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a b s t r a c t 

We consider a situation in which a home improvement project contractor has a team of regular crew 

members who receive compensation even when they are idle. Because both projects arrivals and the 

completion time of each project are uncertain, the contractor needs to manage the utilization of his crews 

carefully. One common approach adopted by many home improvement contractors is to accept multiple 

projects to keep his crew members busy working on projects to generate positive cash flows. However, 

this approach has a major drawback because it causes “intentional” (or foreseeable) project delays. Inten- 

tional project delays can inflict explicit and implicit costs on the contractor when frustrating customers 

abandon their projects and/or file complaints or lawsuits. In this paper, we present a queueing model to 

capture uncertain customer (or project) arrivals and departures, along with the possibility of customer 

abandonment. Also, associated with each admission policy (i.e., the maximum number of projects that 

the contractor will accept), we model the underlying tradeoff between accepting too many projects (that 

can increase customer dissatisfaction) and accepting too few projects (that can reduce crew utilization). 

We examine this tradeoff analytically so as to determine the optimal admission policy and the optimal 

number of crew members. We further apply our model to analyze other issues including worker produc- 

tivity and project pricing. Finally, our model can be extended to allow for multiple classes of projects 

with different types of crew members. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Project delays are common. Boeing experienced a series of

elays (4 years) and a $6 billion cost overrun when manag-

ng the 787 development project ( Gates, 2008; Greising & Johns-

on, 2007 ). The delays associated with this complex development

roject were expected due to many uncertain elements such as un-

roven technologies (due to the use of composite materials), un-

recedented outsourcing of design (in addition to the traditional

utsourcing of manufacturing), untested multi-tier supply chain (as

pposed to the traditional one-tier supply chain), and unprece-

ented risk-sharing contract (as opposed to the traditional con-

ract under which each supplier will receive his payment once he

ompletes his own development task). 1 The reader is referred to
∗ Corresponding author. Tel.: +1 310 825 4203; fax: +1 310 206 3337. 

E-mail addresses: jiarub@uci.edu (J. Bai), rick.so@uci.edu (K.C. So), 

hris.tang@anderson.ucla.edu (C. Tang). 
1 Under the risk-sharing contract, each supplier will receive his payment only af- 

er all suppliers have completed their development tasks. 
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377-2217/© 2016 Elsevier B.V. All rights reserved. 
ang and Zimmerman (2009) and Kwon, Lippman, McCardle, and

ang (2010a) for a detailed description of the Boeing 787 devel-

pment project and the analysis that examines the impact of risk-

haring contracts on the project completion time. 

Not only large and complex projects face major delays, well-

efined projects such as construction projects can experience

ong delays. For example, Al-Momani (20 0 0) examined 130 pub-

ic construction projects (such as residential or office buildings,

chool buildings, medical centers, etc.) in Jordan. Out of these 130

rojects, 106 projects were completed late due to various reasons

anging from poor design, poor planning, change orders (by cus-

omers), etc. Similar reasons were identified in various surveys of

ontractors who worked on large public and private construction

rojects; see Odeh and Battaineh (2002) . 

Many small and well-defined home improvement projects (e.g.,

ooring installation, counter/cabinet installation, basic home re-

odeling, etc.) also tend to complete later than the completion

ime quoted by the contractor. Unlike large projects, there is no

cademic research study that examines the underlying causes.

owever, there are many online forums and blogs commenting

hat project delay are usually caused by (a) contractor’s poor

lanning; (b) unforeseen conditions; and (c) change orders (by cus-

omers). 

http://dx.doi.org/10.1016/j.ejor.2016.02.052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.02.052&domain=pdf
mailto:jiarub@uci.edu
mailto:rick.so@uci.edu
mailto:chris.tang@anderson.ucla.edu
http://dx.doi.org/10.1016/j.ejor.2016.02.052
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Contractor’s poor planning can be unintentional or intentional.

Unintentional poor planning is usually due to contractor’s inex-

perience or poor execution. For examples, the contractor fails to

check with vendors about the availability of required materials for

the project or to schedule the project tasks properly. Through our

discussions with a number of home improvement contractors, we

learned of the notion of intentional “poor planning” under which

the contractor takes on multiple projects to keep his crews busy in

generating revenue. This intentional act, however, causes project

delays and frustrates customers. 

It is common practice among small project contractors to ac-

cept multiple projects intentionally, but this practice has not been

examined in the research literature. Contractors adopt this practice

because, in many instances, they have to pay their crew members

when they are between projects. 2 As both arrival times between

projects and project completion times are uncertain, a small con-

tractor has strong incentives to take on multiple projects in or-

der to keep his crew busy to generates revenue. The contractor

then “rotate or spread” his crew members among these different

projects so as to string along multiple customers. 

This intentional act, however, can cause damages to the con-

tractor. When a contractor accepts too many projects, project de-

lays ensue, causing frustrated customers to forfeit their deposits

and abandon their projects. In some cases, instead of filing a claim

against the contractor, unhappy customers can damage the con-

tractor’s reputation by filing complaints with the Best Business

Bureau ( www.bbb.org ), State government ( www.dca.ca.gov ), Small

Business Association ( www.sba.gov ), or giving bad ratings at var-

ious online forums such as Yelp ( www.yelp.com ) or Angie’s list

( www.angieslist.com ). 3 

The above considerations create the following dilemma for the

contractor. If the contractor accepts too few projects, he faces a

higher risk of idling his crew members and incurring unnecessary

labor cost. If the contractor accepts too many projects, he faces

a higher risk of customers abandoning projects and damaging his

reputation. These two competing forces motivate us to develop a

stylized model to examine the underlying tradeoff. 

To capture the uncertain customer arrivals and the inherent

uncertain processing times (due to unforeseen conditions), we

present a simple queueing model to examine the tradeoff encoun-

tered by a contractor with K identical regular crew members. We

capture the contractor’s dilemma through his project admission pol-

icy N , where N is a decision variable that represents the maximum

number of projects (or customers) he will accept at any point in

time. In our model, these K crew members are the servers who

process the accepted projects by the contractor as a team simul-

taneously at any point in time. For instance, if there are i ( i ≤
N ) customers in the system, the contractor will rotate (or spread)

these K servers among all i projects in order to string along the

customers. 4 Therefore, servers are idle only when i = 0 . (This set-

ting differs from the traditional queueing models in which K − i

servers will become idle when i ≤ K .) 
2 For certain types of projects, it is difficult to adjust part-time crew members 

dynamically, especially for those who are trained to perform certain tasks. Without 

a stable team of crew members, many contractors and regular crew members find 

it difficult to communicate and coordinate with part-time crew members. 
3 While customers may add liquidated damages (due to delay) in a project con- 

tract agreed by the contractor, some legal experts commented that liquidated dam- 

ages clauses are generally considered unenforceable in certain jurisdictions. For 

small home improvement projects, it is uncommon for customers to hire lawyers 

to draw up such a legal contract. Even if the customers want to take legal actions 

against the contractor, the claim may not be high enough to justify the time and 

effort to do so. 
4 As we shall explain later, this assumption can be relaxed and the analysis re- 

mains the same as long as all K crew members are kept busy when i > 0. 
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Under an admission policy N , the contractor will reject any po-

ential customer who arrives at the time when there are already

 customers in the system. In this case, he forgoes the revenue

ssociated with this potential customer. At the same time, each

ustomer already in the system may abandon her project due to

aiting. In this case, he cannot collect the remaining revenue (ex-

ept the upfront project deposit) associated with this project. Also,

e may incur reputation damages when an abandoned customer

aunches a complaint in a public forum. 

By applying the standard queuing theory approach, we use the

teady state analysis to examine the following research questions: 

1. Suppose the contractor has K crew members and accepts up to

N projects at any point in time. What is the expected project

completion time? How often will he turn customers away?

How often will a customer abandon her project? 

2. Taking into account the revenue loss and reputation damage

due to project abandonment, what is the optimal N 

∗ (i.e., the

maximum number of projects that the contractor should ac-

cept)? What is the optimal K 

∗ (i.e., the optimal crew size)? 

3. Should the contractor offer a higher payment to his crew mem-

bers to entice them to work faster? 

4. Should the contractor charge a higher project price and/or re-

quire a higher deposit? 

Our steady state analysis enables us to obtain closed form ex-

ressions for various performance measures including the expected

roject completion time (i.e., expected waiting time in system),

he rejection rate (i.e., the percentage of customers being turned

way), and the abandonment rate (i.e., the percentage of customers

n the system who abandon their projects). We use these steady

tate performance measures to examine the impact of the admis-

ion policy, arrival rate, process rate, and crew size on these per-

ormance measures analytically. We also determine the optimal ad-

ission policy N 

∗ and the optimal number of crew members K 

∗. 

Using an extensive numerical analysis, we illustrate how the

ontractor should manage his crew size in addition to selecting

he optimal admission policy. For example, our numerical results

how that the contractor should adjust his optimal admission pol-

cy N 

∗ to cope with small increases in the arrival rate. However,

o cope with major increases in the arrival rate, the contractor

hould adjust the optimal number of crew members K 

∗ instead.

herefore, our analysis enables us to gain a deeper understand-

ng about the underlying tradeoff faced by the contractor. We fur-

her demonstrate how our model can be used to examine other is-

ues of managerial importance including worker productivity and

roject pricing. Our overall analysis indicates that, to strike a bal-

nce optimally, the contractor needs to select his admission policy

nd manage his crew size carefully. 

