges . , v3 where the bilinear slice
intersects the cell boundaries are computed. As linear interpolation can be considered as a special
case of bilinear interpolation, Table 6.2 can be used to determine which edges, and, in turn, which
faces are saddle-connected. For Cases 2.5-2.7 a face is saddle connected to its opposite cell face.
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\4 \%

3 € 2
€3 €
€
A4 0 \Z

Figure 6.31: Vertex and edge numbering scheme employed in Table 6.2.

Case Number Connected Edges
0 none
1 (€0, €3)
2 (o, €1)
3 (€1, €3)
4 (e1, €2)
5 (60, 63) and @1, 62) if sV < 0; (60, 61) and @2, 63) issV >0
6 (€0, €2)
7 (€2, €3)
8 (€2, €3)
9 (eo, €2)
10 (60, 63) and (52, 63) if sV < 0; (60, 61) and @1, 62) issV >0
11 (61, 62)
12 (61, 63)
13 (eo, €1)
14 (eo, €3)
15 none

Table 6.2: Edge connection configurations for a bilinear slice. See Figure 6.31 for vertex and
edge numbering convention.

6.10 Limitations

In addition to the problems encountered when classifying extended saddledassification of
a larger region than the actual saddle as saddle region, merging of saddles and missing saddles
whose positiveand negative regions are connected by a regular region, see Section 6.7, the
current implementation has a few limitations.

Most notably is the fact, that a constant classification region with non-trivial topology can
imply a topology change, even though it is regular according to the DefinitionelLQts neigh-
borhood contains exactly one positive and one negative regioneCax[15] referred to these
constant valued regular regions with non-trivial topology as “critical-regular isosets.” Figure 6.32
shows an example. If the torus corresponds to a “solid” region of constant value, it is a regular
region according to Definition 10 as it is surrounded by one positive and one negative region.

FB Informatik, Universiat Kaiserslautern



6.11 Data Exploration Using Critical Regions 153

Figure 6.32: At a constant-valued regular region with non-trivial topolgy, topology of an isosur-
face can change.

Nonetheless, a genus-change occurs at the corresponding isovalue. My method does not detect
regions with that property.

My method for tracing face saddles is susceptible to numerical problems due to floating-point
inaccuracies. Furthermore, critical regions consisting of vertices and extended face saddles inde-
pendently are classified. A special case arises, when Configuta&idre is encountered during
the classification of a connected region of vertices. In this instance, a region of vertices is saddle
connected to a boundary face that has a saddle with the same value as the classification region.
This configuration can be handled by adding the vertices of the boundary face containing the
saddle to the neighborhood graphs. A graph-edge must be added between each node correspond-
ing to a vertex of the ambiguous face and the the node corresponding to the cell-edge connecting
it to the classification region. Subsequently, the saddle can be traced as described above. While
tracing this saddle, other cells that have a vertex configuration equivalent to Configudration
can be encountered. For each of these cells it would be necessary to identify the corresponding
region of connected vertices and include it in the classification process. However, detecting Con-
figurationC8.3.2 is extremely susceptible to numerical problems. | did not encounter a data set
where it occurs, yet. Due to the lack of test data, | chose to ignore this configuration. For data
sets where this configuration occurs, this limitation may lead to the incorrect classification of a
regular region as saddle.

6.11 Data Exploration Using Critical Regions

Critical regions can be used to explore volumetric data in the same way as critical point. The
“isovalue navigator” window is extended to list region criticalities (region minimum, region max-
imum, region saddle, extended face saddle). When a user selects a critical point, its correspond-
ing position in space is marked by a sphere whose color depends on the type (blue, red, and green
representing minimum, maximum, or saddle, respectively). For a region, its position is marked
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Figure 6.33: Region maximum in “Nucleon” data set. (Data set courtesy of SFB 382 of the
German Research Council (DFG)). (a) Isosurface for an isovalue slightly below the maximum.
(b) Isosurface for an isovalue slightly above the maximum.

by a point set of all vertices belonging to the critical region with a color corresponding to type.
When a user wants to center the view on a critical region, its centroid is used as camera focus.
Transfer functions can be constructed automatically using the unmodified scheme that is used for
critical points, since the transfer function design scheme only uses values of critical points.

6.12 Results of Critical Region Analysis

Figure 6.33 shows a region maximum of val¥e in the “Nucleon” data set (Data set courtesy of
SFB 382 of the German Research Council (DFG), availabldtpt//www.volvis.org )

which was missed by the previous approach [85]. In the neighborhood of this maximum a torus-
shaped isosurface component disappears.

