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ABSTRACT Based on the refined dynamic equation of stretching plates, the elastic tension–
compression wave scattering and dynamic stress concentrations in the thick plate with two
cutouts are studied. In view of the problem that the shear stress is automatically satisfied under
the free boundary condition, the generalized stress of the first-order vanishing moment of shear
stress is considered. The numerical results indicate that, as the cutout is thick, the maximum
value of the dynamic stress factor obtained using the refined dynamic theory is 19% higher than
that from the solution of plane stress problems of elastic dynamics.

KEY WORDS Refined vibration equation of stretching plate, Thick plate, First moment of shear
stress, Elastic wave scattering, Dynamic stress concentration

1. Introduction
As typical structures, plates are widely used in aerospace industry, civil and construction engineer-

ing, and mechanical engineering. It is inevitable to make cutouts in the plates to meet the engineering
design requirements. The cutouts reduce the loading capacity and life time of the structure. Therefore,
many experts and scholars studied the problems on static and dynamic stress concentration around
the cutouts [1–6]. The elastic wave methods can be used to describe and simulate the stress–strain
states which are produced by a variety of dynamic loads in solid media or structures [7, 8]. The elastic
wave propagation, scattering and dynamic stress concentration, as well as localization of vibration in
a plate with cutouts are important frontier problems in the realm of mechanics. The investigations on
these problems can promote the innovation and development of classical structural dynamics and the
problem-solving methods.

In the past, the solution of plane elasticity problem [5, 7], instead of the solution for stretching
plates, was often used to investigate stress concentrations for engineering design, for instance, the
Kirsch solution [9] of the elasticity problem and the plane stress problem on elastic dynamics. However,
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the plane stress solution is formulated in terms of the average stresses and average displacements across
the thickness of plate, not in terms of the pertinent values at each field point [3]. Thus, it may lead to
erroneous result when the displacements vary sharply across the thickness. Such is the case when the
plate vibrates longitudinally at high frequencies. A comparison [10] with the results based on the three-
dimensional theory of elasticity shows that the generalized plane stress approximation for a plate is
valid only when the frequency is low and the wavelength is large. It is evident that the two-dimensional
model is very different from the actual structure in solving the stress concentration problems. For these
reasons, establishing exact thick-walled stretching plate models is needed for solving the problems of
stress concentration in structures. Many scholars proposed refined theories [11–13] to reduce engineering
errors.

Although those refined theories have been modified and optimized plane stress theories, in essence
they were based on geometric approaches, and the models were coarse since engineering assumptions
were still used during the derivation, resulting in many limitations in the application of thick-walled
structure, especially in case of plates vibrating at higher frequencies. In this paper, based on not
the geometric view but the algebraic view [14–16], we propose a novel exact elastodynamics theory
for stretching plates. During the derivation, we apply the general solution proposed by Boussinesq–
Galerkin and the operator theory of partial differential equations. The refined elastodynamics equations
for stretching plates are obtained by applying appropriate gauge conditions. Then, based on the
obtained refined theory, elastic wave scattering and dynamic stress concentrations in plates with two
cutouts are studied. As examples, the dynamic stress concentration factors in stretching plates with two
circular cutouts are numerically computed and analyzed with different parameters. Since the dynamic
equation is derived without any prior assumptions, the proposed dynamic equation of plate is more
exact and can be applied in a wider frequency range and greater thickness.

2. Derivation of the Refined Plate Theory for Elastodynamics of Thick Plate
Consider an infinite thick plate subjected to elastic tension–compression waves, as depicted in

Fig. 1. Two circular cutouts of radius a are buried in the plate. First, we introduce the derivation
process of the refined plate theory for elastodynamics of thick plate. According to the three-dimensional
elastodynamics theory, the governing equation of the spatial displacement field is the Navier equation
as

μ∇2
0u + (λ + μ) ∇0 (∇0 · u) = ρ

∂2u

∂t2
(1)

where μ, λ are the Lame constants, λ = νEM
(1+ν)(1−2ν) , and μ = EM

2(1+ν) , in which EM is elastic modulus,
ν is Poisson’s ratio, ρ is density, and t is time; and ∇0 = e1

∂
∂x + e2

∂
∂y + e3

∂
∂z is the three-dimensional

Fig. 1. Sketch of tension–compression elastic waves incident upon a thick plate with two cutouts
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Hamilton operator, whose corresponding Laplace operator can be written as ∇2
0 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 =

∇2 + ∂2

∂z2 .
The elastodynamics solution of Eq. (1) given by Boussinesq–Galerkin (the B–G solution) is

u = 2 (1 − ν)
(∇2

0 − T 2
j

)
G − ∇0 (∇0 · G) (2)

where T 2
j = 1

c2j

∂2

∂t2 (j = 1, 2), with c1, c2 being the longitudinal and transverse wave velocities, respec-

tively, c21 = λ+2μ
ρ , and c22 = μ

ρ ; and G = G1e1+G2e2+G3e3 is the Somigliana vector potential function
which satisfies

2∏

j=1

(∇2
0 − T 2

j

)
G = 0 (3)

Here, we use numbers 1, 2, 3 to denote the coordinates x, y, z, respectively. According to the Taylor
series expansion, by using the exponential function operator, the displacement of any point in the plate
can be described as

uk (x, y, z, t) = exp
(

z
∂

∂z

)
uk (x, y, 0, t) (k = 1, 2, 3) (4)

In order to simplify the analysis, we introduce the concept of virtual differential operator, where
i�j

=
√

T 2
j − ∇2 for extending algebraic analysis and spectral theory of partial differential equations.

