
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Enhancing Acquisition of Intuition versus Planning in Problem Solving

Permalink
https://escholarship.org/uc/item/546552g5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32)

ISSN
1069-7977

Authors
Chen, Dawn
Holyoak, Keith

Publication Date
2010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/546552g5
https://escholarship.org
http://www.cdlib.org/


Enhancing Acquisition of Intuition versus Planning in Problem Solving 
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University of California, Los Angeles 

Los Angeles, CA 90095 USA 
 

Abstract 

The acquisition of intuition, which guides problem solving by 
pruning unpromising strategies, is essential to the 
development of expertise in any domain. Problem-solving 
intuition may be viewed as analogous to search heuristics in 
artificial intelligence. One prediction inspired by this analogy 
is that practicing on subproblems and relaxed problems 
(versions of a problem with fewer constraints on the goal state 
and on the possible moves, respectively) may enhance the 
development of intuition for the full problem. Using the n-
puzzle, we found that practice on relaxed problems did 
promote intuition compared to practice on the full problem, 
but impaired performance on solving the full problem. More 
detailed analyses suggest that practice on relaxed problems 
may discourage planning and encourage reliance on intuition. 
Planning is slower but more likely to produce optimal 
solutions if given enough time, whereas relying on intuition is 
faster but may lead to suboptimal solutions. 

Keywords: Problem solving; intuition; planning; learning; 
heuristic search; n-puzzle. 

Introduction 
When encountering a problem in an unfamiliar domain for 
the first time, the novice may feel lost among what seems to 
be an indefinitely large number of possible actions that seem 
about equally promising, and end up pursuing some 
arbitrary path that leads nowhere. But after solving some 
number of problems from the same domain, the solver will 
eventually learn to consider only a limited number of 
approaches, those that are likely to prove effective. In 
commonsense terms, the learner has acquired intuition about 
the problem domain: an implicit sense of what to do in 
various types of situations that arise during problem solving 
(Gobet & Philippe, 2009). How is such intuition acquired 
through practice? 

The standard account of general problem solving is 
Newell and Simon’s (1972) proposal that the problem solver 
performs search within a problem space. A problem space 
can be visualized as a graph or tree in which the nodes 
represent possible states in the problem and each edge 
represents a legal move transforming one state into another. 
The legal moves in a problem are defined by its operators, 
or possible types of actions. The problem solver can search 
the problem space by starting at the node representing the 
initial state of the problem and moving to adjacent nodes by 
applying operators, until one of the nodes representing a 
goal state is reached. The solution to the problem is the 
successful path that the solver took through the problem-
space graph. 

Importantly, the problem solver may search the problem 
space not only by physically manipulating the external 
representation of the problem state (external search), but 
also by mentally transforming an internal representation 
(internal search or planning). During internal search, the 
problem solver need not always move from the current state 
to an adjacent node. 

For most realistic problems, the problem-space tree is 
enormous, so that it is terribly inefficient even for a 
computer to solve the problem by using brute-force search 
algorithms that traverse the entire tree until a goal state is 
found. Heuristic search algorithms, on the other hand, are 
much more efficient because they use domain-specific 
knowledge to prune branches of the tree that never lead to 
the goal state or do not do so in an optimal way (i.e., in the 
minimum number of moves). A search heuristic may guide 
search by estimating the distance (minimum number of 
moves required) from any state to the goal so that, for 
example, a search algorithm can always choose to explore 
next the state that is closest to the goal (i.e., the greedy best-
first search algorithm). This form of a search heuristic, 
commonly used in artificial intelligence, is called a heuristic 
function.  

