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Abstract

Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood 

eosinophils demonstrate circadian cycling, as described over 80 years ago,1 and are abundant in 

the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as 

eotaxins, mediate eosinophil development and survival,2 and tissue recruitment,3 respectively, the 

processes underlying the basal regulation of these signals remain unknown. Here, we show that 

serum IL-5 is maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral 

tissues. ILC2 secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence and requests for materials should be addressed to locksley@medicine.ucsf.edu. 

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Author Contributions J.C.N. performed experiments, interpreted data and wrote the manuscript; L.E.C. provided experimental and 
imaging assistance; S.V.D., A.M., A.B.M. and J.v.M. provided experimental assistance; E.E.T. performed imaging assays; M.F.K. 
provided reagents and expertise; H.E.L. generated mouse cytokine reporter strains; A.C. discussed experiments and provided oversight 
for metabolic studies; R.M.L. directed the studies and wrote the paper with J.C.N.

Author Information The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2014 April 10.

Published in final edited form as:
Nature. 2013 October 10; 502(7470): 245–248. doi:10.1038/nature12526.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/nature


inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small 

intestine where eosinophils and eotaxin are constitutive,4 ILC2 co-express IL-5 and IL-13, which 

is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide (VIP) 

also stimulates ILC2 through the VPAC2 receptor to release IL-5, linking eosinophil levels with 

metabolic cycling. Tissue ILC2 regulate basal eosinophilopoiesis and tissue eosinophil 

accumulation through constitutive and stimulated cytokine expression, and this dissociated 

regulation can be tuned by nutrient intake and central circadian rhythms.

Eosinophils require survival signals delivered through the common beta-receptor chain (βc) 

shared by interleukins (IL)-3, IL-5 and granulocyte-macrophage colony stimulating factor 

(GM-CSF).1 IL-5 is particularly important, as supported by studies in IL-5-5 and IL-5 

receptor α chain (IL-5Rα)-deficient6 mice, and in humans using anti-IL-5 and anti-IL-5Rα 

that target eosinophilis in disease. Without IL-5 signaling, residual eosinophils have been 

attributed to IL-3 and GM-CSF, as well as eosinophil chemokines, such as eotaxins, that 

sequester these cells into tissues.1,3

To identify cells that support eosinophils, we generated IL-5 reporter mice, designated Red5 

(recombinase-expressing detector for IL-5; R5).7 Cells from these mice contain a tandem 

dimer red fluorescent protein (tdTomato) linked by an internal ribosomal entry site (IRES) 

to a Cre element replacing the translation initiation site of the endogenous Il5 gene, 

facilitating function-marking, fate-mapping and deletion based on IL-5 expression (Fig. 1a). 

We validated that the construct disrupts the endogenous Il5 gene and that R5 fluorescence 

correlates with IL-5 production using CD4+ T cells examined after Th1 or Th2 polarization 

(Extended Data Fig. 1a-c).

Consistent with prior observations,8 CD45+R5+CD4− cells were present in non-lymphoid 

tissues, including the brain, heart, lung, kidney, skin, intestine and uterus while few R5+ 

cells were in lymphoid organs, including spleen, bone marrow, lymph nodes or thymus, or 

in the liver (Fig. 1b and c). In all tissues, the vast majority of R5+ cells were small cells 

(forward-/side-scatter low) that lacked lineage markers for T, B, NK and myeloid cells, and 

expressed markers for innate lymphoid type 2 cells (ILC2),9 including CD90.2 (Thy1), 

CD127 (IL7Rα), KLRG1 and ICOS; T1/ST2 and CD25 expression varied among tissues but 

were present on all lung R5+ ILC2 (Extended Data Fig. 2a). Most (75–80%) CD90.2+T1/

ST2+ lung ILC2 were R5+, and these cells had the highest reporter expression compared to 

the few ILC2 from bone marrow and lymph nodes (Extended Data Fig. 2b). Sorted R5/+ 

ILC2 spontaneously secreted IL-5 in culture, confirming that the reporter marks IL-5 

production (Extended Data Fig. 2c). Consistent with prior reports,9 numbers of ILC2 and 

R5+ ILC2 were similar in Recombinase Activating Gene (RAG)-deficient mice but were 

nearly absent in CD127-deficient mice (Extended Data Fig. 3a-c). Correspondingly, serum 

IL-5 was comparable in wild-type and RAG-deficient mice, reduced to about half-normal 

levels in heterozygous R5/+ mice, and was not detected in CD127-deficient mice (Fig. 1d).

