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Strong light-matter coupling has recently been demonstrated in subwavelength volumes by coupling engineered
optical transitions in semiconductor heterostructures (e.g., quantum wells) to metasurface resonances via near
fields. It has also been shown that different resonator shapes may lead to different Rabi splittings, though this
has not yet been well explained. In this paper, our aim is to understand the correlation between resonator shape
and Rabi splitting, in particular to determine and quantify the physical parameters that affect strong coupling by
developing an equivalent circuit network model whose elements describe energy and dissipation. Because of the
subwavelength dimension of each metasurface element, we resort to the quasistatic (electrostatic) description of
the near field and hence define an equivalent capacitance associated to each dipolar element of a flat metasurface.
We show that this is also able to accurately model the phenomenology involved in strong coupling between
the metasurface and the intersubband transitions in quantum wells. We show that the spectral properties and
stored energy of a metasurface/quantum-well system obtained using our model are in good agreement with both
full-wave simulation and experimental results. We then analyze metasurfaces made of three resonator geometries
and observe that the magnitude of the Rabi splitting increases with the resonator capacitance in agreement with
our theory, providing a phenomenological explanation for the resonator shape dependence of the strong coupling
process.

DOI: 10.1103/PhysRevB.89.165133 PACS number(s): 78.67.Pt, 41.20.Cv, 81.07.−b, 78.30.−j

I. INTRODUCTION

Metamaterials are artificial materials whose interaction
with light results in interesting phenomena, including negative
refraction [1,2], superresolution [3,4], artificial magnetism [5],
and cloaking [6]. Recently, increasing emphasis has been
placed on metasurfaces (MSs), i.e., single layers containing
two-dimensional periodic sets of resonators, because their
fabrication is compatible with standard semiconductor pro-
cessing technology and is significantly simpler than that of
three-dimensional (3D) metamaterials.

Metamaterials are able to localize intense electromagnetic
fields in deep subwavelength volumes and thus are excellent
candidates for the study of strong light-matter coupling—
a process in which the excitation energy is periodically
exchanged between matter (e.g., quantum wells, or QWs) and
a MS (i.e., a cavity mode). When strong coupling is achieved,
the following two properties are simultaneously observed: in
the time domain, the electric field radiated by the cavity shows
a beating mode at a characteristic time constant, and in the
frequency domain, this beating corresponds to a splitting of
the single bare cavity resonance into two polariton branches
[7,8] with separation 2�R , with �R being the Rabi (angular)
frequency.

The first experimental reports of strong coupling using in-
tersubband transitions (ISTs) relied on the use of macroscopic
optical cavities [9–16]. Recently, strong coupling has also
been demonstrated through the use of a subwavelength metal-
dielectric-metal microcavity [17] or MSs with subwavelength

*Corresponding authors: sncampi@sandia.gov; f.capolino@
uci.edu

elements [18–21]. Strong light-matter interaction between
planar MSs and ISTs in QWs is easily scalable throughout
the infrared spectrum and occurs on a single resonator level
involving only a small number of electrons [21]. Previous
papers using other subwavelength geometries that include
metallic backplanes have shown strong coupling at the single
resonator level and/or a small number of carriers involved in
the process [22–24]. We remark that such a backplane is not
required to achieve subwavelength volumes as demonstrated
recently in [21] or in this paper. This characteristic makes
our MSs promising for the development of voltage-controlled
tunable optical filters or modulators [25,26].

Strongly coupled systems using ISTs have been treated
quantum mechanically [7,27,28]. Moreover, it has been shown
that different resonator geometries may lead to different Rabi
splittings [29], although an explanation of this phenomenon
has not yet been provided. In this paper, we observe instead
that the near fields responsible for the strong coupling can
be simply and accurately described by the near fields of
electrostatic dipoles, an approach not considered before. Our
analysis addresses and explains phenomenologically the Rabi
splitting dependence on the resonator geometry. This allows
us to develop a closed-form expression for the MS resonator’s
capacitance that explicitly shows the strong-coupling contri-
bution. From this, we develop an equivalent circuit network
model that qualitatively and quantitatively describes the strong
coupling processes.

