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Eciton: Very Low-power Recurrent Neural Network

Accelerator for Real-time Inference at the Edge

JEFFREY CHEN, SANG-WOO JUN, and SEHWAN HONG, University of California, Irvine, USA

WARRICK HE, Diamond Bar High School, USA

JINYEONG MOON, Florida State University, USA

This article presents Eciton, a very low-power recurrent neural network accelerator for time series data within

low-power edge sensor nodes, achieving real-time inference with a power consumption of 17 mW under load.

Eciton reduces memory and chip resource requirements via 8-bit quantization and hard sigmoid activation,

allowing the accelerator as well as the recurrent neural network model parameters to fit in a low-cost, low-

power Lattice iCE40 UP5K FPGA.

We evaluate Eciton on multiple, established time-series classification applications including predictive

maintenance of mechanical systems, sound classification, and intrusion detection for IoT nodes. Binary and

multi-class classification edge models are explored, demonstrating that Eciton can adapt to a variety of de-

ployable environments and remote use cases. Eciton demonstrates real-time processing at a very low power

consumption with minimal loss of accuracy on multiple inference scenarios with differing characteristics,

while achieving competitive power efficiency against the state-of-the-art of similar scale. We show that the

addition of this accelerator actually reduces the power budget of the sensor node by reducing power-hungry

wireless transmission. The resulting power budget of the sensor node is small enough to be powered by a

power harvester, potentially allowing it to run indefinitely without a battery or periodic maintenance.

CCS Concepts: • Hardware→ Hardware accelerators; Chip-level power issues; • Computer systems or-

ganization→ Embedded systems; Neural networks;

Additional Key Words and Phrases: LSTM, RNN, predictive maintenance, binary classification, multi-class

classification, quantization, low power, edge IoT, CPS, neural networks, FPGA, iCE40
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1 INTRODUCTION

Cyber-Physical Systems (CPS), coupled with the Internet-of-Things (IoT), enable deeper, data-

driven analytics and insight into our physical world by employing swarms of small, low-power
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sensor nodes communicating over a wireless network. A massive amount of data can be collected

from a large cluster of nodes, and their deep analysis can generate previously unimaginable quality

of information and insight. As a result, the real-world impact of CPS/IoT is rapidly growing and

is improving productivity in a wide range of areas including manufacturing [49], agriculture [30],

and healthcare [69, 70].

Low power and energy consumption is one of the key goals in the design of a CPS deployment,

as deployment scale or non-intrusive sensing requirements can limit access to power infrastruc-

ture [30, 48]. As a result, nodes are often expected to function on a scale of years powered by small

batteries [52] or power-harvesting modules [2, 43, 48]. These constraints limit not only the overall

energy consumption, but also the power consumption at any given time. This limits the amount

of computation available on a node, as well as the communication bandwidth over power-hungry

wireless communication. In fact, the primary limitation of data collection capacities for low-power

nodes is often the power consumption of wireless data transmission [6, 12, 24, 39, 50].

Neural networks are a common machine learning paradigm used for mining data collected via

CPS. Specifically, Recurrent Neural Networks (RNN) are a class of neural networks where each

neuron retains some memory of past inputs and are very well-suited to processing time-series

data. There are many sub-classes of recurrent neural networks with Long Short Term Memory

(LSTM) recurrent neural networks have proven especially effective [5, 10, 73]. Due to the high

computational intensity of inference with neural networks, data collected by IoT or CPS nodes are

typically wireless transmitted to more capable processing units either in the cloud or the edge [41,

45, 61, 68, 84].

Edge Computing attempts to reduce the pressure on the wireless network by moving some com-

putation to the nodes to distill data to smaller sizes. On the one hand, many real-world applications

have shown that filtering at the edge can reduce the network data transmission requirement by

over 95% [21]. On the other hand, provisioning enough computation performance on end nodes can

be costly in terms of power consumption and hardware, defeating the purpose of edge computing.

Hardware accelerators can often remedy this problem of cost and power by achieving high

performance on a low power budget [34, 36, 58, 83]. But while existing FPGA-based LSTM ac-

celerators achieve high performance and power efficiency, even they regularly require hundreds

of mW to multiple Watts of power, straining the limits of the stringent power budgets of edge

nodes [7, 11, 26, 42, 44].

In this article, we present Eciton, an extremely power-efficient FPGA-based accelerator for time-

series mining using recurrent neural networks at the edge. We show that Eciton can perform real-

time inference of simple RNNs and LSTM neural network models of realistic size, at a power bud-

get of 17 mW. Eciton demonstrates competitive performance compared to more power-hungry

FPGA implementations, as well as competitive power efficiency against the state-of-the-art. To

the best of our knowledge, no prior FPGA recurrent neural network accelerator has demonstrated

lower power consumption numbers, especially while maintaining performance on models of sim-

ilar scale.

To achieve very low power consumption, Eciton employs 8-bit fixed-point quantization of

weights, hard sigmoid activation functions, as well as a carefully optimized microarchitecture to

reduce the chip resource and memory requirements. As a result, the Eciton inference accelerator

can fit in a low-power, low-cost, but resource-constrained Lattice iCE40 UP5K FPGA. The UP5K

was uniquely positioned for this application, thanks not only to its low cost (~$5) and μW -scale

static power consumption, but also relatively large on-chip SRAM resources (128 KiB), which is

large enough to host real-world recurrent neural network models after 8-bit quantization. The

UP5K is also equipped with four DSP blocks for fast arithmetic, both of which are unavailable in

similarly positioned low-power FPGAs such as the Microsemi IGLOO or other Lattice iCE40 chips.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 16. Pub. date: February 2024.
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We evaluate Eciton on four different recurrent neural network models and measure their

performance and accuracy. The tested neural networks include two LSTM models for predictive

maintenance, another LSTM model for urban sound classification, and one RNN model for

network intrusion detection on IoT nodes. We measure that quantization approaches result

in a modest accuracy difference of ~5% when evaluated on real-world predictive maintenance

LSTM models with 3- to 4-layers, ~10% on real-world recurrent neural network models including

network intrusion detection.

This article claims the following contributions:

— Demonstrates an LSTM and RNN accelerator design that fits in a low-power FPGA and a

17 mW power budget.