Finally, we show how our model can be extended to allow for

wo classes of projects with two types of crew members. Due to

umerical complexity, we develop a simple approximation for solv-

ng this extended model and provide numerical results to show

hat our approximation scheme can be used for obtaining near-

ptimal crew size and admission policy efficiently. 

This paper is organized as follows. We review relevant literature

n Section 2 . We describe the contractor’s problem in Section 3 .

ection 4 presents our queueing model that captures the underly-

ng uncertainties and customer’s abandonment dynamics. We use

he steady state analysis to determine various performance mea-

ures that would enable us to evaluate the tradeoff faced by the

ontractor. In Section 5 we provide an extensive set of numerical

o illustrate our model results and generate useful managerial in-

ights for managing crew size, admission policy, worker produc-

ivity and project pricing. Section 6 presents an extension to the

ase model to allow for two classes of projects with two types of

http://www.bbb.org
http://www.dca.ca.gov
http://www.sba.gov
http://www.yelp.com
http://www.angieslist.com
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rew members. We conclude the paper in Section 7 . All proofs are

rovided in the Appendix. 

. Literature review 

Our paper complements the existing project management lit-

rature that deals with uncertain project arrivals and uncer-

ain project completion times. While Critical Path Method (CPM),

roject Evaluation and Review Techniques (PERT), and cost-time

radeoff analysis are effective tools for managing projects with lit-

le uncertainty in project completion times and/or operating costs,

elatively little is known about ways to manage projects with con-

iderable uncertainty in customer arrivals and project completion

ime ( Klastorin, 2004 ). 

Research literature that deals with project management under

ncertainty can be divided into two types. The first type deals

ith issues arising from the customer’s perspective. Customers

re concerned about project cost and project completion time.

ecause customers do not have complete information nor com-

lete control about project contractor’s cost structure and his op-

rations, designing incentive contracts for the contractor to com-

lete the project on time and on budget is critical. While incentive

ontract theory has been widely studied in the economics litera-

ure (e.g., Weitzman, 1980 ), the application of contract theory to

roject management has been limited. Most analytical models in

his stream assume that the customer and the project contractor

ngage in a Stackelberg game in which the customer acts as the

eader who determines the incentive contract and the project con-

ractor acts as the follower who determines his effort level. 

By using a game-theoretic framework, Bayiz and Corbett

2005) examined the use of a linear incentive contract to coordi-

ate the effort s of different subcontractors under asymmetric infor-

ation. By comparing the equilibrium outcomes, they found that

ontracts that offer incentive for early completion are weakly supe-

ior to the fixed price contracts in terms of expected project com-

letion time. Kwon et al. (2010a) showed that time-based and cost

haring contracts are optimal incentive contracts when the project

ompletion time is exponentially distributed and when the con-

ractor’s effort cost is a quadratic function of the work rate. When

he project is comprised of parallel tasks, Kwon, Lippman, and

ang (2010b) examined delayed payment contracts under which

omogeneous subcontractors will receive their payments only af-

er all subcontractors complete their tasks. Chen, Klastorin, and

agner (2015) examined delayed payment contracts in a different

ontext that deals with sequential tasks with non-homogeneous

ubcontractors. In contrast to the results found by Kwon et al.

2010b) that delayed payment projects may be more profitable for

he customer under some conditions in equilibrium, Chen et al.

2015) found that delayed payment contracts can never be more

rofitable. Kerkhove and Vanhoucke (2015) provided a comprehen-

ive review of different types of incentive project contracts includ-

ng fixed price, cost-plus, piece-wise linear price, non-linear price

ontracts, as well as incentive for early (and dis-incentive for late)

roject completion. Through extensive computational experiments,

hey found that contracts that include non-linear incentives for

ost and project completion time are more efficient. Besides the

se of contract theory to examine incentive contracts specified by

he customers, Gupta, Snir, and Chen (2015) and Tang, Zhang, and

hou (2015) used different auction theoretic models to examine a

ituation where multiple contractors compete for a project with

ncertain amount of work by submitting bids that contain two el-

ments: completion time and contract price. 

Our paper belongs to the second type of project management

iterature that deals with issues arising from the project con-

ractor’s perspective. To manage multiple projects under differ-

nt contracts, the project contractor needs to effectively manage
is resources (crew members, subcontractors, materials deliver-

es, equipment rentals), especially when the completion time of

ach project is inherently uncertain. Due to the underlying com-

lexity, most researchers used simulation models to estimate var-

ous performance metrics. For example, Antoniol, Cimitile, Lucca,

nd Penta (2004) developed simulation models to examine the

mpact of various staff planning and project scheduling rules on

he probability of meeting the project deadline. Anavi-Isakow and

olany (2003) conducted simulation experiments to examine the

ystem performance (workload of various resources, project com-

letion time, etc.) when the project manager keeps the crew busy

ith a constant number of projects at all time, i.e., constant num-

er of project in process (ConPIP). Cohen, Mandelbaum, and Shtub

2004) extended the work of Anavi-Isakow and Golany (2003) by

onsidering other multi-project scheduling rules including: (a) no

ontrol (first come first serve), (b) ConPiP, and (c) a dynamic

roject admission policy in which a project is admitted to the sys-

em only when the queue length of the bottleneck stage is below

 pre-determined threshold. 

This second type of project management literature is based on

he assumption that there is a long list of available projects in

he backlog. In contrast, our paper considers the case when the

rojects arrivals are uncertain. Also, by focusing on single-stage

rojects (instead of a network of projects), we develop a simple

ueueing model to examine the optimal project admission policy

y using the steady state analysis instead of simulation analysis.

e capture the dynamics of project arrivals, crew management,

nd project abandonment in a simple queueing model and apply

he standard queuing theory approach to conduct the steady state

nalysis of the system. This steady state analysis enables us to ex-

mine the issue of project delay when the contractor can accept

ultiple projects intentionally. More importantly, it allows us to

etermine the optimal project admission policy and optimal crew

ize. To our knowledge, our paper represents a first attempt in the

roject management literature that uses a simple queuing model

o examine the project admission policy and project delay when

he project arrivals and the project completion times are uncertain.

. Problem description 

Consider a project contractor who manages a crew comprising

f K regular members. For tractability, we assume that customers

rrive randomly according to a Poisson process with rate λ and

hat each project processing time is Exponentially distributed with

ate μ. The exponential completion time assumption is commonly

sed in the project management literature (e.g., Adler, Mandel-

aum, Nguyen, and Schwerer, 1995; Magott and Skudlarski, 1993;

ennings and Lint, 1997 . Dean, Merterl, and Roepke (1969) also ar-

ue that an exponential completion time is more realistic in the

ontext of project management than the commonly used Normally

istributed completion times (e.g., Bayiz & Corbett, 2005 ), as sup-

orted by empirical evidence in the project management literature

e.g., Cohen et al., 2004 ). As small home improvement contractors

sually focus on a specific type of projects (e.g., flooring installa-

ion for residential homes), it is reasonable to assume that the ser-

ice rate μ is not project-specific. 

We focus on the class of admission policies under which the

ontractor will admit only up to N customers at any point in time,

here N ≥ 1 is a decision variable. Specifically, under an admission

olicy N , an arriving customer will be rejected when there are al-

eady N customers in the system. 

.1. Customer payments 

The contractor pays each of his K crew members c per unit time

egardless of whether the crew member is busy or idle. Also, the
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5 Our analysis can be easily extended to allow for a more general setting in which 

the service rate of each server may depend on the state; i.e., the number of cus- 

tomers in the system i . We ignore the details here for a simpler exposition. 
6 Our model can also be extended in a straightforward manner to allow for state- 

dependent abandonment rate, which can be used to analyze situations where cus- 

tomers become more anxious and more likely to abandon the project when the 

system is overly crowded. 
contractor charges each admitted customer r for conducting the

project. As customary in project management, each admitted cus-

tomer is required to pay (a) a non-refundable upfront deposit d ∈
[0, r ] at the time of admission; and (b) the remaining payment of

(r − d) upon project completion. 

We assume that all K crew members will be shared among

all existing customers in the system. (We shall explain ways to

allocate crew members to existing customers later.) As sharing

the crew members among all existing customers could possibly

lengthen the project completion time if there are too many ex-

isting customers in the system, we also assume that some impa-

tient customers would abandon their projects before completion.

If this happen, the customer forfeits her deposit d , but is not liable

to pay the remaining payment (r − d) . In this case, the contrac-

tor loses (r − d) and also incurs a goodwill cost g due to customer

complaints. 

3.2. Customer abandonment 

There are different ways to model the customer abandonment

behavior in the queueing literature. One possible approach to allow

a customer to abandon if her waiting time exceeds a pre-specified

deadline. Unfortunately, the approach is analytically intractable in

general. ( Gromoll, Zwart, Robert, and Bakker (2006) manage to get

tractable steady state behavior by approximating the system us-

ing a fluid model. However, their results are highly complex, which

are not suitable for examining the aforementioned tradeoff analyti-

cally.) Instead, we assume that each customer will randomly aban-

don the project at a constant rate α, where α is a measure of cus-

tomer‘s impatient level. ( Assaf and Haviv (1990) examine the situa-

tion where customer cares about her utility as well as the utilities

of all other customers. They determine an abandonment strategy

that exhibits this property.) This assumption of modeling customer

abandonment behavior allows us to develop tractable results in our

analysis. 

