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RESEARCH Open Access

Identification of TBX15 as an adipose
master trans regulator of abdominal
obesity genes
David Z. Pan1,2, Zong Miao1,2, Caroline Comenho1, Sandhya Rajkumar1,3, Amogha Koka1, Seung Hyuk T. Lee1,
Marcus Alvarez1, Dorota Kaminska1,4, Arthur Ko5, Janet S. Sinsheimer1,6, Karen L. Mohlke7, Nicholas Mancuso8,
Linda Liliana Muñoz-Hernandez9,10,11, Miguel Herrera-Hernandez12, Maria Teresa Tusié-Luna13,
Carlos Aguilar-Salinas10,11, Kirsi H. Pietiläinen14,15, Jussi Pihlajamäki4,16, Markku Laakso17, Kristina M. Garske1 and
Päivi Pajukanta1,2,18*

Abstract

Background: Obesity predisposes individuals to multiple cardiometabolic disorders, including type 2 diabetes
(T2D). As body mass index (BMI) cannot reliably differentiate fat from lean mass, the metabolically detrimental
abdominal obesity has been estimated using waist-hip ratio (WHR). Waist-hip ratio adjusted for body mass index
(WHRadjBMI) in turn is a well-established sex-specific marker for abdominal fat and adiposity, and a predictor of
adverse metabolic outcomes, such as T2D. However, the underlying genes and regulatory mechanisms
orchestrating the sex differences in obesity and body fat distribution in humans are not well understood.

Methods: We searched for genetic master regulators of WHRadjBMI by employing integrative genomics
approaches on human subcutaneous adipose RNA sequencing (RNA-seq) data (n ~ 1400) and WHRadjBMI GWAS
data (n ~ 700,000) from the WHRadjBMI GWAS cohorts and the UK Biobank (UKB), using co-expression network,
transcriptome-wide association study (TWAS), and polygenic risk score (PRS) approaches. Finally, we functionally
verified our genomic results using gene knockdown experiments in a human primary cell type that is critical for
adipose tissue function.

Results: Here, we identified an adipose gene co-expression network that contains 35 obesity GWAS genes and
explains a significant amount of polygenic risk for abdominal obesity and T2D in the UKB (n = 392,551) in a sex-
dependent way. We showed that this network is preserved in the adipose tissue data from the Finnish Kuopio
Obesity Study and Mexican Obesity Study. The network is controlled by a novel adipose master transcription factor
(TF), TBX15, a WHRadjBMI GWAS gene that regulates the network in trans. Knockdown of TBX15 in human primary
preadipocytes resulted in changes in expression of 130 network genes, including the key adipose TFs, PPARG and
KLF15, which were significantly impacted (FDR < 0.05), thus functionally verifying the trans regulatory effect of
TBX15 on the WHRadjBMI co-expression network.
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Conclusions: Our study discovers a novel key function for the TBX15 TF in trans regulating an adipose co-
expression network of 347 adipose, mitochondrial, and metabolically important genes, including PPARG, KLF15,
PPARA, ADIPOQ, and 35 obesity GWAS genes. Thus, based on our converging genomic, transcriptional, and
functional evidence, we interpret the role of TBX15 to be a main transcriptional regulator in the adipose tissue and
discover its importance in human abdominal obesity.

Keywords: Transcriptional regulation of abdominal obesity, Master transcription factor, Trans regulation of genes,
Waist-hip ratio adjusted for body mass index (WHRadjBMI), Type 2 diabetes (T2D), Polygenic risk score (PRS)

Background
Obesity predisposes individuals to multiple cardiometa-
bolic disorders, including type 2 diabetes (T2D) [1, 2].
Furthermore, as the world faces one of the worst
infectious-disease outbreaks in a century, new data are
emerging showing that obesity and male sex are key risk
factors for severe forms of COVID-19 infection in indi-
viduals less than 60 years of age [3, 4]. However, the
underlying genes and regulatory mechanisms orchestrat-
ing the sex differences in obesity and body fat distribu-
tion are not well understood.
Obesity is clinically diagnosed by a body mass index

(BMI) greater than 30 kg/m2, while severe obesity is de-
fined as BMI greater than 40 kg/m2. However, as BMI
cannot reliably differentiate fat from lean mass, the
metabolically detrimental abdominal obesity has been
more accurately estimated using waist-hip ratio (WHR),
which even after adjusting for BMI (WHRadjBMI) is still
highly heritable (heritability ~ 0.22–0.61 )[5–8].
WHRadjBMI is a well-established surrogate for abdom-
inal adiposity and body fat distribution, and it has also
been correlated with direct imaging assessments of ab-
dominal fat in observational studies [9–11]. It is also rec-
ognized as a strong predictor of T2D [12].
Previous studies have demonstrated that WHRadjBMI

is a sexually dimorphic trait, reflecting the physiological
differences in body fat and muscle mass, with males in
general exhibiting more muscle mass and females more
fat mass when matched for BMI and age [13, 14]. Fur-
thermore, WHRadjBMI shows large differences in the
narrow sense heritability between males (~ 20%) and fe-
males (~ 50%) [8, 15]; yet, the biological mechanisms
underlying abdominal adiposity and its sex-specific char-
acteristics have remained largely elusive. Previous
genome-wide association studies (GWAS) have shown
that WHRadjBMI GWAS genes are enriched for
adipose-expressed genes with known adipose tissue
functions, whereas BMI GWAS genes are enriched for
genes expressed primarily in the brain [16]. To advance
the discovery of unknown genetic and molecular mecha-
nisms regulating abdominal adiposity and the sex-
specific distribution of body fat, we searched for genetic
master regulators of WHRadjBMI by employing integra-
tive genomics approaches on human subcutaneous

adipose RNA sequencing (RNA-seq) data (n ~ 1400) and
WHRadjBMI GWAS, transcriptome-wide association
studies (TWAS), and polygenic risk score (PRS) data
from the WHRadjBMI GWAS cohorts and the UK Bio-
bank (UKB) (n ~ 700,000). Finally, we verified our gen-
omic results using functional studies in a human
primary cell type that is crucial for adipose tissue
function.
One possible regulatory mechanism of gene expression

is transcription factor (TF) binding to the promoters of
multiple genes across many chromosomes, which causes
them to be co-regulated and co-expressed [17–19]. We
hypothesized that adipose co-expression networks can
be used to identify novel TFs that trans regulate multiple
co-expressed target genes important for WHRadjBMI.
We provide novel genomic evidence, verified by our

functional studies in human primary preadipocytes, for
the causal role of TBX15 in controlling accumulation of
abdominal fat and adiposity. Our study discovers a new
key function for the TBX15 TF in trans regulating an
adipose co-expression network of 347 adipose, mito-
chondrial, and metabolically important genes, including
PPARG, KLF15, PPARA, ADIPOQ, and 35 obesity
GWAS genes.

Methods
Study cohorts
METabolic Syndrome In Men (METSIM) cohort used for
discovery of WHRadjBMI co-expression network
The participants in the METSIM cohort (n = 10,197) are
Finnish males recruited at the University of Eastern
Finland and Kuopio University Hospital, Kuopio,
Finland, as described previously [20–22]. The study was
approved by the local ethics committee and all partici-
pants gave written informed consent. The median age of
the METSIM participants is 57 years (range 45–74
years). The METSIM participants were genotyped using
the OmniExpress (Illumina) genotyping array and
phased and imputed using SHAPEIT2 v2.17 [23] and
IMPUTE2 v2.3.2 [24], respectively. A random subset of
the METSIM men underwent an abdominal subcutane-
ous adipose needle biopsy, with 335 unrelated individ-
uals (IBD < 0.2 using a genetic relationship matrix
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calculated in PLINK v1.9 [25]) analyzed here using
RNA-seq [22, 26].

UK Biobank (UKB) cohort used for construction of PRS
The UKB is a large cohort (n = 502,617) consisting of
data from individuals collected across the UK starting in
2006 [27, 28]. To avoid hidden confounders from ances-
try and relatedness, we used the subset of these individ-
uals who are unrelated and of European ancestry (n =
392,551). The genotyping was performed using one of
two arrays for over 800,000 different variants [28, 29].
The genotypes were then imputed using the Haplotype
Reference Consortium (HRC) as well as UK 10 K panel
and the 1000 Genomes panel [28, 29]. The genotypes
were filtered for variants with MAF < 1% and violation
of Hardy-Weinberg Equilibrium (p < 1 × 10−6) before
using them for construction of the polygenic risk scores
(PRSs) for WHRadjBMI.

Kuopio OBesity Study (KOBS) cohort used for testing of
TBX15 in extreme obesity
The participants in the longitudinal Kuopio OBesity
Study (KOBS) cohort (n = 168) consist of Finnish obese
individuals undergoing bariatric surgery and participat-
ing in a 1-year follow-up, recruited at the University of
Eastern Finland and Kuopio University Hospital, Kuopio,
Finland, as described previously [30–33]. The study was
approved by the local ethics committee and all partici-
pants gave written informed consent. All participants
underwent a pre-screening for a detailed medical history,
and the inclusion criterion was a pre-surgery BMI of ≥
40 kg/m2 or 35 kg/m2 with a significant comorbidity,
such as type 2 diabetes (T2D). A total of 168 individuals
with subcutaneous adipose RNA-seq data at the time of
bariatric surgery and one year after the surgery were an-
alyzed in our study [33]. Refined phenotypic measure-
ments and clinical characteristics were also measured at
both time points [30–33].

