
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
EXPRESSIVE PROCESSING Interpretation and Creation

Permalink
https://escholarship.org/uc/item/5453x2sb

ISBN
978-1-138-84430-8

Author
Wardrip-Fruin, Noah

Publication Date
2018

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5453x2sb
https://escholarship.org
http://www.cdlib.org/

46

EXPRESSIVE
PROCESSING

Interpretation and Creation
Noah Wardrip-Fruin

Background: Software Studies

There are many things that a computer is not. It is neither an interactive movie projector,
nor an expensive typewriter, nor a giant encyclopedia. Instead, it is a machine for running
software, which can enact processes, access data, communicate across networks, and, as a result,
act like a movie projector, typewriter, encyclopedia, and many other things.

Outside engineering and mathematics, most studies of software have considered software
in terms of what it acts like and how that behavior is experienced outside the system. But
some authors have consistently written about software as software. This approach includes
considering software’s internal operations (as my work does), examining its constituent ele -
ments (e.g., the different levels, modules, and even lines of code at work), studying its context
and material traces of production (e.g., how the workings of money, labor, technology, and
the market can be traced through whitepapers, specification documents, version control system
archives, beta tests, patches, and so on), observing the transformations of work and its results
(from celebrated cases such as architecture to the everyday ordering and movement of auto
parts), and, as the foregoing implies, a broadening of the types of software considered worthy
of study (not just media software, but also design software, logistics software, databases, office
tools, and so on).

These investigations form a part of the larger field of “software studies”—a field that had
its start long before scholars began using the term. Often this field is positioned as part of
digital humanities, and we can see why this might be the case. First, much of software studies
involves the interpretation and critique of digital objects and culture that are common in
digital humanities. Other software studies work, such as Warren Sack’s forthcoming The
Software Arts, involves making novel software inspired by (or enacting) a critical interpretation
of software’s specifics. This method fits relatively comfortably with the parts of digital
humanities that engage making through scholarly communication. Third, there is another
set of software studies work—such as the “cultural analytics” collaborations of Lev Manovich,
Jeremy Douglass, and William Huber—that continues the quantitative humanities computing
tradition (now sometimes positioned as the “big data” of the humanities) (Manovich,
Douglass, & Huber 2011).

453

But if I examine my own route into software studies, the picture looks quite different.
Some books that influenced me—such as Paul Edwards’s The Closed World (1997), a history
that fits within humanistic study of software objects and institutions—could be positioned
within digital humanities. But other books that influenced me cannot. Consider Lucy
Suchman’s Plans and Situated Actions (1987). This is a work of social science, applying ethno -
methodological concepts to understanding software and how we interact with it. Not only
does this move into the social sciences take us outside digital humanities, but Suchman’s book
is also explicitly positioned as a piece of thinking about how software is designed, and should
be designed. Such research is software studies as part of a practice of making software (rather
than making software as part of a practice of software studies). Or consider Phil Agre’s
Computation and Human Experience (1997). It uses humanistic approaches to expose conceptual
problems in approaches to artificial intelligence (AI) and identify alternative conceptualizations.
Then it describes actual architectures—that is, computer science research—that result from
this inquiry. In other words, in Agre’s book, software studies is a method of computer science.
Finally, teaching software studies also leads me to believe that software studies is a route to
thinking critically about software models—their histories, commitments, and potentials.
Software studies is a route to “procedural literacy” (Mateas 2005).

Procedural literacy is one of the core aims of what I suspect is the first software studies
book: Ted Nelson’s Computer Lib / Dream Machines (1974). Published the year before the
arrival of the first kit for assembling a personal computer, Nelson’s book contains much that
could be seen as purely informational, including introductions to different types of computers
and programming languages. But it also contains much that is clearly the critical interpretation
of software, connecting the technical level to the cultural one—ranging from discussing the
“drill and practice” assumptions built into the Tutor programming language to exposing
the surprisingly simple workings of Eliza and other systems used to market artificial intelli -
gence ideas (Nelson 1974: DM27, DM14). Nelson’s book introduced critical thinking about
software as a basic part of understanding computing.