Figures 6.34 and 6.35 shows results obtained by applying topological analysis to the “Hydro-
gen” data set (Data set courtesy of SFB 382 of the German Research Council (DFG), available
at http://www.volvis.org ). Figure 6.34 shows volume-rendered images of the data set
using transfer functions that were automatically generated from a list of critical isovalues. Fig-
ures 6.35 (a) — (j) show a topological analysis of the same data set using isosurfaces.
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(b)

Figure 6.34: Volume rendered images of the “Hydrogen” data set with automatically generated
transfer functions emphasizing topological changes (a) and zones of similar topological behavior

(b).
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(9) (h)

(i) 0)

Figure 6.35: Topological analysis of the “Hydrogen” data set: (a) — (j) topological structure;
(a) around a region minim having a value of zero, two components appear simultaneously; (b),
(c) at a saddle region having a value ®@fa hole in one surface component closes; (d), (e)
the “inner” surface is separated into three disjoint components along two saddle regions having
a value of12; (f) a close-up of one of the two saddle regions having a valu&2pf(g), (h)

The “ring” component disappears around a region maximum having a val& 6f,(j) Two
components disappear at two region maxima having a vala®;of he remaining component
disappears around a localized maximum having a val@é@®f(Data set courtesy of SFB 382 of

the German Research Council (DFG))
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Chapter 7

Conclusions and Future Work

7.1 Visualization of AMR Data

7.1.1 Crack-free Isosurfaces for AMR Data

| have presented a method for the extraction of crack-free isosurfaces from AMR data. By using

a dual-grid approach and filling gaps with stitch cells | avoid re-sampling of data and dangling
nodes. By extending the standard MC method to the cell types resulting from grid stitching, |
have developed an isosurfacing scheme that produces consistent and seamless isosurfaces. The-
oretically, any continuous (scattered data) interpolation scheme could also lead to a crack free
isosurface. However, the use of dual grids and stitch cells ensures that the resolution of extracted
isosurfaces automatically varies with the resolution of the data given in a region.

Several extensions to the index-based stitching scheme are possible. The original AMR
scheme by Berger and Colella [6] requires a layer of width of at least one grid cell between
a refining grid and the boundary of a refined level. Even though Bryan [8] eliminates this re-
guirement in his simulation, the stitching approach depends on the existence of a boundary layer
of unrefined cells. This layer is necessary to ensure that only transitions between a coarse level
and the next finer level occur in an AMR hierarchy. Allowing transitions between arbitrary lev-
els would require the consideration of too many cases during the stitching process. (The number
of cases would be limited only by the number of levels in an AMR hierarchy, since within this
hierarchy transitions between arbitrary levels are possible.) Unfortunately, this requirement does
not allow handling the full range of AMR data sets in use today, those produced by the
methods of Bryan [8]. It may be possible to modify the case table approach to detect arbitrary
transitions and use a more generic stitch cell generation scheme for these transitions. It should
also be possible to use this approach for AMR hierarchies containing rotatedegriddata sets
produced by the AMR method of Berger and Oliger [7]. When grids in a child level are rotated
only up to a certain maximum rotation, stitch cells are deformed but remain a valid tessellation of
the domain. By modifying the connection scheme to locate appropriate coarse-grid cells during
stitching, it may be possible to extend the stitching scheme to Berger-Oliger AMR data. It would
also be interesting to use a generic triangulation scheme, like Delaunay-tetrahedrization to fill
gaps between grids and compare results to my procedural stitching scheme. However, this would

FB Informatik, Universiat Kaiserslautern



158 Conclusions and Future Work

require the replacement of adjacent grid cells in the regular, rectilinear grids with subdivisions
into tetrahedra and pyramids to ensure that no quadrilateral boundary face of a cell is subdivided
by tetrahedra of the stitch-mesh. Alternatively, it may be possible to define a consistent interpo-
lation scheme based on the work of Forsey and Bartels [23] and derive an isosurface extraction
method based on that scheme.

For transforming of level coordinates to grid coordinates, currently each grid in a level is
examined whether it contains a given grid point. This is sufficiently efficient for moderately
sized data sets; but for larger data sets, a space subdivision-based search scheme should be used.
It should be possible to use a modification of the generalizddrees from my homogenization
scheme for hardware-accelerate rendering for this purpose.

7.1.2 Volume Rendering of AMR Data
Hardware-accelerated Volume Rendering

By utilizing the inherent hierarchical structure of AMR data, | can improve efficiency of AMR
data visualization substantially. By homogenizing an AMR data set, it becomes possible to
use standard techniques for hardware-accelerated volume rendering. Most work that followed
the publication of my method [80] uses some kind of homogenization for volume rendering
of AMR data sets. | have also presented a hardware-accelerated approach that simulates the
cell projection method. Given the recent rapid developments in hardware-accelerated volume
rendering, it would be interesting to replace it with a more current hardware-accelerated scheme.
With modern graphics hardware it may even be possible to develop a new approach that simulates
cell-projection at higher quality avoiding visible artifacts. Furthermore, the AMR hierarchy can
be used to guide a viewer for navigation through a data set and/or render only regions of interest.
My approach of adapting the traversal depth tends to oscillate. More work based, for example,
on Meyer [63] is necessary to reduce this effect. Combining viewpoint-dependent and framerate-
dependent criteria could assign priorities to different nodes and determine regions where quality
is to be sacrificed for rendering speed, yielding a more flexible, adaptive traversal strategy for
AMR partition trees.

