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Abstract

Background—A “Table 2 Fallacy,” as coined by Westreich and Greenland, reports multiple 

adjusted effect estimates from a single model. This practice, which remains common in published 

literature, can be problematic when different types of effect estimates are presented together in a 

single table. The purpose of this paper is to quantitatively illustrate this potential for 

misinterpretation with an example estimating the effects of preeclampsia on preterm birth (PTB).

Methods—We analysed a retrospective population-based cohort of 2,963,888 singleton births in 

California between 2007–2012. We performed a modified Poisson regression to calculate the total 

effect of preeclampsia on the risk of PTB, adjusting for previous PTB, pregnancy alcohol abuse, 

maternal education, and maternal socio-demographic factors (Model 1). In subsequent models we 

report the total effects of previous preterm birth, alcohol abuse, and education on the risk of PTB, 

comparing and contrasting the controlled direct effects, total effects, and confounded effect 

estimates resulting from Model 1.

Results—The effect estimate for previous PTB (a controlled direct effect in Model 1) increased 

10% when estimated as a total effect. The risk ratio for alcohol abuse, biased due to an 
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uncontrolled confounder in Model 1, was reduced by 23% when adjusted for drug abuse. The risk 

ratio for maternal education, solely a predictor of the outcome, was essentially unchanged.

Conclusions—Reporting multiple effect estimates from a single model may lead to 

misinterpretation and lack of reproducibility. This example highlights the need for careful 

consideration of the types of effects estimated in statistical models.
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perinatal epidemiology; preterm birth; measures of effect; Table 2 Fallacy

Introduction

In an effort to estimate the unbiased effects of a selected exposure (here referred to as the 

primary exposure) on an outcome of interest, researchers frequently construct multivariable 

statistical models. Typically, the covariates included in the model are hypothesized 

determinants of the primary exposure and outcome, and are selected to reduce confounding. 

Less often, covariates that only predict the outcome are included. At times, researchers are 

also interested in the effect of these covariates (here referred to as secondary exposures) as 

additional causal determinants of the outcome. When this occurs, they may report effect 

estimates for all covariates, derived from a single multivariable model, in one table. 

Typically, such results are displayed in Table 2 following the study population description in 

Table 1. However, when researchers report the effect estimates for both the primary exposure 

and secondary exposures estimated from the same statistical model, the results can be 

misleading and result in incorrect interpretation.

The practice of reporting multiple adjusted effect estimates from a single model was coined 

the “Table 2 Fallacy” by Westreich and Greenland in 2013.1 This commentary, appearing in 

the American Journal of Epidemiology, used directed acyclic graphs (DAGs) and 

hypothetical examples to convey the typical fallacy in the interpretation of the primary and 

secondary adjusted effect estimates derived from one model. Understandably, researchers 

may not be familiar with causal inference language and DAG terminology, and thus the 

important points of caution when distinguishing between the types of effect estimates 

derived from a single model may not have been fully appreciated. Therefore, the purpose of 

this paper is to complement select points from the previous work by quantitatively 

illustrating this potential for misinterpretation with an example estimating the effect of 

preeclampsia on preterm birth. To assist readers with terminology and concepts that will be 

presented throughout the text, we provide a brief overview of causal modelling using DAGs 

(see supplemental material). Many thorough texts on the use of DAGs are also available.2–4 

Additionally, a brief introduction into direct and indirect effects, critical in understanding the 

Table 2 Fallacy, precedes the motivating example.

Total, direct and mediated effects

Per the hypothesized causal mechanism in Figure 1a, X affects Y directly and indirectly 

through M. The relationship between X and Y is confounded by Z.
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If the effect of exposure X on a binary outcome Y, controlling for confounding by Z, as 

depicted in DAG in Figure 1a, were estimated using a log linear model in equation 1:

log(P(Y = 1| X, Z)) = β0 + β1X + β2Z (Eq. 1)

the estimated coefficient for X (β1̂) would be interpreted as the conditional total effect of X 

on the log risk of Y at any given level Z.

