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ABSTRACT

Electroacoustic imaging is an imaging modality used to detect electric field energy distribution during electroporation, offering valuable
guidance for clinical procedures, particularly in deep tissues. Traditionally, single-element piezoelectric transducers or arrays have been
employed for this purpose. However, these piezoelectric sensors are sensitive to electromagnetic interference and require physical contact
with the sample through a coupling medium, raising concerns for both clinical and preclinical applications. To overcome these limitations, a
multi-channel random quadrature ultrasonics system has been developed, enabling non-contact detection of electroacoustic signals. In this
study, we demonstrated that this non-contact technique effectively detects electroacoustic signals, identifies electroporation regions, and
reconstructs electric energy distribution, offering a promising approach for monitoring electroporation therapy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0244192

The application of electric fields in medical treatments has a long
history of development.1,2 Numerous studies have reported the use of
electric fields in areas such as cancer treatment,3 tissue engineering,4

and wound healing.5 Among these, electroporation has gained signifi-
cant attention due to its widespread applications in tumor ablation,6

drug delivery,7 and deoxyribonucleic acid (DNA) transfection.8

Electroporation is a technique that uses pulsed electric fields (PEF) to
create pores in the cell membrane. When short, high-intensity pulses
are applied to tissue, the permeability of the cell membrane increases
due to pore formation. In reversible electroporation (RE), the cell mem-
brane recovers after a period of time. However, when the pulse parame-
ters (voltage, pulse width, etc.) are too strong, the cell cannot maintain
homeostatic and lead to cell death, a process known as irreversible elec-
troporation (IRE).

Traditional electroporation techniques use pulse widths rang-
ing from hundreds of microseconds to several milliseconds, but
recently, electroporation induced by nanosecond pulsed electric
fields (nsPEF) has attracted attention.9,10 Compared to conven-
tional electroporation protocols, nsPEF-induced electroporation
offers advantages such as reduced thermal effects and minimized
muscle contractions.11,12 Several studies have demonstrated its

effective use in immunotherapy and cancer treatment.13–15

Current electroporation treatment protocols often depend on
numerical simulations, with post-operative assessments relying on
magnetic resonance imaging (MRI), ultrasound, and other imaging
modalities.16 However, there is a need for a method that enables
real-time detection during the procedure. To address this, we pro-
pose electroacoustic tomography (EAT) as an intraoperative imag-
ing technique to detect the treatment area.17

Electroacoustic tomography (EAT) is a noninvasive, label-free,
and non-radiative imaging technique that uses ultrasound signals to
map electric field distribution within tissues, based on their absorption
of nsPEF energy. Traditional acoustic imaging systems rely on piezo-
electric ultrasound transducer, which require coupling media like
water or ultrasound gel.18 However, in specific clinical situations, such
as burn injuries or during surgery, direct contact with the coupling
medium should be minimized or avoided.18 Meanwhile, piezoelectric
transducers are sensitive to electromagnetic interference (EMI), and
the detection sensitivity drops as the size of piezoelectric elements is
reduced.19

As an alternative method, optical methods have been developed
by measuring surface displacement induced by thermoacoustic effect
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and shock wave propagation.20,21 Compared to piezoelectric sensors,
the sensitivity of optical sensing is independent of its size, which is less
sensitive to EMI and some of them allow non-contact measurement.
Recently, several studies have been reported to use optical methods to
detect electroacoustic signals including probe beam deflection
(PBD),22 optical spectroscopy,23 and coherent anti-stokes Raman scat-
tering and micro-spectroscopy (CARS).24 However, these methods are
usually applied for cellular level study, which hinders its clinical
application.