Few ILC2 were present in lungs of newborns, but within the first week CD90.2+T1/ST2+ 

cells increased, and the percent that were R5+ reached adult levels (Fig. 2a, Extended Data 

Fig. 3d-e). We administered BrdU in drinking water of adult mice for two weeks to label 

dividing cells and found that fewer than 10% of lung ILC2 were labeled (Extended Data Fig. 
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3f). Pulse-chase labeling indicated that the decay of labeled ILC2 was substantially slower 

than CD4+ T cells (Fig. 2b). As assessed using multiphoton microscopy, lung R5+ ILC2 

were embedded in collagen-rich regions near the confluence of medium-sized blood vessels 

and airways but absent from alveoli (Fig. 2c and data not shown).

Lung eosinophilia is a hallmark of allergic lung disease and helminth migration, but 

eosinophils are rare in the lung at baseline1 despite constitutive local IL-5. In prior studies, 

ILC2 stimulated with cytokines or helminth infection upregulated IL-13,10,11 which is 

genetically linked to IL-5 in mice and humans and induces epithelial eotaxins (including 

CCL11) and endothelial adhesins necessary for eosinophil trafficking.1,3 We crossed R5 

mice to Smart13 (S13) reporter mice, in which non-signaling human CD4 marks cells 

producing IL-13.11 In contrast to resting ILC2, lung ILC2 expressed the IL-13 reporter after 

infection with the helminth Nippostrongylus brasiliensis. All IL-13+ ILC2 in the lung were 

R5+, whereas CD4+ T cells expressed IL-5, IL-13, or both cytokines, consistent with prior 

observations (Fig. 3a).11

We crossed R5/R5 mice to mice carrying a ROSA26-flox stop-YFP allele to fate-map cells 

that expressed the IL-5-linked Cre recombinase and infected the mice with N. brasiliensis to 

elicit a type 2 immune response. After infection, YFP was present only in ILC2 and CD4+ T 

cells, and all YFP+ cells were also R5+ (Extended Data Fig. 4a-b). We also crossed R5/R5 

mice to mice carrying a ROSA26-flox stop-diphtheria toxin A allele to delete IL-5-

producing cells. The R5 allele was designed such that expression of the tdTomato reporter 

precedes Cre-mediated loxP recombination. Therefore, in R5/R5 Deleter mice, a population 

of R5-lo cells may be detectable before they express the ROSA26-diphtheria toxin. At 

baseline, R5/R5 and R5/R5 Deleter mice had comparable numbers of total cells and CD4+ T 

cells in the bone marrow, spleen, lung and small intestine lamina propria (Extended Data 

Fig. 4c), but R5+ ILC2 were deleted in the lung (Fig. 3b) and small intestine (Extended Data 

Fig. 4d).

To study the activity of lung ILC2 in the absence of Th2 cells, we crossed R5/R5 and R5/R5 

Deleter mice onto a RAG-deficient background and administered IL-2 and IL-33.10,12,13 As 

expected, cytokine-activated ILC2 in R5/R5 RAG-deficient mice showed increased surface 

KLRG1 expression and R5 MFI (Extended Data Fig. 5a). Cytokine administration increased 

the ILC2 population and induced eotaxin-1 (CCL11) in lungs of R5/R5 RAG-deficient mice 

but not in RAG-deficient R5/R5 Deleter mice (Fig. 3c). ILC2 deficiency was bypassed by 

administering IL-13, which partially restored eotaxin levels.