3.3. The contractor’s problem 

For any given K crew members and for any admission policy

N , let R be the rejection probability that an incoming customer is

being rejected (which occurs when there are N customers in the

system). Therefore, the effective admission rate of customers to the

system is equal to λ(1 − R ) , as the system has a Poisson arrival rate

of λ. 

Also, let A be the abandonment probability that an admitted

customer will abandon her project before completion. Then, for

each admitted customer who did not abandon the project before

project completion, the contractor receives an expected revenue

of (1 − A ) r. On the other hand, for each admitted customer who

abandoned the project, the contractor receives an expected rev-

enue of A (d − g) , where d is the upfront deposit and g is the good-

will cost due to customer abandonment. 

By accounting for the payment to all K crew members at rate c ,

it is easy to see that the contractor‘s expected profit per unit time

can be written as: 

π(N) = [ λ(1 − R )] { (1 − A ) r + A (d − g) } − cK. (1)

Therefore, the contractor‘s problem is to determine the optimal N 

∗

that maximizes his expected profit π ( N ), i.e., the contractor solves

the problem: Max N { π ( N )}. 

The above contractor’s profit function π ( N ) captures the under-

lying tradeoff between the rejection probability R and the aban-

donment probability A . To elaborate, suppose that the contractor

sets a high value of N . In this case, he admits more customers so

that the rejection probability R is smaller. At the same time, more
dmitted customers will abandon their projects because the aban-

onment probability A is higher due to system congestion. On the

ther hand, when the contractor sets a low value of N , he rejects

ore arriving customers (i.e., the rejection probability R is higher),

ut few admitted customers will abandon their projects (i.e., the

bandonment probability A is smaller). 

. A queueing model with server sharing 

To solve the contractor’s problem for finding the optimal ad-

ission policy N 

∗, we need to determine the rejection probability

 and the abandonment probability A in steady state when a con-

ractor uses a team of K crew members and adopts an admission

olicy N . To do so, we analyze a queueing model with server shar-

ng, customer rejection and abandonment. Once we determine R

nd A , we can find the optimal admission policy N 

∗ that maximizes

he contractor‘s expected profit π ( N ) in the following section. 

Under Poisson arrival rate λ and exponential service time, we

odel the admission policy N under which the project contractor

ill admit up to N projects at any point in time as a queueing

ystem with K identical servers and a finite waiting room capacity

 . At any point in time, there will be i customers in the system,

here i = 0 , 1 , . . . , N. If i = 0 , then all K crew members are idle. If 1

i ≤ N , then all K crew members are rotated or spread among all

 customers. To capture the spirit of sharing all K servers among all

 customers, the effective service rate for each of the i customers in

he system is equal to Kμ
i 

. 5 In this case, the effective departure rate

ssociated with project completion is equal to Kμ
i 

· i = Kμ when

here are i customers in the system. 

For ease of exposition, we assume a specific allocation rule un-

er which all K crew members are shared equally among all i cus-

omers in the system, where 1 ≤ i ≤ N . As it turns out, our analy-

is remains the same for all other allocation rules under which all

 crew members are assigned to work on any j customers in the

ystem, where 1 ≤ j ≤ i . For example, if j = 1 , then all K members

ill work on one project at a time. In this case, when there are i

ustomers in the system, and the effective departure rate associated

ith any allocation rule associated with j is equal to Kμ
j 

· j = Kμ.

ence, from the system perspective, any allocation rule will yield

he same system performance. 

For each of the i customers in the system with 1 ≤ i ≤ N , we

ssume she may decide to abandon her project before completion

t rate α. 6 For tractability, we further assume that the abandon-

ent times are exponentially distributed and are independent of

he service times. 

.1. Steady state analysis 

We can model the queueing system described above as a

arkovian queuing system with the following transition rate di-

gram associated with the number of customers in the system i =
 , 1 , 2 , . . . , N. For example, the transition rate from state (i + 1) to i

s given by ( Kμ
i +1 

+ α) · (i + 1) = Kμ + (i + 1) α for i = 1 , 2 , . . . , N, as

here are (i + 1) customers in the system, and each of these (i + 1)

ustomers has an independent exponential service and abandon

imes with rates of Kμ
i +1 

and α, respectively. 

Let p i denote the steady-state probability when there are i cus-

omers in the system, i = 0 , 1 , 2 , . . . , N. From the transition rate di-
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gram given in Fig. 1 , the steady-state probabilities p i satisfy the

ollowing set of equations: 

λp 0 = (Kμ + α) p 1 , 

(λ + Kμ + iα) p i = λp i −1 + (Kμ + (i + 1) α) p i +1 

f or i = 1 , 2 , . . . , N − 1 , 

(Kμ + Nα) p N = λp N−1 , 

i ∑ 

i =0 

p i = 1 . 

e solve the above set of linear equations and obtain the following

teady state probabilities: 

p 0 = 

{ 

1 + 

N ∑ 

n =1 

n ∏ 

j=1 

λ

(Kμ + jα) 

} −1 

, (2) 

p i = p 0 

i ∏ 

j=1 

λ

(Kμ + jα) 
, f or i = 1 , 2 , . . . , N. (3) 

By using the steady-state probabilities p i given in (2) and (3) ,

e can determine the traditional system performance measures as

ell as the rejection probability R and the abandonment probabil-

ty A . 

.2. Average number of customers and waiting time in system 

For any admission policy N , we can use the steady-state proba-

ilities p i given in (2) and (3) to determine the average number of

ustomers in the system is given by L = 

∑ N 
i =1 ip i . Also, an arriving

ustomer will be admitted by the contractor when i < N . Hence,

he effective admission rate (or the effective customer arrival rate

ntering the queueing system) is equal to λ(1 − p N ) . Therefore, we

an apply the Little’s Law to determine W , the average waiting

ime in system experienced by each customer admitted to the sys-

em (i.e., project completion time), where: 

 = 

L 

λ(1 − p N ) 
= 

∑ N 
i =1 ip i 

λ(1 − p N ) 
. (4) 

.3. Idle, rejection and abandonment probabilities 

We now use the steady-state probabilities p i given in (2) and

3) to determine three different probabilities that would enable us

o calculate the profit function π ( N ) given in (1) . First, for a system

n which all K crew members are shared among i customers at any

oint in time, either all K members are busy when N ≥ i > 0 or all

 members are idle only when i = 0 . Therefore, the idle probability

f all crew members I satisfies: 

 = p 0 = 

{ 

1 + 

N ∑ 

n =1 

n ∏ 

j=1 

λ

(Kμ + jα) 

} −1 

. (5) 

Second, for any admission policy N , the contractor will admit

n arriving customer as long as i < N . Therefore, an arriving cus-

omer will be rejected for admission only when i = N. Hence, the

ejection probability R satisfies: 

 = p N = 

N ∏ 

j=1 

λ

(Kμ + jα) 
· p 0 . (6) 

Third, we can determine the abandonment probability A for any

dmitted customer by analyzing the average inflow and outflow

ate of customers abandoning the system in steady-state. Observe

hat the average inflow rate of admitted customers who will aban-

on the system is equal to A · λ(1 − p ) , where λ(1 − p ) is the
N N 
ffective customer admission rate for any admission policy N . Also,

he average outflow rate of customers leaving the system at any

tate i is equal to (Kμ + iα) . Since the processing time and the

bandonment time are independent exponential random variables,

e can apply the result developed by Ross (1983) to show that
iα

Kμ+ iα portion of the outflow rate is due to abandonment, while

he remaining portion is due to project completion. Therefore, the

verage outflow rate of customers abandoning the system at state

 is equal to (Kμ + iα) iα
Kμ+ iα = iα. By equating the average inflow

ate and outflow rate of abandoning customers in steady-state, we

ave the following relationship: 

 · λ(1 − p N ) = 

N ∑ 

i =1 

p i · iα

herefore, the abandonment probability A is equal to 

 = 

α
∑ N 

i =1 ip i 
λ(1 − p N ) 

. (7) 

We next examine the properties of the idle, rejection, and aban-

onment probabilities I , R , A given in (5) –(7) , respectively. 

roposition 1. The idle, rejection, and abandonment probabilities I ,

 , and A possess the following properties: 

1. Both the idle probability I and the rejection probability R are de-

creasing in N. Furthermore, when the arrival rate is small so that

λ < Kμ + α, the idle probability is higher than the rejection prob-

ability for any N; i.e., I > R. However, when the arrival rate is large

so that λ ≥ Kμ + α, there exists a threshold τ > 0 such that I <

R if N < τ and I > R if N ≥ τ . 

2. The abandonment probability A is increasing in N. The average

project completion time W is also increasing in N. 

3. For any fixed N , the idle probability I is decreasing in λ and is

increasing in μ and K. However, both the rejection probability R

and the abandonment probability A are increasing in λ and are

decreasing in μ and K. 