In this paper, we propose to use the multi-channel random quad-
rature (MCRQ) interferometer to remotely detect the electroacoustic
signal generated during electroporation.25 The EA signal is generated
by two clinical needle electrodes inserted in agarose based phantom
and potato phantom with different electrical parameters. The results
show that this method effectively reflects changes in the electrical
parameters of electroporation and demonstrates the ability to identify
the IRE ablated region. A two-dimensional (2D) EAT image was
obtained through rotational scanning, with the results aligning well
with those previously obtained using conventional ultrasound piezo-
electric transducers.26

Electroacoustic tomography detects electric fields in soft tissues
by inducing acoustic pressure with high-voltage pulses. When both
thermal and stress constraints are satisfied, thermal diffusion and stress
propagation in the tissue during pulse delivery are negligible.
Therefore, the initial acoustic pressure can be expressed as17

p0 r; tð Þ ¼ b rð Þr rð Þ
j rð Þq r; tð ÞCv rð ÞE rð Þ2g tð Þ; (1)

where bðrÞ is the thermal coefficient, rðrÞ denotes the specific electri-
cal conductivity, jðrÞ is the isothermal compressibility, qðr; tÞ is the
mass density, and CvðrÞ denotes the specific heat capacity at constant
volume. EðrÞ is the electric field strength at point r, and gðtÞ is the
duration of the electric pulse.

The excitation of acoustic signals induced by the thermoelastic
expansions of the tissue can be described by wave equations and then
solved by Green’s functions. The acoustic pressure at position r and
time t can be described as17

p r; tð Þ ¼ 1
4pv2s

ð
dr0

1
r�r0j jp0 r0ð Þd t � r � r0j j

vs

 !
: (2)

The relationship between electroacoustic pressure and sample
displacement can be expressed as follows:

q
@2

@t2
d r; tð Þ ¼ �rp r; tð Þ; (3)

where vector d is the sample displacement induced by electroacoustic
pressure. The displacement will change the phase of backscattered sig-
nals which after interfering with reference beam can be detected by a
photon detector array,

In ¼ Inref þ Inobj þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Inref � Inobj

q
� cos ;n tð Þ þ uea tð Þ� �

; (4)

where In is the interference signal detected by detector array, Inref and
Inobj are the intensity of reference beam and object beam, ;n is the initial
phase of random speckle, and uea is the phase variation induced by
electroacoustic pressure. After linear demodulation to recover the dis-
placement direction,27 the phase change can be retrieved by the proc-
essed output signal Vout ,

Vout ¼ uea tð Þ � 2
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Inref � Inobj

q
� sin ;n tð Þ� �

: (5)

Therefore, we can obtain the intensity of electric field energy
information in tissue through the output signal.

To validate the effectiveness of our optical interferometer system
in detecting EA signals, we constructed the experimental setup as
shown in Fig. 1. The system is divided into two parts: (1) EA signal
excitation and (2) optical detection part. For signal excitation session, a
custom nanosecond pulse generator was used to deliver the electrical
pulses. The generator allows for adjustable voltage (0–2000V), pulse
width (100ns–100ls), and repetition frequency (1–1MHz), enabling
customized treatment protocols. The generated electrical pulses were
delivered to two clinical needle electrodes with a diameter of 1mm
and adjustable exposed length (AngioDynamics, 20400107), which
were inserted into the phantom to induce the electroacoustic signal. As
to the optical detection part, the MCRQ interferometer consists of two
primary components: the optical head and a compact Modulo receiver,
connected by a multimode fiber. In the compact quartet receiver, a
30mW continuous-wave (CW) laser with a wavelength of 1064 nm is
employed for the interrogation system. A 24 channel detector array is
utilized to detect interference signals. The multimode fiber delivers the
incident laser beam to the optical head and collects the backscattered

FIG. 1. Schematic of MCRQ interferome-
ter based EAT system. M1–M3: mirror;
HWP: half-wave plate; PBS: polarization
beam splitter; L1–L4: lens; MMF: multi-
mode fiber; Piezo: piezo actuator; and DA:
multi-channel detector array.
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object beam from the optical head. Within the optical head, a piezo
actuator at 330 kHz is used for signal calibration and to implement lin-
ear demodulation at 400kHz. The signal processing mainly involves
linear demodulation, which uses logic switches to accurately recover
the displacement direction.27 The output signal is amplified by 60dB
(JSR Ultrasonics, DPR 300, Japan) and detected using an oscilloscope
(Tektronix Inc., MSO54B, USA).