Mexican Obesity Study (MOSS) cohort used for independent
replication of WHRadjBMI co-expression network
preservation
The participants in the on-going longitudinal Mexican
Obesity Study (MOSS) cohort are recruited at the Insti-
tuto Nacional de Ciencias Medicas y Nutricion (INCM
N), Mexico City, as described in detail in Miao et al.
[34]. Briefly, the MOSS cohort consists of Mexican obese
individuals undergoing bariatric surgery and participat-
ing in a 1-year follow-up. A total of 43 individuals with
subcutaneous adipose RNA-seq data on both time points
[34] were analyzed in our study. The study was approved
by the local ethics committee, and all participants gave
written informed consent. All participants underwent a
pre-screening for a detailed medical history, and the

inclusion criteria were a pre-surgery BMI of ≥ 33 kg/m2,
no weight loss or gain after an intensive diabetes control
program, and good pancreatic reserve for individuals
with T2D. Individuals were excluded if they had a med-
ical condition that limited their life expectancy to less
than 5 years. The biopsy samples were taken from sub-
cutaneous adipose tissue at the time of bariatric surgery
and 1 year after the surgery. Refined phenotypic mea-
surements and clinical characteristics were also mea-
sured at both time points. To control for admixed
ancestry of Mexican individuals, we called variants from
the RNA-seq data following the GATK pipeline [35].
We used the recommended parameters of -window 35,
-cluster 3, and filtering FS > 30 and QD < 2 and only in-
cluded variants with MAF > 5% and an average read
depth ≥ 30. To ensure the quality of our genotypes, we
combined the MOSS and 1000 Genomes Project geno-
type data [36] and performed principal component ana-
lysis (PCA) and observed that the MOSS individuals
clustered well with the individuals of Amerindian des-
cent. We used these variants called from RNA-seq data
to calculate the genotype PCs for the correction of
ancestry.

Alignment of RNA-seq data
We performed alignment of subcutaneous adipose RNA-
seq data (n = 335) from the METSIM cohort [26] using
STAR v2.5.2 [37] with GENCODE v19 annotation of the
genome and hg19 version of the human genome, as we
described earlier with minor changes [22, 38]. Briefly, a
2-pass alignment was performed on 75 base-pair (bp)
reads with only uniquely mapped reads counted for gene
expression. We discovered that the expression of many
genes and technical factors are correlated with the per-
centage of mitochondrial reads. To avoid the influence
of the mitochondrial read number on the data, we ex-
cluded the mitochondrial reads from the RNA-seq data
when calculating the FPKMs and technical factors. We
used FastQC to verify the RNA-seq quality, based on
metrics, such as GC content, duplication levels, and se-
quence quality scores, as well as Picard Tools v2.9.0 to
obtain the technical factors from the standard RNA-seq
metrics (option CollectRNAseqMetrics), including the
median 5′ to 3′ bias, percentage of intronic reads, and
median coverage from the aligned reads.

Weighted Gene Co-expression Analysis
To find co-expression networks in the METSIM adipose
RNA-seq cohort, we performed weighted gene co-
expression analysis (WGCNA) v1.68 [39] on FPKMs
from the subcutaneous adipose RNA-seq data (n = 335)
from the METSIM cohort [26]. To prevent the influence
of technical factors from sequencing and RNA-seq align-
ment, we included 14 technical factors that were
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determined by STAR v2.5.2 [37] and Picard Tools v2.9.0.
The FPKMs were filtered for genes expressed (FPKM>
0) in at least 90% of individuals and inverse normal
transformed after correcting for technical factors to
avoid spurious associations and outlier effects (see
above). Phenotypes used for associations with co-
expression networks in WGCNA v 1.68 [39] were in-
verse normal transformed after correcting for age, age2.
The fasting serum insulin levels were corrected for T2D
status as well as age and age2 and then inverse normal
transformed. To ensure scale-free network topography,
we used a power of 10 for the power function to deter-
mine co-expression network membership. All other pa-
rameters in WGCNA v 1.68 [39] were kept at their
default values.
Selection of parameters for WGCNA [39] is based on

the assumption that the degree of connection of genes
in a gene expression network should follow a power law,
thus approximating a scale-free network, as described in
the original WGCNA paper [39]. Briefly, this requires
the testing of different values for a soft-thresholding
power to determine at which power the gene expression
network starts to approximate a scale-free network. The
optimal value is best determined by the scale-free topog-
raphy model fit parameter, as determined by WGCNA
[39], with the ideal soft-thresholding power being the
lowest power at which the gene expression networks ap-
proximate a scale-free topography because this retains
the highest amount of connectivity between genes (Add-
itional file 1: Fig. S1).

Co-expression network preservation
Using WGCNA v1.68 [39, 40], we confirmed the preser-
vation of the co-expression networks from the METSIM
subcutaneous adipose RNA-seq [26] (n = 335) in the
subcutaneous adipose (v8, n = 581), visceral adipose (v7,
n = 277), and skeletal muscle (v8, n = 298) RNA-seq
data from the independent GTEx cohort [41, 42] and
the Mexican MOSS cohort [34]. We further subdivided
the GTEx [41] cohort to males (n = 387, n = 149, n =
153, subcutaneous adipose, visceral adipose, skeletal
muscle, respectively) and females (n = 194, n = 84, n =
145, subcutaneous adipose, visceral adipose, skeletal
muscle, respectively) and then for the subcutaneous adi-
pose data, lean (BMI < 25, nMales = 102, nFemales = 78)
and obese (BMI > 30, nMales = 119, nFemales = 41) indi-
viduals of each sex. We did not subdivide the visceral
and skeletal muscle data into lean and obese categories
by BMI as the samples sizes would have been below the
recommended minimum threshold for network preser-
vation (n = 20). The analysis of the MOSS cohort [34]
was also not done in a sex-specific manner due to the
small sample size. When sample sizes are above the rec-
ommended minimum threshold (n = 20), the ZSummary

score value should not be sensitive to the sample size,
and so the relative difference in the number of males
and females or lean and obese individuals was not a con-
cern. We calculated FPKMs from the RNA-seq data and
technical factors from STAR v2.5.2 [37] and Picard
Tools v2.9.0, as described above. We corrected the ex-
pression data for technical factors as well as age, age2,
sex, race, RIN, and then inverse normal transformed the
data. The GTEx v8 cohort data [41] was also corrected
for sequencing platform, sequencing protocol (PCR-
based or PCR-free), time from death to RNA collection,
and 5 genotype principal components (PCs) to correct
for ancestry. The MOSS cohort [34] was corrected for
an additional three genotype PCs using PLINK v1.9 [25]
to account for ancestry. Default parameters in WGCNA
v1.68 [39] were used for the co-expression network pres-
ervation analysis. Accordingly, a preservation 10 > ZSum-

mary > 2 was considered as weakly to moderately
preserved and a ZSummary > 10 as strongly preserved [39,
40]. The calculation of the ZSummary score requires a ref-
erence cohort and set of networks and an independent
test cohort. The same networks from the reference co-
hort are assigned to genes in the test cohort data. Then
metrics, such as the similarity of the eigengenes, con-
nectivity between genes and to the eigengene, and the
ability to separate a specific network from other net-
works are aggregated into a ZSummary score, indicating
the similarity of a specific network in the test cohort
data and the reference cohort data. As the distribution
of ZSummary scores is not known a priori, the significance
of the ZSummary score is determined via permutations of
the labels of the networks in the test cohort data and re-
calculating ZSummary score.

Single-nucleus RNA-seq (snRNA-seq) of human
subcutaneous adipose tissue
We performed the snRNA-seq analysis of frozen adipose
tissue biopsies obtained from 15 individuals (6 males
and 9 females with a mean age = 32.70 ± 7.12 and mean
BMI = 31.45 ± 5.42). These 15 individuals underwent
subcutaneous adipose biopsies as part of the Finnish
Twin study (7 individuals) [43] and CRYO study (8 indi-
viduals) [33, 44] at the Helsinki University Central Hos-
pital, Finland. The Finnish Twin and CRYO studies were
approved by the local ethics committee and all partici-
pants gave written informed consent. To identify cell
types and their gene expression profile, we first isolated
nuclei from frozen subcutaneous adipose tissue to input
them into the 10X Chromium platform [45]. To isolate
nuclei from frozen tissue, the tissue was minced over
dry ice and transferred into ice-cold lysis buffer consist-
ing of 0.1% IGEPAL, 10 mM Tris-HCl, 10 mM NaCl,
and 3mM MgCl2. After a 10-min incubation period, the
lysate was gently homogenized using a dounce
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homogenizer and filtered through a 70-μm MACS smart
strainer (Miltenyi Biotec #130-098-462) to remove deb-
ris. Nuclei were centrifuged at 500g for 5 min at 4 °C and
washed in 1 ml of resuspension buffer (RSB) consisting
of 1× PBS, 1.0% BSA, and 0.2 U/μl RNase inhibitor. We
further filtered nuclei using a 40-μm Flowmi cell strainer
(Sigma Aldrich # BAH136800040) and centrifuged at
500g for 5 min at 4 °C. Pelleted nuclei were re-suspended
in wash buffer and immediately processed with the 10X
Chromium platform following the Single Cell 3' v2
protocol. After library generation with the 10X Genom-
ics platform, libraries were sequenced on an Illumina
NovaSeq S2 at a sequencing depth of 50,000 reads per
cell. Reads were aligned to the GRCh37 human genome
reference with GENCODE v19 gene annotations [46]
using STARsolo v2.7.5 a[34] with the GeneFull argu-
ment to account for unspliced mRNA.