In many ways, the formal concept of a search heuristic is 
closely related to the commonsense concept of intuition in 
problem solving. Search heuristics prune branches in the 
problem-space tree that are unlikely to lead to the goal 
efficiently, just as problem-solving intuition focuses 
attention on just those paths that are likely to lead to a 
solution quickly. Search heuristics are usually fast to 
compute, but may lead to suboptimal solutions. Similarly, 
intuitive judgments arise quickly, but are fallible and may 
result in diminished accuracy or optimality compared to a 
solution strategy based on systematic analysis or careful 
planning. Furthermore, just as search heuristics rely on 
domain-specific knowledge, problem-solving intuition is 
restricted to a particular domain and is acquired only 
through multiple experiences with solving problems in that 
domain. Nonetheless, certain search heuristics are more 
general than others and apply to several domains with 
overlapping structure, just as the intuition gained from 
solving problems in one domain may apply to a related 
domain (see Hatano & Inagaki, 1986, for a discussion of 
routine vs. adaptive expertise). Finally, and most 
importantly for the present study, heuristic functions yield 
estimates analogous to the intuitive sense of closeness to the 
goal available to experienced problem solvers. The task we 
use to assess intuition will be based on subjective judgments 
of distance to the goal state. 
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The analogy between problem-solving intuition and 
search heuristics provides insights into how it might be 
possible to facilitate the acquisition of intuition in human 
problem solving. AI researchers have discovered that the 
solution lengths of subproblems and relaxed problems often 
provide good heuristic functions for the original problem 
(Prieditis, 1993). A subproblem removes one or more 
constraints on the goal state from the original problem, 
whereas a relaxed problem removes one or more constraints 
on the legal moves (i.e., it adds one or more operators). 
Thus, an instance of the original problem can be solved in 
fewer moves when translated into a corresponding 
subproblem or relaxed problem. 

Applying the results from AI to the domain of human 
problem solving, solving subproblems and relaxed problems 
may facilitate the acquisition of intuition for the original 
problem. Therefore, learners who practice solving 
subproblems or relaxed problems may acquire better 
intuition for the original problem than those who receive the 
same amount of practice on only instances of the original 
problem. At the same time, planning may seem less 
necessary when solving subproblems and relaxed problems. 
Thus, the kind of learning experience that fosters 
development of intuition the most may also have a 
detrimental impact on planning. We will elaborate on these 
points in discussing our experimental findings. 

Method 

Participants 
Seventy-two undergraduates from the University of 
California, Los Angeles participated for course credit. 
Participants were randomly assigned to either the control 
condition (n = 24), the subproblem condition (n = 24), or the 
relaxed problem condition (n = 24). 

Materials 
The n-puzzle Participants solved a computer version of the 
n-puzzle, which is illustrated in Figure 1. The n-puzzle 
consists of a square bounded space containing a smaller 
empty square and n initially misplaced square tiles 
numbered 1 to n. A legal move consists of sliding any tile 
into the empty square, and the goal state contains all the 
tiles in ascending order. 
 
 
 
 
 
 

 
Figure 1: An 8-puzzle with a 5-step solution: Move 4 down, 
1 left, 2 up, 5 left, and 6 up. 

Subproblems and Relaxed Problems In the subproblems 
for the n-puzzle, participants were required to move only 
some of the tiles into their correct places. In the relaxed 

problems, participants could swap some of the tiles with 
adjacent tiles, in addition to sliding any tile into the empty 
square. These swappable tiles were displayed in a lighter 
color than the non-swappable tiles. Defined in this way, a 
subproblem that removes k goal constraints requires moving 
tiles 1 through n – k into their correct places, and a relaxed 
problem that removes k move constraints contains one 
empty square and k tiles that can be swapped with 
neighboring tiles. 

Generation of Puzzles All puzzles were generated 
randomly. The optimal A* search algorithm was used to 
ensure that each puzzle had the desired minimum solution 
length. 

Procedure 
All instructions and stimuli were presented on a computer, 
and participants responded using a mouse. In each 
condition, the participant was first given instructions on 
how to solve the type of puzzles (full, subproblem, or 
relaxed problem) in that condition. The participant then 
attempted to solve an initial 8-puzzle of the appropriate 
type, solvable in a minimum of three moves. An 
experimenter ensured that the participant understood the 
instructions and could solve the initial puzzle. In the 
subproblem condition, the initial puzzle required tiles 1-4 to 
be moved into place. In the relaxed problem condition, tiles 
5-8 were swappable. That is, the number of constraints 
removed, k, was four for the initial puzzle in both the 
subproblem and relaxed problem conditions. After solving 
the initial puzzle, the participant took part in a training 
phase, a test phase, and finally an intuition assessment 
phase. 

Training Phase The participant was told that more puzzles 
would now be given for practice, with a time limit of one 
minute and 30 seconds for each. The participant was told to 
solve each puzzle in as few moves as possible, and that 
there would be a penalty for every extra move made. These 
instructions were designed to discourage external search 
(the usual strategy for solving n-puzzles) and encourage 
internal search, which has been shown to enhance learning 
(O’Hara & Payne, 1998). 