Proposition 1 exhibits the underlying tradeoff associated with

ny admission policy N . When the contractor increase the value

f N , he admits more customers into the system (by reducing the

ejection probability R ), keeps his crew members busier (by reduc-

ng the idle probability I ), but causes more admitted customers to

bandon their projects (by increasing the abandonment probabil-

ty A ). Proposition 1 further illustrates the impact of the admission

olicy N on the relative difference between I and R , and shows an

ntuitive result that the average project completion time (i.e., aver-

ge waiting time in system) W given in (4) is increasing in N . 

Proposition 1 also demonstrates the impact of the market de-

and λ as well as the available system capacity (as captured by

odel parameters μ or K ) on these probabilities I , R and A . For ex-

mple, it illustrates the intuitive result that the idle probability I

ecreases as the market demand increases or the available system

apacity decreases. Similarly, both the rejection probability R and

he abandonment probability A increase as the market demand in-

reases or the available system capacity decreases. 

.4. Profit function 

We apply the expressions for the idle, rejection, and abandon-

ent probabilities I , R , A given in (5) –(7) to analyze the contrac-

or‘s profit function π ( N ) given in (1) . Observe from (1) that the

rofit function π ( N ) involves the term λ(1 − R ) · A, i.e., the effec-

ive rate of admitted customers who abandons their project before

ompletion. In this case, we can apply (6) and (7) , and the steady

tate analysis equations to show that 

(1 − R ) · A = 

N ∑ 

i =1 

p i iα = 

N ∑ 

i =1 

p i −1 

iαλ

Kμ + iα
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Fig. 1. Transition rate diagram. 
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f  
= λ
N ∑ 

i =1 

p i −1 

(
1 − Kμ

Kμ + iα

)

= λ(1 − p N ) − Kμ
N ∑ 

i =1 

p i 

= λ(1 − p N ) − Kμ(1 − p 0 ) 

= λ(1 − R ) − Kμ(1 − I) . (8)

The above expression has a simple interpretation. Essentially, it

states that effective rate of admitted customers who abandons

their project before completion λ(1 − R ) · A is equal to the cus-

tomer admission rate λ(1 − R ) minus the effective project comple-

tion rate Kμ(1 − I) . 

Using expression (8) , the profit function (1) can be simplified

as 

π(N) = (d − g) λ(1 − R ) + (r − d + g) Kμ(1 − I) − cK. (9)

The above simplified expression has a nice interpretation. Besides

the operating cost at rate cK , it states that the contractor earns

the upfront deposit d according to the effective admission rate

λ(1 − R ) , and earns the remaining value (r − d) according to the

project completion rate Kμ(1 − I) . However, the contractor also in-

curs a goodwill cost g according to the effective abandonment rate

λ(1 − R ) − Kμ(1 − I) as given in (8) . Therefore, the first term of the

profit function (9) is based on the “contribution margin” (d − g)

associated with the admission rate, the second term is based on

the “contribution margin” (r − d + g) associated with the project

completion rate, and the third term is based on the operation cost

of the crew. Thus, in addition to the tradeoff between admitting

more customers to keep the crew busy versus reducing customer

abandonment, we need to take the different contribution margins

into consideration in determining the optimal admission policy N 

∗.

We next provide some analytical properties of the optimal ad-

mission policy N 

∗ that maximizes the contractor’s profit function

as given in (9) . 

Proposition 2. The optimal admission policy N 

∗ has the following

properties: 

1. When the goodwill cost is lower than the deposit so that g ≤ d ,

the optimal admission policy N 

∗ = ∞ . 

2. When the goodwill cost is higher than the deposit so that g > d ,

the profit function π ( N ) given in (9) is unimodal so that the op-

timal N 

∗ is unique. Furthermore, the cost and system parameters

have the following impact on N 

∗: (i) N 

∗ is decreasing in the good-

will cost g , but is increasing in the deposit d and price r; and (ii)

N 

∗ is decreasing in the arrival rate λ, but is increasing in the ser-

vice rate μ and crew size K. 

When the goodwill cost g (that would only incur when a cus-

tomer abandons her project) is lower than the non-refundable de-

posit d , Statement 1 of Proposition 2 reveals that the contractor

can afford to admit all arriving customers. When the goodwill cost

is higher than the non-refundable deposit d , there exists no an-

alytical expression for the optimal N 

∗ that maximizes the profit
unction (9) , as the rejection probability R given in (6) and the

dle probability I given in (5) are complex functions of N . State-

ent 2 of Proposition 2 , however, ensures in this case that the

ptimal admission policy N 

∗ is unique and possesses some intu-

tive properties that allow us to efficiently compute the optimal N 

∗

umerically. 

Statement 2(i) of Proposition 2 illustrates the impact of the

ost parameters ( d , g and r ) on the optimal N 

∗ when g > d . First,

t is clear that the two cost parameters, d and g , have the op-

osite effect on N 

∗. As the deposit d increases (or the goodwill

ost g decreases), the contractor is less concerned about customer

bandonment, and thus can accept more customers in the system

o maximize the expected profit. Similarly, as the project price r

ncreases, the contractor should admit more customers into the

ystem. 

Statement 2(ii) of Proposition 2 demonstrates the impact of the

ystem parameters ( λ, μ and K ) on the optimal N 

∗ when g > d .

irst, the contractor should accept fewer customers when the ar-

ival rate λ increases, as a higher market demand reduces the risk

f having his crew members idle and he would be more concerned

bout customer abandonment. On the other hand, the impact of μ
or K ) on N 

∗ has the opposite effect of λ: the contractor should ad-

it more customers when μ (or K ) increases, as a higher worker

roductivity (or a larger crew size) increases the risk of idling his

rew members and he would be less concerned about customer

bandonment. 

. Numerical illustrations and managerial insights 

We conducted a comprehensive set of numerical experiments

o illustrate how our model can be used to assist small project

ontractors to accept new projects and to manage their available

esources effectively. For example, a contractor can tackle short-

erm seasonal demand fluctuations by simply adjusting the num-

er of projects to be accepted. We illustrate this tactical deci-

ion in Section 5.1 . For long-term demand changes, the contrac-

or would need to further adjust his crew size and/or improve

he worker productivity. Such strategic decisions need to be care-

ully analyzed, as it is difficult and expensive to hire or lay off

orkers, especially in situations where skilled workers are in short

upply and the contractor would want to maintain a loyal and

ompetent team of crew members. We illustrate these types of

trategic decisions in Sections 5.2 and 5.3 . Finally, Section 5.4 il-

ustrates the situation where the contractor can utilize differ-

nt pricing strategies, in addition to optimal admission policy

nd crew size management, to cope with the underlying market

ncertainty. 

.1. Optimal admission policy 

In our base case, we set K = 5 , λ = 5 , μ = 1 , α = 0 . 5 , r = 10 ,

 = 1 , g = 5 and c = 1 . We shall use this base case for all the nu-

erical results reported for the remainder of this section. 

Table 1 illustrates the impact of the admission policy N on dif-

erent performance measures. As given in Proposition 1 , the idle
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Table 1 

Numerical results for the base case example. 

N I = p 0 R = p N A W π ( N , K ) 

1 0 .5238 0 .4762 0 .0909 0 .1818 17 .8571 

2 0 .3750 0 .2841 0 .1270 0 .2540 24 .4318 

3 0 .3077 0 .1793 0 .1565 0 .3129 27 .0445 

4 0 .2728 0 .1136 0 .1796 0 .3593 28 .1750 

5 0 .2536 0 .0704 0 .1971 0 .3942 28 .6553 

6 0 .2429 0 .0421 0 .2096 0 .4192 28 .8383 

7 0 .2370 0 .0242 0 .2181 0 .4363 28 .8906 

8 0 .2339 0 .0133 0 .2236 0 .4472 28 .8921 

9 0 .2323 0 .0069 0 .2269 0 .4538 28 .8789 

10 0 .2315 0 .0035 0 .2288 0 .4576 28 .8655 

11 0 .2311 0 .0016 0 .2298 0 .4597 28 .8559 

12 0 .2309 0 .0 0 07 0 .2304 0 .4607 28 .8501 

13 0 .2309 0 .0 0 03 0 .2306 0 .4612 28 .8469 

14 0 .2308 0 .0 0 01 0 .2307 0 .4614 28 .8453 

15 0 .2308 0 .0 0 01 0 .2308 0 .4615 28 .8445 

16 0 .2308 0 .0 0 0 0 0 .2308 0 .4616 28 .8442 

17 0 .2308 0 .0 0 0 0 0 .2308 0 .4616 28 .8441 

18 0 .2308 0 .0 0 0 0 0 .2308 0 .4616 28 .8440 

19 0 .2308 0 .0 0 0 0 0 .2308 0 .4616 28 .8440 

20 0 .2308 0 .0 0 0 0 0 .2308 0 .4616 28 .8440 

Fig. 2. Impact of α on N ∗ . 
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Table 2 

Impact of λ on K ∗ , N ∗ and π ∗ . 

λ K ∗ N ∗ π ∗

0 .2 1 4 0 .003 

0 .4 1 4 0 .872 

0 .6 2 7 2 .023 

0 .8 2 7 3 .214 

1 .0 3 11 4 .496 

1 .5 4 14 7 .890 

2 .0 5 16 11 .4 4 4 

2 .5 5 14 15 .120 

3 .0 6 17 18 .906 

Table 3 

Impact of μ on K ∗ , N ∗ and π ∗ . 