SnRNA-seq data processing and identification of cell type
marker genes
We then clustered the droplets using Seurat v3.2.3 [47].
In order to remove droplets contaminated with back-
ground RNA, we ran DIEM [48]. After applying filtering,
we only considered droplets with at least 200 UMI and
200 genes detected [49] to ensure that each droplet had
enough information for clustering and droplets with at
most 20,000 UMI and the percentage of reads that map
to the mitochondrial genome less than 20 to remove
doublets and contaminated droplets. The count data
were log-normalized using the NormalizeData function
in Seurat, using the default scaling factor of 10,000. The
counts for the fifteen adipose tissue samples were
merged at this step. The top 2000 variable genes were
then calculated using the FindVariableFeatures function.
Normalized read counts for each gene were scaled to

mean 0 and variance 1. We calculated the first 30 PCs to
use them as input for clustering. We then ran the Seurat
functions FindNeighbors and FindClusters with 30 PCs.
In the FindClusters function, we used the default param-
eters with standard Louvain clustering and a default
clustering resolution of 0.8.
Cell type annotation was done for each droplet using

SingleR v1.2.4 [50]. We used normalized expression data
from BLUEPRINT [51], ENCODE [52], and the Data-
base for Immune Cell Expression [53] that are available
in the SingleR package as reference datasets. We also in-
cluded snRNA-seq data of adipose tissue from sixteen
individuals as a reference where cell type of each cluster
was manually annotated based on cluster marker genes.
Cell type labels across the reference datasets were har-
monized using the SingleR function matchReferences.
We removed droplets with unassigned cell type and cell
types with less than 10 droplets in each cluster.

To identify marker genes for each cell type and cluster,
we ran a Wilcoxon rank-sum test using the function
FindAllMarkers with default parameters and only.pos =
TRUE. We corrected for multiple testing using Bonfer-
roni corrected p < 0.05.

T2D GWAS in the UKB
To identify individuals with T2D in UKB [27], we se-
lected the individuals who were diagnosed with diabetes
(UKB data field 2443) or took medication for diabetes
(data field 6153) as T2D cases, while removing the indi-
viduals with age of onset of diabetes (data field 25288) <
40 years to avoid inclusion of type 1 diabetics in the
GWAS analysis. We excluded the individuals with miss-
ing information for diagnosis of diabetes (data field
2443) from the GWAS analysis, and then used the indi-
viduals who were not diagnosed using these relevant
data fields (data fields 2443, 6153, and 25288) as the
controls. To account for population stratification, we se-
lected the unrelated, Caucasians (total n after the exclu-
sions = 389,738) and used BOLT-LMM [54] to perform
the GWAS associations between the genotypes and T2D
status. We included age, age2, sex, array type, center ID,
and 20 genotype PCs as covariates in the GWAS
analysis.

Stratified LD score regression
We performed stratified LD score regression using the
LD Score software v1.0.0 [55, 56]. This analysis was con-
ducted using the GWAS summary statistics from the
UKB and GIANT meta-analyses for WHRadjBMI
(males, females, and both sexes combined) (n = 315,284;
n = 379,501; n = 694,549, respectively) and BMI (n =
806,834 both sexes combined) [15] as well as GWAS
summary statistics from the UK Biobank for T2D
(males, females, and both sexes combined) (n = 178,809;
n = 210,929; n = 389,738, respectively). We partitioned
the heritability into a category with the cis regions (±
500 kb from the ends of the gene) around the 347
WHRadjBMI co-expression network genes and the 53
standard, overlapping categories used in the LD Score
software v1.0.0 [55, 56]. Briefly, the 53 functional cat-
egories are derived from 26 main annotations that in-
clude coding regions, untranslated regions (UTRs),
promoters, intronic regions, histone marks, DNase I
hypersensitivity sites (DHSs), predicted enhancers, con-
served regions, and other annotations. The partitioned
LD score regression method utilizes GWAS summary
statistics of all variants to estimate how much variants in
different annotation categories explain of the heritability
of cis expression while accounting for the linkage dis-
equilibrium (LD) among variants.
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Construction of polygenic risk score
We constructed the polygenic risk scores (PRSs) for
WHRadjBMI using the same method for construction of
PRSs as outlined for BMI in Khera et al. [28]. Briefly, we
used the summary statistics from the GIANT GWAS for
WHRadjBMI (n = 224,459) [8] and a reference panel of
the 503 European individuals from the 1000 Genomes
phase 3 version 5 [36]. We constructed nine candidate
scores using the software, LDPred v1.0.6 [57], which ad-
justs the effect sizes for each variant in the GWAS based
on LD structure. Due to the large number of partici-
pants, unified recruitment design and phenotypic
characterization, the UKB is an ideal cohort for con-
struction and testing of PRSs. Therefore, we tested and
validated these candidate scores by dividing the UKB
(unrelated, Caucasian individuals, n = 392,551) [27, 29]
into 2 groups: a testing set consisting of 1/3 of the indi-
viduals (n = 130,851), and a validation set containing the
remaining individuals unused in the testing set (n =
261,700). Since the fraction of causal variants is not
known a priori, we tested a different value of a tuning
parameter (ρ = 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001,
0.0003, 0.0001), as suggested by LDPred v1.0.6 [57], in
each of our nine candidate scores. We selected the best
score by correlating the PRS with WHRadjBMI using
Pearson correlation, which corresponded to ρ = 0.01.
We also compared this to five PRS scores constructed
using the standard method of PRS construction of LD
clumping (LD r2 < 0.2) and p value thresholding (p <
0.5, 0.1, 0.05, 1 × 10−5, 5 × 10−8), as suggested by
LDPred v1.0.6 [57], to confirm that using the tuning par-
ameter constructed a superior PRS. To avoid the influ-
ence of technical factors, we corrected WHRadjBMI in
the UKB for age, age2, sex, array type, center ID, and 20
genotype PCs. To perform statistical tests, we divided
the PRS into 20 quantiles and calculated odds ratio of
number of individuals in the top 10th percentile of
WHRadjBMI for males and females separately.

Prediction of type 2 diabetes using the WHRadjBMI PRS
We constructed a linear model to perform logistic re-
gression using the binary T2D status as the outcome in
the UKB validation set (n = 261,700) that we originally
employed to validate the PRSs for WHRadjBMI. We se-
lected the individuals who were diagnosed with diabetes
(UKB data field 2443) or took medication for diabetes
(data field 6153) as T2D cases, while removing the indi-
viduals with age of onset of diabetes (data field 25288) <
40 years to avoid inclusion of type 1 diabetics, with
remaining individuals identified as controls. To examine
individuals in the extremes of the WHRadjBMI
spectrum, we selected the UKB participants in the high-
est (top 10% of network PRS scores) and lowest decile
(lowest 10% of network PRS scores) of WHRadjBMI, as

determined by the network PRS and divided them by
sex. To avoid influence from the original phenotype,
WHRadjBMI, as well as any technical factors, our linear
model also included WHRadjBMI in addition to the net-
work PRS score, with WHRadjBMI corrected for age,
age2, sex, array type, center ID, and 20 genotype PCs.
We performed a Wald test for the significance of each
predictor in the linear model.

Transcriptome-wide association studies (TWAS)
To identify TFs causal for WHRadjBMI, we performed a
targeted transcriptome-wide association study (TWAS)
[58] using GTEx v8 cohort’s subcutaneous (n = 581)
RNA-seq data [41] to compute the TWAS weights for
variants within the cis region (± 500 kb from the ends of
the gene) around the 14 TFs in the identified
WHRadjBMI co-expression network. As there are no
currently TWAS functional weights for genes using
GTEx v8 cohort [41] and it has significantly more sam-
ples than the GTEx v7 cohort [42] for adipose tissues,
we computed our own weights using the recommended
parameters by TWAS [58]. Briefly, to only include vari-
ants that will be used in the final association between
TWAS and the GWAS trait, variants in the cis region
around our 14 TFs were pruned base on the LD refer-
ence panel from the TWAS website that was converted
by matching variants from GRCh37 to GRCh38 in Euro-
pean individuals from the 1000 Genomes phase 3 ver-
sion 5 [36]. TWAS [58] checks the heritability (p < 0.01)
and then looks for the best model out of the five stand-
ard models to estimate weights for the variants to pre-
dict gene expression. To show that the genes computed
by TWAS [58] are causal for a WHRadjBMI, we then as-
sociated the TWAS model with the weighted variants
with WHRadjBMI using the GWAS summary statistics
from the UK Biobank and GIANT meta-analysis [15].
The use of these extensive GWASs (total n ~ 700,000
Europeans) should maximize power for association.

