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Abstract 

Exposure to air pollutants has been associated with adverse health outcomes in adults and children who were prenatally exposed. 
In addition to reducing exposure to air pollutants, it is important to identify their biologic targets in order to mitigate the health 
consequences of exposure. One molecular change associated with prenatal exposure to air pollutants is DNA methylation (DNAm), 
which has been associated with changes in placenta and cord blood tissues at birth. However, little is known about how air pollution 
exposure impacts the sperm epigenome, which could provide important insights into the mechanism of transmission to offspring. In 
the present study, we explored whether exposure to particulate matter less than 2.5 microns in diameter, particulate matter less than 
10 microns in diameter, nitrogen dioxide (NO2), or ozone (O3) was associated with DNAm in sperm contributed by participants in the 
Early Autism Risk Longitudinal Investigation prospective pregnancy cohort. Air pollution exposure measurements were calculated as 
the average exposure for each pollutant measured within 4 weeks prior to the date of sample collection. Using array-based genome-
scale methylation analyses, we identified 80, 96, 35, and 67 differentially methylated regions (DMRs) significantly associated with 
particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, NO2, and O3, respectively. 
While no DMRs were associated with exposure to all four pollutants, we found that genes overlapping exposure-related DMRs had 
a shared enrichment for gene ontology biological processes related to neurodevelopment. Together, these data provide compelling 
support for the hypothesis that paternal exposure to air pollution impacts DNAm in sperm, particularly in regions implicated in 
neurodevelopment.

Key words: air pollution; sperm; DNA methylation; epigenetics; genome-scale

Introduction
Prenatal exposure to air pollution is an environmental risk factor 

for adverse health outcomes in offspring including neurodevel-

opmental disorders such as autism, cardiometabolic conditions, 

and immune dysregulation [1–4]. For example, increased prenatal 

exposure to particulate matter less than 2.5 microns in diameter 

(PM2.5) is associated with an increased risk of autism in children, 

with stronger associations found in boys compared to girls [5]. 

Prenatal exposure to outdoor air pollutants was associated with 

delayed physical growth in the early childhood years [3]. Expo-
sure to higher levels of traffic-related air pollutants including 
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nitrogen dioxide (NO2), PM2.5, and particulate matter less than 10 
microns in diameter (PM10) during pregnancy and early infancy 
was separately associated with increased autism risk [6], as well as 
altered nasal mucosal and immune blood profiles during infancy, 
and increased risk of asthma and allergic rhinitis at age 6 years 
[4]. More broadly, prenatal exposure to air pollution has been 
associated with delays in cognitive development, deficits in atten-
tion and memory, and brain volume changes in offspring [7, 8]. 
In mice, prenatal exposure to levels of concentrated ambient 
ultrafine particles, mimicking high traffic areas of the USA, was 
associated with neurodevelopmental toxicity, specifically in male
offspring [9].
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Air pollution exposure in men has been associated with 
DNA fragmentation in sperm [10], reduced semen quality [11], 
decreased sperm motility [12], and aberrant sperm motion [12]. 
A recent systematic meta-analysis reported that outdoor air pol-
lution was significantly associated with a suite of impaired semen 
parameters including decreased semen volume, low sperm con-
centration, impaired progressive and total motility, and abnormal 
sperm morphology rates [13]. These findings are consistent for 
both gaseous and particulate matter pollutants. In mice, simu-
lated wildfire smoke was found to significantly alter sperm DNA 
methylation (DNAm) patterns [14].

Despite studies demonstrating the deleterious effects of air 
pollution exposure on sperm, little is known about how air pollu-
tion exposure impacts the human sperm epigenome and whether 
this might be an important paternal environmental risk factor 
for health outcomes in their offspring. This is relevant given that 
the sperm DNA methylome is impacted by numerous environ-
mental and lifestyle exposures. For example, there are known 
age-related changes to the sperm methylome [15], and exposures 
such as obesity [16, 17], high-fat diet [18], tobacco [19], cannabis 
[20, 21], and endocrine disrupting compounds [22] have all been 
associated with sperm DNAm differences. Furthermore, there is 
evidence to support that sperm DNAm is important for and asso-
ciated with developmental outcomes in children. Previously in 
the Early Autism Risk Longitudinal Investigation (EARLI) cohort, 
we demonstrated that sperm DNAm was associated with off-
spring quantitative autistic traits when children were 12 [23] and 
36 months old [24]. However, to our knowledge, the impact of air 
pollution on the human sperm DNAm has not been rigorously 
investigated. Expanding our understanding of whether air pollu-
tion influences the human sperm DNA methylome will help us 
understand whether these gametic epigenetic modifications are 
a plausible mechanism through which exposure to air pollution 
might influence child health outcomes.

The current study was conducted in the EARLI cohort. EARLI is 
a prospective pregnancy cohort focused on the younger sibling of 
a child already diagnosed with autism. Given the high rate of sib-
ling recurrence for autism, there is an increased likelihood that the 
younger sibling will receive an autism diagnosis [25]. Previously 
in EARLI, we demonstrated that prenatal air pollution exposure 
was associated with epigenetic changes in cord blood and placenta 
tissues [26]; however, the impact of this exposure on paternal epi-
genetic changes remains largely unknown. To address this gap, the 
primary objective of this study was to determine whether expo-
sure to the traffic-related air pollutants PM2.5, PM10, NO2, or ozone 
(O3) is associated with DNAm in sperm in EARLI.