Given all this, my view of software studies includes all investigations that use humanities
and/or social science methods and encompass the specific operations of particular software,
for purposes ranging from understanding digital culture and software society to the
development of procedural literacy and inspiring, guiding, and evaluating how novel software
is made.

The phrase “software studies” was coined by Manovich in his widely read book The
Language of New Media (2001). Manovich characterized software studies as a “turn to computer
science,” perhaps analogous to the “linguistic turn” of an earlier era. In his book, software
studies operates analytically through programmability (rather than, say, signification). In
2003, Matthew Kirschenbaum offered his own expansion of Manovich’s term, one influenced
by Kirschenbaum’s background in bibliography (the study of books as physical objects) and
textual criticism (the reconstruction and representation of texts from multiple versions and
witnesses). Kirschenbaum argued that in the field of software studies—as opposed to the rather
loose, early “new media” field—“the deployment of critical terms like ‘virtuality’ must be
balanced by a commitment to meticulous documentary research to recover and stabilize
the material traces of new media” (2003: 150). Kirschenbaum’s Mechanisms made good on
this assertion in 2008, which also saw the publication of the field’s first edited volume: Software
Studies: A Lexicon (Fuller 2008). Soon after, the MIT Press established the first book series
for software studies. All this helped create the conditions of possibility for my book, Expressive
Processing (2009), which I see as an example of software studies.

N O A H W A R D R I P - F R U I N

454

Expressive Processing

I am drawn to software studies, in part because it brings together currents of work in computer
science, humanities, social sciences, and the arts. In computer science, there is a long tradition
of those who see their work on software in terms of culture—from Don Knuth’s “literate
programming” (1984) to Phil Agre’s “critical technical practices” (1997). Similarly, in other
fields there are those who have felt a need to engage the specifics of software in the course
of their research and creation, in areas ranging from computer games to software art to multi -
national firm organization. My Expressive Processing focuses on software studies for compu -
tational media, especially games and fictions. I use the term “expressive processing” to point
toward two important critical issues.

First, “expressive processing” encompasses the fact that the internal processes of com -
putational media are designed artifacts; in this sense, they are like buildings or transportation
systems. As with other designed mechanisms, processes can be seen in terms of their efficiency,
their aesthetics, their points of failure, or their (lack of) suitability for particular purposes.
Their design can be typical or unusual for their era and context. The parts and their arrange -
ment may express kinship with, and points of divergence from, design movements and schools
of thought. They can be progressively redesigned, repurposed, or used as foundations for
new systems—by their original designers or others—all while retaining traces and characteristics
from prior uses.

Second, unlike many other designed mechanisms, the processes of computational media
operate on, and in terms of, elements and structures meaningful to humans. For example, a
natural language processing system (for understanding or generating human language) expresses
a miniature philosophy of language in its universe of interpretation or expression. When such
a system is incorporated into a work of computational media such as an interactive fiction,
its structures and operations are invoked whenever the work is experienced. This invocation
selects, as it were, a particular constellation from among the system’s universe of possibilities.
In a natural language generation system, this invocation might be a particular sentence shown
to an audience in the system output. From looking at the output sentence alone, it is not
pos sible to see where the individual elements (e.g., words, phrases, sentence templates, or
statistical language structures) once resided in the larger system. It is not possible to see how
the movements of the model universe resulted in this constellation becoming possible—and
becoming more apparent than other possible ones.

To put it another way, in the world of computational media, and perhaps especially for
computational games and fictions, we have as much to learn by examining the model that
drives the planetarium as by looking at a particular image of stars (or even the animation of
their movement). This is because the model universes of these works are built of rules for
character behavior, structures for virtual worlds, techniques for assembling human language,
and so on. They express the meanings of their fictional worlds through the design of every
structure, the arc of every internal movement, and the elegance or difficulty with which the
elements interact with one another.

Trying to interpret a work of computational media by looking only at the output is like
interpreting a model solar system by looking only at the planets. If the accuracy of Mars’s
surface texture is in question, then looking only at planets is fine. But it will not suffice if
we want to know if the model embodies and carries out a Copernican theory—or, instead,
places Earth at the center of its simulated solar system. Both types of theories could produce
models that currently place the planets in appropriate locations, but examining the models’
wires and gears will reveal critical differences, probably the most telling differences.