7.1.3 Progressive Cell-projection Method for AMR Data

My high-quality cell-projection rendering method allows me to progressively render the refining
grids, producing images of increasing quality. By using cell-projection, my approach automat-
ically adapts the sampling rate to the local resolution. Improvements are possible concerning
the quality of produced images and efficiency of the algorithm. The generation of ray segments
during cell projection can be improved. It may be possible to describe the contribution of a
ray-segment within a cell analytically, or develop an analytical approximation that produces bet-
ter quality than numerical integration. On the other hand, more advanced lighting models and
numerical integration schemes can be used. Furthermore, alternative interpolation functions for
pyramid cells should be explored.
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| have reimplemented the cell-projection scheme more efficiently for my work on parallel

volume rendering of AMR data. Even though this reimplementation currently only supports
constant interpolation it leads to several improvements that can be used for a high-quality ren-
dering scheme. First, the ability to progressively refine images imposes a considerable overhead
in image generation. Given the existence of powerful hardware-accelerated volume rendering
schemes for preview rendering, a future implementation should discard that ability. The main
performance impact results from sorting ray-segments instead of cells and checking whether
ray-segments are from different levels. An efficient cell-projection scheme for AMR data should
pre-sort cells and composite ray-segment contributions immediately.

7.1.4 Parallel Rendering of AMR Data

| have implemented and compared several distribution strategies for direct volume rendering of
AMR hierarchies. Homogeneous subdivision supports efficient rendering of AMR data for dif-
ferent classes of machines. It allows me to avoid data duplication and employ a wide variety
of rendering schemes. Homogenizing an AMR hierarchy has also been used for a variety of
hardware-accelerated methods for volume-rendering AMR data. While weighted homogeneous
subdivision of the domain results in near-uniform processor utilization, | plan to improve the ap-
proximation of relative cell weights. In particular it may be beneficial to use view-dependent
weights. | also intend to consider inhomogeneous PC clusters consisting of machines with
varying processor speed and develop subdivision/distribution methods that take differences in
machine performance into account. Furthermore, | plan to develop a communication-less sub-
division strategy that avoids the need for each processor to compute assignments for all other
processors, resulting in less overhead and better scalability. During compositing, a major por-
tion of time is spent on sending and receiving partial images. | plan to reduce this overhead by
encoding partial images more efficiently using, for example, run-length encoding. Furthermore,
| intend to implement binary-swap compositing [59] and compare its results to mine.

7.2 Topology-based Scalar Data Analysis and Visualization

| have presented a method for the detection and utilization of critical isovalues for the exploration
of trivariate scalar fields defined by piecewise trilinear functions. My isosurface navigator allows
a user to examine the topological structure of a data set and is valuable tool in volume data
exploration. | have also applied my critical point analysis toward the automatic generation of
transfer functions. Resulting volume rendered images reveal the underlying topological structure
of a volume data set.

Some data sets contain a large number of critical points. Some of these critical points corre-
spond to locations/regions of actual interest, but some are the result of noise or improper sam-
pling. | need to develop methods to eliminate such “false” critical points. On the other hand it
could be useful to consider more noisy data sets and generate a histogram with the number of
topology changes for a lot of small isovalues ranges. It should be possible to automatically de-
tect interesting isovalues by looking for values where there are many topological changes. This
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could be used to detect turbulence in data sets resulting from unsteady flow simulations in which
turbulence is usually associated to “topological noise.” Histograms could also be used to gen-
erate meaningful transfer functions for data sets with a large number of closely spaced critical
isovalues. Developing additional automatic transfer function schemes could also help in gaining
insight in data sets containing a large number of critical regions/points and isovalues.

| have also extended my algorithm to detect critical regions in volume data sets. My approach
detects exact regions for maxima and minima. Region saddles are detected in most cases. How-
ever, my approach can mark a large region as a saddle, a region larger than the actual saddle
region. It may also “merge” several isolated saddles into a saddle compound, when saddles are
connected via a set of vertices of the same value as the saddle. | plan to extend my approach to
detect exact regions of saddles. This approach would also eliminate the problem that saddles can
be missed when a regular region connected both its positive and negative regions. To achieve this
goal, it may be best to merge the flood-fill pass with the graph-construction pass, constructing
the graph while vertices of constant value are traced, which would simplify merging the han-
dling of extended face saddles with classifying regions consisting of grid vertices of constant
value. It should also be possible to adapt my approach to detect critical regions for piecewise
linear simplicial meshes. Instead of treating critical points individually it may prove beneficial
to merge my approach with the work of Pascucci and Cole-McLaughlin [71]. Contour trees es-
tablish a relationship between critical points which would be helpful in simplifying the topology
of a volume data set and removing topological noise. If a classification region has non-trivial
topology, surface components with a genus larger than zero can appear. A possible extension
to my method could determine the topology of a classification region and determine the genus
of the newly created component. This extension may also allow for the detection of “regular
regions” where isosurface topology changes, see Section 6.10.

FB Informatik, Universiat Kaiserslautern



Bibliography

[1] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. The contour spectrum. In:
Roni Yagel and Hans Hagen, editolSEE Visualization '97 pages 167-173, IEEE, ACM
Press, New York, New York, October 19-24 1997.