According to Eqs. (2) and (4), we can obtain

Gk(x, y, z, t) = exp
(

z
∂

∂z

)
Gk(x, y, 0, t)

= exp
(

z
∂

∂z

) 2∑

j=1

Gj
k(x, y, 0, t)

= 2Re

⎡

⎣
2∑

j=1

exp(zi�j)g
j1
k

⎤

⎦ (5)

where Re(·) denotes computation of the real part, �2

j = ∇2−T 2
j (j = 1, 2) is the Lorentz operator, i�j is

the virtual differential operator, G = G1+G2, Gj = Gj1+Gj2,
(
�2

j + ∂2

∂z2

)
Gj = 0,

(
∂
∂z − i�j

)
Gj1 = 0,

and
(

∂
∂z + i�j

)
Gj2 = 0, with j = 1, 2.

And we can also obtain

∇0 · G =
∂G1

∂x
+

∂G2

∂y
+

∂G3

∂z

= 2Re

⎡

⎣
2∑

j=1

exp (iz�j)
(

∂

∂x
gj1
1 +

∂

∂y
gj1
2 + i�jg

j1
3

)
⎤

⎦ (6)

In order to eliminate the non-uniqueness of the unknown functions, the following two gauge condi-
tions are applied:

∇ · g11 = 0, ∇ · g21 = 0 (7)

where gji = gji
1 e1+gji

2 e2, (i = 1, 2; j = 1, 2). It should be noted that gji
k (k = 1, 2) is a complex function.
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The following equation can be derived from Eqs. (7) and (8) as

∇0 (∇0 · G) = − 2Im

⎡

⎣
2∑

j=1

exp (iz�j) �j
∂gj1

3

∂x

⎤

⎦e1

− 2Im

⎡

⎣
2∑

j=1

exp (iz�j) �j
∂gj1

3

∂y

⎤

⎦ e2

− 2Re

⎡

⎣
2∑

j=1

exp (iz�j) �2
jg

j1
3

⎤

⎦ e3 (8)

in which Im(·) denotes computation of the imaginary part.
According to Eq. (2), the vibration displacement in the plate can be expressed as

uk = 2Re
[
exp(iz�2)T 2

2 g21k

]
+ 2Im

⎡

⎣
2∑

j=1

exp(iz�j)�j
∂

∂xk
gj1
3

⎤

⎦ (k = 1, 2) (9a)

u3 = 2Re
[
exp(iz�2)T 2

2 g213
]
+ 2Re

⎡

⎣
2∑

j=1

exp(iz�j)�2
jg

j1
3

⎤

⎦ (9b)

The neutral surface displacement, normal rotation angle, and transverse normal strain in the plate
can be expressed as

Uk = uk|z=0 = 2Re
(
T 2
2 g21k

)
+ 2Im

⎛

⎝
2∑

j=1

�j
∂

∂xk
gj1
3

⎞

⎠ (k = 1, 2)

W = uz|z=0 = 2Re
(
T 2
2 g213

)
+ 2Re

⎛

⎝
2∑

j=1

�2
jg

j1
3

⎞

⎠

ψk = − ∂uk

∂z
|z=0 = 2Im

(
�2T

2
2 g21k

)− 2Re

⎛

⎝
2∑

j=1

�2
j

∂

∂xk
gj1
3

⎞

⎠ (k = 1, 2)

E =
∂uk

∂z
|z=0 = − 2Im

(
�2T

2
2 g213

)− 2Im

⎛

⎝
2∑

j=1

�3
jg

j1
3

⎞

⎠ (10)

Considering the decomposition method for the neutral surface angle and displacement function as
follows,

ψ1 =
∂

∂x
F (1) +

∂

∂y
f (1), ψ2 =

∂

∂y
F (1) − ∂

∂x
f (1)

U1 =
∂

∂x
F (2) +

∂

∂y
f (2), U2 =

∂

∂y
F (2) − ∂

∂x
f (2) (11)

the following relations can be obtained by the derivation and the calculus as

Im
(
g211
)

=
1
2
�−1

2 T−2
2

∂

∂y
f (1),

Im
(
g212
)

= − 1
2
�−1

2 T−2
2

∂

∂x
f (1)

Re
(
g211
)

=
1
2
T−2
2

∂

∂y
f (2),
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Re
(
g212
)

= − 1
2
T−2
2

∂

∂x
f (2)

Re
(
g113
)

= − 1
2
�−2

1

[
F (1) + �2

2T
−2
2

(
W + F (1)

)]

Re
(
g213
)

=
1
2
T−2
2

(
W + F (1)

)

Im
(
g113
)

=
1
2
�−1

1

[
T−2
1

(
�2

1F
(2) + E

)
+ F (2)

]

Im
(
g213
)

= − 1
2
T−2
1 �−1

2

(
�2

1F
(2) + E

)
(12)

where the negative exponent of the operator is the inverse of the differential operator, which can be
expressed by the integral of the Green’s function.