Results
Analytic sample description
Bivariate associations between study population characteristics 
and the four air pollutant measures are presented in Table 1. 
Fathers were predominantly White (76%), and their ages ranged 
from 27.6 to 49.9 years, with an average age of 36.3 years (Table 1). 
There were no significant differences in the mean exposure level 
by paternal smoking status, education level, or self-reported race 
for any of the four air pollutants. There was a significant inverse 
association between paternal age and PM10 exposure (P = 0.0001), 
where younger fathers had higher levels of exposure and NO2

exposure was higher among fathers living on the east coast 
(P < 0.05; Table 1). 

The average [mean (SD)] levels of PM2.5, PM10, NO2, and O3 expo-
sure were 10.58 μg/m3 (4.13), 19.06 μg/m3 (5.55), 12.99 ppb (5.11), 

and 40.43 ppm (12.77), respectively (Table 2). According to the 
National Ambient Air Quality Standards for these four pollutants, 
these 4-week averages are below the Environmental Protection 
Agenency (EPA) standards for these pollutants. PM2.5 and PM10

were moderately but significantly correlated with one another 
(r = 0.43), as were PM10 and O3 (r = 0.57) and NO2 and O3 (r = −0.61) 
(Table 2). 

PM2.5-associated differentially methylated 
regions in sperm
We identified 3996 differentially methylated regions (DMRs) in 
sperm associated with PM2.5 levels, of which 80 reached genome-
scale statistical significance (family-wise error rate (FWER) 
P < 0.05, Fig. 1, left). When examining the directionality of the 
relationship between PM2.5 exposure and DNAm, we observed 
that for 71 (89%) of the 80 significant DMRs, higher levels of 
PM2.5 exposure were associated with less DNAm, i.e. hypomethyla-
tion, in sperm. The genes annotated to the three most significant 
DMRs were O-6-methylguanine-DNA methyltransferase (MGMT), 
a gene involved in DNA repair mechanisms [27]; SET and MYND 
domain-containing 3 (SMYD3), which is a histone methyltrans-
ferase involved in chromatin organization and transcriptional 
regulation [28]; and POU Class 6 Homeobox 2 (POU6F2), a tran-
scriptional regulator involved in cellular differentiation [29] (Fig. 1, 
right). For both MGMT and POU6F2, higher levels of PM2.5 expo-
sure were associated with hypomethylated DNA, while the inverse 
relationship was observed for SMYD3. The average magnitudes of 
methylation difference across the highest and lowest quartiles of 
PM2.5 exposure were 7.5%, 14.3%, and 14.6% for MGMT, SMYD3, 
and POU6F2, respectively. The top 10 DMRs associated with PM2.5

are shown in Table 3a (complete DMR list given in Supplementary 
Table S2).

PM10-associated DMRs in sperm
We next examined the relationship between PM10 exposure and 
sperm DNAm. There were 2439 DMRs in sperm associated with 
PM10 exposure, of which 96 met our statistical significance thresh-
old (FWER P < 0.05, Fig. 2, left). When assessing proportions of 
hyper- and hypomethylated DMRs in response to PM10 exposure, 
we observed that for 71% of DMRs, higher levels of PM10 expo-
sure were associated with lower levels of methylation in sperm. 
This relationship is demonstrated by the patterns observed for the 
three most significant DMRs, as shown in Fig. 2 (right-hand side). 
For all three genes—MAGE Family Member E2 (MAGEE2), Chymase 
1 (CMA1), and RNA-Binding Fox-1 Homolog 1 (RBFOX1/A2BP1)—an 
inverse relationship was observed, where higher levels of PM10

exposure were associated with hypomethylated DNA in sperm. 
The magnitudes of methylation difference in sperm from men 
exposed to the highest and lowest quartiles of PM10 exposure 
were also notable and showed a dose–response relationship. For 
example, when comparing men exposed to the highest quartile of 
PM10 compared to the lowest quartile of PM10, the largest losses 
in methylation were observed at DMRs overlapping the genes 
Catenin Alpha 2 (CTNNA2), Neurexin 1 (NRXN1), and A2BP1, where 
sperm DNA was hypomethylated by 29.5%, 19.4%, and 19.2%, 
respectively. Looking across all four quartiles of PM10 exposure 
for A2BP1, we observed an example of a dose–response relation-
ship, where Q1, Q2, Q3, and Q4 methylation levels were 68.24%, 
58.74%, 54.32%, and 50.10%, respectively. Interestingly, all three of 
these genes play important roles in neurodevelopment and synap-
tic function [30–32]. The top 10 DMRs associated with PM10 are 
shown in Table 3b (complete DMR list given in Supplementary 
Table S3).
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Table 2: Between-pollutant correlations. Spearman correlations across pollutants examined