The total effect of X on Y can be decomposed into the contributing causal components, i.e., 

direct effects, indirect effects, or both. Direct effects are the unmediated effects of the 

exposure on the outcome, or in Figure 1a, the causal effect of X on Y that is not mediated 

through M.5,6 More specifically, when the mediator is held fixed at a given value in an 

attempt to estimate the direct effect, the resulting effects are termed the controlled direct 
effects.7 Indirect effects, or mediated effects, are the part of the exposure effect mediated by 

other variables. In Figure 1a, X has an indirect effect on Y through the pathway mediated by 

M (the indirect path). Because M may modify the magnitude of the direct effect, the total 

effects cannot necessarily be decomposed into non-overlapping indirect and direct effects.5,7

Assuming no uncontrolled confounding of the mediator-outcome relationship, one is 

attempting to estimate the controlled direct effect of the exposure by conditioning on the 

mediator.

log(P(Y = 1| X, M, Z)) = β0 + β1X + β2M + β3Z (Eq. 2)

In equation 2, the estimated coefficient for X (β̂1) would be interpreted as the conditional 

controlled direct effect of X on Y, or the effect of X on the log risk of Y when M is held 

fixed at a given level rendering it insensitive to the effects of X. The magnitude of the 

controlled direct effect may differ at each level of M, resulting in multiple controlled direct 

effect estimates dependent on the possible values of M.5 Accordingly, it is not a 

recommended practice to quantify the controlled direct effects by conditioning on a 

mediator.8 Further, if there are unmeasured common causes of the mediator and outcome, 

conditioning on the mediator will introduce collider stratification bias.7 For example, in 

Figure 1B, adjusting for M to estimate the effect of X on Y would induce a collider 

stratification bias through X->M<-R->Y. Although beyond the scope of this paper, 

methodologic alternatives such as marginal structural models or g-computation to properly 

estimate direct and indirect effects are available.4,8–10

Table 2 Fallacy

Unless otherwise stated, it is assumed that researchers are estimating and presenting the total 

effect of the primary exposure of interest. In a table with secondary exposures of interest 

(some that were modelled as confounders of the primary exposure, others with effects only 

on the outcome) derived from the same statistical model as the primary exposure effect 

estimate, the total effect of the primary exposure and some secondary exposures, and the 

controlled direct effects of other secondary exposures are presented alongside each other. 
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This gives the reader the misimpression of parity across the effect estimates. There are 

several important problems in this approach. First, controlled direct effects and total effects 

are distinctly separate concepts and reporting a controlled direct effect that is easily 

mistaken for a total effect may lead to incorrect conclusions. Second, the primary exposure 

of interest may be a mediator of the secondary exposure-outcome relationship. As 

previously discussed, conditioning on a mediator could result in collider stratification bias 

and a spurious association of the secondary exposure if uncontrolled confounding remains 

between the mediator and outcome (Figure 1B). Third, any point estimates for secondary 

exposures may be biased if the relationship between the secondary exposure and outcome 

was not evaluated for possible additional confounding. Finally, the appropriate functional 

form of continuous secondary exposures may not be considered with rigor (e.g.-linear or 

spline terms).1

In order to illustrate some of these issues in the Table 2 Fallacy, we examine the risk of 

preeclampsia on preterm birth using a retrospective population based birth record cohort.

Motivating example

Preterm birth affects more than 1 in 10 babies born globally, and is the second leading cause 

of death in children under 5 years.11 Over the past two decades, rates of preterm birth have 

been rising in developed countries,12 increasingly resulting in investigations into the 

multifactorial causes. Preeclampsia is often investigated as a risk factor for preterm birth, 

typically resulting in strong relative risks between 2.5–4.5.13–18 Preeclampsia is a 

pregnancy-specific disorder complicating 6–10% of all pregnancies in the United States.19 It 

is diagnosed at or after 20 weeks of gestation, and defined by a combination of elevated 

blood pressure (diastolic blood pressure ≥90 mm Hg) and proteinuria (> 300 mg in 24 hours) 

or elevated blood pressure plus thrombocytopenia, renal insufficiency, impaired liver 

function, pulmonary edema or cerebral symptoms.20 Preeclampsia has been associated with 

all three indications of preterm birth, i.e. provider initiated,17,19 preterm premature rupture 

of the membranes,21 and spontaneous preterm labor with intact membranes.14,15,17

Risk factors for preeclampsia include maternal obesity, older age, African-American race, 

low socioeconomic status, alcohol abuse, diabetes, and previous preterm birth.16,22–25 

Because these and other risk factors for preeclampsia are also associated with preterm birth, 

their potential for confounding the effects of preeclampsia on preterm birth must be 

considered. Given their association with preterm birth, authors may report effect estimates of 

these confounders alongside the effect estimate for preeclampsia,13,18 and even more 

commonly when evaluating preeclampsia as one of multiple risk factors for preterm birth.
17,23,26–29