— Demonstrates real-world recurrent neural network models can be compressed to fit within

such a low-power accelerator at a modest loss of accuracy.

— Demonstrates real-time performance on realistic applications including predictive mainte-

nance and multi-classification models such as intrusion detection.

— Demonstrates that a low-power accelerator at the extreme edge can actually reduce the

power consumption of a CPS/IoT node by reducing network transmission requirements.

The rest of this article is organized as follows: Background and related works are explored in

Section 2. We present the architecture of Eciton and our neural network compression methods

in Section 3. We provide in-depth evaluation of Eciton in the context of a CPS deployment of

compressed neural networks in Section 4. We conclude with future work in Section 5.

2 BACKGROUND AND RELATED WORKS

2.1 Predictive Maintenance

Predictive maintenance, or condition-based maintenance, aims to monitor mechanical systems for

signs of imminent failure to preemptively perform maintenance operations. Compared to conven-

tional, periodic maintenance, accurate predictive maintenance can significantly reduce downtime

and cost [29].

Modern predictive maintenance approaches integrate pervasive data collection of CPS and IoT

into target mechanical devices to achieve more accurate prediction compared to manual inspec-

tion [29]. Depending on the mechanical properties of the target, information including vibration,

humidity, temperature, pressure, sound, electrical current, and inductance can be collected from

various locations in the device, which are analyzed using various statistical and machine learning-

based approaches [29, 33, 48, 64, 78].

2.2 Multi-class Classification

Multi-class classification applications present a different arrangement, making the assumption that

each input is assignable to one and only one label. The applications can classify each input as one

label among multiple labels (three or more) based on patterns trained from the feature properties

of the data collected [8]. Such models are used when each input must be classified into multiple

categories. For example, the UrbanSound8K dataset and model tries to determine what kind of

sound each audio snippet is [59] and tries to assign each audio clip to one of 10 classes, spanning

from air conditioner to gunshot. The network intrusion detection model [53] tries to classify a

stream of packet patterns into five categories: a safe and normal behavior, and four different classes

of attack patterns.

For the final layer of a multi-class classifier neural network, a softmax function is typically used

over the array of activation values to determine which class has the highest probability. [19].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 16. Pub. date: February 2024.
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Fig. 1. Recurrent neural network cell architecture.

2.3 RNN Recurrent Neural Network

A recurrent neural network is a neural network class distinguished by their internal cell memory

states, as the cells take information from prior timestep inputs to influence the current input and

output [9]. The internal cell state is referred to as the hidden state and is updated every timestep,

summarizing the unique necessary information from prior timesteps [60].

Figure 1 shows the internal architecture of a single RNN cell. The kernel weight W is multi-

plied against the input, while the recurrent weight U is multiplied against the hidden state, after

which the aggregate result is processed through the activation function, commonly sigmoid (σ ),

and used as the the output or the next hidden state. The hidden state records past information

across timesteps and is integrated with current input to make accurate inferences [60].

Because of RNNs’ ability to process information sequentially in time, there is strong interest in

executing RNNs on embedded devices, which can improve real-time response efficiency and im-

prove system security compared to cloud computing [57]. However, the computational and mem-

ory requirements, mainly from the multiply-accumulate operations, create challenges in maintain-

ing the real-time response goal, driving optimizations of RNNs and embedded systems to overcome

these limitations.

2.4 LSTM Recurrent Neural Network

LSTM is an RNN architecture that can better handle long-term dependencies in the input data.

Classical RNNs suffer from the so-called vanishing gradient problem, wherein the effects of an

earlier input quickly become too small to be useful [60].

LSTMs handle this problem by controlling gradient degradation using three gates. This adds

three more trainable weights per cell, which can learn the best rate of gradient decay. As a result,

LSTMs can learn relationships between events happening millions of timesteps apart [63], making

them useful for many real-world time series data mining applications [74, 75].

Figure 2 shows the internal architecture of a single LSTM cell. Each weight (f , i, c̃, and o) rep-

resents a multiplication and accumulation operation against both input and recurrent values that

regulates the retainment of past information [22, 57].

LSTMs also use two classes of activation functions: kernel and recurrent activation functions.

As seen in Figure 2, typically used activation functions are sigmoid (σ ) and tanh, respectively[57].

LSTMs are typically designed with multiple layers, as well as a dense layer at the top layer. The

dense layer is a conventional fully connected neural network layer, usually with the same number

of units as the number of classes to detect.

2.5 Neural Network Compression

Compressing neural networks, either by reducing the number of weights (pruning) or the bit width

of each weight value (quantizing), is an important tool for reducing the computation and memory

overhead of neural networks, often with negligible loss of accuracy [27]. Pruning involves remov-

ing weights with less impact on the final result, and then re-training the model without these

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 16. Pub. date: February 2024.
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Fig. 2. Long-short term memory cell architecture.

weights [57]. Weight matrix sparsification, however, can reduce accuracy, along with negatively

impacting weight memory organization, irregularity of which often results in increased computa-

tion time and hardware for data management.

Another compression technique, quantization, maps the range of original values to a smaller

set of values using either a linear or non-linear mapping function. A variance-based cutoff may

also be used to limit the range of the source set to account for outliers. A popular instance of

quantization is to map 4 byte floating-point to 1 byte fixed-point [16, 31, 72, 82]. This not only

reduces memory requirements, but also substitutes costly floating point operations with cheaper

fixed-point arithmetic [35, 67, 79].

To best map a set of values from floating point to fixed point sets in a linear way, the range of float

values Rf loat is obtained from the floating point set, as well as the possible signed integer range of

the quantization target Rf ixed (-128~127 for 8 bits). To maintain accuracy even when outliers may

exist in the float set, we can also calculate Rf loat using a user-defined standard deviation. These

two ranges can form a scale: Rf ixed/Rf loat , which can be used to map each value. If there is a

difference in range medians, then a zero point adjustment can be made using a bias term.

Quantization-aware training is available when direct model quantization results in significantly

reduced accuracy.

2.6 Accelerators on CPS End Nodes

Augmenting CPS/IoT end nodes with reconfigurable hardware accelerators such as FPGAs can

help reduce the power consumption of required computation, as well as power-efficiently imple-

ment edge computing on end nodes [17, 83]. Existing research has explored offloading end node

operating system functions [54], encryption for security [66], and communication protocols [23],

as well as application-specific accelerators for video processing [36, 83], person detection [58], and

statistical time series mining [34] into FPGAs. Much research has gone into optimal management

of FPGAs on end nodes as well, including dynamic partial reconfiguration and power gating [71].