To demonstrate the performance of the system, a 1% agarose
phantom was tested with different electric pulse parameters. To pro-
vide the necessary conductivity and scattering properties for imaging,
1% sodium chloride and 1% intralipid were added. The exposed dis-
tance of the electrodes was set to 10mm, and they were inserted later-
ally into the cylindrical phantom until the exposed portion of the
electrodes was positioned at the center of the phantom. The detection
beam of the interferometer was focused on the top surface of the phan-
tom. We initially examined the effect of pulse voltage on the detected
signals. The output voltage was set to 500, 1250, and 2000V, with a
pulse width of 500 ns and at a frequency of 50Hz. The average
denoised signals are presented in Fig. 2(a). As shown, no significant

signal was detected at 500V, but as the voltage increased, the ampli-
tude of the detected signals rose accordingly. Next, we fixed the voltage
at 2000V and varied the pulse width to 300, 500, and 700ns at 50Hz.
The average denoised signals are shown in Fig. 2(b). As the pulse width
increased, the energy per pulse increased, resulting in a stronger
detected signal. These two sets of experiments demonstrate that the
detected signal can clearly reflect the dosage of the electrical pulses.
Figure 2(c) shows signal’s time of flight varied with the electrode depth
reference with sample surface. The distance between electrodes and
phantom surface was gradually decreased by 2.5mm. The calculated
signal propagation speed was approximately 1500 m/s, similar to the
speed of ultrasound in water.

Next, we performed scans on agarose and potato phantom
[Fig. 3(a)] to obtain the distribution of EA signal intensity across the
surface of the phantoms. Potato is a commonly used plant model for
evaluating the ablation regions in IRE.28 The agarose phantom used in
this experiment had the same specifications as the one used in the
experiments described in Fig. 2. The electrical pulses were delivered at
500 ns pulse width and 50Hz repetition rate at 1500 and 2000V for

FIG. 2. Electroacoustic signals detected by the MCRQ interferometer at different parameter settings. The EA signal increases with increasing (a) pulse voltage and (b) pulse
width; (c) the time-of-flight of the EA signal decreases with decreasing distance from the electrodes to the phantom surface. All results were averaged 200 times.

FIG. 3. EA signal intensity distribution on the surface of the phantom. (a) Scanning path of the beam (dashed arrows) and electrode arrangement. (b) and (c) The photographs
and signal scanning points of the agarose and potato models, and the line graph below shows the EA signal contours obtained from the scans. The scans show that the inten-
sity of the signal is strongest around the electrodes and decreases as one moves away from the electrodes. All results were averaged 200 times.
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agarose and potato phantom, respectively. After applying the electrical
pulses, we cut 5mm potato phantom from the treatment area. The sli-
ces were then immersed in 50ml of 1% 2,3,5-triphenyltetrazolium
chloride (TTC) solution for 3 h of staining to compare the results with
the EA signal scan. The use of TTC stain on the potato provides a
faster and more accurate assessment.29 The dehydrogenase produced
by cell mitochondria reduces TTC to insoluble red triphenylformazan
crystals, which causes the non-ablated areas to appear red, while the
unstained white regions can be identified as IRE ablation zones as
shown in Fig. 3(c).

The EA signal intensity of agarose and potato phantom is shown
in Figs. 3(b) and 3(c), respectively. The white circles in the figure indi-
cate the positions where signals were acquired, with the red-filled
circles representing the locations where the signals were captured
directly in front of the electrodes. It was observed that the signal
strength was highest at the electrodes and significantly decreases as the
detection point moves away from them. The distribution of the EA sig-
nal intensity profile is similar for both agarose and potato phantom,
and the signal intensity dropped by approximately 50% within a 5mm
distance, indicating that the energy of the electrical field attenuates rap-
idly as it propagates. When the signal strength dropped below approxi-
mately 50% of the maximum detected EA signal intensity, only
irreversible electroporation or no electroporation occurred.