[2] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. Visualizing scalar topol-
ogy for structural enhancement. In: David S. Ebert, Holly Rushmeier, and Hans Hagen,
editors, IEEE Visualization '98 pages 51-58, IEEE, ACM Press, New York, New York,
October 18-23 1998.

[3] Chandrajit L. Bajaj and Daniel R. Schikore. Topology preserving data simplification with
error boundsComputers & Graphics22(1):3-12, 1998.

[4] Thomas F. Banchoff. Critical points and curvature for embedded polyhedral surfaces.
American Mathematical Monthly7(5):475-485, May 1970.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM8(9):509-517, September 1975.

[6] Marsha Berger and Phillip Colella. Local adaptive mesh refinement for shock hydrody-
namics. Journal of Computational Physic82:64-84, May 1989. Lawrence Livermore
National Laboratory, Technical Report No. UCRL-97196.

[7] Marsha Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differ-
ential equationsJournal of Computational Physic§3:484-512, March 1984.

[8] Greg L. Bryan. Fluids in the universe: Adaptive mesh refinement in cosmalogyputing
in Science and Engineerin@(2):46-53, March/April 1999.

[9] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware. Rroceedings of the 1994 Symposium
on Volume Visualizatigrpages 91-98, ACM Press, New York, New York, 1994.

[10] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
Computational Geometry — Theory and ApplicatioP¥(2):75-94, February 2003.

FB Informatik, Universiat Kaiserslautern



162 BIBLIOGRAPHY

[11] Evgeni V. Chernyaev. Marching cubes 33: Construction of topologically correct isosur-
faces. Technical Report CN/95-17, CERN, Geneva, Switzerland, 1995. Available as
http://wwwinfo.cern.ch/asdoc/psdir/mc.ps.gz

[12] L. Paul Chew. Constrained delaunay triangulatioiigiorithmica 4(1):97-108, 1989.

[13] H. N. Christiansen and T.W. Sederberg. Conversoin of complex contour lines definitions
into polygonal element mosaic€Computer Graphics (Proceedings of ACM SIGGRAPH
78), 14(3):187-192, 1978.

[14] Paulo Cignoni, Fabio Ganovelli, Claudio Montani, and Roberto Scopigno. Reconstruc-
tion of topologically correct and adaptive trilinear isosurfac€omputers & Graphics
24(3):399-418, June 2000.

[15] Jim Cox, Daniel B. Karron, and Nazma Ferdous. Digital morse theory for scalaer volume
data. Technical report, Computer Aided Surgery, Inc., 2002. Available onlihtmat
Ilwww.casi.net/DMT.pdf

[16] Thomas W. Crockett. An introduction to parallel renderingParallel Computing
23(7):819-843, July 1997.

[17] Martin J. Durst. Additional reference to “marching cubes” (letters to the editdomputer
Graphics 22(2):72—73, April 1988.

[18] Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valeria Pascucci. Morse-smale
complexes for piecewise linear 3-manifolds. IRroceedings of the 19th Annual ACM
Symposum on Computational Geomg®§03. To appear.

[19] Herbert Edelsbrunner, John Harer, and Afra Zomorodian. Hierarchical morse complexes
for piecewise linear 2-manifolds. Iferoceedings of the 17th Annual ACM Symposium on
Computational Geometyypages 70-79, 2001.

[20] Thomas Ertl, Rdiger Westerman, and Roberto Grosso. Efficiently using graphics hardware
in volume rendering applications?roceedings of ACM SIGGRAPH ,98ages 169-177,
July 1998.

[21] James D. Foley, Andries Van Dam, Steven K. Feiner, and John F. Hugbesiputer
Graphics: Principle and Practicesecond edition in ¢ edition. Addison-Wesley, July 1995.

[22] Thomas A. Foley and Hans Hagen. Advances in scattered data interpol&tioveys on
Mathematics for Industry4(2):71-84, 1994.

[23] David R. Forsey and Richard H. Bartels. Hierarchical b-spline refinem@amputer
Graphics (Proceedings of ACM SIGGRAPH 883(4):205-212, August 1988.

FB Informatik, Universiat Kaiserslautern



BIBLIOGRAPHY 163

[24] Issei Fujishiro, Taeko Azuma, and Yuriko Takeshima. Automating transfer function design
for comprehensible volume rendering based on 3D field topology analysis. In: David S.
Ebert, Markus Gross, and Bernd Hamann, edit®f&E Visualization '99pages 467470,
IEEE, IEEE Computer Society Press, Los Alamitos, California, October 25-29, 1999.

[25] Issei Fujishiro and Yuriko Takeshima. Solid fitting: Field interval analysis for effective
volume exploration. In: Hans Hagen, Gregory M. Nielson, and Frits Post, edioiex-
tific Visualization Dagstuhl '97pages 65-78, IEEE, IEEE Computer Society Press, Los
Alamitos, California, June 1997.

[26] Issei Fujishiro, Yuriko Takeshima, Taeko Azuma, and Shigeo Takahashi. Volume data min-
ing using3D field topology analysidEEE Computer Graphics and ApplicatiqriX(5):46—
51, September/October 2000.