Industry offerings also exist for low-power convolutional neural networks at the edge, including

the Lattice SensAI platform [65].

Power-efficient neural network implementation on FPGAs for the edge has also been a popular

research topic [28, 32, 81], including LSTMs [42, 44]. However, performance and model size re-

quirements have prevented realistic LSTM models from fitting in the low-power class FPGAs such

as Lattice iCE40 or Microsemi IGLOO series, limiting them to relatively performance-oriented FP-

GAs with 100s of mW of static power. This may limit their use in resource-constrained CPS/IoT

scenarios with mW-level power budgets [2, 48].

Following our prior work [14], additional LSTM acceleration on FPGA projects have been devel-

oped. An optimized FPGA design focused on the LSTM cell modeled for traffic speed prediction

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 16. Pub. date: February 2024.
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Fig. 3. Eciton end node architecture.

and performed on a Spartan-7 XC7S15 [55]. ASIC designs for LSTM acceleration have also been

proposed, utilizing pruned bit-sparse representation instead of fixed-point representation [15].

2.7 Wireless Communication for CPS/IoT

There is a wide range of available wireless communication technologies for CPS and IoT sys-

tems [24, 46]. They typically represent a tradeoff between communication bandwidth, range, and

cost/power consumption, spanning from LTE or GSM-based technologies such as LTE-M and MB-

IoT with hundreds of kbps of performance as well as hundreds of mW of power consumption [39],

to Low-Power WAN (LPWAN) technologies like LoRa with an order of magnitude bandwidth

and power consumption [1, 12]. Reducing network transmission requirements with effective edge

computing may allow use of low-power technologies while still maintaining effective data collec-

tion bandwidth.

3 ECITON NODE ARCHITECTURE

Eciton augments a CPS/IoT end node with a flexible, configurable accelerator that can process

both RNN and LSTM models with minimal configuration. The RNN accelerator is implemented on

a low-cost, low-power Lattice UP5K FPGA, adding minimal cost and power consumption to the

overall system. In Eciton, collected sensor data is first evaluated by the accelerator, which runs

either an RNN or an LSTM model, and the sensor data is sent wirelessly to a central server only

when potential failure is detected locally. At the central server, a more complex software system

can then make higher-level decisions based on data from multiple nodes.

Figure 3 shows the overall architecture of an Eciton end node. Sensor data is first filtered by

the FPGA, reducing the data traffic and workload of the microcontroller unit (MCU). In the

current version of Eciton, the MCU is only responsible for the network interface, transferring the

accelerator output wirelessly to a remote host. This design decision is due to the complexities of

managing the wireless network module, including executing the protocol.

3.0.1 Adaptable LSTM Accelerator. Internally, Eciton implements an LSTM accelerator, which

can be easily configured to handle many classes of neural network models, such as the four re-

current models we evaluate in this manuscript. The accelerator module consists of two separate

cores, each for LSTM and dense layers, as seen in Figure 4. The MCU is responsible for loading the

LSTM and dense layer cores with weights, after which sensor data can stream through both cores

for inference. This architecture can be adapted to handle different recurrent models. For example,

the dense core can be bypassed for multi-classification models that do not need the dense layer,

and parts of the LSTM accelerator can be disabled for the simpler RNN models.

3.1 FPGA Resource Restrictions

Our target platform is the Lattice iCE40 UP5K FPGA, which is a low-cost (~$5), low-power (μW -

scale static power) FPGA with stringent resource restrictions. This choice was driven by two

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 16. Pub. date: February 2024.
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Fig. 4. The MCU provides weights to LSTM and Dense cores, after which the accelerator can process input

from sensors.

factors: larger on-chip memory capacity and DSP block availability, compared to comparable low-

cost, low-power offerings.

3.1.1 On-chip Memory. The UP5K includes 1,024 kbits of on-chip SRAM provided in the form

of four Single-Port RAM (SPRAM) blocks, in addition to usual embedded Block RAM. Most

other FPGA offerings of similar class, including the Microsemi IGLOO [47] or other Lattice iCE40

FPGAs [37], do not include such memory resources, limiting their on-chip memory to mere 32

to 128 kbits of block RAM. On-chip memory capacity is very important for low-power, high-

performance neural network inference, since off-chip memory access is harmful for both perfor-

mance and power efficiency. This is especially important for low-power FPGAs and MCUs, as they

typically do not have high-performance memory interfaces such as DDR3.

However, after evaluating a wide range of published, real-world recurrent neural network mod-

els, we discovered that even the additional SPRAM is not enough for neural network models of

realistic size. To remedy this, we explored various neural network compression approaches in an

attempt to make the model fit entirely on-chip. We describe our approach in Section 3.2.

3.1.2 DSP Block Availability. In addition, the UP5K provides eight 16-bit Digital Signal Pro-

cessing (DSP) blocks for fast arithmetic. While this is a larger number compared to similar of-

ferings, it is nowhere enough to implement fast floating point operations, or even wide integer

division. Our selection of quantization and hard sigmoid activation function parameters was the

result of optimizing performance and accuracy within these constraints.

3.2 Quantizing RNN/LSTM Models

Eciton performs post-training linear quantization of weights from 4-byte floating point to 8-bit

dynamic fixed point, reducing memory footprint by 1/4. We discovered 8-bit quantization resulted

in the best size-accuracy tradeoff, which will be presented in more detail in Section 4.2.

To reduce chip resource requirements, Eciton uses the piece-wise linear hard sigmoid activation

function for both kernel and recurrent activation functions of LSTM, instead of non-linear func-

tions such as sigmoid or tanh. Figure 5 shows the three activation functions. While non-linear

functions were too complex to fit on our target FPGA, we discovered that hard sigmoid can be im-

plemented efficiently while providing a more accurate approximation of the non-linear functions,

compared to simpler functions such as the Rectified Linear Unit (ReLU). Quantizing models

does require tuning the float range to consider both accuracy in calculations and in mapping,

which will be discussed in Section 4.2.