The participant then attempted to solve a sequence of 12 
8-puzzles. In all conditions, the minimum solution lengths 
(a measure of difficulty) of the puzzles increased from 4 to 
10 (i.e., the puzzles in the experimental conditions were not 
subproblem or relaxed versions of those in the control 
condition). In the experimental conditions, k also decreased 
from four to zero across the puzzles. During the presentation 
of each puzzle, the minimum solution length and the 
number of moves the participant had made so far were 
shown above the puzzle. After the participant solved each 
puzzle or the time limit expired for that puzzle, a dialog box 
informed the participant which event had occurred, the 
number of extra moves the participant made (if the puzzle 
was solved), and in the subproblem condition, the tiles to 

1 2 3 

4 5 6 

7 8  

4 1 3 

 2 5 

7 8 6 

initial state goal state 
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slide into place for the next puzzle. The participant could 
then take a break and click on a button to start the next 
puzzle when ready. 

Test Phase After all 12 puzzles in the training phase had 
been presented, participants were told that there would now 
be a test, with the same instructions as for the practice 
puzzles. In the subproblem condition, participants were told 
to slide all tiles into place. Participants in all conditions then 
attempted to solve the same sequence of 12 full n-puzzles. 
The first six were 8-puzzles and the last six were 15-
puzzles, and all puzzles could be solved in 12 moves. After 
each puzzle had been solved or had timed out, the next 
puzzle was presented without any feedback or time to rest. 
During both the training and test phases, the computer 
recorded for each puzzle whether it was solved, the solution 
time, the moves the participant made, the initial latency (the 
amount of time the participant took to make the first move), 
and the inter-move latencies (the time to make each 
subsequent move). 

Intuition Assessment Phase After the test phase, 
participants made a series of 40 pairwise distance 
comparisons.  In each comparison, they were presented with 
two different puzzle states and had to click on the one that 
they believed was closer to the goal within a short time 
limit. No feedback was given. The short time limit was 
designed to elicit a quick, intuitive judgment and prevent 
participants from solving the puzzles mentally and then 
counting the number of moves used. Because experts in a 
domain often have an intuitive sense of how close they are 
to solving a problem, and heuristic functions estimate the 
distance of any given state to the goal, this distance 
comparisons task serves to assess participants’ intuition on 
the n-puzzle.  

The first 20 pairs to be compared were 8-puzzles, with 10 
seconds each, and the last 20 pairs were 15-puzzles, with 12 
seconds each. The true distances of the puzzles ranged from 
1 to 28, and the ratio of the shorter distance to the longer 
distance in each pair was between .2 and .91. For each 
comparison, which puzzle was chosen and the time taken to 
make that choice were recorded. 

Results and Discussion 
Dissociation of Performance on Solving Puzzles and 
Comparing Distances 
The mean percentage of full n-puzzles solved during the test 
phase in each condition is shown in Figure 2. The relaxed 
problem group solved a significantly lower percentage of 
puzzles during the test phase (M = 57.99, SD = 23.25) than 
the control group (M = 69.79, SD = 14.08), F(1, 69) = 5.18, 
p = .026, and also the subproblem group (M = 68.75, SD = 
15.20), F(1, 69) = 4.30, p = .042. The latter two groups did 
not differ reliably. 
 However, as shown in Figure 3, the relaxed problem 
group correctly solved the most problems on the distance 
comparisons task, which assesses intuition. The percentage  

 
 
Figure 2: Mean percentage of n-puzzles solved by 
participants in each training condition during the test phase. 
Error bars in all data figures represent 1 standard error of the 
mean. 
 

 
 
Figure 3: Mean percentage of comparisons solved correctly 
on the distance comparisons task in each condition. 
 
of comparisons correct was significantly higher for the 
relaxed problem group (M = 68.33, SD = 6.94) than for the 
control group (M = 63.44, SD = 10.47), F(1, 69) = 4.22, p = 
.044. Performance of the subproblem group on the 
comparisons task fell between that of the other two groups, 
but did not differ significantly from either. 