In this way, the total displacement of the bending and stretching vibration of the plate can be
derived as

uk = 2T 2
2

[
cos (z�2) Re

(
g21k

)− sin (z�2) Im
(
g21k

)]

+ 2
2∑

j=1

�j
∂

∂xk

[
cos (z�j) Im

(
gj1
3

)
+ sin (z�j) Re

(
gj1
3

)]
(k = 1, 2) (13a)

u3 = 2T 2
2

[
cos (z�2) Re

(
g213
)− sin (z�2) Im

(
g213
)]

+ 2
2∑

j=1

�2
j

[
cos (z�j)Re

(
gj1
3

)
− sin (z�j) Im

(
gj1
3

)]
(13b)

According to the Hooke’s law, the stress components can be written as

τzx = μM

{
− 2�2T

2
2

[
sin(z�2)Re(g211 ) + cos(z�2)Im

(
g211
)]

− 4
2∑

j=1

sin(z�j)�2
j

∂

∂x
Im
(
gj1
3

)
+ 4

2∑

j=1

cos(z�j)�2
j

∂

∂x
Re
(
gj1
3

)

+ 2T 2
2

[
cos(z�2)

∂

∂x
Re
(
g213
)− sin(z�2)

∂

∂x
Im
(
g213
)
]}

(14a)

τzy = μM

{
− 2�2T

2
2

[
sin(z�2)Re

(
g212
)

+ cos(z�2)Im
(
g212
)]

− 4
2∑

j=1

sin(z�j)�2
j

∂

∂y
Im
(
gj1
3

)
+ 4

2∑

j=1

cos(z�j)�2
j

∂

∂y
Re
(
gj1
3

)

+ 2T 2
2

[
cos(z�2)

∂

∂y
Re
(
g213
)− sin(z�2)

∂

∂y
Im
(
g213
)
]}

(14b)

σz = 2(λ + 2μ)�1T
2
1

[
cos(z�1)Im

(
g113
)

+ sin(z�1)Re
(
g113
)]

− 4μ

2∑

j=1

∇2�j

[
cos(z�j)Im

(
gj1
3

)
+ sin(z�j)Re

(
gj1
3

)]
(14c)

The load on the surface of a plate is divided into the symmetric and asymmetric parts. In line with
the free boundary condition that the shear stress at the surface of a plate is zero and the normal stress,
the following equations can be derived as
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∂

∂x

⎡
⎣2 cos

(
h

2
�1

)
F (1) + 2�2

2T −2
2

2∑
j=1

(−1)j−1 cos

(
h

2
�j

)
(W + F (1)) − cos

(
h

2
�2

)
(W + F (1))

⎤
⎦

± ∂

∂x

[
2�1 sin

(
h

2
�1

)
F (2) + 2T −2

1

2∑
j=1

(−1)j−1�j sin

(
h

2
�j

) (
�2

1F (2) + E
)

− 1

κ

sin
(

h
2�2

)

�2

(
�2

1F (2) + E
)]

=
∂

∂x

[
cos

(
h

2
�2

)
f(1) ± �2 sin

(
h

2
�2

)
f(2)

]
(15a)

∂

∂y

⎡
⎣2 cos

(
h

2
�1

)
F (1) + 2�2

2T −2
2

2∑
j=1

(−1)j−1 cos

(
h

2
�j

)
(W + F (1)) − cos

(
h

2
�2

)
(W + F (1))

⎤
⎦

± ∂

∂y

⎡
⎣2�1 sin

(
h

2
�1

)
F (2) + 2T −2

1

2∑
j=1

(−1)j−1�j sin

(
h

2
�j

)
(�2

1F (2) + E)

− 1

κ

sin
(

h
2�2

)

�2
(�2

1F (2) + E)

]

=
∂

∂x

[
cos

(
h

2
�2

)
f(1) ± �2 sin

(
h

2
�2

)
f(2)

]
(15b)

(λ + 2μ)

{
− cos

(
h

2
�1

)[(
�2

1F (2) + E
)

+ T2
1 F (2)

]
± sin

(
h
2�1

)

�1

[
κ�2

2

(
W + F (1)

)
+ T2

1 F (1)
]}

− 2μ∇2

⎡
⎣T −2

1

2∑
j=1

(−1)j−1 cos

(
h

2
�j

) (
�2

1F (2) + E
)

+ cos

(
h

2
�1

)
F (2)

⎤
⎦

± 2μ∇2

⎡
⎣sin

(
h

2
�1

)
�−1

1 F (1) + �2
2T −2

2

2∑
j=1

(−1)j−1 sin
(

h
2�j

)

�j

(
W + F (1)

)
⎤
⎦ = ±1

2
q +

1

2
q (16)

where h is the thickness of the plate, and q is the transverse loads.
On the basis of the complex variable function theory, Eq. (15) can be regarded as a Riemann

condition involving the real part and imaginary part of the analytic function, so there can be

2 cos
(

h

2
�1

)
F (1) + 2�2

2T
−2
2

2∑

j=1

(−1)j−1 cos
(

h

2
�j

)
(W + F (1))

− cos
(

h

2
�2

)
(W + F (1)) ±

⎡

⎣2�1 sin
(

h

2
�1

)
F (2) + 2T−2

1

2∑

j=1

(−1)j−1

×�j sin
(

h

2
�j

)(
�2

1F
(2) + E

)
− 1

κ

sin
(

h
2�2

)

�2
(�2

1F
(2) + E)

]

= 0 (17a)

cos
(

h

2
�2

)
f (1) ± �2 sin

(
h

2
�2

)
f (2) = 0 (17b)

where κ = c22
c21

= 1−2ν
2(1−ν) .