Mean (SD) PM2.5 PM10 NO2 O3

PM2.5 10.58. (4.13) 1 (0.00) 0.4336361 (0.007) 0.2651275 (0.108) 0.1782471 (0.283)
PM10 19.06 (5.55) 0.4336361 (0.007) 1 (0.00) −0.2664405 (0.106) 0.5708502 (0.00024)
NO2 12.99 (5.11) 0.2651275 (0.108) −0.2664405 (0.106) 1 (0.00) −0.6091476 (6.99E-05)
O3 40.43 (12.77) 0.1782471 (0.283) 0.5708502 (0.00024) −0.6091476 (6.99E-05) 1 (0.00)

Figure 1: (Left) Volcano plots for 3996 PM2.5 DMRs Y-axis shows the −log10(FWER P) for each DMR returned by the bump hunter algorithm after 10 000 
bootstrap permutations. X-axis is the CHARM DMR value, which corresponds to the smoothed effect estimate per DMR returned by bump hunter. 
Filled-in blue circles have FWER P < 0.05, open blue circles have FWER P < 0.1, and black circles have no nominal significance. There is no stratification 
by quartile. (Right) Methylation plots for the top three statistical DMRs (P < 1.0 × 10−4) identified using CHARM and PM2.5 exposure levels. The name of 
the gene to which the DMR is annotated is at the top of each panel. (top) MGMT, (middle) SMYD3, and (bottom) POU6F2. Panels show individual 
methylation levels at each probe by genomic position. Dotted vertical black lines represent the boundaries of the DMR, and colored lines represent the 
average methylation curve for samples grouped by quartiles of PM2.5 exposure—the exposure quartiles within each quartile are shown in the legend. 
The vertical colored dots represent the individual methylation levels for each individual at each genomic position. The direction of the colored lines 
demonstrates the direction of methylation change across the genomic positions captured by the DMR

NO2-associated DMRs in sperm
We identified 1649 sperm DMRs associated with NO2 exposure, 
with 35 reaching genome-scale statistical significance (FWER 
P < 0.05, Fig. 3, left), 63% of which were hypomethylated following 
exposure to the highest levels of NO2. The three most signifi-
cant sperm DMRs associated with NO2 exposure are displayed in 
right panel of Fig. 3, and the top 10 DMRs associated with NO2

are listed in Table 3c (complete DMR list given in Supplemen-
tary Table S4). For the DMRs located in C7orf4 and C1D nuclear 
receptor corepressor (C1D), higher levels of NO2 exposure were 
associated with lower levels of DNAm in sperm. The opposite rela-
tionship was observed for the DMR located in the Family with 
Sequence Similarity 13 Member A (FAM13A) gene. The largest 
magnitude methylation differences reached 31.1% hypomethyla-
tion in the Myosin IIIB (MYO1B) gene in sperm from individuals 
exposed to the highest levels of NO2 compared to the lowest and 
36.6% hypermethylation in the LHFPL Tetraspan Subfamily Mem-
ber 6 (LHFP) gene from individuals exposed to the highest levels of 
NO2 relative to those exposed to the lowest. FAM13A is reported 

to be involved in airway epithelium remodeling, with suspected 
roles in chronic obstructive pulmonary disease [33]; MYOB1 has 
functions important for cytoskeletal motor activity [34]; and LHFP
is a member of the LHFP superfamily of tetraspan transmem-
brane protein encoding genes, with a suspected role in gastric
cancer [35].

O3-associated DMRs in sperm
We identified 1922 sperm DMRs associated with O3 exposure levels 
around the time of conception, of which 67 reached a statistical 
significance threshold (FWER P < 0.05, Fig. 4, left). More than half of 
the DMRs (55%) showed decreases in methylation associated with 
higher levels of O3 exposure. The three most significant DMRs are 
shown in the right panel of Fig. 4, and the top 10 DMRs associated 
with O3 are shown in Table 3d (complete DMR list given in Supple-
mentary Table S5). For all three of these genes—Catenin Delta 1 
(CTNND1), LOC646982, and MLLT3 Super Elongation Complex Sub-
unit (MLLT3)—higher levels of O3 exposure were associated with 
increased methylation in sperm. For many of the DMRs, large 
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Figure 2: (Left) Volcano plots for 2439 PM10 DMRs Y-axis show the −log10(FWER P) for each DMR returned by the bump hunter algorithm after 10 000 
bootstrap permutations. X-axis is the CHARM DMR value which corresponds to the smoothed effect estimate per DMR returned by bump hunter. 
Filled-in blue circles have FWER P < 0.05, open blue circles have FWER P < 0.1, and black circles have no nominal significance. There is no stratification 
by quartile. (Right) Methylation plots for the top three statistical DMRs (P < 1.0×10−4) identified using CHARM and PM10 exposure levels. The name of 
the gene to which the DMR is annotated is at the top of each panel. (Top) MAGEE2, (middle) CMA1, and (bottom) A2BP1. Panels show individual 
methylation levels at each probe by genomic position. Dotted vertical black lines represent the boundaries of the DMR, and colored lines represent the 
average methylation curve for samples grouped by quartiles of PM10 exposure—the exposure quartiles within each quartile are shown in the legend. 
The vertical colored dots represent the individual methylation levels for each individual at each genomic position. The direction of the colored lines 
demonstrates the direction of methylation change across the genomic positions captured by the DMR