One important consideration when designing an LSTM for quantization and hard sigmoid acti-

vation is the importance of bias weights. While omission of bias weights sometimes makes smaller

but still accurate LSTM models possible, we have discovered that bias weights are crucial for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 16. Pub. date: February 2024.
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Fig. 5. Comparison between three activation functions.

Fig. 6. Microarchitecture of the LSTM core.

accuracy when using hard sigmoid activation functions. This is because, in classical LSTMs, two

different activations with different output ranges are used: sigmoid at (0, 1) and tanh at (−1, 1). A

bias term can be trained to map the hard sigmoid output domain to the two different domains of

sigmoid and tanh.

3.2.1 Why Linear Quantization. While non-linear, logarithmic quantization approaches can ex-

press a wider range of values, resulting in better accuracy, dynamically translating and performing

quantized arithmetic on such non-linearly mapped values required more on-chip resources. Since

our LSTM accelerator did not leave much room in the target FPGA, we decided on linear quanti-

zation for better performance.

3.2.2 Why Not Prune. While pruning neural networks often reduce model size significantly

without much accuracy loss, Eciton did not use pruning for two reasons: First, pruning requires re-

training, which adds a hurdle to deploying the system. Second, the sparsity resulting from pruning

requires additional chip resources to handle.

3.3 LSTM Core Architecture

Figure 6 shows the LSTM core architecture. Input and output is done in units of 8-bit words.

Eciton’s batch size is one, to simplify the memory mapping and management as explained be-

low. All weights are stored across the four available on-chip SPRAM blocks combined into a single

address space, exposing a single 16-bit interface. The computation pipeline consists conceptually

of two sub-pipelines: the Multiply-Accumulator (MAC) pipeline, and the State pipeline for cal-

culating carry and hidden states. Both pipelines share a single quantized ALU Module.

3.3.1 Weight Memory Map. Weights are stored in a layer-major order, so for each input tuple

to propagate through all layers, the whole weight memory is linearly scanned exactly once by a

very simple circular reader module.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 16. Pub. date: February 2024.
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Fig. 7. LSTM weights are stored in layer-major sequence.

Figure 7 shows an example memory layout of weights for a model with two LSTM layers. The

weights are stored in the order of kernel weights, recurrent weights, and bias weights, for each

LSTM layer. Each weight is a four-byte tuple, corresponding to the four 1-byte weights of each

LSTM cell. The microarchitecture orders computation in the same order, so weights can simply be

linearly scanned for correct operation.

Within each class, the weights are ordered in an input-major order, meaning if the network has

multiple columns fed into multiple cells, the weights for each column across all cells are grouped

together. Each weight consists of a sequence of four-byte tuples, each tuple corresponding to the

four weights of each LSTM cell. The tuples store four 1-byte weight values for the input, cell, forget,

and output gates, in that order.

3.3.2 MAC Pipeline. The MAC pipeline is where the majority of the arithmetic for LSTM is

done. While computation is conceptually organized as a pipeline, Eciton actually processes each

step in non-overlapping sequence to efficiently reuse a small number of quantized arithmetic units.

Computation is organized in the order of weight storage, i.e., kernel, recurrent, and bias weights.

For kernel weights, each 8-bit input can be independently multiply-accumulated against each

of the four kernel weights of all LSTM cells in this layer. This results inUnit number of four-byte

tuples in a BRAM FIFO, where Unit is the number of LSTM cells in this layer. By the time kernel

MACs are done, the recurrent weights are already loaded and ready in the read queue. The same

MAC process is performed, reusing the same ALU hardware, using the hidden state data of the

previous timestep, if any.

MAC operations are done independently per gate (input, cell, forget, output), resulting in Unit
number of four value tuples. Again, thanks to the convenient memory mapping, by the time kernel

MACs are done, the recurrent weights are also already loaded and ready in the read pipeline.

Once both stages are done, the results of both are forwarded to the bias aggregation stage, where

the two streams are added with the bias weights conveniently ready in the read pipeline. At the

end of this stage, we have a Unit number of four value tuples stored in a BRAM FIFO.

3.3.3 Carry and Hidden State Pipeline. Once the MAC operations are done and theUnit number

of 4-byte tuples are generated, we can calculate the carry states for the next timestep and the

hidden states for the next layer according to the LSTM algorithm. This process also re-uses the

same quantized ALU module to perform hard sigmoid, quantized multiplication and addition.

Another notable feature of the layer-major weight map and computation organization is that

the memory for carry state and hidden state results can each be stored in a single large FIFO

implemented in BRAM, instead of a complex memory map for each layer or unit. Because the

computation is done sequentially in a layer-major order, the hidden state FIFO will always hold

the values for the next layer. By the time all layer processing is done and computation comes back

to the first layer for the next timestep, the carry state for all of the layers will be waiting in order

in the carry state FIFO.

3.3.4 Quantized ALU Architecture. Our quantized ALU provides three functions: quantized ad-

dition, multiplication, and hard sigmoid. While addition between two quantized values is straight-

forward, multiplication is slightly more complicated. Because linear quantization involves a scale

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 16. Pub. date: February 2024.
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Fig. 8. Microarchitecture of the RNN Core.

factor mapping one set of values to another, multiplying two scaled values results in multiplication

of the scale factor as well, and the multiplication results need to be divided with the scale factor

again to maintain correctness.

While division in hardware is resource-intensive, fortunately, the scale factor is a static value

determined during quantization. We pre-calculate a normalized division (1�16)/scale during

quantization. This value can simply be multiplied to the multiplication results using the UP5K DSP

block, which supports 16-bit multiplication to a 32-bit value. The resulting value can be shifted

down 16 bits to get the correct division results. Since the original multiplication results are 16

bits wide, and because weights and input are all 8 bits, we do not lose any correctness with this

approach. As a result, quantized multiplication requires two DSP blocks, one for multiplication

and one for division by the scale factor.

The hard sigmoid module also requires a multiplier, but, since our computation organization

never requires multiplication and sigmoid calculation to happen simultaneously, our ALU is de-

signed to share one internal multiplier.

Because the SPRAM memory interface is 16 bits wide, two weights are delivered per cycle. Since

the four weights in a cell are processed independently from each other, our quantized ALU inter-

nally implements two separate modules to operate in parallel, consuming 4 of the 8 available DSP

blocks. We note that although memory bandwidth could be easily increased by using SPRAM mod-

ules in parallel, our experiments showed that this would not lead to high performance, as it was

difficult to fit more ALU modules in the limited chip space.