The vibration of plate structure is decomposed into the symmetric and asymmetric motions. As we
see, the bending vibration of plate is an asymmetric motion, and the stretching vibration of plate is
the symmetric movement. The following equations can be derived by separating the symmetric and
asymmetric functions in Eq. (18) as

2 cos
(

h

2
�1

)
F (1) + 2�2

2T
−2
2

2∑

j=1

(−1)j−1 cos
(

h

2
�j

)
(W + F (1))

− cos
(

h

2
�2

)
(W + F (1)) = 0 (18a)
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cos
(

h

2
�2

)
f (1) = 0 (18b)

2�1 sin
(

h

2
�1

)
F (2) + 2T−2

1

2∑

j=1

(−1)j−1�j sin
(

h

2
�j

)(
�2

1F
(2) + E

)

− 1
κ

sin
(

h
2�2

)

�2

(
�2

1F
(2) + E

)
= 0 (18c)

�2 sin
(

h

2
�2

)
f (2) = 0 (18d)

According to the entire function theory, the cosine and sine operators of Eqs. (18b) and (18d) can
be expanded as follows,

cos
(

h

2
�2

)
f (1) =

∞∏

m=1

[

1 − h2�2
2

(2m − 1)2 π2

]

f (1) (19a)

�2 sin
(

h

2
�2

)
f (2) = �2

2

∞∏

m=1

[
1 − h2�2

2

4m2π2

]
f (2) (19b)

The second-order wave equation of the following form can be obtained by truncating the infinite
product series of Eq. (20) as

∇2f (2) − T 2
2 f (2) = 0 (20)

Here, Eq. (20) represents the shear field of the stretching vibration.
Similarly, the following equation can be obtained by separating the asymmetric functions from the

mid-plane of Eq. (17) as

− 1
2

cos
(

h

2
�1

)[
1
κ

(
�2

1F
(2) + E

)
+ T 2

2 F (2)

]

− ∇2

⎡

⎣T−2
1

2∑

j=1

(−1)j−1 cos
(

h

2
�j

)(
�2

1F
(2) + E

)
+ cos

(
h

2
�1

)
F (2)

⎤

⎦ =
1
4μ

q (21)

According to Eqs. (20) and (21), the governing equation of the generalized displacement potential
function E and F (2) of the stretching vibration of the plate can be obtained as

[
D11 D12

D21 D22

] [
E
F (2)

]
=
[

0
q
4μ

]
(22)

where the expression of each operator is

D11 = 2T−2
1

2∑

j=1

(−1)j−1 sin
(

h
2�j

)

�j
∇2 − 2

sin
(

h
2�1

)

�1
+

1
κ

sin
(

h
2�2

)

�2

D12 = 2T−2
1

2∑

j=1

(−1)j−1 sin
(

h
2�j

)

�j
∇2�2

1 +
1
κ

sin
(

h
2�2

)

�2
�2

1

D21 = T−2
1

2∑

j=1

(−1)j−1 cos
(

h

2
�j

)
∇2 − 1

2κ
cos
(

h

2
�1

)

D22 = T−2
1

2∑

j=1

(−1)j−1 cos
(

h

2
�j

)
∇2∇2 − 1

2κ
cos
(

h

2
�1

)
∇2 + cos

(
h

2
�2

)
∇2
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According to the determinant of the operator matrix Eq. (22), the equation of the transverse normal
strain function E can be obtained as

ΔE = 2T−2
1

[
sin
(

h
2�1

)

�1
cos
(

h

2
�2

)
− sin

(
h
2�2

)

�2
cos
(

h

2
�1

)]

∇2∇2E

− 2

[
sin
(

h
2�1

)

�1
cos
(

h

2
�2

)
− 1

κ

sin
(

h
2�2

)

�2
cos
(

h

2
�1

)]

∇2E

− 1
2κ

cos
(

h

2
�1

)
sin
(

h
2�2

)

�2
T 2
2 E = − 1

4μ
D12q (23)

After the truncation of the operator series of Eq. (23), the fourth-order wave equation of the
stretching vibration of the plate can be obtained as

∇2∇2E − 12
[

1
h2

+
2 − κ2

24 (1 − κ)
T 2
2

]
∇2E +

3
1 − κ

(
1
h2

+
1 + 3κ

24
T 2
2

)
T 2
2 E = 0 (24a)

[
(3 − 2κ)∇2 − T 2

2 − 24
h2

]
(∇2 − T 2

1

)
F = −

[
(3 − 4κ) ∇2 − (1 − 2κ2

)
T 2
2 − 24

h2
(1 − 2κ)

]
E (24b)

∇2f − T 2
2 f = 0 (24c)

where E,F, f are three generalized displacement functions of plate stretching vibration; ∇2 = ∂2