Fine-mapping TWAS results using FOCUS
Recent work [59, 60] has shown that TWAS signal at
genomic risk regions will be correlated across genes as a
result of linkage disequilibrium and prediction weights,
which makes distinguishing non-relevant genes from
their causal counterparts challenging. To adjust for the
correlation in our TWAS test statistics and identify
likely causal genes, we applied FOCUS [59], a recently
developed method that models the complete correlation
structure within a region to fine-map TWAS signal.
FOCUS models the state of genes as “causal” and “non-
causal” and performs Bayesian inference over this state
variable given the data. Specifically, given m TWAS z-
scores z at a genomic risk region, let Σ = Σ(W,V) be the
correlation structure of predicted expression as a
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function of the m × p prediction weight matrix W and
the p × p LD matrix V and let c be a binary vector indi-
cating causal status. FOCUS models the likelihood of the
calculated z-scores z as,

Pr zð jW;V; c; σ2αÞ ¼ N 0;ΣDcΣþ Σð Þ

where Dc¼ diagðσ2α � cÞ is a diagonal matrix indicating
which genes are causal weighted by the variance of their
effect sizes. To infer the causal configuration c, FOCUS
computes the posterior probability as

Pr cð jz;W ;V ; σ2αÞ ¼
Pr zð jW;V;c;σ2αÞ Pr cjθð Þ

P0
c Pr zð jW;V;c0;σ2αÞ Pr c0jθð Þ

To collapse the probability over configurations c to in-
dividual genes, FOCUS computes the marginal posterior
inclusion probability (i.e., PIP) at the ith gene as Prðci
¼ 1 jz;W;V; σ2αÞ ¼

P
c:ci¼1 Prðc jz;W;V; σ2

αÞ: Lastly, to
reflect the inherent uncertainty of inference, FOCUS
computes credible gene sets for a specified credible level.
For example, a calibrated 90%-credible gene set contains
the causal gene with probability 90%.

Differential gene expression analysis in the KOBS cohort
Using read counts from featureCounts v2.0.0 [61], we
performed differential expression (DE) analysis using the
edgeR v3.24.3 package [62]. We first performed TMM
normalization using the calcNormFactors and variance
stabilization using voom [63], and then built a linear
model using LIMMA v3.38.3 [64] with the blocking fac-
tor for the baseline and follow-up measurement time
points in KOBS. As with the METSIM data, to avoid the
influence of the mitochondrial read number on the data,
we excluded the mitochondrial reads when obtaining
technical factors. Technical factors were determined by
STAR v2.5.2 [37] and Picard Tools v2.9.0 (option Col-
lectRNAseqMetrics) and included in the linear model in
LIMMA v3.38.3 [64], with DE genes passing FDR < 0.05
considered as significant.

Cis-eQTL analysis
We performed cis-eQTL analyses in the KOBS cohort
[30–33] at the baseline time point using the subcutane-
ous adipose RNA-seq data from individuals before bar-
iatric surgery (n = 262). We filtered the subcutaneous
adipose RNA-seq expression data (FPKMs) to genes
expressed (FPKM> 0) in greater than 90% of individuals
and employed PEER factor [65] analysis to remove hid-
den confounders. We conducted PEER factor [65]
optimization on chromosome 20 to maximize power for
discovery for eQTLs, while ensuring hidden confounders
were removed, and thus ended up correcting the KOBS
expression data for 21 PEER factors. The KOBS cohort

was genotyped using the OmniExpress (Illumina) geno-
typing array. We imputed genotypes using the Michigan
Imputation Server [66] and filtered genotypes for vari-
ants MAF < 5% and those failing Hardy-Weinberg Equi-
librium test (p > 1 × 10−6) using PLI NK v1.9 [25]. We
performed cis-eQTL analysis using Matrix-eQTL [67],
classifying variants as cis if they were within 1Mb of ei-
ther end of the gene.

Trans-eQTL analysis of the WHRadjBMI co-expression
network
We performed trans-eQTL analysis for the WHRadjBMI
co-expression network using the genotypes for the
TBX15 cis-eQTL WHRadjBMI GWAS SNP, rs1779445,
and the eigengene of the WHRadjBMI co-expression
network. The eigengene of the WHRadjBMI co-
expression network was extracted from WGCNA [39]
and is defined as the first principal component of the
corrected gene expression used for WGCNA [39] (see
“Methods” for WGCNA). A linear model was used to
test the association between the genotype and eigengene.

TBX15 motif enrichment in promoters of WHRadjBMI co-
expression network genes
We used Hypergeometric Optimization of Motif EnRich-
ment (HOMER, v4.9) [68] to search for the presence of
a TBX15 motif in the promoters of the 347 WHRadjBMI
co-expression network genes. We defined promoters as
2 kb upstream and 1 kb downstream of the transcription
start site (TSS). The TBX15 motif was downloaded from
the JASPAR database [69] and input as a custom motif
into HOMER [68]. The motif finding function in
HOMER [68] was used for identification of motifs in the
WHRadjBMI co-expression network gene promoters.

Human primary preadipocyte culture
Human subcutaneous primary white preadipocytes were
obtained from Zen-Bio (lot L120116E, female, age 52,
BMI 26.5) or PromoCell (lot 403Z001.1, male, age 30,
BMI 30). Cells were maintained in a monolayer culture
at 37 °C and 5% CO2 using preadipocyte growth medium
(PromoCell C-27410) with 1% Gibco Penicillin-
Streptomycin (Thermo Fisher 15140122) and following
PromoCell preadipocyte culturing protocols.

Small interfering RNA (siRNA)-mediated knockdown of
TBX15
We knocked down TBX15 in human subcutaneous pri-
mary preadipocytes obtained from Zen-Bio (lot
L120116E, female, age 52, BMI 26.5). Human primary
preadipocytes were used because they have a higher
siRNA transfection efficiency than primary adipocytes.
For the siRNA transfection, we used the Dharmacon
SMARTpool ON-TARGETplus Human TBX15 siRNA
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(L-022116-02) and the Dharmacon siGENOME Non-
Targeting siRNA Pool #1 (D-001206-13) as the nega-
tive control (NC). We optimized the siRNA concen-
tration and transfection volumes and then performed
two independent siRNA transfection experiments in
the human primary white preadipocytes. We used
Invitrogen Lipofectamine RNAiMAX (Thermo Fisher
13778150) to transfect 50 nM of the TBX15 or NC
siRNAs using reverse transfection. Specifically, we
followed the manufacturer’s instructions for diluting
the siRNA and Lipofectamine RNAiMAX in Gibco
Opti-MEM I Reduced Serum Medium (Thermo Fisher
31985062) and forming the siRNA-Lipofectamine
RNAiMAX complexes. We incubated cell suspensions
in the complexes plus serum- and antibiotic-free
media (PromoCell C-27417 basal media with supple-
ment kit components minus the fetal calf serum) to a
final siRNA concentration of 50 nM. We incubated
the transfection reaction at room temperature for 10
min before plating 250 μl per replicate into 12-well
plates, for a total of 5 replicates per siRNA (TBX15
and NC). After 24 h of transfection, we added 1 ml of
complete preadipocyte growth medium (PromoCell C-
27410). Twenty-four hours later, the media was re-
moved and the cells were washed with PBS once
prior to being treated with Invitrogen TRIzol reagent
(Thermo Fisher 15596026). We performed RNA ex-
traction per the manufacturer’s protocol using the
Direct-zol RNA Mini-Prep (Zymo Research R2061).
For the two independent knockdown experiments, we

confirmed by RT-qPCR that TBX15 expression was re-
duced by an average of > 60% for the first experiment
and 70% for the second experiment. We synthesized
cDNA from 500 ng of RNA using the Applied Biosys-
tems High-Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific 4368814). We measured rela-
tive gene expression by RT-qPCR using an Applied Bio-
systems QuantStudio 5 detector, using the Bioland 2x
qPCR Master Mix (Bioland Scientific, LLC QPO1-01)
and following the manufacturer’s instructions. To deter-
mine the relative percent of TBX15 expression knock-
down in the preadipocytes transfected with the TBX15
siRNA compared to the NC siRNA, we normalized ex-
pression levels to 36B4. Primers for TBX15 were ob-
tained from Arribas et al. [70] and validated in-house.
Primer sequences are listed below.

Gene Primer Primer sequence

TBX15 Forward 5′- AAAGCAGGCAGGAGGATGTT-3′

Reverse 5′- GCACAGGGGAATCAGCATTG-3′

36B4 Forward 5′-CCACGCTGCTGAACATGCT-3′

Reverse 5′-TCGAACACCTGCTGGATGAC-3′

RNA sequencing and differential expression analysis of
siRNA mediated knockdown of TBX15
We submitted the RNA samples from the experiment
with an average of 70% knockdown for RNA-seq. Libraries
were prepared using the Illumina TruSeq Stranded mRNA
kit and sequenced on an Illumina HiSeq 4000 instrument
across 2 lanes for an average sequencing depth of 67M
reads (± 2.5M reads) per sample. Reads were aligned to
hg19 with STAR v2.7.0e [37], using the 2-pass method
and the following parameters: --outFilterMultimapNmax
1, --outFilterMismatchNmax 6, --alignIntronMin 20,
--alignIntronMax 500000, --chimSegmentMin 15.
We used the R package sva v3.26.0 [71] to estimate

surrogate variables for unknown sources of variation in
the data. We confirmed that the first surrogate variable
(sv1) estimated using the svaseq [72] method is
correlated with technical factors known to contribute to
variance in RNA-seq data, such as library size, uniquely
mapped read percent, and 3′ bias, as well as the gene ex-
pression first principal component. The various technical
factors were obtained from STAR v2.7.0e [37] after se-
quence alignment (uniquely mapped reads) or from the
Picard Tools v2.9.0 (option CollectRnaSeqMetrics). We
used the sv1 as a covariate in the differential expression
(DE) analysis.
We performed the DE analysis using the R package

limma v3.34.9 [64, 73] and the voom [63] method,
including sv1 as a covariate, to identify genes in the
WHRadjBMI co-expression network (n = 347) that are
significantly DE in the TBX15 knockdown compared to
the NC, with FDR < 0.05 considered as significant.