Next, to demonstrate the imaging capabilities of our system, we set
up the imaging system as shown in Fig. 4(a). In this setup, a 1% saline
solution was used to induce the EA signal. One side of the water tank
was opened and covered with polyvinyl chloride (PVC) film, on which
the detection beam was focused. Meanwhile, the focused beam path
crosses the electrodes rotation axis. The electrodes with 10mm spacing
were fixed on a rotating platform and rotated along the central axis of

the electrodes. The rotation angle was set to 3 degrees, with a total of 120
steps to scan all viewing angles. The electrodes output 1500V, 500ns
pulses, and at each angle, 100 pulses were averaged for denoising.

Figure 4(b) shows the signals collected at rotation angles of 0, 45,
and 90 degrees. It can be observed that the signals from the two elec-
trodes gradually converge as the rotation proceeds, eventually overlap-
ping into a single signal. This indicates that the system can capture not
only the variations in signal strength but also depth of the electric filed.
As shown in Fig. 4(c), we used a back-projection algorithm to recon-
struct a two-dimensional image from the signals collected at all
angles.30 The distance between the two reconstructed hotspots is
approximately 10mm, which is consistent with the spacing of electro-
des. The signal intensity is strongest at the center and gradually
decreases with the location away from center. In addition, we per-
formed a physical simulation (COMSOL Multiphysics 6.0, Sweden),
and the resulting electric field streamlines were overlapped onto the
reconstructed image. The arrows represent the direction of the electric
field. Figure 4(d) shows a profile line extracted along the dashed line in
Fig. 4(c). The results are consistent with our previous work.17,31

Current electroporation treatment plans are often developed
through simulations, lacking real-time monitoring capabilities, which
significantly limits their advancement. The introduction of electro-
acoustic tomography (EAT) offers a potential solution for real-time
monitoring during electroporation treatments. In previous studies,
EAT imaging systems were built using piezoelectric transducers, but
the requirement for physical contact and coupling media restricted
their broader clinical application. The MCRQ interferometer based
EAT system offers a non-contact monitoring solution to this limita-
tion, simplifying clinical workflows while reducing the risk of infection
for special populations such as infants and individuals with sensitive

FIG. 4. 2D EAT reconstruction image with
rotation platform. (a) Experiment setup.
(b) EA signal at different rotation angles.
(c) Reconstructed 2D EAT image. (d) The
image profile along with the white dash
line.
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skin.32 The results demonstrate that the system can effectively detect
EA signals generated in deep tissues and has the potential to provide
real-time feedback on treatment outcomes.

Since the detected EA signal correlates with the intensity of the
electrical pulse energy within the tissue, it is possible to estimate the
energy distribution at different locations during IRE treatment, which
can further help with the assessment of tissue ablation. In the potato
phantom experiment, the intensity of the detected EA signal correlated
with the ablation area. Although the number of scanning points is lim-
ited, the signal intensity at even a single location can be valuable. For
example, when control of the ablation area is critical, monitoring
points may be placed near important tissues to ensure that they are
not affected. Similarly, in cases where the electrode spacing is large,
placing the monitoring point in the center helps to avoid incomplete
ablation. Limited by the sensitivity of the system, we delivered 200
pulses at each detection point in the phantom for averaging. Although
the number of pulses affects the ablation range, the effect is small
when the total number of pulses is high, and therefore has a small
effect on the ablation range.33

The proposed MCRQ interferometer detection system provides
signals with detailed information, offering the potential to capture elec-
tric field data from deep tissues in a noncontact manner. Unlike con-
ventional interferometer systems, the MCRQ employs a multimode
fiber to collect more backscattered signals, and its multichannel detec-
tor array enhances performance on uneven surfaces. A 330kHz piezo
actuator is employed for signal calibration to compensate phase change
for uneven surfaces and minor vibrations. However, several limitations
still require improvement. One challenge with laser interferometry is
its sensitivity to temperature fluctuations and vibrations, which can
reduce both sensitivity and detection range. Additionally, the noise
equivalent power of the optical detection system is higher compared to
conventional piezoelectric transducers, making it difficult to detect EA
signals induced by low-power electrical pulses. That is why hundreds
of averages are needed to get a high signal noise ratio (SNR) EA signal,
which limits the imaging speed of the system.