∂x2 + ∂2

∂y2

is Laplace operator; T 2
j = 1

c2j

∂2

∂t2 (j = 1, 2); c1, c2 are velocities of longitudinal wave and shear wave,

respectively, c21 = λ+2μ
ρ , c22 = μ

ρ ; κ = 1−2ν
2(1−ν) ; λ, μ are Lame constants; ν, ρ are Poisson’s ratio and

density, respectively, and h is plate thickness.
Without loss of generality, the solution of harmonic vibration is studied. Set

E = Ẽe−iωt, F = F̃ e−iωt, f = f̃e−iωt (25)

where ω is angular frequency of plate stretching, and i is the imaginary unit.
In the following analysis, the time factor and the symbol “∼” in the generalized displacement

functions are omitted. Substituting Eq. (25) into Eq. (24), the following equations can be obtained:

Π2
j=1

(∇2 + α2
j

)
E = 0 (26a)

∇2f + k2
2f = 0 (26b)

where αj(j = 1, 2) are wave numbers which satisfy the algebraic equation

α4 + 12
[

1
h2

− 2 − κ2

24 (1 − κ)
k2
2

]
α2 − 3

1 − κ

(
1
h2

− 1 + 3κ
24

k2
2

)
k2
2 = 0, k2

j = ω2/c2j (j = 1, 2) (27)

Based on the refined theory of plate stretching, the expressions of generalized forces in plates are

Nx =
∫ h/2

−h/2

σxdz, Nxy =
∫ h/2

−h/2

τxydz, Qx =
∫ h/2

−h/2

τzxdz = 0 (28)

As the boundary condition of shear stress Qx (zero-order moment) is automatically satisfied, the
equation considering the one-order vanishing moment of the shear stress should be added as follows,

MQx
=
∫ h/2

−h/2

zτzxdz (29)
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Using complex functions and introducing complex variables ζ = x + iy and ζ = x − iy, Eqs. (28)
and (29) can be converted to

Nx + Ny = (1 − ν) K

{
1 − 2κ

κ
− 1 − κ

κ

[
1 +

h2

24
(
α2

m − k2
2

)
]

α2
mδm

+
h2

24

(
2 − 3κ

κ
α2

m − 1 − 2κ

κ
k2
2

)}
E (30a)

Ny − Nx + 2iNxy = −4 (1 − ν) K
∂2

∂ζ2
{[

h2

24
1 − κ

κ
+ δm − h2

24
1 − 2κ

κ

(
α2

m − k2
1

)
δm

]
E + if

}
(30b)

MQx
− iMQy

=
1
2

(1 − ν) D

[
1
κ

(
α2

m − k2
1

)
δm − 1 − 2κ

κ

]
∂E

∂ζ
(30c)

in which B is stretching rigidity of the plate, and B = Eh
1−ν2 .

Employing the conformal mapping method, the exterior region of noncircular cutout boundary in
the ζ-plane can be mapped into a unit circle in the η-plane using the mapping function ζ = Ω(η). The
conformal mapping function can be taken as

ζ = Ω(η) = cη + Φ(η) (31)

where Φ(η) is a holomorphic function.
In polar coordinates (r, β), Eq. (30) can be written as follows,

Nr + Nβ = Nx + Ny

Nβ − Nr + 2iNrβ = (Ny − Nx + 2iNxy) exp (2iβ)
MQr

− iMQβ
=
(
MQx

− iMQy

)
exp (iβ) (32)

In the η-plane, Eq. (32) can be written as follows,

Nρ + Nθ = (1 − ν) B

{
1 − 2κ

κ
− 1 − κ

κ

[
1 +

h2

24
(
α2

m − k2
2

)
]

α2
mδm

+
h2

24

(
2 − 3κ

κ
α2

m − 1 − 2κ

κ
k2
2

)}
E (33a)

Nθ − Nρ + 2iNρθ = − 4 (1 − ν) B
η2

ρ

1
Ω′ (η)

∂

∂η

(
1

Ω′(η)
∂

∂η

)

×
{[

h2

24
1 − κ

κ
+ δm − h2

24
1 − 2κ

κ

(
α2

m − k2
1

)
δm

]
E + if

}
(33b)

MQρ
− iMQθ

=
1
2

(1 − ν) D

[
1
κ

(
α2

m − k2
1

)
δm − 1 − 2κ

κ

]
η

ρ |Ω′ (η)|
∂

∂η
E (33c)

The expressions of the generalized forces of the plate structure in the η-plane are

Nρ =
(1 − ν)

2
B

{
1 − 2κ

κ
− 1 − κ

κ

[
1 +

h2

24
(
α2

m − k2
2

)
]

α2
mδm +

h2

24

(
2 − 3κ

κ
α2

m − 1 − 2κ

κ
k2
2

)}
E

+ (1 − ν) K

{[
η2

ρ2Ω′ (η)
∂

∂η

(
1

Ω′(η)
∂

∂η

)
+

η̄2

ρ2Ω′ (η)
∂

∂η̄

(
1

Ω′(η)
∂

∂η̄

)]

×
[
h2

24
1 − κ

κ
+ δm − h2

24
1 − 2κ

κ

(
α2

m − k2
1

)
δm

]
E

+

[
η2

ρ2Ω′ (η)
∂

∂η

(
1

Ω′(η)
∂

∂η

)
− η̄2

ρ2Ω′ (η)
∂

∂η̄

(
1

Ω′(η)
∂

∂η̄

)]

if

}

(34a)
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Nθ =
1 − ν

2
B

{
1 − 2κ

κ
− 1 − κ

κ

[
1 +

h2

24
(
α2

m − k2
2

)
]