Here, we provide a didactic example of an analysis to estimate the hypothesized effect of 

preeclampsia on preterm birth among singletons (Figure 2). In Model 1, we estimate the risk 

ratio for preeclampsia, adjusting for previous preterm birth, alcohol abuse, and maternal 

education as secondary factors. Previous preterm birth and alcohol abuse are included as 

potential confounders, and maternal education is included solely as a predictor of preterm 

birth. This and all subsequent models are further adjusted for potential confounding of 

maternal characteristics (pre-pregnancy body mass index (BMI), race, age, and smoking). 
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From Model 1, we present the mutually adjusted estimates of preeclampsia, previous 

preterm birth, alcohol abuse, and maternal education, illustrating the Table 2 Fallacy. In 

Model 2, we provide an estimate of previous preterm birth adjusted only for confounding by 

maternal characteristics to estimate the total effects of previous preterm birth. This estimate 

is then contrasted with the controlled direct effect estimate for previous preterm birth 

presented in Model 1. In Models 3, we estimate a biased total effect of alcohol abuse on 

preterm birth (failing to control for confounding by drug abuse), and then the total effect of 

alcohol abuse on preterm birth, adjusted for drug abuse. The estimates for alcohol abuse in 

Models 1 and 3 are contrasted to highlight both controlled direct effects versus total effects, 

as well as the need to evaluate confounding of the secondary exposures if they are to be 

reported from multivariable adjusted models. Finally, Model 4 estimates the total effect of 

maternal education to demonstrate that, given its hypothesized lack of association with 

preeclampsia, it should remain largely unchanged from Model 1.

Methods

Study population

Subjects in this retrospective cohort are women with a live-born singletons in the state of 

California between 2007–2012. Deliveries were identified from hospital discharge database 

maintained by the California Office of Statewide Health Planning and Development, which 

includes linked birth certificates, detailed information on maternal and infant characteristics, 

hospital discharge diagnoses and procedures recorded as early as 1 year before delivery.30 

Clinical characteristics were based on International Classification of Diseases, 9th Revision, 

Clinical Modification (ICD-9-CM) four digit codes contained in the hospital discharge 

database.21 Of the 3,160,268 live births, the study was restricted to singletons with 

gestations between 20–44 weeks of gestation (n=3,067,839), and then further restricted to 

mother-infant dyads with linked hospital discharge records (n=2,963,888). Methods and 

protocols for the study were approved by the Committee for the Protection of Human 

Subjects within the Health and Human Services Agency of the State of California.

Primary exposure

Preeclampsia diagnosis was obtained from administrative hospital discharge records, and 

was not accompanied by gestational week of diagnosis. Preeclampsia tends to occur late in 

pregnancy, and many women may have completed 37 weeks of gestation at the time of 

diagnosis, no longer at risk of preterm birth. This methodologic concern, which has been 

observed in other studies that our study seeks to replicate,14,17,18,23,26 was not addressable in 

this didactic example. Implications are further discussed in the limitations section.

Covariates and outcome

Variables in analysis were operationalized as dichotomous variables of pre-pregnancy BMI 

(≥25 kg/m2), race (African-American), alcohol abuse, drug abuse, smoking, education (<12 

years), age (>34 years), previous preterm birth, and preterm birth. In a sensitivity analysis, 

preterm births were limited to those with an indication of spontaneous preterm birth (with 

intact membranes).
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Statistical analyses

We estimated risk ratios and robust standard errors with log linear models and a Poisson 

distribution. Maternal characteristics (pre-pregnancy BMI, age, race and smoking) were 

included in all statistical models, but for simplicity, are denoted in the equations in the 

results section by “C”.

Results

Descriptive characteristics of the study population by preeclampsia status are displayed in 

Table 1.

Model 1

Model 1 demonstrates the typical Table 2 Fallacy. The primary exposure of interest 

(preeclampsia), secondary exposures, including confounders (previous preterm birth, alcohol 

abuse) and a predictor of the outcome (maternal education), were estimated from a single 

model and reported together (Table 2, Model 1).

log(P(PTB = 1|PE, PPTB, AA, EDU, C)) = β0 + β1PE + β2PPTB + β3AA + β4EDU + β5C

(Eq. 3)

The effect estimate for preeclampsia (β1̂) is the conditional total causal effect; biasing paths 

through alcohol abuse and previous preterm birth were adjusted for, and no biasing paths 

(per the hypothesized causal mechanism in Figure 2) remained. The effect estimate is 

interpreted as the log risk of preterm birth at any given level of previous preterm birth and 

alcohol abuse comparing women with preeclampsia to women without preeclampsia.