E X P R E S S I V E P R O C E S S I N G

455

That is, the processes of computational media can themselves be examined for what is
expressed through their selection, arrangement, and operation. As I have just discussed,
a system operating on language (or other elements meaningful to humans) can be interpreted
for what its design expresses. However, expressive processing also includes considering how
the use of a particular process may express connection with a particular school of cognitive
science or software engineering; or how the arrangement of processes in a system may express
a very different set of priorities—or capabilities—from authorial descriptions of the system;
or how understanding the operations of several systems may reveal previously unrecognized
kinships (or disparities) between them. Recognizing such things can open up important new
interpretations for a computational media system, with aesthetic, theoretical, and political
consequences.

Interpreting: The Goldwater Machine

In Expressive Processing, one of the systems I interpret is the earliest explicitly political project
in computational media, best known by its nickname: “The Goldwater Machine.” I analyze
it at the time of a 1965 paper by Robert Abelson and J. Douglass Carroll (Abelson & Carroll
1965), though it is a project that Abelson and his students had pursued since the late 1950s
and would continue to pursue into the 1970s. At the point of their 1965 paper, the “ideology
machine” consisted of an approach to belief structures and a number of operations that could
be performed on such structures. Sample belief structures from the paper range from common
Cold War views (“Russia controls Cuba’s subversion of Latin America”) to absurd statements
(“Barry Goldwater believes in socialism”) and also include simple facts (“Stevenson ran for
President”).

As these examples foreground, the Goldwater Machine is a system built in the midst of
the Cold War. The Cuban Missile Crisis, President Kennedy’s assassination, and the Gulf
of Tonkin Resolution were all recent events. The world seemed polarized to many, and,
within the United States, names such as Adlai Stevenson and Barry Goldwater did not simply
indicate prominent politicians with occasionally differing philosophies. As the Republican
nominee for President of the United States in 1964, Goldwater was an emblematic believer
of the idea that the world’s polarization was an inevitable result of a struggle between good
and evil—a position that would be echoed by his ideological descendants (e.g., Ronald
Reagan’s “evil empire” and George W. Bush’s “axis of evil”). On the other hand, Stevenson—
who was the Democratic candidate for president in 1952—was emblematic of those with a
more nuanced view of world affairs and a belief in the potential of international cooperation.
He was publicly derided for this view and belief by those with more extreme views.

Interaction with the Goldwater Machine consisted of offering the assertion that a particular
source (e.g., an individual) has made the claim that a concept (e.g., a particular nation) has the
stated relation to a predicate (generally a verb and an object). For example, “Stevenson claims
Cuba threatens Latin America.” The statement was evaluated, and a response was generated.
For example, if a “good” actor was asserted to be engaged in a bad action, then the system
would attempt to deny the alleged fact or that the assertion was made. On the other hand,
if a “bad” actor was asserted to be engaged in a good action, then the system would attempt
to rationalize the alleged fact or the making of the assertion.

The Goldwater Machine system was presented as a structure and set of processes for
modeling human ideology. Abelson and collaborators suggested it could then be populated
with data (belief structures of the sorts mentioned above) to represent a particular ideology.
If they had succeeded in building such a system, then the machine’s processes would be

N O A H W A R D R I P - F R U I N

456

ideologically neutral; only the data would carry a particular position. In the absence of an
expressive processing analysis of the system, there would be no reason to question this claimed
underlying neutrality.

However, if one undertakes such an analysis, looking at the specifics of the system’s
operations, then they can reveal that the Goldwater Machine’s ideology is also encoded in
its processes. This encoding begins at the center of its operations, with the system motivated
to dismiss any statement by a negatively viewed source, even a statement with which the
system data agrees. It is also found in the design of the processes for denial and rationaliza-
tion, which are predicated on a world divided into “good actors” and “bad actors.” Further,
in addition to being designed to operate in terms of good and bad, the primary processes
for interaction are dedicated to finding routes to deny even the smallest positive action by
the bad actors and seeking means to rationalize away even minimally negative actions by the
good actors on the basis of paranoid fantasies, apologetic reinterpretations, and misdirections.