α2
mδm +

h2

24

(
2 − 3κ

κ
α2

m − 1 − 2κ

κ
k2
2

)}
E

− (1 − ν) K

{[
η2

ρ2Ω′ (η)
∂

∂η

(
1

Ω′(η)
∂

∂η

)
+

η̄2

ρ2Ω′ (η)
∂

∂η̄

(
1

Ω′(η)
∂

∂η̄

)]

×
[
h2

24

(
1
κ

− 1
)

+ δm − h2

24
1 − 2κ

κ

(
α2

m − k2
1

)
δm

]
E

+

[
η2

ρ2Ω′ (η)
∂

∂η

(
1

Ω′(η)
∂

∂η

)
− η̄2

ρ2Ω′ (η)
∂

∂η̄

(
1

Ω′(η)
∂

∂η̄

)]

if

}

(34b)

Nρθ = (1 − ν) Bi

{[
η2

ρ2Ω′ (η)
∂

∂η

(
1

Ω′(η)
∂

∂η

)
− η̄2

ρ2Ω′ (η)
∂

∂η̄

(
1

Ω′(η)
∂

∂η̄

)]

×
[
h2

24

(
1
κ

− 1
)

+ δm − h2

24
1 − 2κ

κ

(
α2

m − k2
1

)
δm

]
E

+ i

[
η2

ρ2Ω′ (η)
∂

∂η

(
1

Ω′(η)
∂

∂η

)
+

η̄2

ρ2Ω′ (η)
∂

∂η̄

(
1

Ω′(η)
∂

∂η̄

)]

f

}

(34c)

MQρ
= (1 − ν) B

h2

48

[
1
κ

(
α2

m − k2
1

)
δm − 1 − 2κ

κ

] [
η

ρ

1
|Ω′ (η)|

∂

∂η
+

η̄

ρ

1
|Ω′ (η)|

∂

∂η

]
E (34d)

MQθ
= (1 − ν) B

h2

48

[
1
κ

(
α2

m − k2
1

)
δm − 1 − 2κ

κ

] [
η

ρ

1
|Ω′ (η)|

∂

∂η
− η̄

ρ

1
|Ω′ (η)|

∂

∂η

]
iE (34e)

The general solution of the scattering wave described by the vibration Eq. (24) of the stretching
plate can be written as follows,

E =
2∑

m=1

∞∑

n=−∞
AmnH(1)

n (αm |Ω(η)|)
{

Ω(η)
|Ω(η)|

}n

(35a)

F =
2∑

m=1

∞∑

n=−∞
AmnδmH(1)

n (αm |Ω(η)|)
{

Ω(η)
|Ω(η)|

}n

(35b)

f =
∞∑

n=−∞
BnKn (k2 |Ω(η)|)

{
Ω(η)
|Ω(η)|

}n

(35c)

where δj(j = 1, 2) is the proportional coefficient of the scattering wave function, and δj =
(3−4κ)α2

jh2−(1−2κ2)k2
2h2+24(1−2κ)

[(3−2κ)α2
jh2−k2

2h2+24](α2
j−k2

1)
; H(1)

n (·) denotes Hankel function; Kn(·) denotes Bessel function of

imaginary argument; and Amn(m = 1, 2) and Bn are mode coefficients of the scattered wave, which
can be determined by the cutout boundary conditions.

3. Excitation of Incident Waves and Total Wave Fields
As a plate with two cutouts is investigated in Fig. 1, we consider a tension–compression wave

propagating along the positive direction of x-axis. Based on the constructive interference theory of
wave fields, the incident wave can be proposed as

E(i) = E0eiα1x = E0

∞∑

n=−∞
(i)nJn(α1r)einβ (36a)

F (i) = δ1E
(i) (36b)

f (i) = 0 (36c)
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The total wave field of the elastic wave of plates can be expressed as

E = E(i) +
2∑

j=1

E(s) = E0eiα1x +
2∑

j=1

∞∑

n=−∞

2∑

m=1

Aj
nmH(1)

n (αm |Ω(ηj)|)
{

Ω(ηj)
|Ω(ηj)|

}n

(37a)

F = F (i) +
2∑

j=1

F (s) = δ1E0eiα1x +
2∑

j=1

∞∑

n=−∞

2∑

m=1

Aj
nmδmH(1)

n (αm |Ω(ηj)|)
{

Ω(ηj)
|Ω(ηj)|

}n

(37b)

f = f (i) +
2∑

j=1

f (s) =
2∑

j=1

∞∑

n=−∞
Bj

nKn(α3 |Ω(ηj)|)
{

Ω(ηj)
|Ω(ηj)|

}n

(37c)

4. Determination of Mode Coefficients Satisfying Boundary Conditions
The case of free boundary condition is investigated. In the η-plane, it meets six boundary conditions

as follows,

N j
ρ

∣
∣
ρ=a

= 0, N j
ρθ

∣
∣
ρ=a

= 0,M j
Qρ

∣
∣
ρ=a

= 0 (j = 1, 2) (38)