Whereas eosinophils are rare in the lung at baseline, they are abundant in other tissues, such 

as the small intestine lamina propria, where they depend on CCL11,4 and are absent in mice 

that lack ILC2.13,14 Our finding that ILC2 in the lung can control eosinophil recruitment 

through dissociated expression of IL-5 and IL-13 led us to explore the role of ILC2-derived 

cytokines in the basal regulation of peripheral eosinophils. We measured serum IL-5 at 

10:00 and at 22:00 and found that the levels correlated with the circadian variation in blood 

eosinophils.15 Although influenced by the adrenal-cortical axis,15 blood eosinophils can be 

dominantly synchronized by meal timing.16 Mice fasted for 16 hours exhibited suppressed 

serum IL-5 and blood eosinophils at 10:00 (Fig. 4a-b). To minimize effects of altered light-
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dark cycle or stress induced by fasting, we restricted two groups of mice to feeding at night 

only or day only, allowed both groups to acclimate for 9 days, and analyzed them at 8:00 

(Extended Data Fig. 6a). Unlike lung ILC2, lamina propria ILC2 express IL-13 

constitutively, and this was increased in the morning if mice had just been in a fed as 

opposed to fasted cycle (Fig. 4c and Extended Data Fig. 6b); the numbers of ILC2 remained 

constant (Extended Data Fig. 6c). IL-13 reporter expression by intestinal ILC2 at 8:00 was 

diminished after a 16-hr overnight fast (Extended Data Fig. 6d) and restored by 

administering an evening food (but not water) gavage at 22:00 (Fig. 4d).

The response of small intestine ILC2 to caloric input raised the possibility that these cells 

could respond to hormonal cues induced by feeding. Indeed, purified intestinal ILC2, most 

of which were R5+ (Extended Data Fig. 7a), released detectable IL-5 when incubated with 

IL-7 alone, but increased IL-5 production with addition of vasoactive intestinal peptide 

(VIP) but not ghrelin or enterostatin (Fig. 4e and Extended Data Fig. 7b). The effect on lung 

ILC2 was similar (Extended Data Fig. 7c). VIP is a member of the secretin family of 

neuropeptides, which are expressed throughout the nervous system. They are highly 

expressed in intestinal neurons, coordinating pancreatic secretion with smooth muscle 

relaxation in response to feeding,17 and in neurons of the suprachiasmatic nucleus (SCN), 

relaying environmental cues necessary to synchronize central circadian oscillators.18 

VPAC2-deficient and VIP-deficient mice exhibit similar defects in circadian behavior,19,20 

and rhythms mediated by VPAC2 are entrained by feeding.21

We hypothesized that VIP might signal through VPAC2 on ILC2. VIP and its receptors are 

also expressed by immune cells, and signals through VPAC2 have been implicated in Th2 

cell expansion, survival and cytokine production.22 Mice deficient in VPAC2 trend toward 

decreased circulating eosinophils at rest and delayed infiltrating eosinophils with allergic 

challenge.23 We detected both VIP receptor type 1 (VPAC1) and type 2 (VPAC2) mRNA in 

intestinal and lung ILC2, whereas VPAC2 expression was undetectable in eosinophils and 

low in macrophages and CD4+ T cells (Fig. 4f). Comparable levels of IL-5 were induced in 

culture with VIP or with a VPAC2-specific agonist (Fig. 4e and Extended Data Fig. 7c).24 

VPAC2 is a G protein-coupled receptor that can associate with Gαs to activate adenylate 

cyclase.25 Consistent with this, we also induced comparable IL-5 levels bypassing the 

receptor with dibutyryl-cAMP (Fig. 4e).

First noted in humans over 80 years ago,26 circadian variation of blood eosinophils has been 

linked to neuroendocrine15 and metabolic16 cycling. As shown here, long-lived ILC2 in 

peripheral tissues are the predominant source of circulating IL-5, and their close association 

with vasculature positions these cells for eosinophil recruitment. After stimulation by 

epithelial and/or Th2 cytokines, lung ILC2 increase IL-5 and co-express IL-13, leading to 

local eosinophil accumulation, a process that mimics the post-prandial response of intestinal 

ILC2 to caloric intake. Further, ILC2 express functional VPAC2 receptors, providing a 

potential mechanism linking these dispersed tissue resident cells with central circadian and 

metabolic rhythms. Intestinal eosinophils are normal in germ-free animals,4 and IL-13+ 

ILC2 are found in human fetal gut,27 suggesting that these biologic pathways are 

independent of intestinal microbiota. Although further study is needed, our findings suggest 

that eosinophils are linked to basal circadian oscillations through ILC2 activation and raise 
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the possibility that helminthic parasites may have co-opted these fundamental pathways of 

host metabolic homeostasis.