Previous preterm birth (β̂2), presented alongside the conditional total effect estimate of 

preeclampsia, cannot be interpreted in the same manner as preeclampsia. Per the 

hypothesized DAG in Figure 2, previous preterm birth causes preterm birth directly and 

indirectly through preeclampsia. Given the inclusion of preeclampsia in the statistical model, 

we estimated a controlled direct effect of previous preterm birth. The interpretation is the 

effect of previous preterm birth on preterm birth when preeclampsia is held fixed at a given 

level, effectively blocking the mediated effects of previous preterm birth through 

preeclampsia.

The estimated coefficient for alcohol abuse (β̂3), also a controlled direct effect, is not a valid 

causal effect estimate, as the association between alcohol abuse and preterm birth is 

confounded by drug abuse. The estimated coefficient of alcohol abuse was not considered as 

an effect of primary interest and consequently confounders of the association between 

alcohol abuse and preterm birth were not considered. This, however, becomes problematic 

when the estimate of alcohol abuse is also reported as a secondary exposure of interest.
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Finally, the estimated coefficient for maternal education (β4̂) is not mediated through any of 

the previous coefficients, and like preeclampsia, is a total effect.

Model 2

The second model (Table 2, Model 2) showed the difference between the estimate for 

previous preterm birth from Model 1 (the controlled direct effect not through preeclampsia) 

and the total effect estimated in a log-linear regression model adjusted only for maternal 

characteristics (Eq. 4).

log(P(PTB = 1|PPTB, C)) = β0 + β1PPTB + β2C (Eq. 4)

To estimate the total effect of previous preterm birth on preterm birth, only the maternal 

characteristics, and not preeclampsia, confounded the relationship and needed to be included 

in the model. When modelled as a total effect, the risk ratio for previous preterm birth 

strengthened by 10%, an estimate not contained in initial confidence intervals. The weaker 

effect estimate of previous preterm birth in Model 1 was due to the apparent mediated 

effects of previous preterm birth by preeclampsia being blocked in the estimation of the 

controlled direct effect. It is important to note that, based on the simplistic hypothesized 

causal mechanism in Figure 2, previous preterm birth would only require adjustment for 

maternal characteristics to obtain an unbiased effect estimate. However, previous preterm 

birth may have been caused by previous preeclampsia, which may share common causes 

with the current occurrence of preeclampsia. As such, the previous preterm birth and current 

preterm birth association would remain a biased estimate by this uncontrolled confounding. 

This highlights the importance of fully considering the causal mechanisms for secondary 

estimates with the same rigor as primary estimates if they are also of interest to researchers.

Model 3

In Model 3 (Eq 5), we demonstrated the difference between the confounded controlled direct 

effect of alcohol abuse presented in Model 1 and the conditional total effect, additionally 

adjusting for drug abuse. When the total effects of alcohol abuse were estimated only by 

removing the preeclampsia covariate (not shown), a biased (over)estimate (RR 1.61, 95% CI 

1.54, 1.69) was observed due to the failure to adjust for confounding from drug abuse. 

However, when drug abuse was subsequently added to the model for the total effect of 

alcohol abuse:

log(P(PTB = 1| AA, DA, C)) = β0 + β1AA + β2DA + β3C (Eq. 5)

the estimated risk ratio for the total effect of alcohol abuse on preterm birth decreased by 

23% as compared to the (biased) controlled direct effect estimate in Model 1. Importantly, 

the hypothesized causal mechanism in Figure 2, in which drug abuse is completely mediated 

through alcohol abuse in relation to the exposure, is a particularly strong (and perhaps 

unlikely) assumption.
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Model 4

Finally, like the effect estimate for preeclampsia, the effect estimate for maternal education 

in Model 1 was a total effect. This was because maternal education was not a cause of 

preeclampsia, and thus was not anticipated to vary when modelled without preeclampsia (Eq 

7).

log(P(PTB = 1|EDU, C)) = β0 + β1EDU + β2C (Eq. 7)

Indeed, when preeclampsia was removed from the model, the effect estimate for maternal 

education, as compared to Model 1, changed by less than 1% with overlapping confidence 

intervals.