magnitudes of change in sperm methylation levels were observed 
in men exposed to the highest levels of O3 compared to those 
with the lowest exposure. For example, in the gene Diacylglycerol 
Kinase Gamma (DGKG), sperm from men exposed to the highest 
levels of O3 was 35.5% hypomethylated relative to sperm from 
men exposed to the lowest levels of O3. In the gene Mannose 
Binding Lectin 2 (MBL2), sperm DNAm from men exposed to the 
highest O3 levels was hypermethylated by 39.6% relative to those 
exposed to the lowest O3 level. Interestingly, there were four differ-
ent intronic regions of the gene CUB and Sushi Multiple Domains 
1 (CSMD1) that were significantly associated with O3 exposure, of 
which the majority were hypomethylated with higher exposures. 
This gene is expressed in multiple brain regions, and it has pre-
dicted functions in neurobehavioral processes such as learning 
and memory [36].

Cross-platform validation of our air 
pollutant-associated DMRs
To validate the DNAm changes, we observed using measure-
ments from the Comprehensive High-throughput Arrays for Rel-
ative Methylation (CHARM) array and we used methylation data 
from an independent platform: the Illumina 450 K array, a highly 
reproducible methylation measurement method. Supplementary 
Table S6a–d shows the degree of association between 450 K vari-
ables of each of the estimated surrogate variables (SVs) for all 
four pollutants. We extracted 450 K methylation probes located 
within 500 base pairs (bp) of the pollutant-associated CHARM 
DMR boundaries. This was possible for 39 (48.75%) of the 80 

DMRs identified for PM2.5, 30 (31.25%) of the 96 PM10-associated 
DMRs, 13 (37%) of 35 NO2, and 19 (28.36%) of 67 O3. The direction 
of association between the pollutant and DNAm was consis-
tent across the two platforms for 36 of the 39 PM2.5-associated 
regions (rho = 0.34, Supplementary Fig. S1a), 28 of 30 PM10-
associated regions (rho = 0.75, Supplementary Fig. S1b), 5 of 13 
NO2-associated regions (rho = −0.06, Supplementary Fig. S1c), and 
17 of 19 O3-associated regions (rho = 0.76, Supplementary Fig. S1d).

Cross-pollutant analyses
Comparisons across all pollutants revealed no DMRs that were 
associated with all four pollutants, although there were DMRs that 
were in common across two or three of the pollutants (Fig. 5). 
Despite the pollutant estimates themselves not being correlated 
with each other, there were 14 DMRs in common between PM2.5

and O3, including multiple genes involved in learning memory 
and neurodevelopment such as CSMD1, CTNNA2, and Glutamate 
Ionotropic Receptor Kainate Type Subunit 1 (GRIK1). Between NO2

and O3, two pollutants that were correlated with each other, there 
were 13 DMRs in common, including three that were similarly 
associated with PM10: MLLT3, CTNND1, and Neuron Navigator 
3 (NAV3), which are involved in early developmental patterning 
and nervous system development. There were 12 DMRs in com-
mon between PM10 and O3, the only two pollutants from different 
classes (particulate matter vs. gaseous) that were correlated with 
one another. PM2.5 and PM10 were similarly correlated with one 
another and shared eight DMRs that were associated with both 
exposures.
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Figure 3: (Left) Volcano plots for 1649 NO2 DMRs Y-axis shows the −log10(FWER P) for each DMR returned by the bump hunter algorithm after 10 000 
bootstrap permutations. X-axis is the CHARM DMR value which corresponds to the smoothed effect estimate per DMR returned by bump hunter. 
Filled-in blue circles have FWER P < 0.05, open blue circles have FWER P < 0.1, and black circles have no nominal significance. There is no stratification 
by quartile. (Right) Methylation plots for the top three statistical DMRs (P < 1.0 × 10−4) identified using CHARM and NO2 exposure levels. The name of 
the gene to which the DMR is annotated is at the top of each panel. (Top) C7orf4, (middle) FAM13A, and (bottom) C1D. Panels show individual 
methylation levels at each probe by genomic position. Dotted vertical black lines represent the boundaries of the DMR, and colored lines represent the 
average methylation curve for samples grouped by quartiles of NO2 exposure—the exposure quartiles within each quartile are shown in the legend. 
The vertical colored dots represent the individual methylation levels for each individual at each genomic position. The direction of the colored lines 
demonstrates the direction of methylation change across the genomic positions captured by the DMR

When comparing the proportion of DMRs that were hyper- or 
hypomethylated in response to increasing levels of air pollutant, 
we observed differences in the patterns observed between partic-
ulate matter and gaseous pollutants. While the majority of DMRs 
for all four pollutants showed hypomethylation association with 
increasing levels of air pollution, the proportion of hypomethy-
lated DMRs for NO2 (63%) and O3 (55%) was substantially less than 
that for PM2.5 (89%) and PM10 (71%).