Results
Discovery of WHRadjBMI-associated co-expression
networks in human adipose tissue
In our network analysis, we used waist-hip ratio adjusted
for body mass index (WHRadjBMI) as a surrogate for
abdominal adiposity and fat [9–11], supported by previ-
ous GWASs that have demonstrated WHRadjBMI as a
more relevant adipose tissue-related obesity trait than
BMI [16, 74]. To identify co-expression networks corre-
lated with abdominal fat and adiposity, we performed
weighted gene co-expression network analysis (WGCN
A) (Additional file 1: Fig. S1) in the subcutaneous adi-
pose RNA-seq data (n = 335) from the Finnish METa-
bolic Syndrome In Men (METSIM) [26] cohort, which
has additional measures of adiposity aside from BMI, in-
cluding WHR. We identified 14 co-expression networks,
two of which, red and black (colors assigned to networks
by WGCNA arbitrarily), were significantly inversely cor-
related with WHRadjBMI, WHR, and BMI after adjust-
ing for multiple testing (pBonf < 8.93 × 10−4) (Fig. 1A,
Additional file 1: Fig. S2). To also examine if the
WGCNA co-expression networks are associated with
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glucose metabolism, we correlated them with fasting
serum insulin levels and observed significant inverse cor-
relation of the red and black co-expression networks
(pBonf < 8.93 × 10−4) (Fig. 1A, Additional file 1: Fig. S2).
The red co-expression network, with 347 genes (Add-
itional file 2: Table S1), contained 35 (10.09%) obesity

GWAS genes for BMI, waist circumference (WC),
WHR, WHRadjBMI, and WCadjBMI (Fisher’s exact test
for the red co-expression network GWAS enrichment,
odds ratio = 5.05, p = 2.20 × 10−4), whereas no such
obesity GWAS gene enrichment was observed with the
black co-expression network (Fig. 1B, Additional file 2:

Fig. 1 WGCNA [39] identifies 2 co-expression networks in the METSIM adipose RNA-seq cohort (n = 335), significantly correlated with WHRadjBMI
and fasting serum insulin (A), discovery of the red WHRadjBMI co-expression network that is enriched for TFs and GWAS genes (B), and enriched
for upregulated adipose tissue -specific DE genes when compared to other tissues in GTEx [41] (C). A The numbers in the cells represent Pearson
correlation results of network eigengenes with BMI, WHR, and WHRadjBMI, and fasting serum insulin (adjusted for T2D status) with correlation
coefficients and p values (shown in parenthesis). Associations that pass Bonferroni correction for the number of networks and traits tested (pBonf
< 8.93 × 10−4) were considered significant. B Bar plot showing enrichment of TFs and GWAS genes in the red WHRadjBMI co-expression network
(light gray) when compared to the black WHRadjBMI co-expression network (dark gray) using Fisher’s exact test. Significance of enrichment using
Fisher’s exact test is indicated above each set of bars, pFisher. C Bar plot showing significant enrichment (red) of upregulated adipose tissue-
specific DE genes in WHRadjBMI co-expression network using FUMA [75, 76] when compared to the 54 other tissues in the GTEx v8 cohort [41].
GTEx v8 tissues are ranked by enrichment from most enriched to least enriched with the first 25 most enriched tissues shown. The tissue
enrichments passing a Bonferroni correction are shown in red, while the non-significant enrichments are shown in blue
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Table S2). The exact adipose expression correlation of
each gene with WHRadjBMI and fasting serum insulin
levels is shown in Table S1 (Additional file 2: Table S1).
Since WGCNA co-expression networks may be influ-

enced by different cell types present in heterogeneous
tissues such as adipose, we used adipose single-nuclei
RNA-seq (snRNA-seq) from Finnish individuals (n = 15)
[32, 33, 43, 44] to identify marker genes for the key adi-
pose cell types, such as adipocytes, preadipocytes, and
macrophages (Additional file 2: Table S3). The red co-
expression network was enriched for adipocyte marker
genes (37 adipocyte marker genes among the 347 net-
work genes, phypergeometric = 8.86 × 10−20) (Additional file
2: Table S4), including the adipocyte secreted adipokine,
adiponectin (ADIPOQ), indicating the importance of this
co-expression network for adipocyte biology. However,
the 347 red co-expression network genes also contain
marker genes from other adipose cell types (Additional
file 2: Table S4). Furthermore, clustering of adipose
single-nucleus RNA-seq data shows that TBX15 is
expressed in most adipose tissue cell types (Additional
file 1: Fig. S3). These results suggest that TBX15 likely
regulates genes in multiple adipose cell types. The red
co-expression network was also significantly enriched
for key adipose-related metabolic KEGG pathways using
WebGestalt [75, 76], such as PPAR signaling pathway,
fatty acid metabolism and degradation, and valine, leu-
cine, and isoleucine degradation (FDR < 0.05; Additional
file 2: Table S5), and for GO cellular-component
mitochondrion-related genes (FDR < 0.05; Additional file
2: Table S6). Furthermore, the red co-expression net-
work was significantly enriched for genes upregulated in
subcutaneous adipose tissue (p ~ 1.0 × 10−18) when
compared to the 54 other tissues in Genotype-Tissue
Expression (GTEx) v8 cohort [41] in a differential ex-
pression (DE) analysis by FUMA [75, 76] (Fig. 1C). Due
to the significant enrichment of obesity GWAS genes,
adipose-related functional pathways, adipocyte cell type
marker genes, and adipose tissue-expressed genes, we fo-
cused on the red WHRadjBMI co-expression network
for subsequent analyses.

The WHRadjBMI gene co-expression network is
genetically associated with WHRadjBMI and T2D
To find genetic evidence for the observed link between
the co-expression network and WHRadjBMI, we exam-
ined whether the 347 co-expression network genes con-
tribute significantly to WHRadjBMI trait heritability. We
used the stratified LD score (LDSC) regression method
(see “Methods”) to calculate the WHRadjBMI heritability
explained using the WHRadjBMI GWAS summary sta-
tistics for all variants in the cis regions of the 347 genes
(± 500 kb from the ends of the gene). These variants will
be referred to henceforth as the WHRadjBMI cis-variant

set. We found that these cis regions are significantly
enriched for variants explaining the heritability of
WHRadjBMI (enrichment = 1.61, p = 4.90 × 10−5) and
T2D (enrichment = 1.49, p = 9.56 × 10−3) but not sig-
nificantly enriched for variants explaining the heritability
of BMI (p > 0.05) (Additional file 2: Table S7). These
summary-level findings indicate that the 347 co-
expression network genes and their cis variants are spe-
cifically important in controlling abdominal fat and adi-
posity and contributing to the clinical metabolic
outcome, T2D.
To investigate how the WHRadjBMI co-expression

network genes predict individual risk for elevated
WHRadjBMI compared to the entire genome, we con-
structed two separate polygenic risk scores (PRSs) for
WHRadjBMI: a genome-wide PRS and a network PRS
with just the variants in the WHRadjBMI cis-variant set.
For these PRS analyses, we used the UK Biobank (UKB)
cohort [77] and divided the unrelated Caucasian partici-
pants into a test (n = 130,851) and validation (n =
261,700) set (see “Methods” for building the PRS).
To investigate the effectiveness of our genome-wide

PRS in predicting WHRadjBMI with the validation set
(n = 261,700) (PRS correlation coefficient with
WHRadjBMI = 0.206), we divided the individuals into
20 quantiles based on their PRS scores and then by
sex. Next, we calculated the odds ratio of being in the
top 10th percentile of WHRadjBMI, for individuals in
each of the 20 quantiles compared to the lowest quan-
tile. As expected based on the previous GWAS studies
examining the differences in heritability of WHRadjBMI
between the sexes [16] and our results from LDSC
(Additional file 2: Table S7), the genome-wide PRS pre-
dicts WHRadjBMI better in females than males (fe-
males: 6.31-fold increase in risk for elevated
WHRadjBMI between the lowest quantile and the 20th
quantile of the PRS versus males: 2.96-fold increase in
risk for elevated WHRadjBMI) (Fig. 2).
Notably, despite the fact that the network PRS only

comprises the variants in the cis regions of the 347 co-
expression network genes, having thus many fewer vari-
ants included, the network PRS correlation coefficient
with WHRadjBMI was 0.110 (compared with the
genome-wide PRS correlation coefficient of 0.206, which
is less than twice that of the network PRS). Although
both the genome-wide PRS and network PRS are more
predictive of WHRadjBMI in females (Cochran-Mantel-
Haenszel test on the 20th quantile, genome-wide PRS
versus network PRS and males versus females, χ2CMH =
1146.94, pCMH = 2.07 × 10−251), the power decrease from
using the genome-wide PRS to using the network PRS is
much greater for females (20th quantile odds ratio: 2.51-
fold decrease) when compared to males (20th quantile
odds ratio: 1.71-fold decrease) (Fig. 2). This suggests
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that, relative to the genome-wide PRS, the 347 co-
expression network genes and their cis variants consti-
tute a larger percentage of the predicted effect of vari-
ants for regulating WHRadjBMI in males when
compared to the same PRS predictions in females.
To provide additional evidence that the network PRS

is more informative and biologically important in males
than females, we tested whether males with the highest
genetically predicted WHRadjBMI (based on the
network PRS) are more likely to have the clinically
relevant metabolic outcome of T2D. Accordingly, we
selected individuals with the network PRS in the highest
and lowest deciles (top 10% and lowest 10% network
PRS scores), as done previously for BMI in Khera et al.
[28], and divided them by sex. We used a logistic
regression (see “Methods”) and when accounting for
WHRadjBMI in our model, observed that the network
PRS significantly predicted T2D in males (β = 1.12, p =
9.59 × 10−5) but not in females (p > 0.05). These results
indicate that the 347 co-expression network genes and
their cis variants significantly contribute to the clinical
metabolic outcome, T2D, in males while no such effect
was observed in females. In sum, by leveraging

subcutaneous adipose RNA-seq data from a cohort with
the abdominal adiposity measure, WHR, we identified a
WHRadjBMI co-expression network that genetically
controls WHRadjBMI and T2D in a sex-dependent
manner.