[27] Allen Van Gelder and Jane Wilhelms. Topological considerations in isosurface generation.
ACM Transactions on Graphic43(4):337-375, October 1994.

[28] Thomas Gerstner and Renato Pajarola. Topology preserving and controlled topology
simplifying multiresolution isosurface extraction. In: Thomas Ertl, Bernd Hamann, and
Amitabh Varshney, editordEEE Visualization 2000pages 259-266, 565, IEEE, IEEE
Computer Society Press, Los Alamitos, California, 2000.

[29] Dan Gordon, Michael A Peterson, and R. Anthony Reynolds. Fast polygon scan conver-
sion with medical applicationdEEE Computer Graphics and Applicatigris4(6):20-27,
November 1994.

[30] Markus H. Gross, Oliver G. Staadt, and Roger Gatti. Efficient triangular surface approxi-
mations using wavelets and quadtree data structuElSE Transactions on Visualization
and Computer Graphi¢c2(2):130-143, June 1996.

[31] Bernd HamannVisualization and Modeling Contours of Trivariate Functiorizh.D. dis-
sertation, Department of Computer Science, Arizona State University, Tempe, Arizona,
USA, May 1991. Available ahttp://graphics.cs.ucdavis.edu/"hamann/
hamann.html

[32] Bernd Hamann. Modeling contours of trivariate dd¥sathematical Modeling and Numer-
ical Analysis 26(1):51-75, 1992.

[33] Bernd Hamann, Issac J. Trotts, and Gerald E. Farin. On approximating contours of the pice-
wise trilinear interpolant using triangular rational-quadratezi@r patchedEEE Transac-
tions on Visualization and Computer Graphi&$3):215-227, July-September 1997.

[34] John C. Hart. Morse theory for computer graphics. Technical Report EECS97-002, School
of Electrical Engineering and Computer Science, Washington State University, May 1997.
Appears in SIGGRAPH '97 Course Notes #14 “New Frontiers in Modeling and Texturing.”.

FB Informatik, Universiat Kaiserslautern



164 BIBLIOGRAPHY

[35] Klaus &nich. Topologie 4th edition. Springer Verlag, Berlin/Heidelberg, Germany, 1994.

[36] Ralf Kahler, Donna Cox, Robert Patterson, Stuart Levy, Hans-Christian Hege, and Tom
Abel. Rendering the first star in the universe — a case study. In: Robert J. Moorhead, Markus
Gross, and Kenneth I. Joy, editotEEE Visualization 2002pages 537-540, IEEE, IEEE
Computer Society Press, Los Alamitos, California, 2002.

[37] Ralf Kahler and Hans-Christian Hege. Interactive volume rendering of adaptive mesh re-
finement data. Technical Report ZR-01-30, Zuse Institur Berlin (ZIB), Berlin, Germany,
2001. Appeared ifThe Visual Computer [38]. Available adtp://ftp.zib.de/pub/
zib-publications/reports/ZR-01-30.pdf .

[38] Ralf Kahler and Hans-Christian Hege. Texture-based volume rendering of adaptive mesh
refinement dataThe Visual Computei8(8):481-492, 2002.

[39] Ralf Kahler, Mark Simon, and Hans-Christian Hege. Fast volume rendering of sparse high-
resolution datasets using adaptive mesh refinement hierarchies. Technical Report ZR-01-
25, Zuse Institur Berlin (ZIB), Berlin, Germany, 2001. Appeared in IEEE Transactions
on Visualization and Computer Graphics [40]. Availabldtpd/ftp.zib.de/pub/
zib-publications/reports/ZR-01-25.pdf .

[40] Ralf Kahler, Mark Simon, and Hans-Christian Hege. Interactive volume rendering of large
sparse data sets using adaptive mesh refinement hierariffigs. Transactions on Visual-
ization and Computer Graphic8(3):341-351, July—September 2003.

[41] Daniel Karron. The “spiderweb” algorithm for surface construction in noisy volume data.
In: Richard A. Robb, editorProceedings of the SPIE (Visualization in Biomedical Com-
puting 1992) volume 1808, pages 462-476, SPIE, SPIE — The International Society for
Optical Engineering, Bellingham, WA, September 1992.

[42] Daniel B. Karron. New findings from the spiderweb algorithm: Toward a digital morse
theory. In: Richard A. Robb, editoProceedings of the SPIE (Visualization in Biomedical
Computing 1994)volume 2359, pages 643—-657, SPIE, SPIE — The International Society
for Optical Engineering, Bellingham, WA, September 1994.

[43] Arie Kaufman. Efficient algorithms for scan-converting 3d polygddsmputers & Graph-
ics, 12(2):213-219, 1988.

[44] Donald E. Knuth.The Art of Computer Programmingolume 1/Fundamental Algorithms,
3rd edition. Addison Wesley, 1997.