Limited by the sensitivity of our system, hundreds of electrical
pulses are needed for averaging. The signal intensity is affected by the
electrodes spacing, the distance between sample surface and electrodes
tips, and alignment between light scanning beam and exposed electro-
des tips. In addition to the electrodes alignment, the system noise sup-
pression in the experiment is also crucial. The strong electric field
brought by the high-voltage pulse will cause interference to the cir-
cuitry of the instrument, and electromagnetic shielding of the wires
and instruments can effectively reduce electromagnetic interference
(EMI). To improve the performance of MCRQ interferometer, more
channels for detector array are needed to enhance signal averaging
without extending the acquisition time. Some optical resonators could
also further increase system sensitivity compared to traditional inter-
ference system.34–36 Furthermore, defocusing of the detection beam
can decrease sensitivity and result in inaccurate measurements. In
addition to the hardware system part, some more efficient post-
processing noise reduction methods, such as wavelet denoising and
deep learning based signal enhancement methods, have been reported
to significantly improve the signal processing speed of the system to
significantly improve the signal processing speed of the system.26,37

In summary, an ultrasound signal acquisition system was devel-
oped and validated for the non-contact assessment of electroporation

treatment in deep tissues. EA signals, which varied with treatment
parameters, were detected in both agarose phantoms and potato phan-
toms using the MCRQ interferometer system. A 2D distribution of
electric field energy in saline was obtained through rotate scanning.
Since electroporation treatment outcomes are significantly influenced
by pulse parameters, the real-time EA signals and their reconstructed
images were shown to reflect these variations, offering a potential
method to guide electroporation treatments. The non-contact EA sig-
nal acquisition capability of the MCRQ interferometer-based system
eliminates the need for physical contact via coupling media, which is
non-sensitive to EMI, thereby enhancing the clinical applicability of
this technology.

We are pleased to thank Sound&Bright for providing technical
support for the multi-channel random quadrature interferometer.

This work was supported by the National Institutes of Health
(Nos. R37CA240806, U01CA288351, R50CA283816, R01HL125084,
and R01EB030024). The authors would like to acknowledge the
support from UCI Chao Family Comprehensive Cancer Center (No.
P30CA062203).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Yifei Xu and Yuchen Song contributed equally to this paper.

Yifei Xu: Conceptualization (equal); Data curation (equal); Formal anal-
ysis (equal); Investigation (equal); Methodology (equal); Visualization
(equal); Writing – original draft (equal); Writing – review & editing
(equal). Yuchen Song: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Investigation (equal); Methodology (equal);
Validation (equal); Writing – original draft (equal); Writing – review &
editing (equal). Leshan Sun: Formal analysis (supporting); Visualization
(supporting). Zhongping Chen: Conceptualization (equal); Project
administration (equal); Supervision (equal); Writing – review & editing
(equal). Liangzhong Xiang: Conceptualization (equal); Funding acqui-
sition (equal); Project administration (equal); Supervision (equal);
Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from
the corresponding authors upon reasonable request.

REFERENCES
1H. A. Whitaker, C. U. M. Smith, and S. Finger, Brain, Mind, and Medicine:
Essays in Eighteenth-Century Neuroscience (Springer, New York, NY, 2007).
2F. X. Hart and J. R. Palisano, The Application of Electric Fields in Biology and
Medicine (InTech, 2018).

3D. Fabian, M. D. P. Guillermo Prieto Eibl, I. Alnahhas, N. Sebastian, P. Giglio,
V. Puduvalli, J. Gonzalez, and J. D. Palmer, “Treatment of glioblastoma (GBM)
with the addition of tumor-treating fields (TTF): A review,” Cancers 11, 174
(2019).