To further investigate the difference in performance on 
the distance comparisons task, we divided the pairwise 
distance comparisons into an “easy” set and a “hard” set 
based on the overall performance of the participants on each 
comparison. For each comparison problem, we calculated 
the proportion q of participants (over all three conditions) 
who solved that problem correctly. We then calculated the 
median value of q over all comparisons. A comparison that  
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Figure 4: Mean percentage of hard comparisons solved 
correctly on the distance comparisons task in each 
condition. 
 
had a q-value higher/lower than the median was assigned to 
the “easy”/“hard” set. All groups performed about the same 
on the easy comparisons, but as Figure 4 shows, the relaxed 
problem group performed the best on the hard comparisons. 
In particular, the relaxed problem group correctly solved a 
significantly higher percentage of the hard comparisons (M 
= 57.71, SD = 10.63) than the control group did (M = 49.79, 
SD = 13.47), F(1, 69) = 6.00, p = .017. Thus, the relaxed 
problem group performed very well on the intuition task, 
especially the harder problems, compared to the control 
group. 

How could participants in the relaxed problem group have 
apparently acquired such good intuition on the full n-puzzle, 
and yet perform relatively poorly in actually solving it? A 
possible explanation is that because planning (internal 
search) is harder and seemingly less necessary when solving 
the relaxed problems, participants in the relaxed problem 
group learned to plan less and rely more on their intuition 
during the training phase. Thus, even though their intuition 
became more developed (as evidenced by their performance 
on the distance comparisons task), their decreased use of 
planning caused them to perform poorly on solving the 
puzzles in the test phase. Participants in the control group, 
on the other hand, learned to rely more on planning and less 
on their intuition during the training phase, because they 
were trying to minimize the number of moves they made 
and it was easier for them to plan. Increased planning led 
them to perform better on the test puzzles, but their intuition 
was less developed. We will now present evidence to 
support each of these claims. 

The Relaxed Problem Training Condition 
Discourages Planning  
Planning is Harder on Relaxed Problems This is true for 
two reasons. First, internally visualizing the move of 

swapping two tiles in the relaxed problem imposes a greater 
working memory load, because the participant must now 
keep track of the new locations of both tiles, rather than just 
one tile in the sliding move. Manipulating an internal 
representation of the puzzle state to reflect a swapping move 
might take longer as well. Second, the introduction of 
additional legal moves in the relaxed problem also makes 
planning harder because participants have to consider more 
moves at each state (that is, the branching factor is higher). 
In order to plan, participants must also remember more 
information about which paths they have already mentally 
explored to some depth and have determined to be 
unpromising. 

The hypothesis that the swapping move consumes more 
working memory is supported by the finding that the 
average length of unbroken sequences of backtracking 
moves during the training phase was significantly lower in 
the relaxed problem group (M = 1.34, SD = .36) than in the 
control group (M = 1.88, SD = 1.11), F(1, 61) = 4.66, p = 
.035, and also the subproblem group (M = 2.04, SD = .82), 
F(1, 61) = 8.93, p = .004. In contrast, no reliable differences 
among conditions were observed in the test phase. 
Backtracking for a number of moves requires remembering 
all those previous moves, and participants solving relaxed 
problems may have backtracked for fewer moves because 
they could not remember as many past moves, since storing 
a single move requires more working memory capacity on 
average. 

Planning Seems Unnecessary on Relaxed Problems 
Because relaxed problems have a higher branching factor, 
the problem-space graphs for relaxed problems are more 
connected and so there are more ways to reach the goal 
state. Thus, it may seem unnecessary to plan one’s moves 
before executing them, since no matter how far away one 
wanders from the goal, there is always some way to get 
back onto the right track. In other words, local minima do 
not exist in the problem space, so a greedy (hill-climbing) 
search algorithm that always chooses the state with the 
shortest estimated distance to the goal to explore next 
cannot become trapped, and is thus sufficient. Accordingly, 
participants in the relaxed problem group probably learned 
to use a greedy search algorithm, which does not look ahead 
and thus requires little effort. Moreover, a greedy search 
algorithm relies heavily on the heuristic function, so its use 
would foster development of intuition for participants in this 
condition. 