METHODS (ONLINE ONLY)

IL-5 reporter mice

R5 IL-5 reporter mice were generated by homologous gene targeting in C57BL/6 embryonic 

stem cells. The previously published plasmid pKO915-DT (Lexicon) containing the 

Basoph8 reporter17 was modified to express tdTomato in place of YFP, such that the 

cassette now contained (in order from 5’ to 3’) genomic sequence of the rabbit β-globin gene 

partial exon 2–3, the gene encoding tdTomato (Clontech), encephalomyocarditis virus IRES, 

humanized Cre recombinase, bovine growth hormone poly(a), and a loxP-flanked neomycin 

resistance cassette. Homologous arms straddling the Il5 translation intiation site (3.8 kb 

toward 5’, containing the promoter and 5’ UTR and 3.0 kb toward 3’, containing the start 

ATG halfway through exon 3) were amplified from C57BL/6 genomic DNA using Phusion 

polymerase (Finnzymes) and cloned into the cassette by standard methods. The construct 

was linearized with NotI and transfected by electroporation into C57BL/6 embryonic stem 

cells. Cells were grown on irradiated feeders with the aminoglycoside G418 in the media, 

and neomycin-resistant clones were screened for 5’ and 3’ homologous recombination by 

PCR. Eleven positive clones were subsequently tested (and all eleven confirmed) by 5’ and 

3’ Southern Blot. Two clones were selected for injection into albino C57BL/6 blastocysts to 

generate chimeras, and the male pups with highest ratios of black-to-white coat color from a 

single clone were selected to breed with homozygous CMV-Cre transgenic C57BL/6 

females (B6.C-Tg(CMV-cre)1Cgn/J; 006054, obtained from The Jackson Laboratory) to 

excise the neomycin resistance cassette. The CMV-Cre transgene is X-linked and the males 

from this cross were bred to wild-type C57BL/6 females to remove the CMV-Cre allele. 

Male and female R5/+ offspring were intercrossed to yield R5/R5 homozygotes.

Mice

β-actin-cyan fluorescent protein mice (B6.129(ICR)-Tg(CAG-ECFP)CK6Nagy/J; 004218), 

Rag1−/− mice (B6.129S7-Rag1tm1Mom/J; 002216), Il7rα−/− mice (B6.129S7-Il7rtm1Imx/J; 

002295), and ROSA-YFP mice (B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J; 006148) were 

from The Jackson Laboratory. ROSA-DTα and Smart13 mice have been described.11 

Rag1−/− mice were maintained on SCIDS MD’s “Breeders Formula” antibiotic tablets (Bio-

Serv). Mice were fed ad lib except when feeding was restricted to 12 hours daily (7:00 to 

19:00 or vice versa) or during 16-hour fasting. For gavage experiments, mice previously fed 

standard chow ad lib were fasted at 16:00 before receiving water or a 1:1 mixture of high-fat 

chow (Research Diets) and 20% dextrose by oral gavage, representing 13% of ad lib caloric 

intake at 22:00. Mice used in experiments were mixed gender, between 6 and 10 weeks old, 

on the C57BL/6 background and were maintained according to institutional guidelines in 

specific pathogen-free facilities at the University of California, San Francisco (San 

Francisco, CA).
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Lung imaging

Lung slices were prepared using a modification of established methods.29 After euthanasia, 

lungs were inflated with 1 ml of 2% low-melt agarose (Type VII, Sigma-Aldrich), excised 

and placed in 5 ml cold PBS, and 600 µm sections were cut on a vibratome (Model G, 

Oxford Laboratories). Lung sections were maintained in PBS at room temperature until 

mounting. All sections were mounted with PBS and imaged on a multiphoton microscope 

with data collected in three channels (CFP, GFP, RFP). Images were analyzed with Imaris 

software (Bitplane). Software spot detection algorithms were used to identify cells.