4C. N. M. Ryan, M. N. Doulgkeroglou, D. I. Zeugolis, C. N. M. Ryan, M. N.
Doulgkeroglou, and D. I. Zeugolis, “Electric field stimulation for tissue engi-
neering applications,” BMC Biomed. Eng. 3, 1–9 (2021).

Applied Physics Letters ARTICLE pubs.aip.org/aip/apl

Appl. Phys. Lett. 126, 023704 (2025); doi: 10.1063/5.0244192 126, 023704-5

Published under an exclusive license by AIP Publishing

 04 February 2025 19:27:09

https://doi.org/10.3390/cancers11020174
https://doi.org/10.1186/s42490-020-00046-0
pubs.aip.org/aip/apl


5M. A. Messerli and D. M. Graham, “Extracellular electrical fields direct wound
healing and regeneration,” Biol. Bull. 221, 79 (2011).

6H. J. Scheffer, K. Nielsen, M. Jong, A. Tilborg, J. M. Vieveen, A. R. A.
Bouwman, S. Meijer, C. Kuijk, P. Tol, and M. R. Meijerink, “Irreversible elec-
troporation for nonthermal tumor ablation in the clinical setting: A systematic
review of safety and efficacy,” J. Vasc. Interventional Radiol. 25, 997 (2014).

7N. Bhutiani, S. Agle, Y. Li, S. Li, and R. C. G. Martin, “Irreversible electropora-
tion enhances delivery of gemcitabine to pancreatic adenocarcinoma,” J. Surg.
Oncol. 114, 181 (2016).

8A. Taketo, “DNA transfection of Escherichia coli by electroporation,” Biochim.
Biophys. Acta (BBA) - Gene Struct. Expression 949, 318 (1988).

9J. C. Weaver, “Electroporation theory. Concepts and mechanisms,” Methods
Mol. Biol. 55, 3–28 (1995).

10A. R. Ruiz-Fern�andez, L. Campos, S. E. Gutierrez-Maldonado, G. N�u~nez, F.
Villanelo, T. Perez-Acle, A. R. Ruiz-Fern�andez, L. Campos, S. E. Gutierrez-
Maldonado, G. N�u~nez, F. Villanelo, and T. Perez-Acle, “Nanosecond pulsed
electric field (nsPEF): Opening the biotechnological Pandora’s box,” Int. J. Mol.
Sci. 23, 6158 (2022).

11E. Gudvangen, V. Kim, V. Novickij, F. Battista, A. G. Pakhomov, E. Gudvangen,
V. Kim, V. Novickij, F. Battista, and A. G. Pakhomov, “Electroporation and cell
killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation
in cancer ablation,” Sci. Rep. 12, 1763 (2022).

12C. Valdez, M. B. Jirjis, C. C. Roth, R. A. Barnes, B. L. Ibey, C. Valdez, M. B. Jirjis,
C. C. Roth, R. A. Barnes, and B. L. Ibey, “Nanosecond electric pulses modulate
skeletal muscle calcium dynamics and contraction,” Proc. SPIE 10066, 100660X
(2017).

13T. F. Justesen, A. Orhan, H. Raskov, C. Nolsoe, and I. G€ogenur,
“Electroporation and immunotherapy—Unleashing the abscopal effect,”
Cancers 14, 2876 (2022).

14A. Vi�zintin, S. Markovi�c, J. �S�can�car, and D. Miklav�ci�c, “Electroporation with
nanosecond pulses and bleomycin or cisplatin results in efficient cell kill and
low metal release from electrodes,” Bioelectrochemistry 140, 107798 (2021).

15M. Xu, D. Xu, G. Dong, Z. Ren, W. Zhang, T. Aji, Q. Zhao, X. Chen, and T.
Jiang, “The safety and efficacy of nanosecond pulsed electric field in patients
with hepatocellular carcinoma: A prospective phase 1 clinical study protocol,”
Front. Oncol. 12, 869316 (2022).

16M. Silk, D. Tahour, G. Srimathveeravalli, S. B. Solomon, and R. H. Thornton,
“The state of irreversible electroporation in interventional oncology,” Semin.
Interventional Radiol. 31, 111 (2014).