One piece of evidence that participants in the relaxed 
problem group planned less than those in the other 
conditions is that they made extra moves more often during 
the training phase. The percentage of solved puzzles in the 
training phase that were solved with extra moves was 
significantly higher in the relaxed problem group (M = 
49.99, SD = 19.76) than in the control group (M = 20.92, SD 
= 13.67), F(1, 69) = 34.53, p < .001, and also the 
subproblem group (M = 25.97, SD = 17.43), F(1, 69) = 
23.58, p < .001. Furthermore, the relaxed problem group 
had significantly higher average solution times during the 
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training phase (M = 35.23s, SD = 9.07s) than did the control 
group (M = 27.68s, SD = 8.29s), F(1, 69) = 9.86, p = .002, 
and also the subproblem group (M = 24.64s, SD = 7.53s), 
F(1, 69) = 19.41, p < .001. Participants in the relaxed 
problem condition may have found planning harder and thus 
took longer on average to plan a single move (when they did 
plan); in addition, their longer, less optimal solutions took 
more time to execute. These differences indicate that the 
relaxed problem participants did not or could not plan as far 
ahead as did the participants in the other conditions, and 
tended to meander around the problem space for a while 
before reaching the goal. 

The average initial latency on a puzzle, or the average 
amount of time a participant spent thinking before making 
the first move on a puzzle, is a clear indicator of how much 
a participant plans voluntarily. (While the average inter-
move latency is also an indicator of planning, higher inter-
move latencies could also indicate that the participant was 
stuck in the middle of solving a puzzle and was forced to 
think carefully about what to do next.) The average initial 
latency was not significantly lower for the relaxed problem 
group during the training phase, as might be expected if 
these participants were planning fewer moves ahead; 
however, the lack of a difference could reflect the offsetting 
effect of planning each move being harder for the relaxed 
problems and thus taking longer. During the test phase, 
when all participants were solving the full n-puzzles, the 
average initial latency was indeed significantly lower for the 
relaxed problem group (M = 10.37s, SD = 4.46s) than for 
the control group (M = 14.75s, SD = 6.02s), F(1, 69) = 7.33, 
p = .009, indicating that the relaxed problem group 
continued to plan fewer moves ahead during the test phase. 

Increased Planning is Associated with Better 
Puzzle-Solving Performance 
Not surprisingly, increased planning is associated with 
better puzzle-solving performance. The average initial 
latency was not correlated with the number of puzzles 
solved during the training or test phase, perhaps because 
some participants tended to get stuck at the very beginning 
and could not solve many puzzles, or were just too slow in 
general to solve many puzzles. However, average initial 
latency was negatively correlated with performance 
measures such as the average number of extra moves made 
on solved puzzles [r(70) = –.37, p = .002 for the training 
phase and r(70) = –.46, p < .001 for the test phase], and the 
percentage of backtracking moves [r(70) = –.26, p = .026 
for the training phase and r(70) = –.31, p = .007 for the test 
phase]; and positively correlated with the percentage of 
moves that decreased the true distance of the problem state 
to the goal [r(70) = .33, p = .005 for the training phase and 
r(70) = .47, p < .001 for the test phase]. These results 
indicate that the more the participant planned before making 
the first move, the better the moves the participant made 
later on. 

Recall that on relaxed problems, which do not have many 
local minima, a greedy search algorithm is sufficient. 

However, greedy search may get stuck in local minima on 
the full n-puzzle, for which the problem-space graph is not 
as well-connected. Accordingly, if participants in the 
relaxed problem group did indeed use a greedy search 
algorithm, they would perform poorly during the test phase. 
The control group, on the other hand, may have learned to 
use a more effective search algorithm involving greater 
look-ahead. Such a search algorithm could achieve an 
acceptable level of performance with a relatively poor 
heuristic function. Thus, participants in the control 
condition would not acquire intuition during the training 
phase to the degree that those in the relaxed problem group 
did. 

Planning and Intuition are Dissociated  
For every participant, we calculated a composite score on 
the intuition task by summing the values of 1 – q for all 
comparison problems that the participant solved correctly. 
Recall that for each comparison, q is the proportion of all 
participants who solved that comparison correctly.  Thus, 1 
– q is the estimated probability of choosing the incorrect 
response on a given comparison, an empirical measure of its 
difficulty.  Therefore, the composite score on the intuition 
task gives greater weight to more difficult problems. 