Sensitivity analysis

There were 110,130 spontaneous preterm births in the dataset (19,146 (18.9%) among 

women with preeclampsia diagnosis, and 90,714 (3.2%) among women without a diagnosis 

of preeclampsia. When the outcome was limited to spontaneous preterm birth, results were 

largely unchanged with respect to the magnitude of changes in effect estimates between 

controlled direct effect and total effect estimates (Supplemental Table 1).

Comment

Main findings

The Table 2 Fallacy occurs when the effect estimates of secondary exposures are presented 

in the same manner as the primary exposure estimated from the same model. Specifically, 

the fallacy arises when these covariates are 1) causal determinants of the exposure (resulting 

in the estimation of controlled direct effects) or 2) cannot be validly estimated in the chosen 

model due to uncontrolled confounding. In this example, we presented a Table 2 that 

displayed the total effects of preeclampsia and maternal education, the controlled direct 

effect of previous preterm birth, and the biased controlled direct effect of alcohol abuse. This 

example highlights how these estimates, each uniquely a different concept, appear to the 

reader to be equivalent. We described a difference in risk ratios of 10% between the 

controlled direct effects and the total effects of previous preterm birth, which did not contain 

overlapping confidence intervals. Further, upon proper evaluation for confounding, the total 

effect estimate for alcohol abuse decreased by 23%. To be clear, in our example, previous 

preterm birth and alcohol abuse must be included in the model in order to estimate the 

unbiased effect of preeclampsia on preterm birth. The fallacy arose in two manners: 1) by 

presenting the secondary exposures (which were controlled direct effects) alongside the total 

effects of preeclampsia and maternal education, and 2) by failing to adjust for confounding 

of alcohol abuse by drug abuse, unnecessary when estimating preeclampsia but crucial when 

the reporting the effect estimate for preeclampsia. The difficulty in recognizing the 

differences in these types of estimates was exacerbated by including maternal education. The 

practice of including covariates solely as predictors of the outcome (with no causal relation 

with the exposure variable) has been referred to as ‘unnecessary adjustment’,8 as they are 

not required to obtain a valid causal estimate of the primary exposure. Should a researcher 
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model and report their effect estimates, it is important to be aware of how they compare and 

contrast to the other estimates derived from the model. Finally, as previously noted, the 

causal positioning and functional form of variables used solely for confounding adjustment 

may not be evaluated with the same rigor as primary exposures of interest. The dichotomous 

effect estimate for alcohol abuse, potentially adequate for statistical control, would ideally 

be operationalized by timing, quantity and duration of exposure as a primary analysis. 

Ultimately, as our statistical packages progressively allow for ease of model creation, it is 

critical that researchers attempt to understand the nuances in the resulting parameter 

estimates.

Interpretation

Although modest, the changes we highlighted extend past an academic discussion and have 

practical implications. When designing intervention studies, researchers rely on published 

parameter estimates to hypothesize the effect sizes of intervention approaches. If researchers 

unwittingly make these estimates based on controlled direct effects instead of total effects, it 

minimizes their likelihood of demonstrating similar effects with the intervention. This issue 

extends to meta-analyses as well, as heterogeneity in the types of effect estimates may 

render summary estimates difficult to interpret. Additionally, the heterogeneity in types of 

effect measures may be culpable in perpetuating problems of scientific reproducibility. Table 

2 fallacies often arise when researchers conduct an analysis with the intent to search for risk 

factors, agnostic to a primary exposure, and all effect estimates from the same multivariable 

model are reported. Given the complex and interdependent nature of the exposures studied 

for health outcomes, it is highly likely that some of the exposures will also cause other 

exposures, resulting in controlled direct effect estimates intermingling with total effect 

estimates. Finally, the degree of discrepancy between the controlled direct effect and total 

effect are influenced by the prevalence of the exposures and the strength of the direct and 

mediating paths. The larger the discrepancy between the estimates, the more problematic it 

becomes in practice to treat these estimates as equal. Although readers may disagree with 

the “significance” of the change in estimate that we have demonstrated, this is a didactic 

example and results could vary by much larger degrees depending on the exposures and 

outcomes studied. We encourage readers to investigate controlled direct effects and total 

effects in their own datasets in order to personalize the lessons to their own research.