Nippostrongylus brasiliensis infection and cytokine administration

Mice were infected with 500 N. brasiliensis third-stage larvae (L3) and were killed at the 

indicated timepoints for analysis of the mediastinal and mesenteric lymph nodes, lungs, and 

bone marrow. Procedures for maintaining as described.11 Rag1−/− mice were given IL-2, 

IL-33, and IL-13 as follows: IL-2 complexes were generated by incubating 0.5 µg mouse 

IL-2 (R&D Systems) with 5 µg anti-IL2 (JES6-A12, R&D Systems), and then administered 

intraperitoneally in 200 ml PBS on day 0; IL-33 was given in two daily doses of 500 ng in 

30 µl PBS intranasally on days 0 and 1; some animals additionally received 1 µg of IL-13 

intranasally with the daily doses of IL-33 on days 0 and 1. On day 2, the lungs were 

harvested. The left lobe was treated as above and cells were isolated for flow cytometry. The 

right lung was homogenized in 1 ml of PBS using GentleMACS C tubes (Miltenyi Biotec), 

pelleted, and the supernatant was filtered through a 0.8 µm strainer and used for CCL11 

ELISA (R&D Systems).

In vitro CD4+ T cell polarization

CD4+ T cells were isolated from the lymph nodes of R5/R5, R5/+ and wild-type C57BL/6 

mice using negative selection MACS beads (Miltenyi Biotec) and cultured in plates pre-

coated with anti-CD3ε and anti-CD28 (BD Pharmingen) under standard Th2 polarization 

conditions for four days, as described11. On day 4 the cells were washed and re-plated with 

50 U/ml recombinant human IL-2 (R&D Systems) and then split at day 6 and day 8. On day 

9 or 10, the cells were plated at 2×106/ml in plates pre-coated with anti-CD3ε. One well was 

used for intracellular cytokine staining: 3 µM monensin was added at 18 hours, and at 24 

hours the cells were stained with phycoerythrin-cyanine 7 (PE-Cy7) anti-CD3 (17A2, 

eBioscience) and peridinin chlorophyll protein-cyanine 5.5 (PerCP-Cy5.5) anti-CD4 (RM4–

5, eBiosciences) and with Violet LIVE/DEAD (Invitrogen) prior to fixation in 2% 

paraformaldehyde (PFA, Electron Microscopy Sciences) in PBS, permeabilization with 

0.5% saponin/3% fetal calf serum (FCS) in PBS, and staining with allophycocyanin (APC) 

anti-IL-5 (TRFK5, BD Pharmingen), fluorescein (FITC) anti-IFN-γ (XMG1.2, BD 

Pharmingen), eFluor 660 anti-IL-13 (50-7133-80, eBioscience), or PE anti-IL-4 (11B11, BD 

Pharmingen). For the remaining wells, restimulation on anti-CD3ε was continued for 4 days 

and each day supernatant was collected and stored at −20° C, and one well was harvested for 

flow cytometry.
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Cell preparation from tissues

We performed transcardiac perfusion with 20 ml of PBS prior to harvesting organs. Single-

cell suspensions were prepared as follows: spleen, lymph nodes and thymus were 

mechanically dissociated through 70 µm filters and bone marrow was processed by crushing 

a single femur with a mortar and pestle prior to 70-µm filtration. Whole lungs, heart, kidney 

and uterus were minced, digested by gentle shaking in 5 ml HBSS with 0.1 WU/ml Liberase 

TM (Roche) and 25 µg/ml DNase I (Roche) for 30 minutes at 37° C, and then mechanically 

dissociated using GentleMACS C tubes (Miltenyi Biotec) followed by a 70-µm filter. Brain 

and skeletal muscle were similarly digested in Liberase/DNase, but were resuspended in 

40% Percoll (GE Healthcare), underlaid with 90% Percoll and centrifuged at 2200 rpm for 

20 minutes at 20° C to isolate the hematopoietic cells from the interphase. Liver was 

minced, passed through a 70 µm filter and separated using a 90/40 Percoll gradient without 

enzymatic digestion. Skin and small intestinal lamina propria were prepared as described.28 

Peyer’s patches were treated like lymph nodes (see above). Cells from all tissues were 

washed with PBS containing 3% (v/v) FCS and 1 mg/L sodium azide.