[45] Shirley Ellen Konkle, Patrick Moran, Bernd Hamann, and Kenneth I. Joy. Fast methods
for computing isosurface topology with betti numbers. In: Frits Post, Gregory M. Nielson,
and Georges-Pierre Bonneau, edit@rata Visualization: The State of the Art-Proceedings
Dagstuhl Seminar on Scientific Visualizatiggages 363—-375. Kluwer Academic Publish-
ers, Norwell, Massachusetts, 2003.

FB Informatik, Universiat Kaiserslautern



BIBLIOGRAPHY 165

[46] Martin Kraus and Thomas Ertl. Topology-guided downsampling. In: Klausiév and
Arie E. Kaufman, editorsRroceedings of International Workshop on Volume Graphics '01
pages 129-147, IEEE, IEEE Computer Society Press, Los Alamitos, California, 2000.

[47] Oliver Kreylos, Gunther H. Weber, E. Wes Bethel, John M. Shalf, Bernd Hamann, and
Kenneth I. Joy. Remote interactive direct volume rendering of amr data. Technical Report
LBNL 49954, Lawrence Berkeley National Laboratory, 2002.

[48] Philippe Lacroute. Fast volume rendering using a shear-warp factorization of the viewing
transformation. Ph.D. dissertation CSL-TR-95-678, Stanford University, Computer Science
Department, Computer Systems Laboratory, September 1995.

[49] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. InProceedings of ACM SIGGRAPH 9dages 451-458,
ACM, New York, New York, July 1994.

[50] David Laur and Pat Hanrahan. Hierachical splatting: A progressive refinement algo-
rithm for volume rendering.Computer Grahpics (Proceedings of ACM SIGGRAPH, 91)
25(4):285-288, July 1991.

[51] Marc Levoy. Display of surfaces from volume dat&EE Computer Graphics and Appli-
cations 8(3):29-37, May 1988. (See also corrigendum [52, 91]).

[52] Marc Levoy. Letter to the editor: Error in volume rendering paper was in exposition only.
IEEE Computer Graphics and Applicatiqr0(4):6—6, July/August 2000.

[53] Terry J. Ligocki, Brian Van Straalen, John M. Shalf, Gunther H. Weber, and Bernd Hamann.
A framework for visualizing hierarchical computations. In: Gerald Farin, Bernd Hamann,
and Hans Hagen, editotdjerarchical and Geometrical Methods in Scientific Visualization
pages 197-204. Springer Verlag, Heidelberg, Germany, January 2003.

[54] Adriano Lopes and Ken Brodlie. Improving the robustness and accuracy of the march-
ing cubes algorithm for isosurfacindEEE Transactions on Visualization and Computer
Graphics 9(1):16-29, January—March 2003.

[55] Adriano M. Lopes. Accuracy in Scientific VisualizationPh.D. dissertation, University
of Leeds, United Kingdom, March 1999. Available fatp://www.mat.uc.pt/
“adriano/Publications/thesis.ps.gz

[56] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolltrsur-
face construction algorithmComputer Graphics (Proceedings of ACM SIGGRAPH, 87)
21(4):163-169, July 1987.

[57] Kwan-Liu Ma. Parallel rendering of 3D AMR data on the SGI/Cray T3E.Rroceedings
of Frontiers '99 the Seventh Symposium on the Frontiers of Massively Parallel Compu-
tation, pages 138-145, IEEE, IEEE Computer Society Press, Los Alamitos, California,
February 1999.

FB Informatik, Universiat Kaiserslautern



166 BIBLIOGRAPHY

[58] Kwan-Liu Ma and Thomas W. Crockett. A scalable parallel cell-projection volume render-
ing algorithm for three-dimensional unstructured data. In: James Painter, Gordon Stoll, and
Kwan-Liu Ma, editors|EEE Parallel Rendering Symposiumpages 95-104, IEEE, IEEE
Computer Society Press, Los Alamitos, California, November 1997.

[59] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh. Parallel volume
rendering using binary-swap compositiolEEE Computer Graphics and Applicatigns
14(2):59-67, July 1994.

[60] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and Charles
Packer. Paramesh: A parallel adaptive mesh refinement community to@kinputer
Physics Communication$26(3):330-354, April 2000.

[61] Nelson L. Max. Sorting for polyhedron compositing. In: Hans Hagen, Heinriahdy] and
Gregory M. Nielson, editorgiocus on Scientific Visualizatippages 259-268. Springer-
Verlag, New York, New York, 1993.

[62] Nelson L. Max. Optical models for volume renderinEEE Transactions on Computer
Graphics 1(2):99-108, 1995.

[63] Jorg Meyer.Interactive Visualization of Medical and Biological Data Se&haker Verlag,
P.O. Box 1290, D-52013 Aachen, Germany, 2000. (Ph.D. disseration, AG Graphische
Datenverarbeitung und Computergeometrie, Department of Computer Science, University
of Kaiserlautern, Germany, 1999).

[64] John W. Milnor. Morse Theory Princeton University Press, Princeton, New Jersey, May
1963.

[65] Claudio Montani, Riccardo Scateni, and Roberto Scopigno. A modified look-up table for
implicit disambiguation of marching cubeghe Visual Computed 0(6):353-355, 1994.