μ K ∗ N ∗ π ∗

0 .1 1 1 −1 .893 

0 .11 1 1 −1 .802 

0 .12 3 1 −1 .635 

0 .13 19 3 −1 .171 

0 .14 23 4 0 .317 

0 .15 25 5 1 .896 

0 .2 24 7 8 .938 

0 .3 20 11 17 .745 

0 .4 16 12 22 .908 

0 .5 14 14 26 .345 

0 .6 13 18 28 .828 

0 .7 12 20 30 .701 

0 .8 11 22 32 .196 

0 .9 10 23 33 .421 

1 .0 9 23 34 .421 
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K  
robability I = p 0 and the rejection probability R = p N are decreas-

ng in N , while the abandonment probability A and the project

ompletion time W are increasing in N . Also, the profit function

( N ) is unimodal in N as stated in Proposition 2 , with the opti-

al admission policy N 

∗ = 8 and the optimal profit π ∗ = 28 . 8921 .

e note that the various system performance measures converge

hen N > 15, while the profit stays essentially the same when N

 15. 

Proposition 2 shows that the optimal admission policy N 

∗ (i) is

ecreasing in the goodwill cost g , but is increasing in the deposit

 and price r ; and (ii) is decreasing in the arrival rate λ, but is in-

reasing in the service rate μ and crew size K . However, we are un-

ble to establish the monotonicity of the abandonment rate α on

 

∗. Fig. 2 provides a numerical example for which N 

∗ is not mono-

one (and not even unimodal) in α. (In this numerical example, we

et K = 5 , λ = 10 , μ = 1 , r = 32 , d = 1 , g = 2 and c = 1 .) One pos-

ible explanation of this non-monotone behavior is that a higher

alue of α increases both the idle probability I and the abandon

robability A , where an increase in idle probability causes the con-

ractor to increase N , while an increase in abandonment probabil-

ty requires the contractor to decrease N . Our numerical results in-

icate that N 

∗ would decrease in α when α is sufficiently large,

hich suggests that the second effect tends to dominate the first

ffect when the abandonment rate is high. In all cases, the optimal

rofit π ∗ decreases as α increases, showing the intuitive result that
 higher customer abandonment rate would always hurt the con-

ractor’s profit. 

.2. Optimal crew size 

We next analyze the optimal crew size. Because the crew size

ecision K is dependent on the admission policy N , it is necessary

o consider joint optimal policy under which the contractor selects

he optimal crew size K 

∗ and the optimal admission policy N 

∗ that

aximizes his profit π ( N ) as given in (9) . Essentially, we solve the

ontractor’s problem: max K , N π ( N , K ). We next illustrate how the

ifferent model parameters affect the optimal K 

∗ and N 

∗, and the

esulting optimal profit π ∗. 

Table 2 illustrates how the arrival rate λ affects the optimal val-

es of K 

∗, N 

∗ and π ∗. To cope with increasing customer demand,

he contractor can now adjust both his crew size K and admis-

ion policy N . Our result shows that it is optimal for the contrac-

or to use these two levers iteratively to cope with increasing ar-

ival rate. To cope with small arrival rate increases, the contractor

hould adjust his admission policy N while keeping the same crew

ize. Hence, when λ lies within a small range, the crew size K 

∗ is

ept constant and the optimal admission policy N 

∗ decreases in λ
s depicted in Statement 2(ii) of Proposition 2 . However, to cope

ith large arrival rate increases, the contractor needs to also in-

rease the crew size K 

∗. Observe that the optimal profit π ∗ always

ncreases as λ increases. 

Table 3 illustrates the impact of productivity change μ on K 

∗,

 

∗ and π ∗. The impact of μ on the joint optimal policy K 

∗ and

 

∗ is consistent with that of λ as shown in Table 2 . Specifically,

hen μ lies within a small range, the crew size K 

∗ remains con-

tant, while the optimal admission policy N 

∗ increases in μ as de-

icted in Statement 2(ii) of Proposition 2 . When the process rate

increases significantly (i.e., when crew members become very

roductive), the contractor will also need to adjust his crew size

 

∗, but the change of K 

∗ is not monotone in μ. When μ is small
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Table 4 

Impact of α on K ∗ , N ∗ and π ∗ . 

α K ∗ N ∗ π ∗

0 .1 7 57 40 .165 

0 .2 8 42 38 .207 

0 .3 8 29 36 .706 

0 .4 9 28 35 .506 

0 .5 9 23 34 .421 

0 .6 10 23 33 .459 

0 .7 10 20 32 .596 

0 .8 10 18 31 .775 

0 .9 11 17 31 .013 

1 .0 11 17 30 .319 

5 .0 16 6 14 .684 

10 .0 18 3 4 .828 

20 .0 16 1 −6 .242 

30 .0 13 1 −11 .958 

Table 5 

Impact of d on K ∗ , N ∗ and π ∗ . 

d K ∗ N ∗ π ∗

0 10 22 33 .968 

1 9 23 34 .421 

2 9 30 34 .891 

3 9 45 35 .361 

4 9 90 35 .831 

Table 6 

Impact of g on K ∗ , N ∗ and π ∗ . 

g K ∗ N ∗ π ∗

2 9 90 35 .831 

3 9 45 35 .361 

4 9 30 34 .891 

5 9 23 34 .421 

6 10 22 33 .968 

7 10 18 33 .566 

8 10 16 33 .164 

9 10 14 32 .762 

10 10 12 32 .359 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Impact of c on K ∗ , N ∗ and π ∗ . 

c K ∗ N ∗ π ∗

0 .2 17 61 43 .880 

0 .4 13 41 40 .917 

0 .6 11 32 38 .495 

0 .8 10 27 36 .370 

1 .0 9 23 34 .421 

1 .2 9 23 32 .621 

1 .4 8 18 30 .939 

1 .6 8 18 29 .339 

1 .8 7 14 27 .745 

2 .0 7 14 26 .345 

Fig. 3. Impact of x on w 

∗ . 
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(relative to the market demand λ), the contractor would increase

K 

∗ as a higher productivity justifies a large crew size to meet the

high market demand. However, when μ is high, the contractor

would instead reduce K 

∗ to cut labor cost, as the market demand

no longer justifies the large crew size. The optimal profit π ∗ always

increases as μ increases. 

Table 4 illustrates the impact of abandonment rate α on K 

∗, N 

∗

and π ∗. We observe that the contractor can cope with a small in-

crease in abandonment rate α by simply adjusting N 

∗ while keep-

ing K 

∗ constant. For large increases in α, the contractor would gen-

erally need to increase his crew size K 

∗ to reduce customer aban-

donment, except at very high levels of abandonment rate in which

the contractor would instead reduce K 

∗ as it is no longer profitable

for him to maintain a large crew size. The optimal profit π ∗ de-

creases as α increases, showing again the intuitive result that a

higher customer abandonment rate would always hurt the contrac-

tor’s profit. 

We next examine how the cost parameters d and g affect the

joint optimal policy, and the results are summarized in Tables 5

and 6 . Here, we observe the same pattern as before. To cope with

small changes in the parameter value ( d or g ), the contractor could

simply adjust his optimal admission policy N 

∗ while keeping K 

∗

constant; and to cope with large changes in the parameter value,

the contractor also needs to adjust his crew size K 

∗. Furthermore,

as long as the optimal value of K 

∗ is the same within the same

range of parameter values, the results provided in Tables 5 and
 are consistent with Statement 2 of Proposition 2 for a fixed value

f K : the contractor should increase his admission policy N 

∗ as d

ncreases (or g decreases). As expected, the optimal profit π ∗ al-

ays increases as d increases or g decreases. 

Finally, Table 7 illustrates the impact of the crew cost c on K 

∗,

 

∗ and π ∗. We observe that as c increases, the contractor needs

o reduce the crew size K and then adjust the admission policy N

ccordingly. Also, the optimal profit π ∗ decreases as c increases. 

.3. Worker productivity 

In practice, the contractor can increase the wage c to entice the

orkers to increase μ, i.e., when the service rate μ is a function of

 . We conducted a numerical experiment by considering the case

hen μ(c) = μ0 c 
x , where wage c ≥ 1 and x ≥ 0 denotes the pro-

uctivity index. Notice that the case x = 0 corresponds to the base

ase when μ(c) = μ0 for any wage c so that the service rate μ is

ndependent of wage c . 

In the first set of numerical experiments, we consider a fixed

rew size K . However, we consider the case when the contractor

o choose the optimal admission policy N 

∗ and the optimal wage

 

∗. Essentially, we solve the contractor’s problem: max c , N π ( N , c ),

here π ( N , c ) as given in (9) with μ(c) = μ0 c 
x . Fig. 3 illustrates

ow the productivity index x affects the optimal wage c ∗. Based

n our numerical results, we have the following observations: 

• For fixed K and λ, the optimal c ∗ is non-monotone in the pro-

ductivity index x . In other words, it is not always optimal for

the contractor to offer a higher wage c ∗ for a higher productiv-

ity index x . 
• For fixed λ (e.g., λ = 5 ) and for any x , the optimal wage c ∗ de-

creases as crew size K increases. When there is sufficient capac-

ity (i.e., crew size) to meet existing market demand, it is unnec-

essary for the contractor to offer a higher wage to increase the
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Table 8 

Impact of x on c ∗ , K ∗ and π ∗ . 

x c ∗ K ∗ π ∗

0 .1 1 .00 9 34 .421 

0 .9 1 .00 9 34 .421 

0 .95 1 .01 9 34 .423 

0 .99 1 .03 9 34 .432 

1 .00 1 .03 9 34 .435 

1 .00 9 .30 1 34 .435 

1 .01 9 .21 1 34 .640 

1 .1 8 .43 1 36 .277 

1 .5 6 .16 1 40 .718 

2 .0 4 .72 1 43 .341 
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Table 9 

Impact of ε1 on r ∗ , K ∗ and π ∗ . 