Substituting Eqs. (34a), (34c), (34d) and (37) into Eq. (38), the infinite linear algebraic equations
to determine the six mode coefficients Aj

n1, A
j
n2, B

j
n can be given as

6∑

j=1

∞∑

n=−∞
Kij

n Xj
n = Ki (i = 1, 2, 3, 4, 5, 6) (39)

Multiplying Eq. (39) by e−isθ, and integrating between −π and π, we can get the expression

∞∑

n=−∞
KnsXn = Ks (40)

where Kns = 1
2π

∫ π

−π
Kn exp (−isθj)dθj ,Ks = 1

2π

∫ π

−π
K exp (−isθj)dθj

Kn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Kn
11 Kn

12 Kn
13 Kn

14 Kn
15 Kn

16

Kn
21 Kn

22 Kn
23 Kn

24 Kn
25 Kn

26

Kn
31 Kn

32 0 Kn
34 Kn

35 Kn
36

Kn
41 Kn

42 Kn
43 Kn

44 Kn
45 Kn

46

Kn
51 Kn

52 Kn
53 Kn

54 Kn
55 Kn

56

Kn
61 Kn

62 Kn
63 Kn

64 Kn
65 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Xn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
n1

A1
n2

B1
n

A2
n1

A2
n2

B2
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ks =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K1

K2

K3

K4

K5

K6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The elements of Kn and Ks see “Appendix”.
The dynamic stress concentration factor (DSCF) is defined as the ratio of stress due to the total

wave at a point to the stress due to the incident wave (without the scatterer) at the same point [3].
In term of the definition, for the plate with two cutouts, the DSCFs around the m-th cutout can be
expressed by

σ∗
θ = σθ/σ0 =

(
σ
(i)
θ + σ

(s)
θ

)
/σ0 (41)

where

σ
(i)
θ = μM

{[
1 − 2κ

κ
− 1 − κ

κ
α2
1δ1

]
+ α2

1δ1Re

(
η

η̄

Ω′(η)
Ω′ (η)

)}

exp
[
iα1

2
Re (Ω′(η))

]

σ
(s)
θ = μM

2∑

j=1

2∑

m=1

∞∑

n=−∞

(
1 − 2κ

κ
− 1 − κ

κ
α2

mδm

)
AmnH(1)

n (αmrj) einθj

− 2μM

⎧
⎨

⎩

2∑

j=1

2∑

m=1

∞∑

n=−∞
Amn

α2
mδm

4

[
η2

i

ρ2i

Ω′(ηi)
Ω′ (ηi)

H(1)
n−2(αmrj)ei(n−2)θj
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Fig. 2. Dynamic stress in stretching plates around cutouts, where α1 denotes dimensionless incident wave number and
L/a denotes cutout-spacing. a α1a = 0.1, L/a = 2.1, b α1a = 1.0, L/a = 2.1, c α1a = 5.0, L/a = 2.1

+
η̄2

i

ρ2i

Ω′(ηi)
Ω′ (ηi)

H(1)
n+2(αmrj)ei(n+2)θj

]

+
k2
2

4
i

2∑

j=1

∞∑

n=−∞
Bn

×
[

η2
i

ρ2i

Ω′(ηi)
Ω′ (ηi)

Kn−2(k2rj)ei(n−2)θj − η̄2
i

ρ2i

Ω′(ηi)
Ω′ (ηi)

Kn+2(k2rj)ei(n+2)θj

]}

σ0 is the amplitude of the normal stress of the incident wave along the x-axis direction, and σ0 =[
λM

(
1 − δ1α

2
1

)− 2μMδ1α
2
1

]
E0.

5. Numerical Examples and Discussion
Fatigue failures often occur in the regions with high stress concentration, so an understanding

of the distribution of the dynamic stress around the inclusion is quite useful in structural design.
According to the expression of DSCF induced by tension–compression wave, the DSCFs around the
cutouts are simulated by using MATLAB. We put forward the program to calculate the dynamic
stress concentration factor in the plate with two cutouts. For the convenience of calculation, in the
following analysis, the dimensionless variables are employed. To accomplish this step, a representative
length scale a, which is the radius of the cutout, is introduced. The following dimensionless variables
and quantities are chosen for numerical calculation: the incident wavenumber α1a = 0.01−5.0, the
thickness of plate h/a = 0.2−10.0, the cutout-spacing L/a = 2.1−12.0, Poisson’s ratio ν = 0.3, and
n = 10.

The numerical results of DSCFs for different plates with two cutouts by using the refined dynamic
equation are depicted in Figs. 2 and 3, which illustrate the angular distributions of the dynamic stress
around the cutouts with different wave numbers, cutout-spacings, and plate thicknesses. For each figure,
the upper half illustrates the dynamic stress distributions when t = 0, while the lower half illustrates
the dynamic stress distributions when t = T/4. Figures 4 and 5 show the dynamic stress concentration
factors versus the dimensionless wave number α1a.