[66] Balas K. Natarajan. On generating topologically consistent isosurfaces from uniform sam-
ples. The Visual Computed1(1):52—-62, 1994.

[67] Gregory M. Nielson. On marching cubelEEE Transactions on Visualization and Com-
puter Graphics9(3):341-351, July—September 2003.

[68] Gregory M. Nielson and Bernd Hamann. The asymptotic decider. Removing the ambiguity
in marching cubes. In: Gregory M. Nielson and Larry J. Rosenblum, editEE; Visual-
ization 91, pages 83-91, IEEE, IEEE Computer Society Press, Los Alamitos, California,
1991.

[69] Michael L. Norman, John M. Shalf, Stuart Levy, and Greg Daues. Diving deep: Data man-
agement and visualization strategies for adaptive mesh refinement simul&m@nguting
in Science and Engineering(4):36—47, July/August 1999.

FB Informatik, Universiat Kaiserslautern



BIBLIOGRAPHY 167

[70] Sanghun Park, Chandrajit Bajaj, and Vinay Siddavanahalli. Case study: Interactive ren-
dering of adaptive mesh refinement data. In: Robert J. Moorhead, Markus Gross, and
Kenneth I. Joy, editordEEE Visualization 2002pages 521-524, IEEE, IEEE Computer
Society Press, Los Alamitos, California, 2002.

[71] Valerio Pascucci and Kree Cole-McLaughlin. Efficient computation of the topology of level
sets. In: Robert J. Moorhead, Markus Gross, and Kenneth I. Joy, edE&f, Visualiza-
tion 2002 pages 187-194, IEEE, IEEE Computer Society Press, Los Alamitos, California,
2002.

[72] Thomas Porter and Tom Duff. Compositing digital imagésmputer Graphics (Proceed-
ings of ACM SIGGRAPH 8418(3):253—-259, July 1984.

[73] Paolo Sabella. A rendering algorithm for visualizi3ig scalar fields.Computer Graphics
(Proceedings of ACM SIGGRAPH 82p(4):51-58, 1988.

[74] William J. Schroeder, Kenneth M. Martin, and William E. LorenseFhe Visualization
Toolkit, second edition. Prentice-Hall, Upper Saddle River, New Jersey, 1998. With special
contributors Lisa Sobierajski Avila, Rick Avila, and C. Charles Law (Includes CD-ROM
with vtk-2.0. The most recent release is available on the World-Wide Weéltt@zt/
www.kitware.com/vtk.html ).

[75] Robert SedgewickAlgorithms in C++ 2nd edition. Addison Wesley, April 1992.

[76] Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Cornhill. Octree-based decimation
of marching cubes surface. In: Roni Yagel and Gregory M. Nielson, editeEE: Visu-
alization '96, pages 335-342, 499, IEEE, IEEE Computer Society Press, Los Alamitos,
California, October 1996.

[77] Allen Van Gelder and Kwansik Kim. Direct volume rendering with shading via three-
dimensional textures. In: Roger Crawfis and Charles Hansen, edii98,Volume Visual-
ization Symposiunppages 23-30, ACM Press, New York, New York, October 1996.

[78] Marc van Kreveld, Remvan Oostrum, Chandrajit Bajaj, Valerio Pascucci, and Daniel Os-
valdo. Contour trees and small seed sets for isosurface traversal. In: Jean-Daniel Boisson-
nat, editor,Proceedings of the Thirteenth ACM Symposium on Computational Gegmetry
pages 212-219, ACM Press, New York, New York, June 4—6 1997.

[79] Bram van Leer. Towards the ultimate conservative difference scheme. IV. A new approach
to numerical convectionJournal of Computational Physic23:276—299, March 1977.

[80] Gunther H. Weber, Hans Hagen, Bernd Hamann, Kenneth I. Joy, Terry J. Ligocki, Kwan-
Liu Ma, and John M. Shalf. Visualization of adaptive mesh refinement data. In: Robert F.
Erbacher, Philip C. Chen, Jonathan C. Roberts, Craig M. Wittenbrink, and Matti Groehn,
editors,Proceedings of the SPIE (Visual Data Exploration and Analysis VIII, San Jose, CA,
USA, Jan 22-23)volume 4302, pages 121-132, SPIE, SPIE — The International Society
for Optical Engineering, Bellingham, WA, January 2001.

FB Informatik, Universiat Kaiserslautern



168

BIBLIOGRAPHY

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Gunther H. Weber, Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Hans Hagen, Bernd
Hamann, and Kenneth I. Joy. Extraction of crack-free isosurfaces from adaptive mesh
refinement data. In: David S. Ebert, Jean M. Favre, and Ronny Peikert, e&itocged-

ings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization, Ascona,
Switzerland, May 28-31, 200pages 25-34, 335, Springer Verlag, Wien, Austria, May
2001.

Gunther H. Weber, Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Hans Hagen, Bernd
Hamann, and Kenneth I. Joy. Extraction of crack-free isosurfaces from adaptive mesh re-
finement data. In: Gerald Farin, Bernd Hamann, and Hans Hagen, etiterarchical and
Geometrical Methods in Scientific Visualizatipages 19-40. Springer Verlag, Heidelberg,
Germany, January 2003.