ε1 r ∗ K ∗ π ∗

0 .0 10 .00 9 34 .421 

0 .1 10 .00 4 10 .301 

0 .2 5 .87 3 3 .486 

0 .24 4 .89 3 2 .405 

0 .25 5 .30 2 2 .205 

0 .3 4 .42 2 1 .504 

0 .4 3 .31 2 0 .628 

0 .45 2 .95 2 0 .338 

0 .5 3 .32 1 0 .188 

0 .6 2 .77 1 −0 .010 

0 .7 2 .37 1 −0 .151 

Table 10 

Joint impact of ε2 and ε3 on d ∗ , K ∗ and π ∗ . 

Optimal d ∗

ε2 ε3 = 0 1 2 3 4 5 

0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 

0.01 1 .0 10 .0 10 .0 9 .2 8 .0 7 .2 

0.02 1 .0 4 .6 5 .8 5 .2 4 .8 4 .4 

0.03 1 .0 1 .0 2 .0 3 .0 3 .7 3 .5 

0.04 1 .0 1 .0 1 .0 1 .5 2 .3 2 .2 

0.05 1 .0 1 .0 1 .0 1 .0 1 .2 1 .8 

Optimal K ∗

ε2 ε3 = 0 1 2 3 4 5 

0 6 6 6 6 6 6 

0.01 6 5 5 5 5 5 

0.02 9 7 6 6 6 6 

0.03 9 9 8 7 6 6 

0.04 9 9 9 8 7 7 

0.05 9 9 9 8 8 7 

Optimal π ∗

ε2 ε3 = 0 1 2 3 4 5 

0 39 .62 41 .65 42 .85 43 .48 43 .77 43 .89 

0.01 35 .62 37 .51 38 .76 39 .52 40 .10 40 .55 

0.02 33 .65 34 .29 35 .66 36 .76 37 .59 38 .25 

0.03 33 .27 33 .75 34 .29 35 .17 35 .97 36 .71 

0.04 32 .89 33 .37 33 .82 34 .31 34 .95 35 .58 

0.05 32 .51 32 .98 33 .43 33 .86 34 .32 34 .81 
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crew’s service rate. Instead, it is optimal for the contractor to

reduce the optimal wage c ∗. 
• For any fixed K (e.g., K = 5 ) and for any x , the optimal wage

c ∗ increases as λ increases, which shows the intuitive result

that an increase in worker productivity becomes more attrac-

tive as market demand increases, resulting in a higher optimal

wage c ∗. 

In the second set of numerical experiment, we allow the con-

ractor to choose the optimal crew size K 

∗, the optimal admission

olicy N 

∗, and the optimal wage c ∗ by solving max c , N , K π ( N , K , c ).

he results are summarized in Table 8 . For x < 1, the optimal crew

ize K 

∗ is equal to 9, while the optimal c ∗ remains at the mini-

um value of 1 except when x is very close to 1. This suggests that

he contractor should deploy the strategy of keeping a low wage

hile maintaining a high crew size when the marginal increase in

orker productivity μ is decreasing in wage c (i.e., when x < 1).

hen x > 1, the optimal crew size K is always equal to the mini-

um value of one, while the optimal c ∗ is above 1. In other words,

he contractor should deploy the strategy of keeping the minimum

rew size while increasing the crew wage when the marginal in-

rease in worker productivity is increasing in wage c (i.e., when

 > 1). The contractor is indifferent to these two strategies when

 = 1 . Also, observe that the expected profit always increases as

he productivity index x increases. 

.4. Pricing decisions 

We next analyze the impact of project pricing in terms of the

roject price r and the upfront deposit d , and consider the situa-

ion where the market demand λ is dependent on both r and d . To

apture the notion that a higher price r or a higher deposit d could

ead to a lower customer demand, we consider the case when the

arket demand λ(r, d) = λ0 e 
−ε1 r−ε2 d , where ε1 ≥ 0 and ε2 ≥ 0

easure the demand elasticity with respect to project price r and

pfront deposit fraction d , respectively. Also, to model the fact that

 higher deposit fraction 

d 
r would deter customers from abandon-

ng their project, we shall consider the case when the abandon-

ent rate α(d, r) = α0 e 
−ε3 ( 

d 
r ) , where ε3 ≥ 0 measures the aban-

onment elasticity with respect to deposit fraction 

d 
r . 

.4.1. Project price r 

We first study how the demand elasticity ε1 affects the opti-

al price r ∗ by solving the contractor’s problem: max r , N , K π ( N , K ,

 ) with market demand λ( r , d ) and abandonment rate α( r , d ) as

tated above. To isolate the impact of r in this study, we keep 

d 
r 

nd 

g 
r constant so that d 

r = 0 . 1 , g 
r = 0 . 5 , and we set μ = 1 , c = 1 ,

0 = 5 , ε2 = 0 , α0 = 0 . 5 , and ε3 = 0 . Also, we consider the case

hen the project price r lies within the range [1, 10]. Table 9

hows the impact of demand elasticity ε1 on the optimal values

f r ∗ and K 

∗, and the optimal profit π ∗. Based on our numerical

esults, we have the following observations: 
• The optimal project price r ∗ is decreasing in ε1 when K 

∗ is con-

stant. For a small increase in price sensitivity ε1 , the contractor

can keep the crew size the same by simply lowering the project

price r . 
• The optimal crew size K 

∗ is decreasing in ε1 . Besides the op-

timal admission policy N 

∗, the contractor has two basic levers

to manage profit: 1) lower the project price r to boost demand,

or 2) reduce the crew size K to contain cost. When customers

become more price sensitive (as ε1 increases significantly), it is

no longer sufficient for the contractor to simply reduce project

price r , he now needs to reduce the crew size K to contain cost

as well. 
• The optimal profit π ∗ is decreasing in ε1 . This result is intu-

itive: the profit decreases as customers become more price sen-

sitive. 

.4.2. Upfront deposit d 

To examine the issue of deposit d that affects the market de-

and λ( r , d ) and the abandonment rate α( r , d ), we fix r = 10 and

1 = 0 , and solve the problem max d , N , K π ( N , K , d ). Here, we con-

ider the case when d lies within the range [1, 10] so that the de-

osit ratio d / r lies within the range [0.1, 1]. Table 10 illustrates the

oint impact of demand elasticity ε2 and the abandonment elastic-

ty ε3 on the optimal values of d ∗ and K 

∗, and the optimal profit
∗. 
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Table 11 

Joint impact of ε1 , ε2 and ε3 on r ∗ , d ∗ and K ∗ . 

ε3 = 1 ε3 = 3 ε3 = 5 

ε1 ε2 r ∗ d ∗
r ∗ K ∗ r ∗ d ∗

r ∗ K ∗ r ∗ d ∗
r ∗ K ∗

0 .1 0 .01 10 .0 1 .00 2 9 .8 1 .00 2 9 .9 0 .81 2 

0 .03 8 .5 1 .00 2 9 .3 0 .71 2 9 .7 0 .56 2 

0 .05 10 .0 0 .10 4 9 .4 0 .34 3 9 .5 0 .45 2 

0 .2 0 .01 5 .2 1 .00 2 5 .1 1 .00 2 5 .1 0 .93 2 

0 .03 5 .4 1 .00 1 4 .8 0 .94 2 4 .9 0 .72 2 

0 .05 5 .0 1 .00 1 4 .7 0 .77 2 4 .8 0 .61 2 

0 .3 0 .01 4 .0 1 .00 1 4 .6 1 .00 1 5 .1 1 .00 1 

0 .03 3 .8 1 .00 1 4 .3 1 .00 1 4 .8 0 .91 1 

0 .05 3 .6 1 .00 1 4 .1 1 .00 1 4 .6 0 .84 1 

0 .5 0 .01 2 .4 1 .00 1 2 .8 1 .00 1 3 .1 1 .00 1 

0 .03 2 .4 1 .00 1 2 .7 1 .00 1 3 .0 0 .97 1 

0 .05 2 .3 1 .00 1 2 .6 1 .00 1 2 .9 0 .91 1 
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First, when ε2 = 0 , the market demand λ is independent of the

deposit d . Therefore, the contractor should always choose d ∗ = r

because the abandonment rate α is decreasing in d . Second, for

any fixed ε2 > 0, Table 10 shows that the optimal d ∗ is not mono-

tone in ε3 . The optimal deposit d ∗ first increases as ε3 increases

from zero, which indicates that the impact of d ∗ on abandonment

rate dominates the impact on market demand. However, the op-

timal d ∗ then decreases as ε3 increases further, suggesting that

the marginal reduction in abandonment rate no longer justifies the

corresponding decrease in market demand after ε3 exceeds a cer-

tain threshold. 