17Y. Xu, L. Sun, S. Wang, Y. Yan, P. Pandey, V. Novickij, L. Xiang, Y. Xu, L. Sun,
S. Wang, Y. Yan, P. Pandey, V. Novickij, and L. Xiang, “Electroacoustic tomog-
raphy for real-time visualization of electrical field dynamics in deep tissue dur-
ing electroporation,” Commun. Eng. 2(1), 75 (2023).

18Z. Hosseinaee, M. Le, K. Bell, and P. H. Reza, “Towards non-contact photoa-
coustic imaging [review],” Photoacoustics 20, 100207 (2020).

19J. Sirohi and I. Chopra, “Fundamental understanding of piezoelectric strain sen-
sors,” J. Intell. Mater. Syst. Struct. 11, 246–257 (2000).

20J. W. Wagner, “Optical detection of ultrasound,” Phys. Acoust. 19, 201–266
(1990).

21G. Wissmeyer, M. A. Pleitez, A. Rosenthal, and V. Ntziachristos, “Looking at
sound: Optoacoustics with all-optical ultrasound detection,” Light-Sci. Appl. 7,
53 (2018).

22R. A. Barnes, C. C. Roth, H. T. Beier, G. Noojin, C. Valdez, J. Bixler, E. Moen,
M. Shadaram, and B. L. Ibey, “Probe beam deflection optical imaging of

thermal and mechanical phenomena resulting from nanosecond electric pulse
(nsEP) exposure,” Opt. Express 25, 6621–6643 (2017).

23C. Merla, M. Liberti, P. Marracino, A. Muscat, A. Azan, F. Apollonio, L. M.
Mir, C. Merla, M. Liberti, P. Marracino, A. Muscat, A. Azan, F. Apollonio, and
L. M. Mir, “A wide-band bio-chip for real-time optical detection of bioelectro-
magnetic interactions with cells,” Sci. Rep. 8, 5044 (2018).

24C. Merla, M. Nardoni, M. Scherman, S. Petralito, L. Caramazza, F. Apollonio,
M. Liberti, P. Paolicelli, B. Attal-Tretout, and L. M. Mir, “Changes in hydration
of liposome membranes exposed to nanosecond electric pulses detected by
wide-field coherent anti-stokes Raman microspectroscopy,”
Bioelectrochemistry 147, 108218 (2022).

25B. Pouet, S. Breugnot, and P. Cl�emenceau, “Robust laser-ultrasonic interferom-
eter based on random quadrature demodulation,” AIP Conf. Proc. 820, 233–
239 (2006).

26Z. Jiang, Y. Xu, L. Sun, S. Srinivasan, Q. J. Wu, L. Xiang, and L. Ren,
“Enhanced electroacoustic tomography with supervised learning for real-time
electroporation monitoring,” Precis. Radiat. Oncol. 8, 110 (2024).

27B. Pouet, A. Wartelle, and S. Breugnot, “Multi-channel random-quadrature
receiver for industrial laser-ultrasonics,” in 2011 IEEE International Ultrasonics
Symposium (IEEE, 2011).

28Y. Zhao, H. Liu, S. P. Bhonsle, Y. Wang, R. V. Davalos, C. Yao, Y. Zhao, H. Liu,
S. P. Bhonsle, Y. Wang, R. V. Davalos, and C. Yao, “Ablation outcome of irre-
versible electroporation on potato monitored by impedance spectrum under
multi-electrode system,” Biomed. Eng. Online 17, 1–13 (2018).

29S. Jeong, H. Kim, J. Park, K. W. Kim, S. B. Sim, J. H. Chung, S. Jeong, H. Kim,
J. Park, K. W. Kim, S. B. Sim, and J. H. Chung, “Evaluation of electroporated
area using 2,3,5-triphenyltetrazolium chloride in a potato model,” Sci. Rep. 11,
20431 (2021).