The WHRadjBMI co-expression network connectivity is
sex- and context-dependent
We hypothesized that the sex-dependent effects we ob-
served with the network PRS for WHRadjBMI and T2D
would be reflected in the co-regulation of these genes as
well. We therefore tested whether the WHRadjBMI co-
expression network connectivity is different between
males and females in the independent GTEx v8 subcuta-
neous adipose RNA-seq data [41]. We performed a net-
work preservation analysis separately in males (n = 387)
and females (n = 194) (see “Methods”), and found that
the network preservation ZSummary score was 30 in males
versus 22 in females. The ZSummary score value is not
sensitive to the sample size, and so the relative difference
in the number of males and females was not a concern.
This lower network preservation in females is in line

Fig. 2 PRS scores confirm sexual dimorphism of WHRadjBMI and demonstrate the importance of WHRadjBMI co-expression network genes for
WHRadjBMI in males. Plot of the PRS for WHRadjBMI in the testing set of the UK Biobank [27] (n = 261,700) separated for males (dark gray) and
females (light gray) as well as for genome-wide PRS (dashed lines) and WHRadjBMI co-expression network PRS (solid lines; i.e., variants within the
cis regions of the 347 co-expression network genes (± 500 kb from the ends of the gene)). Odds ratio is calculated based on the proportion of
individuals in the top 10th percentile of WHRadjBMI for males and females in each of the 20 quantiles of the PRS separately. Vertical error bars
indicate the 95% CI for the odds ratio. Brackets show a fold change (FC) in the odds ratio for the 20th quantile
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with the lesser trait prediction observed for WHRadjBMI
and T2D with the network PRS in females.
Further supporting the sex-dependent effects, we also

observed an enrichment of androgen receptor element
(ARE) motif (binomial test adjusted p value = 0.0001) in
the promoters (+ 2 kb/− 1 kb from TSS) of the
WHRadjBMI co-expression network genes when com-
pared to the promoters of all genes expressed in the
METSIM adipose RNA-seq data using HOMER [68].
Additionally, we investigated whether adipose expression
of androgen receptor (AR), estrogen receptor 1 (ESR1),
aromatase (CYP19A1), or sex hormone-binding globulin
(SHBG) were correlated with the TBX15 adipose expres-
sion in METSIM. We found the following correlations
between the TBX15 adipose expression and these genes:
AR (r = 0.164, pPearson = 0.00262), ESR1 (r = 0.355, pPear-
son = 2.12 × 10−11), CYP19A1 (r = 0.355 and pPearson =
2.12 × 10−11), respectively, even though none of these
genes were present in the same co-expression network
as TBX15. These results suggest that sex hormones may
play a role in the observed sex-dependent PRS and net-
work preservation results.
We further tested whether the WHRadjBMI co-

expression network connectivity is altered context-
dependently based on the obesity state. Because the
GTEx cohort phenotypes do not include WHRadjBMI,
we divided the cohort first by sex and then into the
more extreme categories of lean (BMI < 25; nMale = 102,
nFemale = 78) and obese (BMI > 30; nMale = 119, nFemale =
41) to increase the chance that there are differences in
abdominal adiposity between the sets of individuals. We
found that the network preservation ZSummary score
drastically decreased between lean and obese males
(ZSummary – Lean male = 30 versus Z Summary – Obese male =
19) but remained similar between lean and obese fe-
males (ZSummary – Lean female = 20 versus ZSummary – Obese

female = 18. Taken together, the network preservation re-
sults suggest that the coordinated expression of the
genes in the WHRadjBMI co-expression network is reg-
ulated more tightly in males than females, and in a
context-specific manner that depends on the obesity
state.
We also tested the WHRadjBMI co-expression net-

work preservation in the Mexican population, using the
Mexican Obesity Study (MOSS) cohort [34]. The MOSS
participants are morbidly obese individuals undergoing
bariatric surgery from whom subcutaneous adipose tis-
sue biopsies are obtained at the time of surgery (average
BMI = 45.4) and at a 1-year follow-up (average BMI =
33.8) (n = 43 at both time points). We observed that the
ZSummary score was 30 in the baseline versus 51 in the
follow-up, indicating that the WHRadjBMI network is
preserved across diverse populations and responds to
changes in weight.

Next, we investigated the WHRadjBMI co-expression
network preservation in visceral adipose tissue and
muscle RNA-seq data from GTEx [41, 42] and observed
a strong preservation in visceral adipose tissue in both
males (n = 149) and females (n = 84) (Additional file 1:
Fig. S4), while no such strong preservation was observed
in muscle (Z < 10 in both male (n = 153) and female (n
= 145) muscle tissue). These results suggest that the
WHRadjBMI co-expression network is more important
for adipose tissue than muscle function.

Identifying candidate master regulators of the
WHRadjBMI-associated co-expression network
Since transcription factors (TFs) have been suggested as
one possible type of genes that could drive co-
expression networks in trans [39], we first identified all
TFs (n = 14) in the WHRadjBMI co-expression network
using the PANTHER database [78] (Additional file 2:
Table S8). Next, to test which of these 14 TFs are poten-
tially causal for WHRadjBMI and find trans regulator
genes and candidates for our experimental follow-up, we
performed a transcriptome-wide association study
(TWAS), which is a method to test for association be-
tween gene expression and a trait by weighting the ef-
fects of cis variants on gene expression and testing their
weighted association with a GWAS trait (see
“Methods”). We computed eQTL weights for the vari-
ants in the cis region (± 500 kb from the ends of the
gene) around each TF using GTEx v8 cohort data. To
accurately estimate the gene expression heritability in
TWAS, we used the entire GTEx subcutaneous adipose
RNA-seq dataset (n = 581). We found that five TFs in
the WHRadjBMI co-expression network that passed the
TWAS heritability thresholds (p < 0.01) that is required
for testing the association of the cis SNP heritability with
phenotypes: T-Box Transcription Factor 15 (TBX15),
General Transcription Factor IIE Subunit 2 (GTF2E2),
X-Prolyl Aminopeptidase 3 (XPNPEP3), Iroquois
Homeobox 1 (IRX1), and Zinc Finger Protein 3 (ZNF3)
(Additional file 2: Table S9).
We next tested whether these five cis-heritable TFs are

associated with WHRadjBMI using the computed
TWAS weights to impute the TF gene expression and
the WHRadjBMI summary statistics from the large UK
Biobank (UKB) and GIANT meta-analysis GWAS data
(n ~ 700,000). TBX15, XPNPEP3, and IRX1 passed the
Bonferroni correction for being associated with
WHRadjBMI in the TWAS (p < 0.017) (Additional file 2:
Table S10), implying that the variants contributing to
the cis-regulation of these TFs are also important for
WHRadjBMI.
The interpretation of TWAS results as evidence of

causality can be complicated by other regional genes
that may share cis variants, LD structure, or co-
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expression with the putatively causal gene (Fig. 3A). To
better determine if there is statistical support for the
TWAS evidence of association between WHRadjBMI
and TBX15, XPNPEP3, and IRX1, we used the fine-
mapping of causal sets (FOCUS) tool, employing the
same GTEx v8 cohort and WHRadjBMI GWAS data,
and including all genes ± 3Mb from the ends of our TFs
of interest. FOCUS is a fine-mapping approach for
TWAS that identifies a gene set containing the causal
gene(s) in a locus at a predefined level of credibility,
based on their posterior inclusion probability (PIP) of
being the causal gene while accounting for shared cis
variation among genes at a locus (see “Methods”). The
FOCUS analyses showed that TBX15 and nearby gene
Hydroxy-Delta-5-Steroid Dehydrogenase, 3 Beta- And
Steroid Delta-Isomerase 2 (HSD3B2) were included in

the 90% credible set; however, only the TWAS expres-
sion heritability of TBX15 predicted well in the cross-
validation (TBX15: TWAS cross-validation p = 1.54 ×
10−7; HSD3B2: TWAS cross-validation p > 0.05) and had
a higher PIP (TBX15: FOCUS PIP > 0.99; HSD3B2:
FOCUS PIP = 0.908), thus effectively fine-mapping the
locus to TBX15 (Fig. 3B). When testing XPNPEP3 and
IRX1, FOCUS provided little support for a causal role at
current sample sizes (XPNPEP3: FOCUS PIP = 9.90 ×
10−5; IRX1: FOCUS PIP = 0.0735). Taken together, the
results from TWAS and FOCUS show statistical support
for a causal role of only one of the 14 TFs in the
WHRadjBMI co-expression network, TBX15, thus
highlighting it as a candidate TF driving the
WHRadjBMI co-expression network; however, we note
that this result does not exclude the possibility that