3.3.5 Adapting for Recurrent Neural Networks. For traditional recurrent neural networks that

are not LSTMs, the four gates and their associated memory and computation requirements are

removed. In this situation, parts of the LSTM accelerator can be disabled to handle such models, as

seen in Figure 8. All of the gate-related calculation is bypassed, as well as most of the state pipeline

except for the first hard sigmoid activation. This modification enables RNN models with more

features and layer dimensionality to be utilized than would be limited by the required memory

cell components of the LSTM, and also allows for non-sequential input models.

3.4 Dense Core Architecture

The dense core is a separate entity from the LSTM core, as depicted in Figure 9. Its architecture is

similar to the architecture of the LSTM cell, but much simpler. Since the dense layer is a classical,

feed-forward, fully connected neural network, there is no need for handling recurrent paths or

weights. The dense core only has three computation stages: kernel MAC, bias aggregation, and a
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Fig. 9. Microarchitecture of the Dense Core.

Table 1. Models Evaluated on Eciton

Name Class Recurrent Layers Dense Layers Classification

Turbofan [62] LSTM 2 1 Binary

Motor [48] LSTM 3 1 Binary

UrbanSound [59] LSTM 2 1 10 classes

Intrusion [53] RNN 1 1 5 classes

final hard sigmoid. It also uses an on-chip block ram for weight storage instead of SPRAM, since

the number of weights for the final dense layer is typically very small. The final output of the dense

layer is a vector of quantized values representing each prediction class. This is the final inference

result that is relayed to the software on the MCU. Since the amount of dense layer computation

is nearly negligible compared to the LSTM layer, the quantized ALU of the dense block ALU is

designed to use only one MAC unit, using only two DSP blocks and less supporting logic.

4 EVALUATION

The accelerators of Eciton were implemented using open-source toolchains Icestorm [76] and Blue-

spec [51], on a low-cost, low-power Lattice iCE40 UP5K FPGA, coupled with an Arduino Nano as

the MCU [4].

The following sections present evaluation results of Eciton, including the neural network mod-

els we have trained and used for predictive maintenance datasets and multi-class classification

datasets, as well as the performance and efficiency of our FPGA accelerator implementation.

4.1 Neural Network Models and Datasets

We demonstrate Eciton on four, real-world recurrent neural network models with various charac-

teristics. The evaluated models are summarized in Table 1. The models span a wide range of char-

acteristics, across LSTMs and RNNs of variable size, as well as binary and multi-class classification.

The models include two predictive maintenance binary classification scenarios: Turbofan engine

maintenance dataset from NASA [62], as well as electrical motor maintenance using vibration

and humidity [48]. We also demonstrate Eciton on two multi-class classification scenarios: the

UrbanSound8K classification dataset [59] and the NSL-KDD dataset [53]. The recurrent neural

network models were first trained using Tensorflow and Keras, quantized post-training, and finally

loaded on the Eciton system. Table 2 lists the calculations for the requisite recurrent layer weight

counts derived from the shapes of the models; coe f f layer is 1 for RNN layers and 4 for LSTM

layers, with the latter representing the 4 gate weights.
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Table 2. Recurrent Layer Weight Count from

Parameters

Weightset Weightcount

Kernel Unit × Seq.Width × coe f f layer

Recurrent Unit2 × coe f f layer

Bias Unit × coe f f layer

Table 3. NASA Turbofan Predictive Maintenance Model

Layer LSTM1 LSTM2 Dense

Seq. Length 50 50 –

Seq. Width 25 100 –

Unit 100 50 –

Kernel 10,000 20,000 50

Recurrent 40,000 10,000 –

Bias 400 200 1

Total 50,400 30,200 51 80,651

We demonstrate two types of recurrent neural network models: LSTM and RNN. We present two

different classes of models for two purposes: First, we demonstrate that the Eciton architecture can

be conveniently adapted for different model classes. Second, as the RNN model is also the smallest

model we evaluated, it serves as an important part of the suite of real-world applications across a

wide range of scales.

We also note that, since RNN models have fewer weights compared to LSTMs of the same

dimensions, the RNN accelerator can support models with larger dimensions than the LSTM-

configured accelerator. However, we could not find a convenient open dataset to demonstrate this

in the Eciton context.

This section presents the original floating-point trained models and provides more detailed anal-

ysis of quantization efficiency in Section 4.2.

4.1.1 Turbofan Engine Maintenance. The NASA Turbofan Engine Maintenance Model is a pre-

dictive maintenance model that simulates the failure of a turbofan engine, with the dataset being

an engine degradation simulation using C-MAPSS. The model dataset includes input from 25 dif-

ferent sensors. Our model uses two LSTM layers with 100 and 50 nodes, as well as a single-cell

dense layer. The total number of weights adds up to 80,651, as shown in Table 3.

The model before quantization reached a competitive accuracy of 97%.

4.1.2 Electrical Motor Maintenance. The Electrical Motor Maintenance model is trained on four

input data streams, three accelerometer axes and a humidity sensor, collected from an electrical mo-

tor in the process of spinning down. The accelerometers are sampled at 2 KHz, while the humidity

sensor is sampled at 50 Hz. This scenario has interesting real-time and energy-budget require-

ments, because the system is powered by a power harvester generating energy from the magnetic

field as the motor spins.

Because power harvesting becomes unavailable after the motor has shut down, the collected

data must be either processed or transmitted after detecting motor shutdown within a budget of

0.6 Joules of harvested energy.

The model uses three LSTM layers each with 128, 32, and 16 nodes and a single-cell dense layer

adding up to a total of 91,873 weight values, as seen in Table 4. The model before quantization has

a competitive trained accuracy of 90%.
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Table 4. Electrical Motor Predictive Maintenance Model

Layer LSTM1 LSTM2 LSTM3 Dense

Seq. Length 12,500 12,500 – –

Seq. Width 4 128 32 –

Unit 128 32 16 –

Kernel 2,048 16,384 2,048 32

Recurrent 65,536 4,096 1,024 –

Bias 512 128 64 1

Total 68,096 20,608 3,136 33 91,873

Table 5. Urban Sound Multi-classification Model

Layer LSTM1 LSTM2 Dense

Seq. Length 173 173 –

Seq. Width 128 128 –

Unit 100 50 –

Kernel 51,200 25,600 500

Recurrent 40,000 10,000 –

Bias 400 200 10

Total 91,600 35,800 510 127,910

4.1.3 Urban Sound Classification. The Urban Sound multi-class classification model is trained

on the UrbanSound 8K dataset divided into 10 sound classes, including gunshots and siren noises,

with audio from the dataset pre-processed into frequency-based dimensional features according

to mel spectrogram [40]. It has two LSTM layers and one Dense layer. There is a total of 181,642

weights.