Figure 2a–c displays the angular distribution of the DSCFs around the circular cutouts in thick
plates (h/a = 10.0) when the cutout-spacing is small (L/a = 2.1). Because of the mutual influence
between two cutouts, when the incident wave number is α1a = 0.1, at time t = 0, the maximum
DSCF (the value is 3.91 in Fig. 2) is 19% greater than that of the plane stress problem in Ref. [3]
(the value is 3.28). The DSCF values are close to zero at time t = T/4, which agrees with plane stress
problem. When the incident wave number is α1a = 1.0, at time t = 0, the maximum DSCF is less than
one, differing from that of the plane stress problem in Ref. [3]. The maximum DSCF values at time
t = T/4 are close to zero at time t = 0. It is noted that the maximum DSCF values at time t = T/4
are near the position of θ = 5π/3. When the incident wave number is α1a = 5.0, at time t = 0, the
maximum DSCF is close to 1.0. It is noteworthy that the DSCFs fluctuate. The large values are near
the positions of θ = 0, θ = 5π/18, θ = 13π/18, and the negative values are close to − 1.0 near the
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Fig. 3. Dynamic stress in stretching plates around cutouts with different cutout-spacing, where α1 denotes dimen-
sionless incident wave number and L/a denotes cutout-spacing. a α1a = 0.1, L/a = 6.0, b α1a = 1.0, L/a = 8.0, c
α1a = 5.0, L/a = 11.0

positions of θ = 4π/9, θ = 11π/18. The maximum DSCF values at time t = T/4 are close to − 1.0 near
the position of θ = 4π/3, 14π/9.

Figure 3a–c displays the angular distribution of the DSCFs around the circular cutouts in thick
plates (h/a = 10.0) when the cutout-spacing is large. The larger is the cutout-spacing, the smaller
is the mutual influence between two cutouts. When the incident wave number is α1a = 0.1 and the
cutout-spacing is L/a = 6.0, the angular distribution of the DSCFs is almost equal to that of the
DSCFs with one single cutout in Ref. [15], which means that the minimum cutout-spacing to ensure
zero mutual influence between cutouts is L/a = 6.0. When the incident wave number is α1a = 1.0 and
the cutout-spacing is L/a = 8.0, the angular distribution of the DSCFs is almost equal to that of the
DSCFs with one single cutout in Ref. [15]. When the incident wave number is α1a = 5.0, the minimum
cutout-spacing to ensure zero mutual influence between cutouts is about L/a = 11.0. Thus, it can be
seen that the larger is the incident wave number, the wider is the range of mutual influence between
cutouts.

As shown in Figs. 4 and 5, the DSCF in the low-frequency region is higher than that in the high-
frequency area, and the DSCF in the high-frequency area is kept near 1.0. When a/h = 0.1, the DSCF
varies in the low-frequency region, quickly reaches the minimum, and then gradually tends to be stable.
When a/h = 0.5, there is stagnation before reaching the minimum. When a/h = 1.0, a/h = 2.0, a/h =
5.0 is applied, the DSCF decreases gradually and becomes stable near 3.0, and the minimum DSCF
increases. It can be seen that with the decrease in the thickness of the plate, the stress varies slowly
in the low-frequency region.

6. Conclusions
In this paper, based on the refined dynamic equation of stretching thick plates, and using the com-

plex variable method and conformal mapping method, the elastic tension–compression wave scattering
and dynamic stress concentration in plates with two cutouts are investigated. According to the analysis
of the above numerical results, we can conclude that the parameters such as incident wave number,
thickness of plate, and cutout-spacing have great effects on dynamic stress distributions. It is shown
that:

At a low frequency and a small thickness of the plate, the numerical results obtained using the
refined theory approach those obtained using the plane stress theory (see Ref. [3]). At a high frequency
and a great thickness of the plate, the numerical results obtained using the refined theory are far from
those obtained using the plane stress theory. Especially, as the thickness is great (a/h = 0.1), using
the refined equation, the DSCF may approach the maximum value of 3.91, which is over 19% greater
than that of the plane stress problem (the maximum value is 3.28). Such a big error is not allowed
in engineering, which needs great attention. It shows good agreement with the conclusion verified
by many dynamicists that the solution of the plane stress problem only applies to large wavelength
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Fig. 4. Dynamic stress between two nearby cutouts in stretching plates versus dimensionless wave numbers
(ν = 0.3, θ = π/2, L/a = 2.1)

Fig. 5. Dynamic stress between two away cutouts in stretching plates versus dimensionless wave numbers
(ν = 0.3, θ = π/2, L/a = 12.0)



346 ACTA MECHANICA SOLIDA SINICA 2018

and low-frequency incident wave. Hence, it is of the importance to derive the refined plate theory
for elastodynamics of thick plates. Besides, as the incident waves are at low frequency, the minimum
cutout-spacing to ensure zero mutual influence between cutouts is small; as the incident waves are at
high frequency, the minimum cutout-spacing to ensure zero mutual effect between cutouts is great.
Therefore, the cutout-spacings should be distributed rationally in the structural design.

In this paper, the refined equation is derived without using any engineering hypotheses. Therefore,
the results in this paper are more accurate, which can be applied to the condition of thick-walled
structures and high-frequency vibration. Furthermore, it is worth mentioning that the numerical sim-
ulation on two circular cutouts is a typical example, and if proper mapping functions Ω(ζ) are given,
the application of this method to solving the problem on scattering of elastic waves can be spread to
arbitrary-shaped cutouts, providing a unified and standardized method for analyzing dynamic stress
concentrations around cutouts. The theory and the numerical results in this paper can be used for the
dynamic analysis and strength design of engineering thick-walled structures, high-precision structural
design and lightweight structural design.
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