Flow cytometry

The single-cell suspensions prepared above were pelleted and incubated with anti-CD16/

CD32 monoclonal antibodies (UCSF Antibody Core Facility) for 10 minutes at 4° C. The 

cells were stained with antibodies to surface markers for 25 minutes at 4° C and, if 

necessary, were washed and incubated with secondary antibodies for an additional 25 

minutes at 4° C. After a final wash, cells were resuspended in 1 µg/ml 4',6-diamidino-2-

phenylindole (DAPI, Roche) for dead cell exclusion. Monoclonal antibodies from Biolegend 

included: Pacific Blue (PB) anti-Ly-6G/Ly-6C (Gr-1), PB anti-CD3 (17A2), PB anti-CD8α 

(53-6.7), PB anti-CD11b (M1/70), PB anti-CD11c (N418), PB anti-NK1.1 (PK136), Alexa 

Fluor 488 anti-CD3 (17A2); FITC anti-FcεRIα (MAR-1); PerCP-Cy5.5 anti-CD11c (N418), 

and anti-Gr-1 (RB6-8C5); Brilliant Violet (BV) 605 anti-CD4 (RM4-5) and anti-CD11b 

(M1/70); BV 711 anti-CD4 (RM4-5); Alexa Fluor 647 anti-FcεRIα (MAR-1); APC anti-

KLRG1 (2F1), anti-ICOS (C398.4A), and anti-CD45R/B220 (RA3-6B2); APC-Cy7 anti-

CD25 (PC-61) and anti-CD45 (30-F11); and biotinylated anti-ICOS (C398.44). Monoclonal 

antibodies from eBioscience included: Alexa Fluor 647 anti-CD19 (eBio1D3); APC anti-

NK1.1 (PK136); PE-Cy7 anti-CD5 (53-7.3); APC-eFluor 780 anti-CD11b (M1/70) and anti-

CD90.2 (53-2.1); PerCP-eFluor 710 anti-KLRG1 (2F1); PerCP-Cy5.5 anti-CD127 (A7R34); 

APC anti-human CD4 (RPA-T4) was used to detect human CD4 expressed in Smart13 mice. 

Monoclonal antibodies from BD Biosciences included: FITC anti-TCRβ (H57-597); PerCP-

Cy5.5 anti-CD11b (M1/70), anti-CD19 (1D3), and anti-CD8α (53-6.7); Alexa Fluor 647 

anti-SiglecF (E50-2440); APC anti-CD11c (HL3); APC-Cy7 anti-Gr-1 (RB6-8C5); PE-Cy7 

anti-CD11c (HL3) and anti-NK1.1 (PK136); Horizon V500 anti-CD4 (RM4-5) and anti-

CD45 (30-F11); and biotinylated anti-KLRG1 (2F1). Monoclonal antibodies from 

Invitrogen included APC anti-Gr-1 (RB6-8C5) and APC Alexa Fluor 750 anti-CD45R/B220 

(RA3-6B2). FITC and biotinylated anti-T1/ST2 (DJ8) were from MD Bioproducts. An 

Alexa Fluor 488-conjugated anti-SiglecF antibody was generated using purified anti-SiglecF 

(E50-2440, BD Pharmingen) with an Alexa Fluor 488 Monoclonal Antibody Labeling Kit 

(Invitrogen). Secondary antibodies included streptavidin (SA) V500 (BD Horizon), SA BV 

605 and BV 650 (Biolegend). Cell counts were performed using CountBright beads 
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(Invitrogen). Samples were analyzed on an LSR II (BD Biosciences) with four lasers (403 

nm, 488 nm, 535 nm, and 633 nm) and data was analyzed with FlowJo software (Treestar).

5-Bromo-2’-deoxyuridine (BrdU)

Naïve mice received 300 µg BrdU (Sigma-Aldrich) in 300 µl PBS as an intraperitoneal 

injection on the day that their standard drinking water was exchanged for water containing 

800 µg/ml BrdU and 220 µg/ml sodium saccharin (Sigma-Aldrich). The water bottles were 

covered in aluminum foil and water was changed every 3 days. On the indicated days, lungs 

and thymus were harvested. Single-cell suspensions were prepared as above and cells were 

stained with antibodies for surface markers followed by violet fixable LIVE/DEAD 

(Invitrogen). Cells were then fixed in 4% PFA in PBS at room temperature for 15 minutes, 

followed by staining for BrdU incorporation using the APC BrdU Flow Kit (BD 

Biosciences).