While the optimal d ∗ is not monotone in ε3 for any fixed ε2 >

0, the optimal crew size K 

∗ is decreasing in ε3 whenever there is

an increase in the optimal deposit d ∗. This result can be explained

as follows. When the contractor charges a higher deposit d ∗, the

market demand λ(r = 10 , d ∗) and the abandon rate α(r = 10 , d ∗)
decrease. To contain cost, it is optimal for the contractor to reduce

his crew size K 

∗. Also, the optimal profit π ∗ always increases as ε3 

increases, which shows that the contractor would always benefit

when the customers become less inclined to abandon their project

due to the deposit. 

We next consider the impact of ε2 when ε3 is fixed. When

ε3 = 0 , the deposit d does not affect the abandonment rate but it

does affect market demand. For this case, we observe that the opti-

mal deposit d ∗ decreases and the optimal crew size K 

∗ increases as

ε2 increases. This result is intuitive as the market demand becomes

more sensitive to the deposit, the contractor needs to reduce the

deposit to increase customer demand and also increase his crew

size to cope with the increased market demand. Next, for any ε3 

> 0 where the deposit d also affects the abandonment rate, it re-

mains valid that the optimal deposit d ∗ decreases and the optimal

crew size K 

∗ increases as ε2 increases for ε2 > 0. Also, the opti-

mal profit π ∗ always decreases as ε2 increases, which shows that

the contractor would always suffer when market demand becomes

more sensitive to the deposit. 

5.4.3. Joint decisions of r and d 

We now study the impact of ε1 , ε2 and ε3 on the joint optimal

pricing decisions of r ∗ and d ∗. To do so, we solve max r , d , N , K π ( N , K ,

d , r ). Table 11 shows the optimal price r ∗, the optimal deposit ratio
d ∗
r ∗ and the optimal crew size K 

∗ for different values of ε1 , ε2 and

ε3 . 

Based on our numerical results, we have the following observa-

tions: 

• Consider the set of parameter values under which the optimal

crew size K 

∗ remains the same. We observe that the optimal

price r ∗ decreases as ε1 or ε2 increases for any fixed value of

ε . This result is intuitive. When ε increases (i.e., customers
3 1 
become more price sensitive), the contractor should reduce the

project price r ∗. When ε2 increases (i.e., customers become sen-

sitive towards deposit d ), the contractor should reduce the de-

posit d ∗ and the project price r ∗ to stabilize demand λ and the

abandonment rate α. This also explains why the optimal de-

posit ratio d ∗
r ∗ decreases as ε2 or ε3 increases for any fixed value

of ε1 . 
• Consider large changes in the parameter value under which

the optimal crew size K 

∗ also changes. We observe that K 

∗ de-

creases as ε1 increases. This suggests that for a large increase in

ε1 , it is insufficient for the contractor to simply reduce price r ,

he now needs to reduce the crew size K to contain cost. This re-

sult is consistent with those given in Section 5.4.1 . However, K 

∗

does not necessarily increase or decrease as ε2 or ε3 increases.

For example, K 

∗ increases as ε2 increases when ε1 = 0 . 1 and

ε3 = 1 , while K 

∗ decreases as ε2 increases when ε1 = 0 . 2 and

ε3 = 1 . Similarly, K 

∗ increases as ε3 increases when ε1 = 0 . 2

and ε2 = 0 . 03 , while K 

∗ decreases as ε3 increases when ε1 =
0 . 1 and ε2 = 0 . 2 . 

. Extension to two-class systems 

We can extend our model to analyze a system with multi-

le project classes. Below we provide a discussion for the two-

lass system, but the analysis can be extended to multiple classes

n a straightforward manner. Suppose that there are two project

lasses with (possibly) different arrival, service and abandon rates.

e use the subscript i to denote the parameters associated with

lass i . Also, the project contractor has two types of team mem-

ers, where Type-1 members can handle both Class-1 and Class-

 projects, while Type-2 members can handle Class-2 projects

nly. As such, Type-1 members can be considered as more skill-

ul, whereas Class-1 projects require more skilled labor. It is thus

easonable to assume that the labor rates c 1 ≥ c 2 , and that the rev-

nues r 1 ≥ r 2 , although these assumptions are not required in our

nalysis. Let K i denote the available number of Type- i members,

nd define K = K 1 + K 2 . 

As for the single-class model, we assume that all K i Type-

 members are shared equally among all Class- i projects in the

ystem, i = 1 , 2 . Furthermore, when there is no available Class-

 project in the system, all K 1 Type-1 members will also be

hared equally, together with K 2 Type-2 members, among all avail-

ble Class-2 projects. All K 1 Type-1 members will be immediately

witched back to process any new arriving Class-1 project in the

ystem, i.e., a preemptive two-priority class system. 

Suppose that the contractor uses an admission policy ( N 1 , N 2 )

nder which the contractor will admit up to N 1 Class-1 projects

nd N 2 Class-2 projects in the system at any time point. Following

 similar approach as for the single-class system, we can perform

 steady-state analysis of the associated Markovian queueing sys-

em by deriving the following state transition equations, where the

tate ( i , j ) represents the number of Class-1 projects and Class-2

rojects in the system: 

(λ1 + λ2 ) p 0 , 0 = (K 1 μ1 + α1 ) p 1 , 0 + (Kμ2 + α2 ) p 0 , 1 

(λ1 + λ2 + Kμ2 + jα2 ) p 0 , j = λ2 p 0 , j−1 + (K 1 μ1 + α1 ) p 1 , j 

+ (Kμ2 + ( j + 1) α2 ) p 0 , j+1 , 0 < j < N 2 

(λ1 + λ2 + K 1 μ1 + iα1 ) p i, 0 = λ1 p i −1 , 0 

+ (K 1 μ1 + (i + 1) α1 ) p i +1 , 0 + (K 2 μ2 + α2 ) p i, 1 , 0 < i < N 1 

(λ1 + λ2 + K 1 μ1 + K 2 μ2 + iα1 + jα2 ) p i, j = λ1 p i −1 , j + λ2 p i, j−1 

+(K 1 μ1 + (i + 1) α1 ) p i +1 , j + (K 2 μ2 + ( j + 1) α2 ) p i, j+1 , 

0 < i < N 1 , 0 < j < N 2 

(λ2 + K 1 μ1 + K 2 μ2 + N 1 α1 + jα2 ) p N 1 , j = λ1 p N 1 −1 , j + λ2 p N 1 , j−1 

+ (K 2 μ2 + ( j + 1) α2 ) p N , j+1 , 0 < j < N 2 
1 
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(λ1 + K 1 μ1 + K 2 μ2 + iα1 + N 2 α2 ) p i,N 2 = λ1 p i −1 ,N 2 + λ2 p i,N 2 −1 

+ (K 1 μ1 + (i + 1) α1 ) p i +1 ,N 2 , 0 < i < N 1 

(λ2 + K 1 μ1 + N 1 α1 ) p N 1 , 0 = λ1 p N 1 −1 , 0 + (K 2 μ2 + α2 ) p N 1 , 1 

(λ1 + Kμ2 + N 2 α2 ) p 0 ,N 2 = λ2 p 0 ,N 2 −1 + (K 1 μ1 + α1 ) p 1 ,N 2 

(K 1 μ1 +K 2 μ2 + N 1 α1 +N 2 α2 ) p N 1 ,N 2 =λ1 p N 1 −1 ,N 2 + λ2 p N 1 ,N 2 −1 (10) 

nd 

N 1 
 

i =0 

N 2 ∑ 

j=0 

p i, j = 1 . 

Unfortunately, there does not exist a product-form solution for

he steady-state probabilities p i , j given in (10) from which we can

erive analytical expressions for the various system performance

easures. Although it is feasible to solve the above set of linear

quations numerically to compute the steady-state probabilities p i , j 
nd to derive the associated system performance measures, this

umerical approach poses challenges for the purpose of searching

or the optimal values of ( N 1 , N 2 ) and ( K 1 , K 2 ). Therefore, we pro-

ose the following efficient scheme for approximating the system

erformance measures. 

First, observe that the system performance for Class-1 projects

s the same as that for the single-class system with parameters ( λ1 ,

1 , α1 , K 1 , N 1 ), as all K 1 Type-1 members will be assigned to work

n any available Class-1 projects at any point in time. In particular,

he respective idle probability and rejection probability for Class-1

rojects are given by 

 1 = 

{ 

1 + 

N 1 ∑ 

n =1 

n ∏ 

j=1 

λ1 

(K 1 μ1 + jα1 ) 

} −1 

, (11) 

nd 

 1 = 

N 1 ∏ 

j=1 

λ1 

(K 1 μ1 + jα1 ) 
· I 1 . (12) 

sing (8) , the corresponding abandonment probability for Class-1

rojects are given by 

 1 = 1 − K 1 μ1 (1 − I 1 ) 

λ1 (1 − R 1 ) 
. (13) 

Second, the system performance for Class-2 projects is simi-

ar to that for the single-class system with parameters ( λ2 , μ2 ,

2 , K 2 , N 2 ) except that when there is no available Class-1 project

n the system, all K 1 Type-1 members will also be used to han-

le the available Class-2 projects. Thus, we will approximate the

ystem performance for Class-2 projects by a single-class system

ith parameters (λ2 , μ2 , α2 , K 1 I 1 + K 2 , N 2 ) , since I 1 is equal to the

robability that there is no available Class-1 project in the system,

nd thus K 1 I 1 represents the expected number of Type-1 mem-

ers working on Class-2 projects. Then, the respective idle proba-

ility, rejection probability and abandonment probability for Class-

 projects can be approximated by 

˜ 
 2 = 

{ 

1 + 

N 2 ∑ 

n =1 

n ∏ 

j=1 

λ2 

(K 1 I 1 + K 2 ) μ2 + jα2 ) 

} −1 

(14) 

˜ 
 2 = 

N 2 ∏ 

j=1 

λ2 

(K 1 I 1 + K 2 ) μ2 + jα2 ) 
· ˜ I 2 (15) 
˜ 
 2 = 1 − (K 1 I 1 + K 2 ) μ2 (1 − ˜ I 2 ) 

λ2 (1 − ˜ R 2 ) 
. (16) 

We performed a comprehensive numerical study to evaluate the

ccuracy of this above scheme for approximating the three key

easures given in (14) –(16) . For our base case, we set λ1 = λ2 = 5 ,

1 = μ2 = 1 , α1 = α2 = 0 . 5 , K 1 = N 1 = 5 , and K 2 = N 2 = 5 , and we

btain 

˜ I 2 = . 347 and I 2 = . 337 , ˜ R 2 = . 039 and R 2 = . 045 , and 

˜ A 2 =
 148 and A 2 = . 155 . 