Fig. 3 TWAS [58] and FOCUS [59] results in GTEx v8 subcutaneous adipose RNA-seq data implicates TBX15 as the only TF in the WHRadjBMI co-
expression network causal for WHRadjBMI. A Pairwise Pearson correlation coefficients between all genes in the TBX15 locus (chr1:115476504-
121965583) using the normalized gene expression from the GTEx v8 cohort subcutaneous adipose RNA-seq data [41] (n = 581). B Plot of −log10 p
value for TWAS association with WHRadjBMI for each gene in the TBX15 locus (chr1:115476504-121965583) with a significant heritability estimate
(p < 0.01) in the GTEx v8 cohort genotype and subcutaneous adipose RNA-seq data (n = 581). Size of the point indicates the magnitude of the
FOCUS marginal posterior inclusion probability (PIP). Genes included in the final 90% credible set are marked in red. Stars above points indicate a
significant TWAS cross-validation p value (p < 0.01)
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another type of gene other than a TF could also contrib-
ute to the co-expression in this network.

TBX15 and the WHRadjBMI co-expression network change
in response to extreme weight loss
Support for the evidence that TBX15 is a causal gene in
regulating adiposity has been published in mouse
knockout studies, where adipose-specific loss of Tbx15
leads to increased weight gain when mice are put on a
high-fat diet [79]. This suggests that, in conditions of in-
creased energy intake, a pathological decrease in TBX15
can drive adiposity. To test for evidence of a similar
mechanism in humans, we used subcutaneous adipose
RNA-seq data from the Finnish Kuopio OBesity Study
(KOBS) bariatric surgery cohort [33], in which the indi-
viduals’ average BMI decreased from 43.0 to 34.3 (22.7%
decrease) from the time of surgery to the 1-year follow-
up (n = 168 at both time points). A change in WHR
could not be assessed in the KOBS cohort as in general
it is not possible to reliably measure waist circumference
in morbidly obese individuals undergoing bariatric sur-
gery. In these weight loss analyses, we found that TBX15
showed a significant increase in gene expression in the
1-year follow-up (log2 fold change (FC) = 0.37, p = 1.48
× 10−6), indicating that TBX15 responds to weight loss
and in line with its inverse correlation with adiposity. In
addition, 184 of the 347 WHRadjBMI co-expression net-
work genes (53%) were differentially expressed between
the baseline and 1-year follow-up (FDR < 0.05) (Add-
itional file 2: Table S11). Based on the effect sizes in
KOBS [33], we estimated that the small sample size of
the MOSS cohort [34] (n = 43) does not allow for a
powerful enough DE analysis to detect changes in ex-
pression of TBX15 or the WHRadjBMI co-expression
network genes.

Identification of a WHRadjBMI co-expression network
trans-eQTL
To investigate whether TBX15 genetically drives the
expression of the WHRadjBMI co-expression network
genes in trans, we investigated the WHRadjBMI GWAS
SNP rs1779445 (GIANT, n = 224,459) (βC allele = 0.032,
p = 1.60 × 10−12) [8], and first observed that this GWAS
SNP regulates TBX15 adipose expression in cis (βC allele

= 0.092, p = 0.0032 in GTEx [41]; and βC allele = 0.56, p
= 0.0047 in KOBS [33]). We recognize that the direct
identification of trans-eQTLs requires large cohorts. To
partially circumvent this, we tested whether rs1779445
regulates the eigengene of the WHRadjBMI co-
expression network. We found that rs1779445 is a trans-
eQTL of the network eigengene in the METSIM cohort
[26] (n = 335) (βC allele = − 0.019, p = 0.031), thus pro-
viding genetic evidence that TBX15 contributes to the

trans regulation of the WHRadjBMI co-expression net-
work genes.

Knockdown of TBX15 in primary human preadipocytes
confirms the role of TBX15 as a master regulator of the
WHRadjBMI co-expression network
To functionally confirm the role of TBX15 as one of the
WHRadjBMI co-expression network key regulators, we
performed knockdown (KD) of TBX15 via small interfer-
ing RNA (siRNA) in primary human preadipocytes (n =
5 isogenic replicates) (Fig. 4A). We used primary human
preadipocytes instead of primary adipocytes because they
have higher siRNA transfection efficiency than primary
adipocytes and because preadipocytes are a critically im-
portant cell type for adipose tissue function. We success-
fully performed TBX15 KD, decreasing its expression by
~ 70%, confirmed by RT-qPCR (Fig. 4B). Next, we per-
formed RNA-seq to see if the genes in the WHRadjBMI
co-expression network are affected by KD of TBX15.
When comparing to preadipocytes transfected with the
negative control siRNA (see “Methods”), we found that
130 of the 347 WHRadjBMI co-expression network
genes (37.46%) are significantly DE (FDR < 0.05) be-
tween the TBX15 KD and control, including the well-
established key adipose tissue master regulators, PPARG
and KLF15 (Fig. 4C, Additional file 2: Table S12). We
also found that 81 genes of the 130 DE genes (62%) in
our TBX15 KD experiment have a TBX15 motif in their
promoter (+ 2 k/− 1 kb from TSS) (Additional file 2:
Table S12), suggesting that TBX15 may have a direct ef-
fect on these genes.
When searching for other TFs affected by TBX15 KD

that may contribute to the wide-spread trans effects of
TBX15, a total of 8 TFs of the 13 TFs (61.5%) in the
WHRadjBMI co-expression network were observed to
be significantly DE (FDR < 0.05) (PPARG, PPARA,
KLF15, TWIST1, XPNPEP3, GTF2E2, CCNH, PER3) by
the TBX15 KD. This result suggests that TBX15 affects
many additional genes indirectly downstream by regulat-
ing other key adipose TFs (Fig. 4C).
In summary, these genetic and functional data

discover a human adipose master trans regulator,
TBX15, which in turn controls an obesity GWAS gene-
enriched network that sex-dependently modifies the dis-
tribution of fat, likely due to regulation of the
WHRadjBMI co-expression network genes by
androgens.

Discussion
WHRadjBMI is a well-established measure of abdominal
adiposity, whereas BMI cannot reliably separate fat from
lean mass [16], in line with previous GWAS studies of
WHRadjBMI and BMI demonstrating that the
WHRadjBMI GWAS loci are more adipose tissue related
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than the BMI loci in terms of their expression profiles
and function [9–11]. Furthermore, while overall obesity
measures like BMI do not exhibit sexual dimorphism
[8], WHRadjBMI and fat distribution have clear sex-
specific differences that are reflected in differences in
heritability [8, 15], GWAS loci [13, 74], and ultimately in
risk for disease outcomes such as T2D and cardiovascu-
lar disease [14, 28]. However, the underlying biological
mechanisms that contribute to the sexual dimorphism of
body fat distribution are still poorly understood. Further-
more, the genes behind complex diseases such as obesity
are often regulated and dysregulated together, influen-
cing the progression and severity of obesity [80].
In this work, we used subcutaneous adipose RNA-seq

data collected in the METSIM male population cohort
[26], for which we have measures of WHR, to identify a
gene co-expression network that is important for regu-
lating WHRadjBMI and exhibits the known sexual di-
morphism of this trait at both a genetic and
transcriptomic level. We used the UKB to show that the
genetic variants in the cis regions of the 347
WHRadjBMI co-expression network genes are signifi-
cantly enriched for variants that contribute to the herit-
ability of WHRadjBMI and T2D, but not BMI. These
variants also have a sex-dependent effect on the ability
to predict elevated WHRadjBMI in males when

compared to females relative to the entire genome, as
shown by the genome-wide and network-specific
WHRadjBMI PRSs we constructed. Furthermore, we
show that the network PRS significantly predicts the dis-
ease outcome, T2D, in males but not in females, even
when accounting for the effects from the original trait,
WHRadjBMI. These PRS results demonstrate the sex-
dependent effects of the 347 WHRadjBMI co-expression
network genes and their cis variants on both
WHRadjBMI and T2D. This sex-dependent effect is
likely mediated via regulation by androgen, as suggested
by our androgen receptor element (ARE) motif enrich-
ment, in line with previous studies showing sex differ-
ences in adipose tissue function [81]. Furthermore, our
gene expression correlations between TBX15 and AR,
ESR1, CYP19A1, and SHBG indicate that sex hormones
may also contribute to the observed sex-dependent PRS
and network preservation results. Finally, we provide
genetic and functional evidence for a novel role of the
TF, T-Box Transcription Factor 15 (TBX15), as one of
the key master trans regulators of this WHRadjBMI co-
expression network, advancing our understanding of
how trans regulation of gene expression contributes to
normal and obesity-deteriorated adipose tissue function,
and the sexually dimorphic accumulation of harmful ab-
dominal fat.