Gene ontology analyses
We performed gene enrichment analyses to identify biologi-
cal processes related to genes overlapping DMRs (FWER P < 0.1, 
located within 10 kb of the gene) that were associated with each 
exposure. We identified 59 gene ontology (GO) Biological Process 
terms associated with genes annotated to DMRs that were associ-
ated with PM2.5 exposure (Supplementary Table S7a, Fig. S2). Many 
of the GO terms identified were relevant to neurodevelopment 
such as “neurogenesis” and “nervous system development.” Ontol-
ogy pathway analyses revealed 32 GO Biological Process terms 
associated with genes overlapping PM10-associated DMRs (FWER 
P < 0.1, located within 10 kb of the gene). Similar to terms enriched 
among the PM2.5-associated genes, many of these terms were 
associated with neurogenesis and neurodevelopment, with addi-
tional enrichment for terms associated with immune response 
and activation (Supplementary Table S7b, Fig. S2). There were 

just two GO Biological Process terms associated with genes anno-
tated to NO2-associated DMRs (FWER P < 0.1, located within 10 kb 
of the gene, Supplementary Table S7c, Fig. S2): “regulation of 
transcription by RNA polymerase II” and “central nervous sys-
tem development.” Finally, there were seven GO Biological Process 
terms enriched for genes overlapping DMRs (FWER P < 0.1, within 
10 kb of the gene, Supplementary Table S7d, Fig. S2) associated 
with O3 exposure, although none of these terms were unique to 
O3 exposure.

There were some notable similarities between GO terms across 
pollutants (Supplementary Fig. S3). For example, there were three 
GO terms associated with PM2.5, PM10, and O3: “cell adhesion,” “bio-
logical adhesion,” and “cell morphogenesis.” Additionally, there 
were two GO terms associated with PM2.5 and O3, “modulation of 
chemical synaptic transmission” and “regulation of trans-synaptic 
signaling,” and two separate terms, “muscle cell differentiation” 
and “negative regulation of response to external stimulus,” were 
associated with both PM10 and O3. We observed the largest overlap 
in GO terms between PM2.5 and PM10, where 14 were in common, 
including “neurogenesis,” “cell–cell adhesion,” and “generation of 
neurons” (Supplementary Fig. S3). The two GO terms annotated to 
NO2 were not shared with any other pollutants.

Discussion
The main objective of this study was to identify regions of the 
genome showing differential methylation in sperm associated 
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Figure 4: (Left) Volcano plots for 1922 O3 DMRs Y-axis shows the −log10(FWER P) for each DMR returned by the bump hunter algorithm after 10 000 
bootstrap permutations. X-axis is the CHARM DMR value, which corresponds to the smoothed effect estimate per DMR returned by bump hunter. 
Filled-in blue circles have FWER P < 0.05, open blue circles have FWER P < 0.1, and black circles have no nominal significance. There is no stratification 
by quartile. (Right) Methylation plots for the top three statistical DMRs (P < 1.0 × 10−4) identified using CHARM and O3 exposure levels. The name of the 
gene to which the DMR is annotated is at the top of each panel. (Top) CTNND1, (middle) LOC646982, and (bottom) MLLT3. Panels show individual 
methylation levels at each probe by the genomic position. Dotted vertical black lines represent the boundaries of the DMR, and colored lines represent 
the average methylation curve for samples grouped by quartiles of O3 exposure—the exposure quartiles within each quartile are shown in the legend. 
The vertical colored dots represent the individual methylation levels for each individual at each genomic position. The direction of the colored lines 
across the X-axis demonstrates the direction of methylation change across the genomic positions captured by the DMR

Figure 5: Venn diagram of DMRs associated with one or more pollutant. No DMRs are associated with all four pollutants. PM2.5 = blue; PM10 = pink; 
NO2 = green; O3 = gray
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with paternal air pollution exposure levels, around the time of 
conception, in a prospective pregnancy cohort. We identified 
significant DNAm changes in sperm that were independently 
associated with each of the four traffic-related pollutants. Air pol-
lution exposures themselves were correlated across pollutants for 
PM2.5 and PM10, PM10 and O3, and NO2 and O3, and we identified 
multiple DMRs in sperm that were associated with two or three 
of the pollutants. While no individual DMRs overlapped across all 
four pollutants, we did find that genes involved in neurodevelop-
mental processes were enriched in all four pollutants. Together, 
these data provide compelling support for the hypothesis that 
paternal exposure to air pollution impacts DNAm in sperm, 
particularly in regions enriched for neurodevelopment. This 
could provide valuable biologic targets for future investigation 
into biologic mechanisms through which paternal preconception 
exposures may influence neurodevelopmental outcomes in their
children.