We next illustrate how the different model parameters can af-

ect the approximation errors of the three probability measures as

efined by I err 
2 

= ̃

 I 2 − I 2 , R err 
2 

= 

˜ R 2 − R 2 , and A 

err 
2 

= 

˜ A 2 − A 2 . In par-

icular, we varied the values of each of the model parameters as

iven in the base case within the following ranges: (i) λ1 ∈ [1, 10];

ii) μ1 ∈ [0.1, 5]; (iii) α1 ∈ [0.1, 5]; (iv) K 1 ∈ [1, 15] (with N 1 = K 1 );

nd (v) K 2 ∈ [1, 9] (with N 2 = K 2 ). (We also examined the impact

f the admission thresholds, N 1 and N 2 , on the approximation er-

ors but do not see any significant impact, and so we omit those

esults in our discussions below.) 

Figs. 4 –6 show the three approximation errors, I err 
2 

, R err 
2 

and

 

err 
2 

, as each model parameter varies between the range given

bove. From our numerical results, we have the following two

ain observations: 

• The approximation consistently over-estimates the system per-

formance for Class-2 projects, and gives a higher idle probabil-

ity ( I err 
2 

> 0 ), and smaller rejection and abandonment probabili-

ties ( R err 
2 

< 0 and A 

err 
2 

< 0 ) than the true values. 
• The approximation errors are generally very small (around 0.01)

except when K 1 I 1 is relatively large when compared to K 2 . 

We can explain these two observations as follows. The approx-

mation is based on the performance of a single-class system with

(K 1 I 1 + K 2 ) members handling Class-2 projects. While the K 2 Type-

 members are always available, the K 1 Type-1 members is only

vailable with probability I 1 . In other words, the approximation

imply ignores the supply variability of Type-1 members, and thus

esults in over-estimating the system performance. Furthermore,

he impact of the underlying supply variability is especially sig-

ificant when K 1 I 1 is relatively high when compared to K 2 . 

Accordingly, we can approximate the profit function (see (1) )

s 

˜ (K 1 , K 2 , N 1 , N 2 ) = 

{ 

λ1 (1 − R 1 )[(1 − A 1 ) r 1 + A 1 (d 1 − g 1 )] − c 1 K 1 

}
+ 

{ 

λ2 (1 − ˜ R 2 )[(1 − ˜ A 2 ) r 2 + 

˜ A 2 (d 2 − g 2 )] − c 2 K 2 

} 

. (17)

or any fixed crew size ( K 1 , K 2 ) and admission policy ( N 1 , N 2 ). We

an use the approximate profit function (17) to search for the op-

imal crew size and admission policy. Table 12 summarizes the re-

ult of our numerical experiments. For this set of numerical re-

ults, we set λ1 = λ2 = 5 , μ1 = μ2 = 1 , α1 = α2 = 0 . 5 , with differ-

nt values of c 1 , c 2 , r 1 and r 2 . Also, we assume that d i = 0 . 1 r i and

 i = r i for i = 1 , 2 in each case. 

Table 12 shows the optimal crew size and admission policy

ased on the approximate profit function given in (17) with the

orresponding (approximate) optimal profit. In each case, we also

how the true optimal crew sizes and admission policy with the

orresponding optimal profit. This was done by solving the steady-

tate probabilities from (10) for each set of fixed values ( K 1 , K 2 , N 1 ,

 2 ) from which we can compute the exact profit and then by con-

ucting an exhaustive numerical search for the optimal ( K 1 , K 2 , N 1 ,

 2 ). 

We can observe from Table 12 that when the value of c 2 is

uch smaller than c 1 , the approximation gives near-optimal re-

ults with the optimal profit being very close to the exact opti-

al value. As the value of c is close to c , the approximate profit
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Fig. 4. Impact of model parameters on I err 
2 . 

Fig. 5. Impact of model parameters on R err 
2 . 

Fig. 6. Impact of model parameters on A err 
2 . 
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Table 12 

Optimal crew size and admission policy. 

Based on approximation Exact solution 

c 1 c 2 r 1 r 2 (K ∗1 , K 
∗
2 ) (N ∗1 , N 

∗
2 ) ˜ π ∗ (K ∗1 , K 

∗
2 ) (N ∗1 , N 

∗
2 ) π ∗

5 1 10 1 (5,0) (4,1) 4 .86 (5,0) (4,1) 4 .63 

3 (5,5) (4,6) 9 .67 (5,5) (4,6) 9 .41 

5 (6,6) (4,8) 17 .23 (5,7) (4,9) 16 .97 

7 (6,7) (5,10) 25 .31 (5,8) (4,10) 25 .06 

10 (5,9) (4,10) 37 .94 (5,9) (4,10) 37 .68 

5 2 10 2 (6,0) (5,2) 5 .68 (6,0) (5,2) 5 .11 

4 (6,3) (5,4) 9 .21 (6,3) (4,4) 8 .46 

6 (6,4) (4,5) 15 .70 (6,5) (4,7) 14 .98 

8 (6,5) (4,7) 23 .09 (6,6) (5,8) 22 .31 

10 (6,6) (4,9) 30 .87 (6,6) (4,8) 30 .02 

5 3 10 3 (6,0) (4,2) 6 .75 (6,0) (4,2) 5 .91 

5 (7,1) (5,3) 10 .01 (7,2) (5,4) 8 .44 

7 (7,3) (5,5) 15 .68 (7,3) (5,5) 14 .07 

10 (7,4) (5,6) 26 .05 (6,5) (4,7) 24 .36 

5 4 10 4 (7,0) (5,2) 8 .25 (7,0) (5,2) 6 .79 

6 (8,0) (5,3) 12 .04 (8,0) (5,3) 9 .66 

8 (10,0) (8,5) 17 .22 (8,2) (5,5) 14 .38 

10 (9,1) (6,5) 23 .48 (8,3) (5,6) 20 .62 
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hows a larger error as compared to the exact profit, it becomes

eneficial to have mostly Type-1 members in these cases. As such,

 1 I 1 is large when compared to K 2 , which results in larger ap-

roximation errors as discussed earlier. However, the optimal crew

ize and admission policy using the approximation are still very

lose to the true optimal values. Thus, our numerical results sug-

est that the approximation method can still be used to provide

ear-optimal results even for such scenarios. 

. Conclusion 

When dealing with uncertain customer arrivals, a contractor

as incentive to accept multiple projects to keep his crew busy by

tringing along his customers. By doing so, the contractor faces the

isk of customer abandonment and customer complaint. To quan-

ify this tradeoff, we have presented a queuing model to examine

he optimal admission policy in terms of the maximum number of

rojects that a contractor should accept at any point in time. 

Our steady state analysis enables us to obtain closed form ex-

ressions for various system performance measures, from which

e can analyze the optimal admission policy and the optimal crew

ize. Our model results can be useful for small project contrac-

ors to deal with the underlying market uncertainty. For instance, a

ontract can apply our model to determine the optimal admission

olicy as a tactical decision to tackle short-term seasonal demand

uctuations. Furthermore, the contractor can utilize the model re-

ults to address the strategic decisions of determining the optimal

rew size or improving the worker productivity to deal with long-

erm demand changes. Finally, our model can also be applied to

elect the appropriate pricing strategy, in addition to optimal ad-

ission policy and crew size management, to cope with the un-

erlying market uncertainty. 

Ultimately, our analysis indicates that the contractor needs to

arefully select his operating and pricing decisions in order to

trike an optimal balance between keeping crew members busy

nd keeping customers happy. Furthermore, we have extended our

odel to allow for different types of projects with different arrival,

ervice, and abandonment characteristics. 

Our paper serves as an initial attempt to examine a new re-

earch topic arising from project management. There are other re-

earch questions that deserve further examination. For example,

ur model assumes that customers will abandon their projects ac-

ording to some constant abandonment rate. In practice, customers

re more likely to abandon their projects when the waiting time
xceeds the completion time quoted by the contractor. It would be

nteresting to extend our model to analyze this situation. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ejor.2016.02.052 . 
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