This is not a general model of ideology. It is a parody of one particular type of ideology,
one that depends on fear to gain power. One can imagine Stevenson being critiqued exactly
because his ideology operated by processes rather different from those encoded in the
Goldwater Machine. As a result of this difference, it would be impossible to create a “Steven -
son Machine” simply by providing a different set of concept-predicate pairs. Yet, without
an examination of its processes, we would have had no reason to question its creators’ claims
to the opposite.

We live in a world in which software processes play increasingly consequential roles in
our lives. We are generally asked to take at face value the claims of software creators about
what their systems do and to treat those systems as ideologically neutral unless explicitly
positioned otherwise. We cannot afford to do this. But to enact an alternative, we must have
practice critically inter preting computational processes and must also develop knowledge of
different software approaches in a context that makes them legible (rather than deliberately
murky or obfuscated, as with high stakes areas such as voting machine systems and terrorist
watchlist generators). I believe works of computational media provide some of the most legible
and interesting examples for developing this ability, this kind of procedural literacy, as well
as for understanding how such media influence our culture—and my approach to these
examples is one aspect of what I mean by “expressive processing.” The next section of this
chapter explores another aspect.

Guiding: Prom Week

Expressive processing is not just an approach that helps us interpret computational media that
already exist. It can help us guide the creation of new works. And we need approaches that
can help us create, because applying existing criteria for guidance and evaluation (e.g., a
technical focus on efficiency or maintainability, or an arts critique honed for fixed media) is
not enough as we explore the new computational media experiences that matter.

Just as we are in a period in which software increasingly shapes our lives in a broad sense,
we are also in a period of computational media growing in its scope and connection with
our lives—from videogames to social media to smartphone apps. Yet we have a paucity of
technical and design approaches for making computational media that engages with the things
that matter most, from social relationships to ideology to storytelling. We need means to
guide ourselves as we seek new uses for existing tools and, perhaps even more, as we seek
to invent means to broaden what computational media can meaningfully address.

E X P R E S S I V E P R O C E S S I N G

457

The three “effects” I outline in Expressive Processing might guide computational media
creators. The first, the “Eliza effect,” was already widely discussed before the book. It is what
happens when a piece of software (like Eliza/Doctor) tries to fool audiences into thinking it
is significantly more complex than it is. The results are interactions that can succeed based
on initial expectation, but that suffer eventual breakdown (determined by the underlying
system’s shape) unless interaction is severely restricted. The second, which I call the “Tale-
Spin effect,” is what happens when the system’s complex internal processes are never apparent
to the audience. The result is that the systems contribute little to audience experience, usually
only revealing their interest in moments of breakdown. The third, which I call the “SimCity
effect,” is what happens when software is designed to transition audiences (often through
experimentation and feedback) from their initial expectations to an understanding of the
underlying system’s shape. This is an effective route for making novel processes the center
of audience experiences, opening new possibilities for the issues and situations that
computational media can address interactively.

I have attempted to use expressive processing as an approach to guide the creation of
particular computational media works, and in this section I will briefly describe the attempt
to do so with the experimental game Prom Week (2012), a social simulation set in the time
leading up to an end-of-year dance at a U.S. high school. Each character in Prom Week has
their own personal characteristics and desires, but these are defined against an elaborate set
of rules and beliefs that determine “normal” behavior in the game’s fictional high school.
Players interact with Prom Week by selecting pairs among the characters, examining what
actions they most wish to take with one another, and choosing which actions to attempt (see
Figure 46.1). Each action is an attempt to change the social state in some way—one desired
by the initiating character—which may succeed or fail. In either case, each attempt results
in a short scene, which will play out differently depending on the specifics of the world history
and character relationships, as well as a number of effects. These effects include changing the
characters’ relationships with each other, giving one or both characters temporary statuses
that may change how future exchanges unfold (e.g., “embarrassed” or “angry at” a particular
character), recording events in the ongoing history of the world, and triggering events based
on patterns in the world state and character relationships. As a result, players can explore a
wide range of possible social worlds, make important events happen in the lives of the
characters, and fulfill (or ignore, or subvert) some of the character-specific goals presented at
the start of each level—the last of which determines the ending of that character’s story.