We calculated correlations between the composite 
intuition score and measures of planning for each training 
condition separately to test whether planning and intuition 
are dissociated within each group. The following 
correlations appeared for measures of planning during the 
training phase: The composite intuition score for the control 
group was negatively correlated with the average initial 
latency, r(22) = –.41, p = .047, as well as the average inter-
move latency, r(22) = –.47, p = .021. For the subproblem 
group, the composite intuition score had a negative 
correlation with the average inter-move latency, r(22) = –
.50, p = .013, and a near-significant positive correlation with 
the percentage of puzzles that were solved with extra 
moves, r(22) = .40, p = .055. Finally, for the relaxed 
problem group, there was a weak negative correlation 
between the composite intuition score and the percentage of 
moves that decreased the true distance of the problem state 
to the goal, r(22) = –.35, p = .098. 

During the test phase, the composite intuition score for 
the control group had a near-significant negative correlation 
with the average initial latency, r(22) = –.39, p = .061, as 
well as a slight positive correlation with the average number 
of extra moves, r(22) = .36, p = .082. 

These findings indicate that participants in our study 
mainly took one of two approaches to solving the puzzles 
and comparison problems. One was a more analytic or 
algorithmic approach based on planning, and the other was a 
more holistic or heuristic approach based on intuition. 
While the first approach was more effective for solving the 
full n-puzzles, the second approach was more effective on 
the task requiring speeded comparison of distances to the 
goal state. The control training condition encouraged the 
more analytic problem-solving style, and participants in this 
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condition developed a more effective search algorithm. In 
contrast, the relaxed problem training condition encouraged 
the more intuitive problem-solving style, and participants in 
this condition developed a more accurate heuristic function. 

Conclusions 
The present study demonstrates a dissociation between two 
core mechanisms on which expertise in problem solving 
depends: internal search (planning) and use of a heuristic 
function to evaluate locally available moves (intuition). 
Training on problems with fewer possible moves at each 
choice point (full n-puzzles) encouraged a more analytic 
problem-solving style, whereas training on relaxed versions 
of the same problem type that allow more possible moves 
encouraged a more intuitive problem-solving style. In the 
present study, the analytic style led to better performance on 
actually solving the full n-puzzles, but the more intuitive 
style led to better performance on a task requiring fast 
evaluations of how close a problem is to being solved. 

Our results should not be construed as evidence that the 
development of analytical thinking and intuition are 
mutually exclusive. In fact, true experts in solving problems 
in complex domains such as chess (Chase & Simon, 1973; 
Gobet & Charness, 2006) appear to rely heavily on both 
intuition and planning, with the relative importance of 
intuition increasing when performance is time-constrained 
(Gobet & Simon, 1996). The time frame of the present study 
was far shorter than the years required to develop true 
expertise (Ericcson, 1996). Even by the end of the 
experiment, our participants remained novices on the n-
puzzle. An expert solver of the n-puzzle would no doubt 
plan ahead more as well as make better intuitive judgments 
relative to a novice. The ability to quickly evaluate problem 
states should allow the problem solver to plan more moves 
ahead, just as heuristic functions reduce the branching factor 
and thus allow the search algorithm to search to a greater 
depth within the same amount of time.  In fact, Charness 
(1981) found that skilled chess players search more deeply 
than novice players do, indicating that good intuition aids 
planning in problem solving. 

What our findings do indicate is that these two basic 
approaches to problem solving may not be acquired in lock-
step fashion, and to some extent constitute competing 
problem-solving strategies. Moreover, the two different 
approaches may be maximally effective for different types 
of problems. The systematic, analytic approach is slower 
and places a greater burden on working memory, but is 
more likely to lead to optimal solutions, and thus may be 
preferable for problems that can be solved slowly with the 
assistance of external aids to memory. In contrast, the 
holistic, intuitive approach is faster and less dependent on 
working memory, and hence will often be preferable when 
the problem must be solved under severe time constraints. 

One example of this dichotomy is battlefield versus 
hospital triage. In the hospital, medical personnel may take 
a more analytic approach, carefully considering the 
consequences of each possible action. On the battlefield, by 

contrast, the need for decisions may be so urgent that the 
only possible approach is to rely on intuition or “gut 
feelings.” An important direction for future research will be 
to determine whether the present findings using the toy 
example of the n-puzzle in fact generalize to real-world 
problem solving (cf. Gobet & Philippe, 2008). 
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