Gunther H. Weber, Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Hans Hagen, Bernd
Hamann, Kenneth I. Joy, and Kwan-Liu Ma. High-quality volume rendering of adaptive
mesh refinement data. In: Thomas Ertl, Bernd Girodnther Greiner, Heinrich Niemann,
and Hans-Peter Seidel, edito¥dsion, Modeling, and Visualization 200fiages 121-128,
522. Akademische Verlagsgesellschaft Aka GmbH, Berlin, Germany and 10S Press BV,
Amsterdam, Netherlands, November 2001.

Gunther H. Weber, MartitDhler, Oliver Kreylos, John M. Shalf, E. Wes Bethel, Bernd
Hamann, and Gerik Scheuermann. Parallel cell projection rendering of adaptive mesh re-
finement data. In: Anton Koning, Raghu Machiraju, and Claudio T. Silva, ediRs,
ceedings of the IEEE Symposium on Parallel and Large-Data Visualization and Graphics
2003 pages 51-60, IEEE, IEEE Computer Society Press, Los Alamitos, California, Octo-
ber 2003.

Gunther H. Weber, Gerik Scheuermann, Hans Hagen, and Bernd Hamann. Exploring scalar
fields using critical isovalues. In: Robert J. Moorhead, Markus Gross, and Kenneth I. Joy,
editors, IEEE Visualization 2002pages 171-178, IEEE, IEEE Computer Society Press,
Los Alamitos, California, 2002.

Gunther H. Weber, Gerik Scheuermann, and Bernd Hamann. Detecting critical regions
in scalar fields. In: Georges-Pierre Bonneau, Stefanie Hahmann, and Charles D. Hansen,
editors, Data Visualization 2003 (Proceedings of VisSym 20E)yROGRAPHICS and

IEEE TCVG, 2003. Accepted for publication.

Eric W. Weisstein. Eric weisstein’'s world of mathematics. Available online at
http://mathworld.wolfram.com/.

Rudiger Westermann, Leif Kobbelt, and Thomas Ertl. Real-time exploration of regular
volume data by adaptive reconstruction of isosurfacdse Visual Computerl5(2):100—
111, 1999.

Lee Westover. Footprint evaluation for volume renderi@pmputer Graphics (Proceed-
ings of ACM SIGGRAPH 9024(4):367-376, August 1990.

FB Informatik, Universiat Kaiserslautern



BIBLIOGRAPHY 169

[90] Peter L. Williams, Nelson L. Max, and Clifford M. Stein. A high accuracy volume ren-
derer for unstructured datdEEE Transactions on Visualization and Computer Graphics
4(1):37-54, January-March 1998.

[91] Craig Wittenbrink, Tom Malzbender, and Mike Goss. Letter to the editor: Interpolation
for volume renderinglEEE Computer Graphics and Applicatigr2d(5):6—6, September/
October 2000.

FB Informatik, Universiat Kaiserslautern



Lebenslauf — Gunther Heinz Weber

17. Februar 1974 Geburt in Ludwigshafen am Rhein als Sohn von Heinrich August
Weber und Ingrid Marie-Luise Weber geb.liNer

12. August 1980 Einschulung in die Seebachschule Osthofen

Sommer 1994 Gauld Gymnasium Worms

15. Juni 1993 Abitur (Leistungskurse: Geschichte — Mathematik — Physik; 4.
Prufungsfach: Deutsch)

Wintersemester Immatrikulation an der Universit Kaiserslautern im Studien-

1993/94 gang Informatik mit Nebenfach Physik

12. September 1995 Vordiplom in Informatik

September 1998 —Forschungsaufenthalt an der University of California, Davis, CA,
Juni 1999 U.S.A.

14. Mai 1999 Diplom in Informatik

September 1999 —Wissenschaftlicher Mitarbeiter am Deutschen Forschungszen-
Oktober 2000 trum fur Kuinstliche Intelligenz

Januar 2000 — JuniForschungsaufenthalt an der University of California, Davis, CA,
2000 U.S.A.

Juli 2000 — Oktober Forschungsaufenthalt am Lawrence Berkeley National Labora-
2000 tory

November 2000 - Wissenschaftlicher Mitarbeiter an der UniveisiKaiserslautern
Januar 2001 (AG Graphsiche Datenverarbeitung und Computergeometrie)

Februar 2001 — Juli Forschungsaufenthalt an der University of California, Davis, CA,
2001 U.S.A.

November 2001 Wissenschaftliche Hilfskraft an der UnivatsKaiserslautern
(AG Graphsiche Datenverarbeitung und Computergeometrie)

Dezember 2001 - Wissenschaftlicher Mitarbeiter an der UniveasiKaiserslautern
August 2002 (AG Graphsiche Datenverarbeitung und Computergeometrie)



September 2002 —Wissenschaftliche Hilfskraft an der UniveisitKaiserslautern
Oktober 2002 (AG Graphsiche Datenverarbeitung und Computergeometrie)

seit November 2002 Forschungsaufenthalt an der University of California, Davis, CA,
U.S.A.