The model before quantization has a competitive trained accuracy of 84.25%. The original model

is variable length, however, since a great majority (~84%) of the data consisted of 173 timesteps (the

near-maximum timestep allotment barring 7 cases of 174 timesteps), we fitted the model to 173 as

the sequence length. Accuracy for the modified model trained this subset was retained at 84.23%.

Since this model is large, we iteratively reduced and tested LSTM1 unit from 128 to 100 and

LSTM2 unit from 64 to 50 and found that accuracy was not impacted significantly from this change

(84.16%). This results in 127,910 weights, shown in Table 5, though in practice 127,400 weights are

kept on-chip, as the dense layer weights are moved off-chip.

4.1.4 Network Intrusion Detection. The Intrusion Detection RNN-IDS multi-class classification

model is trained on the NSL-KDD dataset, widely used in intrusion detection experiments, clas-

sified into five categories (four attack categories and one normal behavior category) [80] from

packet transmission patterns. Non-numeric features of the NSL-KDD dataset are converted into

binary-coded vectors. The model utilizes a simple RNN layer and a Dense layer. A total of 16,645

weights were implemented, as outlined in Table 6. This model has a trained accuracy of 81.29%

prior to quantization.

4.1.5 On-chip Weight Capacity. We compare the pre-quantized models with 32-bit weights ver-

sus quantized models with 8-bit weights, stored in concatenated pairs per 16-bit address, in Fig-

ure 10. The iCE40 SPRAM supports a total of 128 KB in weight storage, and the Turbofan, Electrical

Motor, and Urban Sound Classification models were significantly above capacity, each exceeding

the capacity by more than double. Quantized models all fit within the SPRAM capacity, including
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Table 6. Intrusion Detection

Multi-classification Model

Layer RNN Dense

Seq. Length 1 –

Seq. Width 122 –

Unit 80 –

Kernel 9,760 400

Recurrent 6,400 –

Bias 80 5

Total 16,240 405 16,645

Fig. 10. Model weight comparisons, quantized and unquantized, against on-chip SPRAM memory capacity.

the Quantized Urban Sound Classification, which is just under the 128 KB limit at 127.4 KB. The

smallest quantized model, RNN-IDS, uses 12.6% of available SPRAM memory.

4.2 Quantized Model Accuracy

Figure 11 shows the effect of various quantization approaches on accuracy on the turbofan model.

While use of hard sigmoid, 16-bit and 8-bit fixed-point quantizations have gradual loss of accuracy,

4-bit quantization results in a sharp, 24% drop. While the 16-bit quantized model is sufficiently

small to fit in the on-chip SPRAM, we decided on 8-bit quantization to make better use of the

limited DSP blocks, performing more 8-bit operations per cycle. The same behavior was observed

in other models as well, where a sharp loss in accuracy occurred after 8-bit quantization. We decide

that 8-bit quantization is a good balance between performance, resource-efficiency, and accuracy;

other industry and academic researchers appear to agree with our analysis, based on the offerings

that exist. In fact, 8-bit quantization seems to have become an industry standard for edge machine

learning [16, 31, 77, 82].

Post-training quantization on multi-classification models had significant accuracy drops, imme-

diately falling to 60%. Therefore, quantization-aware training was conducted to preserve accuracy.

However, training software did not support hard sigmoid activations during quantization-aware

training. To circumvent this issue, we first trained the models using normal sigmoid activations.

After the models were trained, its weights were extracted and additionally retrained in a standard

model that did use hard sigmoid in the activation layers. 8-bit quantization was conducted after all

of these training stages. The accuracy drops per step across all models are shown in Figure 12, and
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Fig. 11. Accuracy of the turbofan model drops sharply at 4-bit quantization.

Fig. 12. Accuracy of all the models through training and quantization.

Table 7. Models’ Accuracy through Processing

Model Turbofan Electrical Motor Urban Sound Intrusion Detection

Baseline 97 90 84.25 81.29

Quantization-aware - - 82.1 77.4

Hard Sigmoid 96.77 88.3 78.3 75.2

8-bit Quantized 90.32 84 73.4 68.2

the accuracy values are presented in Table 7. Both of the multi-classification models experienced

greater accuracy drops than the binary classification models. There is greater accuracy loss with

the Urban Sound model, compared to the Turbofan and Electrical Motor models. The intrusion

detection model experiences the greatest accuracy loss, despite best efforts.

In the end, all evaluated models suffered an accuracy loss spanning 6 to 13 percentage points.

This result is in part due to the fact recurrent neural networks are significantly more susceptible

to accuracy loss from quantization [18]. However, existing work and industry offerings for edge

machine learning appears to accept such accuracy degradations from quantization, demonstrated

by many offerings that focus exclusively on quantized arithmetic while suffering similar accuracy

losses [20, 44]. The benefits of the order of magnitude power and performance improvements from

quantization often outweigh the accuracy losses, especially since edge deployment may simply not

be feasible without it.
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Fig. 13. Accuracy of quantized models according to assigned float range.

We also note that our uniform distribution quantization was done in a straightforward, linear

manner to minimize resource utilization. If more accuracy is absolutely needed by the applica-

tion, then it is possible to more aggressively minimize accuracy loss with more comprehensive

and rigorous quantization-aware optimization techniques, such as asymmetrical or biased quanti-

zation [3, 56]. Such an approach will likely exceed the chip capacities of our target iCE40 chip, but

we could solve this issue by provisioning more resources, e.g., using two iCE40 chips instead of one.