ILC2 culture

ILC2 from lungs and small intestines of mice were sorted on a MoFlo XDP gating on cells 

negative for lineage markers (CD3, CD4, CD5, CD8, CD19, CD11b, CD11c, Gr-1, NK1.1), 

followed by CD90.2+R5+ selection (lung) or Lin-KLRG1+R5+ selection (intestine). In 

some experiments, wild-type organs were prepared and gated on cells negative for lineage 

markers (as above), followed by CD90.2+CD25+ selection (lung) or CD45+KLRG1+ 

selection (intestine). For Elispot, cells were cultured at 3000 per well in 10 ng/ml IL-7 for 48 

hours. For supernatant IL-5, cells were cultured at 5000 per well for 18 hours, or at 10,000 

per well for 6 hours, in 10 ng/ml IL-7 plus 1 µM VIP, VPAC2-specific agonist (BAY 

55-9837), ghrelin, or enterostatin or 100 µM dibutyryl cAMP.

IL-5 detection

Supernatant from T cell cultures was assayed for IL-5 by ELISA, performed in duplicate 

serial 2-fold dilutions using IL-5 Duoset (R&D Systems). For Elispot, ILC2 were plated at 

3000 per well in a 96-well Multiscreen filter plate (Millipore) pre-coated with anti-IL-5 

capture antibody (eBiosience). The cells were cultured in complete RPMI-10% FCS and 

after 48 hours the wells were washed and treated according to manufacturer’s ELISPOT 

protocol (eBioscience). IL-5 from serum and ILC2 culture supernatant was measured using 

an Enhanced Sensitivity Flex Set with Enhanced Sensitivity Cytometric Bead Array kit 

(BD). Bead fluorescence was captured on an LSRII (BD) and analyzed using Flow 

Cytometric Analysis Program (FCAP) Array software (BD).

Quantitative RT-PCR

ILC2 (see above), lung macrophages (CD11b+CD11c+), blood eosinophils (SiglecF+CD11b

+SSC-hi), and blood and intestinal CD4+ cells were sorted on a MoFlo XDP and RNA was 

isolated using the Micro RNeasy kit (Qiagen). The RNA was reverse transcribed with 

SuperScript III (Invitrogen), and the resulting cDNA was used as template for quantitative 

PCR with the Power SYBR Green kit on a StepOnePlus cycler (Applied Biosystems). 

Intron-spanning Vpac1 and Vpac2 primers were as described.30 Transcripts were normalized 

Nussbaum et al. Page 8

Nature. Author manuscript; available in PMC 2014 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to 40S ribosomal protein S17 (Rps17) (sense: CGCCATTATCCCCAGCAAG; antisense: 

TGTCGGGATCCACCTCAATG).

Experimental design and statistics

All experiments comparing treatment groups were made using randomly assigned 

littermates without investigator blinding. Comparisons among mice of different litters were 

made using age- and gender-matched cohorts. Cohort sizes were chosen after estimating 

effect size and consulting power tables, and data were analyzed for statistical significance 

after at least two repeated experiments. Results from independent experiments performed 

similarly were pooled. All data points reflect biological replicates; technical replicates were 

averaged to yield a single value for analysis. No data were excluded. All data were analyzed 

using Prism (GraphPad Software): to compare means in BrdU experiments and ILC2 culture 

supernatants we used paired two-tailed Student’s t tests and significance was defined as p < 

0.05. Comparison across multiple groups in (Extended Data Fig. 3c) was performed using 

Kruskal-Wallis. Otherwise, all data were analyzed by comparison of means using unpaired 

two-tailed Student’s t tests. If the groups to be compared had significantly different 

variances (p < 0.05 by F test) then Welch’s post-test was performed. Figures display means 