While we are among the first to comprehensively assess the 
impact of air pollution on the sperm DNA methylome, epidemi-
ologic studies have demonstrated that early life air pollution 
exposure impacts DNAm at other tissues that are relevant for 
child development. In a separate analysis conducted in the EARLI 
cohort, prenatal exposure to NO2 and O3 was associated with 
altered global and locus-specific DNAm in cord blood and placenta 
tissues [26]. In that study, infants with higher levels of exposure 
had lower aggregate levels of DNAm [26], which reflects a similar 
pattern to what we observed in this study where higher levels of 
air pollution exposure were primarily associated with lower levels 
of DNAm in sperm. Epidemiologic studies outside of EARLI have 
also identified DNAm changes in developmental tissues that are 
associated with prenatal air pollution exposure. In the Healthy 
Start Study, for example, prenatal PM2.5 exposure, particularly dur-
ing the third trimester, was associated with differential cord blood 
DNAm at multiple CpG sites, one of which was in the gene MGMT
[37]. In our study, the DMR in sperm most significantly associated 
with PM2.5 exposure was annotated to the same gene. While liter-
ature about the role of MGMT in neurodevelopment is sparse, it is 
well documented that differential DNAm of the MGMT promoter is 
important in predicting clinical response to alkylating drugs used 
to treat brain tumors such as gliomas [38]. This raises questions 
about how methylation changes in this gene might be functionally 
important in neurobiology and in potentially mediating responses 
to exogenous exposures more broadly.

Genes annotated to DMRs associated with each of the four 
air pollutants were significantly enriched for biological processes 
involved in neurodevelopment and neurogenesis. This biological 
enrichment was despite the fact that no single DMR in sperm 
was associated with all four exposures, suggesting that there may 
be underlying biological pathways shared between genes whose 
methylation patterns are most responsive to air pollution expo-
sure. Some DMRs were identified for more than one air pollutant, 
and others were uniquely associated with a specific air pollu-
tant. Given the moderate correlation between exposure levels, it is 
not unexpected that we would find some shared genes, but these 
results also suggest that there may be pollutant-specific responses 
in methylation. Indeed, many genes that were associated with two 
or three of the pollutants, as well as genes that had some of the 
largest methylation changes associated with the exposures, had 
functions important for neurodevelopment and synaptogenesis. 
Furthermore, these findings are in line with other groups that 
have demonstrated that diet/obesity, cannabis, tobacco smok-
ing, and prenatal exposures previously associated with neurode-
velopmental disorders [16, 17, 19–21] have all been associated 

with altered DNAm at genes implicated in neurodevelopment
[17, 19].

One gene of particular interest identified in the present study 
is CSMD1. DMRs from this gene were associated with each of the 
four pollutants. There were four CSMD1 DMRs associated with 
O3 exposure and one common DMR that was associated with 
exposure to both NO2 and O3. CSMD1 is expressed at interme-
diate levels in numerous regions of the brain including the fetal 
brain, the hippocampus, and the cerebellum [36]. Its functions 
are strongly implicated in neurogenesis, synaptic scaling, and 
learning and memory, and genetic variants have been associated 
with neuropsychiatric conditions such as bipolar disorder and 
schizophrenia [36]. Furthermore, according to the Simons Foun-
dation for Autism Research Initiative gene database, this gene is 
a strong autism candidate gene, and genetic variants in CSMD1
have been identified in individuals with autism spectrum disor-
der (ASD) from multiplex ASD families [39]. Future studies should 
investigate the interaction between DNAm and genetic variants 
in this gene, and whether DNAm changes either in response to 
or independent of environmental exposures such as air pollution 
might mediate the effect of genetic variants on neuropsychiatric
outcomes.

We previously demonstrated that sperm DNAm in EARLI was 
associated with autistic traits in fathers and their children at 12 
and 36 months of age [23, 24]. The sperm DMRs associated with air 
pollution exposure in the present study overlapped with those that 
were associated with autistic traits in children, providing further 
support that DMRs in sperm that are vulnerable to the environ-
ment might influence neurobehavioral traits in children [24]. This 
lays the groundwork for future studies to investigate mechanisms 
through which sperm DNAm may mediate the effect of these 
exposures on neurodevelopmental and ASD-related outcomes.

Methylation measurement technologies can detect DNA 
sequence variation at or near individual CpGs being interrogated 
via microarray probes. Types of genetic variants that could be 
detected as a methylation change include single-nucleotide poly-
morphisms (SNPs) and rare single-nucleotide variants including de 
novo. We addressed this potential concern in several ways. First, 
to the extent possible, we removed probes annotated as being 
influenced by SNPs. Second, our statistical approach searched for 
DMRs, i.e. multiple CpG probes showing consistent changes in 
methylation associated with air pollutant exposures, thus, is less 
likely to be influenced by genetic variation-related methylation 
changes at a single CpG. Despite our best efforts, it is possible 
that we were not able to completely remove the potential effects 
of genetic variation on DNAm. Even if some of the DMRs we 
report are detecting methylation changes resulting from under-
lying DNA sequence variation, our results are important because 
they identify biologic processes and genes associated with air pol-
lutant exposure levels. Future studies that include comprehensive 
genetic variant, methylation, and air pollution exposure measures 
from the same individuals are needed to examine what role, if any, 
genetic variation plays in the biologic mechanism for observed 
methylation–air pollution associations.