My interest in helping create Prom Week goes back to a question I pose on page 317 of
Expressive Processing: Given how The Sims succeeds through the SimCity effect, “[c]an we
find similar success with characters more complex than eight mood meters, and fictions more
well formed than The Sims’ implied progression through possessions and careers?” I was excited
when, shortly after my arrival at UC Santa Cruz, there was a critical mass of student and
faculty interest in pursuing a game of this sort. Josh McCoy was spearheading work on a new
AI system that would allow characters to have motivations much more complex than Sims
have—and also for characters to be caught up in systems of social expectation that, at that
point, games had largely ignored (McCoy & Mateas 2009). Over the course of the project,
the game evolved considerably, as we were guided by an expressive processing approach (for
the final shape, see McCoy et al. 2013, 2014).

In particular, while we developed Prom Week and its underlying AI system, we regularly
had meetings during which we stepped back and tried to ask two questions. First, is the design
of the system expressing the ideas we have for Prom Week? Second, what are we building

N O A H W A R D R I P - F R U I N

458

E X P R E S S I V E P R O C E S S I N G

459

into the system to communicate its design to players, so they can see their opportunities for
creativity and play and get appropriate feedback? Obviously, these two questions are deeply
connected, especially for a system, like a game, that only comes to mean through play. For
example, much of the Prom Week system is designed to make the world function like a fictional
high school when everything is “happening normally.” The shy people do not get up the
nerve to tell people how they really feel. Mean, popular people hold sway in the hallways.
No one breaks out of their stereotypes.

In nonplayable media, we see the world working this way and then someone (the main
character, usually) decides not to play along. We then see the world change. In Prom Week,
the player not only gets to see how the world operates through depiction, but also experiments
with it and gains a sense of its rules, and then decides which characters to nudge (or even
use “social influence points” to nudge harder) and push out of their comfort zones—to make
things happen that would not otherwise. This is tricky because a lot of what the system
does, a lot of what its rules seem to express, is only part of what we want a play session
to look like. We use the system’s rules and initial scenario to not just express the way
the world works but also show the way the world does not have to be and help the player learn
how to make a different world. A player who understands the game can make radical shifts in
the social landscape—one beta test player joyfully reported inverting the high school’s entire
popularity structure. It is that experience of changing the world, and of coming to understand
some of the many ways the world could change, that is (hopefully) the core experience of
Prom Week.

Figure 46.1 In this image from Prom Week, a player has selected Oswald and is examining
other characters from his perspective. Currently, the game shows what social
actions Oswald most wants to initiate toward Doug, as well as high-level
summaries of how Oswald and Doug feel about each other in terms of
friendship, romance, and coolness.

While through approaches such as playtesting (which we employed) we can gather some
insight into whether an experience like Prom Week is succeeding, players only see the surface
of a game. Playtesting might tell us that the underlying ideas we intend to express through
system design are not coming through, but it will not help us press, critique, or even under -
stand those underlying ideas. For instance, I think Prom Week is a better game for the critical
discussions we had about issues such as how “popularity” should function in a game, and
how popularity should be expressed to players. Perhaps counterintuitively, some of our most
important decisions were about what we chose not to encode in our processes and how this
absence was communicated to players. While Prom Week’s simulated school encodes many
stereotypes and biases, it does not include, for example, racism and heteronormativity. The
second of these proved particularly difficult for some players to understand, even though the
first nontutorial level is designed to encourage players to discover it. (This level focuses on
Oswald, a character who wants a date for the prom. His level is populated by a number of
female characters with whom he has little connection, as well as by Nicholas, a “frenemy”
with whom there is a lot of potential. But, despite the nudging of the level introduction, this
potential proved difficult for some players to discover, or to accept.) In short, we learned
that the power of initial audience expectation—which is key to both the Eliza and SimCity
effects—must not be underestimated. Computational media that means to challenge, invert,
or even leave out biases of the audience faces a particular challenge when pursuing the SimCity
effect.