Since we used linear quantization, deciding the valid float ranges for quantization was an impor-

tant step for accurate quantization. To conserve chip resources for the quantized arithmetic unit,

we chose a single float range selection across all layers after evaluating a range of ranges. Figure 13

shows the quantized accuracy fluctuations as the float range was adjusted, for all models. We see

that the quantized accuracy is affected by the defined float range, with the x-axis values depicted

representing defined float range of (-x, x). Smaller quantized ranges gradually fall in accuracy, while

the accuracy for larger ranges experience a more precipitous drop in accuracy. The minimum de-

fined float range in the figure is 2.5 due to the hard sigmoid limits from activation functions.

The minimum float range of 2.5 occurs because otherwise comparisons to the hard sigmoid

limits is not possible. In the lesser flatlining ranges, these are usually caused by the initially

more-distributed unquantized values being truncated and grouped together in float ranges to

quantized values such that quantized arithmetic in the nodes in the model become stagnant.

Outside of these ranges, accuracy gradually climbs, as the float range expands to accommodate

a range of values that fit unquantized values to more appropriate quantized values until a peak

is reached and then falls; at this point, the float range has become overly large, with more space

between them, causing less-distributed unquantized values to experience a greater relative range

shift from their original position.

4.3 FPGA Resource Utilization

The resource utilization for Eciton is presented in Table 8. All four available SPRAM blocks, as

well as six of the eight available DSP blocks, are used. All four SPRAM blocks are utilized for the

potential to store as many weights as possible. Each MAC unit requires two DSP blocks, so four

DSP blocks were needed for the LSTM cell, and two DSP blocks for the dense cell. Overall, the

accelerator uses 94.5% of the board’s logic cells, while achieving a clock frequency of 17.0 MHz.

The total on-chip capacity of the four SPRAM blocks is 256 KB, which can comfortably fit either

of our trained models and potentially significantly larger ones as well.
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Table 8. Eciton On-chip Resource Utilization

Resource Resource Utilization Percent Utilization (%)

LC 4,987/5,280 94.5

SPRAM 4/4 100

BRAM 22/30 73.3

DSP 6/8 75

4.4 Performance Evaluation

We evaluate the performance and power efficiency of Eciton against multiple system configura-

tions, including Keras and our best-effort software implementation on an Intel core i7-8700K CPU,

as well as a Raspberry Pi Zero, an Arduino Uno (ATmega328), and an Arduino Due (ARM Cortex-

M0). We have implemented both quantized and non-quantized models in software and evaluated

both on possible platforms.

The Raspberry Pi Zero was chosen, as it regularly demonstrated good power-efficiency among

similar Linux-enabled embedded systems offerings. We emphasize that the both Arduino systems

do not have enough on-chip SRAM to hold even the quantized model. To obtain an upper-limit

estimate of performance on the Arduino boards, we measured the performance of the software

modified to re-use a much smaller set of weights, resulting in extremely poor accuracy.

Figure 16 presents the performance and power efficiency evaluations of the four models we

evaluate. The first three models, turbofan, motor, and urban sound, show very similar performance

relations. Both keras and our hand-optimized software on the i7 vastly outperforms all embedded

systems. But its high power consumption and low power efficiency make it a poor fit for the edge,

and it is presented here just as a point of reference. Compared with embedded systems such as

the Raspberry Pi and the Arduinos, Eciton vastly outperforms the comparison systems. We also

note that on the i7 and RPi, the floating point implementations outperform quantized ones due

to the added overhead of quantized arithmetic operations, specificially the added normalization

requirement after each operation.

One exception to this pattern is the intrusion detection model on the RPi, where the overhead

of more computation was offset by the reduced size of the model fitting better on the small on-

chip cache. Figure 16(d) shows the power and performance evaluations of the intrusion detection

model, which shows different performance and power efficiency relations. Note that this figure is

presented in logarithmic scale, unlike the other three, due to the wide range of scales. In this ex-

ample, the performance of the Raspberry Pi zero vastly exceeds the Eciton performance, resulting

in better power efficiency compared to Eciton. According to our profiling, this is mainly due to

the tiny size of the model, as shown in Figure 11. The small size of the model means that it can

completely fit within the L1 cache of the CPU systems, resulting in very high performance, as well

as high power efficiency.

4.5 Power-efficiency Evaluation

For power efficiency, we measured the total power consumption during execution of the turbofan

neural network on all systems except the i7 system. For the iCE40 FPGA, we used the Lattice Dia-

mond toolchain’s built-in Power Calculator tool to measure the design’s power consumption [38].

For the i7 system, instead of measuring total system power consumption, we only measured the

difference in power consumption between idle and load states, added with the idle power con-

sumption divided by the number of cores. This was an attempt to make a fair comparison in the

favor of the i7 system, regarding economy of scale in the datacenter.
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Fig. 14. Relative performance of Eciton against Raspberry Pi Zero.

Eciton’s FPGA accelerator measured a power consumption around 17 mW under full load. Cou-

pled with the Arduino Nano emulating sensor data input via USB serial, the average power con-

sumption of the Eciton system under load measured around 290 mW. The power efficiency of

Eciton is an order of magnitude better than other high performance and low power options. The

systems with the next-best power efficiencies were the i7 and the Raspberry Pi running floating

point, but even they were orders of magnitude lower. However, we also emphasize that the Rasp-

berry Pi system cannot be the solution to the extreme edge scenarios Eciton targets, because the

power consumption of the Raspberry Pi is 1,010 mW, 3.5 times greater than Eciton, as seen in

Figure 15.

We also examine the effect of model size on the performance and power efficiency of the top two

evaluated embedded platforms, Eciton and the Raspberry Pi Zero, in Figure 14. While Eciton per-

forms relatively worse compared to the Raspberry Pi Zero for the very small model, we note that

in terms of GOPS Eciton performs consistently high. The relative performance difference comes

from the fact that the model is now small enough that it can fit on the cache of the Raspberry Pi.

However, as we mentioned previously, the Raspberry Pi has a significantly higher power budget,

which may be prohibitive for wide-scale IoT deployment. Selection of system platform must con-

sider all of these points. For the mid-size models, Eciton receives 2–5× performance improvements

and 10-fold improved power efficiency. With the urban classification model, at the SPRAM storage

limit, the performance lags, but the power efficiency is still 50% better.