30M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic
computed tomography,” Phys. Rev. E 71, 016706 (2005).

31M. Wang, A. Zarafshani, P. Samant, J. Merrill, D. Li, and L. Xiang, “Feasibility
of electroacoustic tomography: A simulation study,” IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 67, 889 (2020).

32X. Zhang, J. R. Fincke, C. M. Wynn, M. R. Johnson, R. W. Haupt, and B. W.
Anthony, “Full noncontact laser ultrasound: First human data,” Light. Sci.
Appl. 8, 119 (2019).

33F. Guo, X. H. Gou, J. G. Sun, J. Hong, and Y. P. Zhang, “Modeling methods in
overlapping electroporation treatments: Pulse number effects on tissue conduc-
tivity and ablation area,” Electrochim. Acta 503, 144883 (2024).

34H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband
ultrasonic detector based on an optical micro-ring resonator for photoacoustic
microscopy,” Sci. Rep. 4, 4496 (2014).

35A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact
ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett.
36, 1833–1835 (2011).

36E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoa-
coustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for
high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47,
561–577 (2008).

37R. van Bergen, L. Sun, P. K. Pandey, S. Wang, K. Bjegovic, G. Gonzalez, Y.
Chen, R. Lopata, and L. Xiang, “Discrete wavelet transformation for the sensi-
tive detection of ultrashort radiation pulse with radiation-induced acoustics,”
IEEE Trans. Radiat. Plasma Med. Sci. 8, 76–87 (2024).

Applied Physics Letters ARTICLE pubs.aip.org/aip/apl

Appl. Phys. Lett. 126, 023704 (2025); doi: 10.1063/5.0244192 126, 023704-6

Published under an exclusive license by AIP Publishing

 04 February 2025 19:27:09

https://doi.org/10.1086/BBLv221n1p79
https://doi.org/10.1016/j.jvir.2014.01.028
https://doi.org/10.1002/jso.24288
https://doi.org/10.1002/jso.24288
https://doi.org/10.1016/0167-4781(88)90158-3
https://doi.org/10.1016/0167-4781(88)90158-3
https://doi.org/10.1385/0-89603-328-7:3
https://doi.org/10.1385/0-89603-328-7:3
https://doi.org/10.3390/ijms23116158
https://doi.org/10.3390/ijms23116158
https://doi.org/10.1038/s41598-022-04868-x
https://doi.org/10.1117/12.2253693
https://doi.org/10.3390/cancers14122876
https://doi.org/10.1016/j.bioelechem.2021.107798
https://doi.org/10.3389/fonc.2022.869316
https://doi.org/10.1055/s-0034-1373785
https://doi.org/10.1055/s-0034-1373785
https://doi.org/10.1038/s44172-023-00125-9
https://doi.org/10.1016/j.pacs.2020.100207
https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
https://doi.org/10.1016/B978-0-12-477919-8.50011-X
https://doi.org/10.1038/s41377-018-0036-7
https://doi.org/10.1364/OE.25.006621
https://doi.org/10.1038/s41598-018-23301-w
https://doi.org/10.1016/j.bioelechem.2022.108218
https://doi.org/10.1063/1.2184534
https://doi.org/10.1002/pro6.1242
https://doi.org/10.1109/ULTSYM.2011.0452
https://doi.org/10.1109/ULTSYM.2011.0452
https://doi.org/10.1186/s12938-018-0562-9
https://doi.org/10.1038/s41598-021-99987-2
https://doi.org/10.1103/PhysRevE.71.016706
https://doi.org/10.1109/TUFFC.2019.2955900
https://doi.org/10.1109/TUFFC.2019.2955900
https://doi.org/10.1038/s41377-019-0229-8
https://doi.org/10.1038/s41377-019-0229-8
https://doi.org/10.1016/j.electacta.2024.144883
https://doi.org/10.1038/srep04496
https://doi.org/10.1364/OL.36.001833
https://doi.org/10.1364/AO.47.000561
https://doi.org/10.1109/TRPMS.2023.3314339
pubs.aip.org/aip/apl