More broadly, I think an expressive processing approach could help many computational
media creators give their processes the attention they deserve. We need to ask questions
beyond, “Does this work?” and “Is this fun?” We need to ask questions such as, “If this part
of the system were taken as an idea, then is it what you would want your audience to
understand?” and “If so, then how does the system help them understand the idea through
interaction?”

Further Reading

Wardrip-Fruin, N. (2009) Expressive Processing: Digital Fictions, Computer Games, and Software Studies, Cambridge,
MA: MIT Press.

Wardrip-Fruin, N. (2011) “Digital Media Archaeology: Interpreting Computational Processes,” in E. Huhtamo and
J. Parikka (eds.) Media Archaeology: Approaches, Applications, and Implications, pp. 302–22.

Wardrip-Fruin, N. (2015) “We Can and Must Understand Computers NOW,” in D. R. Dechow and D. C. Struppa
(eds.) Intertwingled: The Work and Influence of Ted Nelson, New York, NY: Springer International Publishing, pp.
105–12.

References

Abelson, R. P. and J. D. Carroll (1965) “Computer Simulation of Individual Belief Systems,” The American Behavioral
Scientist (pre-1986) 8(9), 0–24.

Agre, P. (1997) Computation and Human Experience, Cambridge, UK: Cambridge University Press.
Edwards, P. N. (1997) The Closed World: Computers and the Politics of Discourse in Cold War America, Cambridge,

MA: MIT Press.
Fuller, M. (2008) Software Studies: A Lexicon, Cambridge, MA: MIT Press.
Kirschenbaum, M. G. (2003) “Virtuality and VRML: Software Studies after Manovich,” in M. Bousquet and

K. Wills (eds.) The Politics of Information, Alt-X Press, pp. 149–53.
Kirschenbaum, M. G. (2008) Mechanisms: New Media and the Forensic Imagination, Cambridge, MA: MIT Press.
Knuth, D. E. (1984) “Literate Programming,” The Computer Journal 27(2), 97–111.
Manovich, L. (2001) The Language of New Media, Cambridge, MA: MIT Press.
Manovich, L., J. Douglass, and W. Huber (2011) “Understanding Scanlation: How to Read One Million Fan-

translated Manga Pages,” Image & Narrative 12(1), 206–28.

N O A H W A R D R I P - F R U I N

460

Mateas, M. (2005) “Procedural Literacy: Educating the New Media Practitioner,” On the Horizon 13(2), 101–11.
McCoy, J. and M. Mateas (2009) “The Computation of Self in Everyday Life: A Dramaturgical Approach for Socially

Competent Agents,” in Papers from the AAAI Spring Symposium: Intelligent Narrative Technologies II, pp. 75–82.
McCoy, J., M. Treanor, B. Samuel, A. A. Reed, M. Mateas, and N. Wardrip-Fruin (2012) “Prom Week,” Center

for Games and Playable Media, UC Santa Cruz, retrieved from promweek.soe.ucsc.edu.
McCoy, J., M. Treanor, B. Samuel, A. A. Reed, M. Mateas, and N. Wardrip-Fruin (2013) “Prom Week: Designing

Past the Game/Story Dilemma,” in Proceedings of the Foundations of Digital Games, pp. 94–101, retrieved from
games.soe.ucsc.edu/prom-week-designing-past-gamestory-dilemma.

McCoy, J., M. Treanor, B. Samuel, A. A. Reed, M. Mateas, and N. Wardrip-Fruin (2014) “Social Story Worlds
with Comme il Faut,” Computational Intelligence and AI in Games, IEEE Transactions 6(2), 97–112.

Nelson, T. H. (1974) Computer Lib / Dream Machines, independently published.
Suchman, L. A. (1987) Plans and Situated Actions: The Problem of Human-Machine Communication, Cambridge

University Press.
Wardrip-Fruin, N. (2009) Expressive Processing: Digital Fictions, Computer Games, and Software Studies, Cambridge,

MA: MIT Press.

E X P R E S S I V E P R O C E S S I N G

461