Fig. 4 Knockdown of TBX15 in human primary preadipocytes significantly affects 130 genes (FDR < 0.05) in the WHRadjBMI co-expression
network. A Illustration of TBX15 gene with introns and exons; and the relative RNA-seq read density in the human primary preadipocyte cells
transfected with the negative control siRNA when compared to the cells transfected with the TBX15 siRNA. Scales for the read density are equal.
B Bar plot showing the qPCR relative expression (2−ddCt) when compared to the housekeeping gene 36B4 and RNA-seq TPMs for TBX15 in the
cells transfected with negative control siRNA when compared to the cells transfected with TBX15 siRNA (n = 5). C Volcano plot of differentially
expressed (DE) genes in TBX15 knockdown experiment, excluding TBX15. Significant genes (FDR < 0.05) (dark gray), non-significant genes (light
gray), and TFs (orange; FDR < 0.05) are plotted based on their log10 p value and log2 fold change in expression. Significantly differentially
expressed TFs are labeled. Inlay shows the volcano plot of the TBX15 DE results with TBX15 included
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TFs form one category of genes hypothesized to
regulate co-expression in networks [39]. To find potential
causal drivers of the co-expression in the WHRadjBMI
network and candidates for our functional follow-up, we
first employed TWAS [58] and FOCUS [59] to investigate
all 14 TFs present in the WHRadjBMI network, which re-
sulted in the discovery of the TBX15 as a master trans
regulator candidate for this WHRadjBMI network. Note-
worthy, TBX15 has been implicated in large European and
smaller non-European GWAS studies for WHRadjBMI
and other related obesity traits [8, 82, 83]. However, our
study is the first to discover TBX15 both as the underlying
regional causal WHRadjBMI gene at the WARS2-TBX15
locus utilizing TWAS and FOCUS and as the driver of the
co-expression network using trans-eQTL and experimen-
tal siRNA validation analyses. Previous Tbx15 studies have
been conducted in mouse, showing that Tbx15 affects the
differentiation of preadipocytes to adipocytes, with re-
duced expression of key adipose TFs Cebpa and Pparg in
mouse preadipocytes that stably overexpress (OE) Tbx15
[84]. This mouse study also suggests that even after rescu-
ing the induction of adipogenesis using a PPARG agonist,
Tbx15 OE cells exhibit decreased lipogenesis and in-
creased lipolysis. These mouse results are in line with the
inverse relationship of TBX15 with WHRadjBMI that we
observed, and also highlight the role of TBX15 [84] in adi-
pocyte differentiation. Interestingly, Tbx15 has also been
shown to regulate adipocyte browning in mice [79]. In line
with this finding, previous functional studies have shown
that TBX15 affects mitochondria-related gene expression
and mitochondrial mass in mice [84] and humans [85,
86], in line with the GO cellular-component enrichment
of the WHRadjBMI co-expression network genes for
mitochondrion-related genes. In addition to mouse
knockout studies, where adipose-specific loss of Tbx15
leads to increased weight gain when mice are put on a
high-fat diet [79], these previous studies provide support
for our discovery of TBX15 as one of the key TF master
regulators in human subcutaneous adipose tissue, with
adiposity-driven changes in TBX15 expression affecting its
role in maintaining homeostasis of the WHRadjBMI co-
expression network.
Our use of TWAS [58] and FOCUS [59] also

assisted in disentangling the TBX15-WARS2 GWAS
locus [8, 82, 83] for WHRadjBMI. Since TBX15 and
WARS2 share many of the same cis-eQTLs and some
of the GWAS variants are intergenic, it has
remained difficult to determine which gene in the
locus is the underlying causal gene [8, 45]. However,
TWAS [58] identified and FOCUS [59] fine-mapped
TBX15 as the significant causal gene for
WHRadjBMI in the TBX15-WARS2 locus, whereas
WARS2 was not identified as a causal WHRadjBMI
gene in the locus.

We used the independent subcutaneous adipose RNA-
seq data from the GTEx v8 cohort [41] and the Mexican
MOSS cohort [34] to show that the WHRadjBMI co-
expression network is highly preserved in diverse popu-
lations. The large GTEx cohort also allowed us to per-
form a sex-specific analysis, which demonstrated that
males exhibit a higher network preservation than fe-
males. Furthermore, the network preservation is higher
in the lean (BMI < 25) state when compared to the obese
(BMI > 30) state in males, but is similar between lean
and obese females. This apparent breakdown of network
connectivity in the obese males supports the idea that
aberrant regulation of the network as a whole develops
as WHRadjBMI increases. Although the GTEx cohort
[41] lacks measurements for WHRadjBMI due to the
fact that it consists largely of post-mortem samples, we
were able to show the sex- and obesity-dependent effects
on this WHRadjBMI network using more extreme BMI
cutoffs of lean (BMI < 25) and obese (BMI > 30). How-
ever, presently there are no sex-specific guidelines for
the BMI cutoffs for the transition between lean, over-
weight, and obese states, let alone WHRadjBMI. To par-
tially circumvent this issue and study the effects of
weight differences on TBX15 expression, we also lever-
aged longitudinal adipose RNA-seq data from the KOBS
bariatric surgery cohort [33], which demonstrated that
adipose expression of TBX15 recovers after dramatic
weight loss within an individual. These weight loss re-
sults from the KOBS cohort [33] suggest that decreased
adipose expression of TBX15 in obese individuals con-
tributes to the observed dysregulation of the
WHRadjBMI co-expression network.
Although visceral adipose tissue is known to be more

strongly linked to metabolic disorders and WHRadjBMI
[87, 88] than subcutaneous adipose tissue, subcutaneous
adipose tissue exhibits larger changes in volume during
weight loss or weight gain [89]. Furthermore,
subcutaneous adipose biopsies are available through
less-invasive procedures than visceral adipose tissue bi-
opsies, which require a surgical procedure. Our results
from the heritability and PRS analyses, and the context-
specificity of the network preservation show that the
subcutaneous adipose WHRadjBMI co-expression net-
work is both an important driver and responder, respect-
ively, to changes in WHRadjBMI.
To functionally verify that the WHRadjBMI co-

expression network is driven by TBX15, we knocked
down TBX15 via siRNA in primary human preadipo-
cytes, and performed RNA-seq to assess the effects of
TBX15 KD on the expression of all 347 co-expression
network genes. Human primary preadipocytes were used
as they have a higher siRNA transfection efficiency than
primary adipocytes and furthermore, preadipocytes are a
critically important cell type for adipose tissue function

Pan et al. Genome Medicine          (2021) 13:123 Page 16 of 20



[90]. Their proper function and turnover are crucial to a
balance between adipose hypertrophy and hyperplasia,
and thus their dysfunction predisposes to pathogenic
mechanisms contributing to cardiometabolic disorders,
such as inflammation and insulin resistance. This experi-
ment showed that knocking down TBX15 significantly
affects the downstream expression of 8 additional TFs,
including the key adipose tissue TFs, PPARG and
KLF15, along with 121 other co-expression network
genes. We recognize the limitation that performing our
experiments in human primary preadipocytes does not
allow us to assess the effect of TBX15 knockdown on
genes directly involved in adipocyte differentiation and
differentiated adipocytes, warranting thus additional in-
vestigations of TBX15 knockdown during adipogenesis
in the future studies. Nevertheless, to the best of our
knowledge, our functional study is one of the first exam-
ples of experimental validation of a TF trans regulating a
co-expression network in humans. Furthermore, these
DE genes are enriched for the valine, leucine, and isoleu-
cine degradation KEGG pathway using WebGestalt [75,
76]. This pathway functions in the breakdown of essen-
tial branched chain amino acids that humans only obtain
in their diet. Previous studies have shown that obese in-
dividuals exhibit higher levels of these amino acids in
their plasma even when matched for dietary intake or
after overnight fasting, most likely due to their impaired
degradation [91]. While further investigation is war-
ranted to investigate TBX15 at the protein level, we
chose to examine knockdown of TBX15 at the gene ex-
pression level because our discoveries of the
WHRadjBMI co-expression network and the importance
of TBX15 for WHRadjBMI were done at the gene ex-
pression and genetic variant level. As it has been shown
that there is significant buffering between cis-eQTLs and
protein-QTLs (p-QTLs) [92], gene expression levels of
TBX15 may not correlate strongly with protein levels,
thus possibly diluting many of the genetic and expres-
sion level signals. Taken together, these data, along with
the recovery of TBX15 expression after weight loss, indi-
cate that TBX15 plays an important role in maintaining
the homeostasis of this subcutaneous adipose
WHRadjBMI co-expression network in the non-obese
state.

Conclusions
In summary, we discovered a novel master adipose trans
regulator, TBX15, and its causal effect on WHRadjBMI,
with a stronger effect observed in males. We also
provide insight into a WHRadjBMI co-expression net-
work containing critical adipose TFs and GWAS genes
that TBX15 regulates, and demonstrate the large contri-
bution of the cis variants of these co-expression network
genes to both WHRadjBMI PRS and T2D PRS in a sex-

dependent manner in the UK Biobank. Through our
knockdown of TBX15 in human primary preadipocytes,
we provide concrete functional evidence showing that
decreasing expression of TBX15 directly affects expres-
sion of 130 genes in the WHRadjBMI co-expression net-
work, including 8 key TFs, thus compounding the
downstream effects on metabolically harmful abdominal
obesity.
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