+/− standard error of the mean (SEM) unless otherwise noted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Innate cells produce IL-5 in tissues at rest
a, Schematic of targeting construct. b-c, Flow cytometry of tissues, previously gated on 

CD45+CD90.2+ cells in wild-type and R5/+ (b) or CD90.2+ cells in R5/R5 (c) naïve mice. 

d, Serum IL-5. Data representative of two independent experiments with two mice per group 

(b-d) or pooled from three independent experiments for 7 (wild-type), 4 (Red5), or 8 

(others) mice per group (c). LN, lymph nodes; ND, none detected; NS not significant; *, p < 

0.05.
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Figure 2. ILC2 expand after birth and persist in collagen-rich structures
a, Percent of lung Lin-CD90.2+ cells R5+T1/ST2 on day 1, day 8, or week 8. b, Percent 

BrdU+ of R5+ ILC2 and total CD4+ cells in lung after four weeks BrdU. c, Representative 

multiphoton images of tdTomato fluorescence (red) in naïve R5/R5 actin-CFP mice; CFP 

and autofluorescence in blue and green, respectively. A=airway. V=vasculature. Collagen 

second harmonic appears blue. Scale bars 100 µm. Data pooled from three independent 

experiments for 5 (Day 1), 6 (Day 8), or 4 (Adult) mice per group (a); or pooled from two 

independent experiments for 5 (week 0), 6 (week 1), or 3 (others) mice per group (b), 

represented as mean +/− SEM. Images represent 8 regions taken from two mice. Lin, 

Lineage markers (B220, CD5, CD11b, CD11c, Ly6G, FcεRI, and NK1.1); ***, p < 0.01 by 

Student’s t test.
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Figure 3. IL-5 and IL-13 co-expression in lung ILC2
a, Lung IL-5 and IL-13 reporter expression before and after infection. b, Flow cytometry of 

CD90.2+ lung cells and percent with ILC2 surface markers (CD90.2 and either KRLG1, 

T1/ST2 or CD25) at rest. c, ILC2 (left lung) and CCL11 concentration (right lung) after 

IL-2, IL-33, and IL-13 treatment. Data representative of three independent experiments with 

4 (naïve R5+S13+), 5 (infected R5+S13+), or 2 (others) mice per group (a), pooled from 

three independent experiments for 6 (R5/R5 bone marrow and spleen) or 9 (all others) mice 

per group (b), or pooled from two independent experiments for 8 (R5/R5 + IL-2/IL-33), 5 

(R5/R5 Deleter + IL-2/IL-33/IL-13), or 3 (others) mice per group (c). Represented as mean 

+/− SEM. huCD4, human CD4; BM, bone marrow; NS, not significant; *, p < 0.05; ***, p < 

0.001 by Student’s t test.
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Figure 4. ILC2 respond to circadian and metabolic cues
a-b, Serum IL-5 and blood eosinophils at 10:00, 22:00 or at 10:00 after fasting. c-d, Flow 

cytometry of small intestine ILC2 (Lin-CD127+ICOS+) and percent of R5-hi ILC2 

expressing S13 at 8:00 in mice on nighttime (black) or daytime (white) feeding (c) or in 

fasted mice given food (black) or water (white) by oral gavage (d). e, Supernatant IL-5 from 

intestinal Lin-CD45+KLRG1+ ILC2 cultured in IL-7 alone or with indicated reagents. f, 
Expression of Vpac1 and Vpac2 in sorted cells, relative to Rps17. Data pooled from 

independent experiments for 19 (AM), 6 (PM), or 5 (fasted) mice per group (a); 7 (AM), 4 
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(PM), or 8 (fasted) mice per group (b); 8 mice per group (c); 6 mice per group (d); or pooled 

averages of duplicate cultures from 6 (IL-7 alone, + VIP, + VPAC2 agonist) or 3 (all others) 

cell sorts from independent mice (e), or representative of two experiments of independent 

cell sorts (f). Represented as mean +/− SEM. Lin, Lineage markers (B220, CD11b, CD11c, 

Ly6G, FcεRI, and NK1.1); Rps17, 40S ribosomal protein S17; NS, not significant; *, p < 

0.05; **, p < 0.01; ***, p < 0.001 by Student’s t test.
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