The present study has several potential limitations. First, our 
sample size is small, with only 38 participants, which may have 
limited our ability to detect all significant changes and associ-
ations in our dataset and to identify DMRs in common across 
pollutants. This is not an issue that is unique to us, however, as 
there is a general lack of inclusion of sperm sample collection in 
prospective pregnancy cohorts due to feasibility, and thus, pre-
vious larger studies can only provide cross-sectional data from a 
more accessible data source [40]. Furthermore, due to the study 
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design, a subgroup of men from the population already has a 
child with ASD. While it is hard to envision a scenario where the 
methylation patterns related to air pollution exposure levels in 
men who have a child with autism would be fundamentally dif-
ferent from men who do not have an autistic child, it is possible. 
Thus, exploring whether similar changes are also observed in dif-
ferent groups of men is warranted. These sample size and study 
design challenges need to be weighed against the particularly 
unique and valuable enriched cohort that was collected. Future 
general population epidemiology studies would benefit from col-
lecting sperm from men to address these limitations. Second, air 
pollution measures were generated based on maternal addresses 
in EARLI. While we did exclude fathers who reported not living 
with the child’s biological mother from our study, it is possible that 
the air pollution exposure data we collected are not reflective of 
the place the father spent the most time (i.e. work or somewhere 
else outside the home). Third, DNA was extracted from semen 
as opposed to purified mature motile sperm, making it possible 
that any associations detected may have been diluted by cellular 
heterogeneity. However, we were still able to detect meaningful 
associations between air pollution exposure and DNAm in sperm. 
Finally, the study population was selected for families at increased 
likelihood of autism, and findings may not represent associations 
in the general population.

These limitations are balanced by the strength and novelty 
of our findings. This study was among the first to demonstrate 
that genome-scale methylation changes in sperm occur at genes 
enriched for neurodevelopmental processes in response to air pol-
lution exposure. These findings emphasize the need to extend the 
early life window to incorporate the paternal preconception envi-
ronment and to encourage future studies to incorporate epigenetic 
and environmental data into studies seeking to better understand 
how paternal factors contribute to neurodevelopmental and other 
health outcomes in the next generation.

Materials and methods
Study cohort
EARLI is described in detail in the study by Newschaffer et al. 2012 
[25]. Briefly, EARLI is a prospective study that enrolled pregnant 
mothers with a child already diagnosed with autism. Infant sib-
lings were followed from birth until 3 years of age. EARLI recruited 
and enrolled participants from four sites across the USA—San 
Francisco and Sacramento, CA, Baltimore, MD, and Philadelphia, 
PA. Sperm samples were collected from fathers around the time 
of enrollment in EARLI, typically in the first or second trimester 
of pregnancy [23]. Participants were included in the present study 
if they had genotyping data, sperm methylation data, air pollu-
tion data for all four pollutants (PM2.5, PM10, NO2, and O3), and 
covariate data and did not report living in a different house than 
the child’s mother (n = 38 included in final sample size). Informed 
consent was obtained from all EARLI participants included in this 
study, and this study was approved by the Institutional Review 
Board at Johns Hopkins University.

Air pollution exposure measurements
Exposure assignments for fathers were based on maternal resi-
dences recorded prospectively throughout pregnancy. Because of 
this, fathers were excluded from this analysis if they reported 
not living in the same home as the mother. Detailed methods on 
air pollution measurements can be found as previously described 
[26]. Briefly, residential addresses for study participants were stan-
dardized and geo-coded using the TeleAtlas US_Geo_2 database 

and software. Assignments for each of the four pollutants were 
derived from the US EPA’s Air Quality System data (www.epa.gov/
ttn/airs/airsaqs). Weekly air quality data from monitoring stations 
located within 50 km of each residence were made available for 
spatial interpolation of ambient pollutant concentrations, which 
were based on inverse distance-squared weighting of data from 
up to four closest stations as previously described [26]. Expo-
sure measurements used in the present analyses were calculated 
as the average of exposures measured within 4 weeks prior to 
the date of sample collection to capture the last phase of sper-
matogenesis and maturation that occurred just prior to sample
collection.

Sperm collection and DNA extraction
Sperm collection and DNA extraction methods are as previously 
described [23, 24]. Briefly, semen samples, frozen upon collection, 
were shipped frozen to the Johns Hopkins Biological Repository 
where they were stored at −80∘C until processing. Genomic DNA 
was extracted using the QIAgen QIAsymphony automated work-
station following the Blood 1000 protocol from the DNA Midi Kit 
(Cat. number 937255, Qiagen, Valencia, CA).

DNAm measurement
Genome-scale DNAm in sperm was measured as described in the 
study by Feinberg et al. 2015 [23, 24]. Briefly, DNAm was mea-
sured using the CHARM assay. Genomic sperm DNA (4 μg) under-
went shearing, digestion with McrBC enzyme, purification, and 
labeling and hybridization to the arrays as previously described 
[23]. In addition to probes included on the original CHARM 
method, probes on the CHARM array cover all promoters and 
microRNA sites. Raw methylation data were previously uploaded 
to the National Database for Autism Research (NDAR) under
study 377.