Limitations

In this example highlighting the Table 2 Fallacy, we have demonstrated with empirical data 

the fallacy in interpreting multiple adjusted effect estimates from a single model. However, 

this exercise is not without limitations. The interpretation of our estimates are only as good 

as the underlying causal assumptions. Our hypothesized model made strong assumptions, 

including no uncontrolled confounding of the relation between previous preterm birth and 

preeclampsia. As with all observational data, further unmeasured confounding should be 

assumed. The authors would have liked to have more information on previous obstetric 

history, as well as more reliable information on obesity and alcohol and tobacco use, which 

is often underreported on hospital records. We would anticipate some attenuation of these 

estimates given these data. Readers should recognize that this remains a didactic example, 

and a more rigorous analysis may modify effect estimates. Also, a limitation of the data 

Bandoli et al. Page 9

Paediatr Perinat Epidemiol. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



source was that the timing of diagnoses was unavailable. Preeclampsia diagnosis often 

occurs after 37 weeks of gestation, resulting in a misclassification of exposure. We anticipate 

this would attenuate the effect estimate due to misclassification of exposure, but cannot 

guarantee the strength or direction of the potential bias.

Conclusions

Many diseases are multifactorial, and researchers are often interested in quantifying the 

effects of multiple exposures. When this is the intent, care should be taken to avoid 

presenting all effect estimates derived from a single model in the same manner. If 

researchers are interested in the effects of secondary exposures, new models should be 

constructed to ensure that those estimates are validly (i.e., no uncontrolled confounding) 

estimated total effects (i.e., excluding mediators). Further, bias assessment of the secondary 

exposure and outcome relation must be conducted, and, for non-binary secondary exposures, 

the appropriate form should be modelled. The use of DAGs with consideration to the direct 

and indirect paths and the desired type of effect would facilitate these efforts.

In summary, Westreich and Greenland1 made an important contribution by describing the 

Table 2 Fallacy. We hope that this example complements that work and furthers the message 

about this topic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Directed acyclic graph for (A) the effects of X on Y with mediation by M, confounding by Z 

and a collider (C); and (B) the direct and indirect effects of X on Y, with a confounder of the 

mediator-outcome relationship.
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Figure 2. 
Directed acyclic graph for the hypothesized effects of preeclampsia and preterm birth. 

Previous preterm birth and alcohol abuse in pregnancy confound this association. Drug 

abuse confounds the effects of alcohol abuse on preterm birth. Maternal education is a 

predictor of preterm birth. Maternal characteristics of pre-pregnancy body mass index, race, 

age, and smoking are assumed to confound all relationships between the exposure variables 

and the outcome variable, but not shown via individual paths for simplicity.
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Table 1

Maternal characteristics of women with singleton, live births in the state of California (2007–2012)

All births Preeclampsia

n=2,963,888 Yes (n=102,545) No (n=2,861,343)

n (%) n (%) n (%)

Age (>34 years) 526,415 (17.8) 20,908 (20.4) 505,507 (17.7)

Race (African-American) 158,802 (5.4) 9,088 (8.9) 149,714 (5.2)

Pre-pregnancy overweight/obesity (≥25mg/kg2) 1,267,392 (42.8) 58,007 (56.6) 1,209,385 (42.3)

Maternal smoking 134,682 (4.5) 5,490 (5.4) 129,192 (4.5)

Previous preterm birth 20,032 (0.7) 1,318 (1.3) 18,714 (0.7)

Alcohol abuse in pregnancy 13,214 (0.5) 672 (0.7) 12,542 (0.4)

Drug abuse in pregnancy 49,733 (1.7) 3,138 (3.0) 46,595 (1.6)

Education (<12 years) 708,807 (23.9) 24,500 (23.9) 684,307 (23.9)

Preterm birth (<37 weeks) 211,802 (7.2) 31,268 (30.5) 180,534 (6.3)
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Table 2

Risk ratios for association between preeclampsia and preterm birth in a retrospective cohort of 3 million births 

between 2007–2012 in California

Model 1a Model 2b Model 3c Model 4d

RR, (95% CI) RR, (95% CI) RR, (95% CI) RR, (95% CI)

Preeclampsia 4.65, (4.59. 4.70)

Previous preterm birth 3.56, (3.47, 3.66) 3.91, (3.81, 4.00)

Alcohol abuse 1.49, (1.42, 1.56) 1.15, (1.10, 1.22)

Maternal education (<12 years) 1.12, (1.11, 1.14) 1.13, (1.12, 1.14)

All models adjusted for maternal age, race, pregnancy smoking and body mass index

a
Total effect of preeclampsia and education, controlled direct effects of previous preterm birth and (biased) alcohol abuse

b
Total effect of previous preterm birth

c
Total effect of alcohol abuse, adjusted for drug abuse

d
Total effect of maternal education

RR=risk ratio, CI=confidence interval
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