Eciton was also able to achieve the energy limit requirements of the electric motor scenario. It

took Eciton 31.3 seconds to fully process the 25 seconds of 1/4 sampled data stream as per the

model parameters, at a steady power consumption of 17 mW by the FPGA. Assuming the rest of

the system can be put to sleep during this time, our Eciton’s FPGA accelerator finishes the job

within the 0.6 Joule energy limit imposed by the power harvester. No other system configuration

was able to achieve this milestone.

4.6 Analysis of Performance and Power Evaluations

From our evaluations, we make two important observations:

— Model size is very important for edge deployment: Even for CPU-based systems, the

same model compressed to smaller size demonstrates faster performance, even considering

the added overhead of quantized arithmetic.
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Fig. 15. Power consumption of evaluated hardware.

Fig. 16. Performance and power efficiency evaluations.

— Eciton demonstrates best power characteristics among embedded systems: While i7

or Raspberry Pi systems can sometimes achieve higher power efficiency compared to Eciton,

the base power consumption requirements of such CPU-based systems may mean they can-

not be deployed on extreme edge nodes, depending on the deployment scenario. Compared

to low-power MCUs, Eciton demonstrates superior performance and power efficiency.

As we show in Section 4.8, to reduce the total node power consumption of an edge CPS, the total

power consumption of the computation unit is an important constraint. Among the systems we

evaluated, Eciton is the only one that can achieve reduction of total system power consumption

without loss of performance.
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Table 9. Comparisons against State-of-the-art

Low-power High-power ASIC

Eciton [55] [42] [13] [25] [7] [11] [15]

Platform iCE40 Spartan-7 Artix-7 Zynq-7000 Virtex-7 Zynq-7000 Arria 10 ASIC

mW 17 71 109 1,940 19,630 280 19,100 320

GOP/s 0.067 0.363 0.055 0.29 7.26 7.51 304.1 166.4

GOP/s/W 3.9 5.11 0.5 0.15 0.37 26.84 15.9 520

Fig. 17. Comparison of state-of-the-art performance.

4.7 Comparisons against State-of-the-art

Table 9 shows performance and power efficiency comparisons against state-of-the-art FPGA im-

plementations of LSTMs across various hardware platforms with different scale and capabilities.

We provide two recent works that postdate our prior work [14]: a framework inspired by Eciton

utilizing a variety of optimization techniques for the LSTM [55] and a proposed ASIC design to

accelerate LSTMs using bit-sparse quantized representation [15]. In Figure 17 and Figure 18, we

look at the implementations on the various FPGAs, omitting the ASIC design proposal. Despite

the resource constraints of the iCE40 UP5K platform, Eciton achieves competent performance and

power efficiency compared to other low-power implementations such as those on Xilinx Artix 7

FPGAs. The ASIC systems display superior performance and power efficiency and may become the

obvious choice if they become widely available. However, we note that the cited ASIC system has

a higher power budget than Ecitonand may not be feasible for some scenarios if battery capacity

or power harvesters cannot support it.

While some bigger chips can deliver better performance per watt, resource-constrained edge

deployments may not be able to use them at all due to the power budget. Eciton has been optimized

for the extremely low-power scenario, operating at such minimal power consumption that the next

best state-of-the-art comparison we found is still four times as power-hungry.

We emphasize that, for the four applications we evaluated, we are able to achieve the application

performance requirements even with the performance of Eciton. If Eciton can reach performance

requirements, then its extremely low power budget becomes the primary strength that enables

deployment in the most extreme scenarios.
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Fig. 18. Comparison of state-of-the-art power & power efficiency.

Fig. 19. Total system power consumption of nodes under load.

Eciton’s selected commodity hardware platform is also cost-effective, costing approximately $5

despite its small resource availability, while other state-of-the-art FPGA implementations operate

on platforms with more resources that cost tens to hundreds times more to purchase.

4.8 Total System Power with Networking

Figure 19 shows the sustained, under-load total system power consumption breakdown, includ-

ing network transmission, for the top two most power-efficient embedded systems evaluated: the

Raspberry Pi Zero and Eciton, as well as an Arduino Nano system transmitting all data collected

with no edge computing. The Raspberry Pi and Eciton systems are configured with a low-power

LoRa module, while the Arduino Nano is configured with a faster NB-IoT module due to the higher

data rate required without edge filtering. For example, the electrical motor example collecting data

from 3+ sensors at 2 KHz already exceeds typical LoRa bandwidth, whereas just sending a flag for

every shutdown event is very low bandwidth. The power consumption numbers and performance

of NB-IoT and LoRaWAN was taken from existing work [1, 12, 39].

We can see that the power consumption of Eciton is significantly lower than other systems

despite the FPGA addition. Furthermore, the power consumption is low enough that it can be

sustainably powered by many proposed non-intrusive power-harvesting units [2, 43, 48], meaning

it can continuously operate indefinitely by harvesting power from the ambient environment.

5 CONCLUSION

We have presented the design and evaluation of Eciton, a low-power accelerator for real-time re-

current neural network inference at the edge, which uses post-training quantization and FPGA
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acceleration for high performance and power efficiency. We evaluated Eciton on a wide range

of recurrent neural network models with various characteristics, all of which were from real-

world CPS/IoT deployment scenarios. We demonstrate that, for all models tested, Eciton can ef-

ficiently handle the model sizes, maintain high accuracy, while demonstrating real-time inference

performance, at competitive power efficiency compared even to cloud software with economy of

scale. As a result, Eciton can reduce the total power consumption of the edge CPS/IoT node by

reducing the wireless data transmission requirements at an almost negligible addition of FPGA

power.

Furthermore, the wide range of models we tested demonstrates two important points: First,

Eciton is capable of handling many problems of real-world scale while meeting the performance

requirements. Second, once it satisfies the application performance requirements, the extreme low

power of Eciton makes it uniquely able to satisfy extreme deployment scenarios using small bat-

teries or power harvesters, where more powerful implementations with 100+ mW power budget

cannot operate.

The reduced power and networking requirements enabled by Eciton will allow wider CPS/IoT

deployments coupled with low-power wide-area networking and power-harvesting technologies.

We also plan to explore many other CPS/IoT domains where such a platform can be beneficial,

including those using convolution neural networks and other, more computationally intensive

paradigms.
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