DNAm data processing and quality assessment
Raw data from the CHARM array were pre-processed using the 
CHARM package (v.2.8.0) in R (version 3.0.3) as was previously 
described and used in other studies [23, 24]. In short, the back-
ground signal was removed and probe-level DNAm estimates (per-
centages) were determined by normalization to control probes. 
After exclusion of background, control, and repetitive probe 
groups, 3 811 046 total probes per array remained for each sam-
ple. We also determined whether the methylation measurement 
quality differed by air pollutant type and did not observe rela-
tionships between air pollutants and measurement of technical 
variables including CHARM DNA shearing or hybridization date, 
shearing matching, CHARM gel, or gel location (Supplementary 
Table S1a–d). DNAm was also measured for a subset of avail-
able sperm samples via the Illumina Infinium HumanMethyla-
tion450 BeadChip assay (referred to as 450 K) array (Illumina, San 
Diego, CA). Detailed protocols for DNAm measurement and cross-
validation and data quality assessment are previously described 
[23, 24]. Genomic DNA (1 μg) was processed by the Johns Hopkins 
University SNP Center using the automated Infinium workflow. 
Illumina infinium methylation data for the overlapping subjects 
were processed using the preprocessNoob function from the minfi 
package (v 1.22.1) in R version 3.4.0. No probes were excluded 
during preprocessing.

SV analysis
Surrogate variable analysis was performed on percentage methy-
lation estimates as described in the studies by Feinberg et al. 2015 
and Leek & Storey 2007 [23, 41] to adjust for any batch effects or 

https://www.epa.gov/ttn/airs/airsaqs
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other unwanted sources of variation that might otherwise influ-
ence DNAm. R version 4.1 was used to run the “sva” R package, as 
well as for all other downstream analyses unless otherwise spec-
ified. The number of SVs present in the data was estimated using 
the Buja and Eyuboglu algorithm, and SVs were adjusted for in 
downstream analyses.

Ancestry principal components
DNA from buffy coat, white blood cells, and saliva were processed 
on the Affymetrix omni5 exome array at the Johns Hopkins Uni-
versity SNP Center for genotyping analysis. Using PLINK v1.90 [42], 
parents were subset from the EARLI dataset and merged with the 
1000 G Phase3 v5 reference keeping only overlapping SNPs and a 
minor allele frequency filter of ≥0.05. Principal components (PCs) 
1–10 were then assembled using smartpca from EIGENSOFT 6.1.4 
[43, 44] using 1000G Phase3 v5 as an anchor for ancestry.

Statistical analyses to identify air 
pollution–associated changes in regional DNAm
Differences in air pollution exposures across demographic vari-
ables were assessed using t-tests, analysis of variance, Mann–
Whitney U test, and Spearman rank correlations. Similar tests 
were performed when assessing associations between estimated 
SVs (described later) and demographic variables. Methods for 
identifying regions of CHARM DNAm that were associated with 
PM2.5, PM10, NO2, or O3 are described in detail in the study by 
Feinberg et al. 2015 [23, 24]. In brief, DMRs were identified using 
the “bump hunting” approach that was developed for the CHARM 
platform as previously described [23, 45]. In our statistical mod-
els, DNAm changes were treated as the outcome of interest, with 
PM2.5, PM10, NO2, or O3 as the exposure, and we adjusted for 
SVs (n = 6 SVs for PM2.5, n = 7 SVs for PM10 and O3, and n = 8 for 
NO2), four ancestry PCs, paternal education, and coast (East versus 
West). This model was applied to all high-quality probes present 
on the CHARM array to identify the adjusted linear effect of air 
pollution exposure on DNAm levels [23, 45]. Regions of differen-
tial methylation were identified by smoothing the linear effects of 
exposure on DNAm and then thresholding the smoothed statistics 
across all probes with a 99.9th percentile cutoff, as was previ-
ously described, to generate a region-level statistic reflecting the 
area of a DMR [23, 45]. A P-value for each DMR was calculated 
from a genome-wide empirical distribution of null statistics gen-
erated from a linear model bootstrapping approach across 10 000 
permutations [23, 45]. DMRs were ranked prior to the permuta-
tion procedure to identify the threshold that controls the target 
genome-wide family-wise empirical (FWER), and DMRs with a 
FWER P < 0.05 were considered significant [23, 45].

Gene enrichment analysis
Testing for gene enrichment was previously described [23, 24]. 
Briefly, we used the GOstats R Bioconductor package to test for 
enrichment of genes within 10 kb of the transcription start site of 
the gene for DMRs with FWER P < 0.1. We restricted our analysis 
to Biological Process ontology germs with at least four members. 
Genes mapped to top DMRs (FWER P < 0.1) were compared to all 
genes on the CHARM array that also have an Entrez ID as the 
background.

Cross-platform validation
We attempted to validate DMRs identified via CHARM using over-
lapping genomic coverage on the 450 K array in a partially over-
lapping set of sperm samples (n = 25). Linear regression was used 

to assess the relationship between CpG-site 450 K DNAm and air 
pollution exposure at CpG sites that were included in DMRs identi-
fied via the CHARM array. Models were adjusted for SVs as well as 
coast, paternal education, and four ancestry PCs. The correlation 
between estimates across the two platforms (CHARM and 450 K) 
was determined using Spearman correlation tests.
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