We show that for the case of a flat MS made of dogbone
resonators presented in Fig. 1(b), the results of the circuit
network model are in good agreement with both full-wave
simulations and experimental measurements. Hence, our net-
work represents a low-order pole-zero polynomial expansion
of the electromagnetic coupling between the MS resonance and
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FIG. 1. (Color online) (a) 3D view of a MS made of split ring
resonators (SRRs) on top of a multilayered substrate comprising
QWs for strong coupling purposes (dimensions are not to scale).
The normal plane wave illumination, with the electric field along y,
is explicitly indicated. (b) Top view of the unit cell of a MS made
of dogbone resonators. Dimensions in micrometers for the spatial
scaling factor 1.0 are indicated (when the scaling factor is varied, all
marked dimensions are scaled accordingly).

the ISTs. Next, we use the circuit network model to analyze
strong coupling for three resonator geometries and observe
that the magnitude of the Rabi splitting can be increased by
increasing the MS resonators’ capacitance. This capacitance
can be understood either as one coefficient of the polynomial
expansion of the coupling or as the physical capacitance of the
quasistatic model developed next.

II. ELECTRODYNAMIC MODEL FOR FIELD-MATTER
INTERACTION

Consider the structure in Fig. 1, where a MS of gold
resonators (100 nm thick) is placed on top of a multilayered
substrate comprising an Al.48In.52As cap layer (30 nm thick)
with relative permittivity εc = 10.23, a slab containing 20
repeat units of an In.53Ga.47As/Al.48In.52As heterostructure
(12.5/20 nm) supporting ISTs at a frequency of �24.2 THz,
and an InP substrate with εs = 9.3. The gold permittivity
εAu is described using a Drude model [30] with parameters
extracted from spectral ellipsometry measurements of a thin,
100-nm gold film, which yield a plasma angular frequency
of 2π × 2060 × 1012 rad/s and a damping rate of 2π ×
10.9 × 1012 rad/s. The ISTs are represented by anisotropic
Lorentzian oscillators matched to experimental data, whose
(relative) dielectric tensor is given as εIST = εt (x̂x̂ + ŷŷ) +
εzẑẑ [20,31,32], with εt = 10.97 and

εz = εt+ fzω
2
0

ω2
0 − ω2 − 2iωγ

(1)

where ω0 = 2π × 24.2 × 1012 rad/s is the IST angular fre-
quency, γ = 2π × 1012 rad/s represents the IST damping rate,
and fz = 1.2 is proportional to the IST oscillator strength,
the doping density, and the intersubband matrix elements
as described in [32]. (The monochromatic time harmonic
convention exp(−iωt), used here and throughout the paper,
is suppressed hereafter.)

Equation (1), together with the tensor εIST, reveals the se-
lection rule for optical excitation of ISTs: only light polarized
along the QWs’ growth direction (here the z direction) can
promote electrons between different subbands.

For a MS array with sufficiently subwavelength elements
(Fig. 1) illuminated at normal incidence, the propagating
incident, reflected, and transmitted waves do not contain
z-polarized fields. However, substantial z-polarized electric
fields are generated in the near field of the resonators within
the array (see the appendix for more details). Due to the
subwavelength dimensions of the MS resonators, the electric
and magnetic near fields exhibit quasistatic behavior and hence
are decoupled. Furthermore, because the electric near field of
a dynamic dipole is equal to the field of a static dipole [33],
we model each resonator as a distributed set of electrostatic
charges to capture the contribution of the z-polarized fields
of the MS subwavelength resonators. Hence, to begin, we
consider the electrostatic problem of a single dipole located
on the free space side and at a short distance from the interface
between the free space and an anisotropic material with εIST
(see the appendix for more details). Following the steps
outlined in [34,35], we estimate the static electric potential
φe of the single dipole at any location in space. Assuming that
the charges composing the single dipole are distributed over
a tiny spherical surface with a radius much smaller than the
charge separation, we obtain an approximate formula for the
capacitance associated to such a dipole located close to the
interface. Using the superposition of effects, summing over
the distributed set of charges on the flat resonator allows us
to obtain an expression for the total capacitance C of the
resonator:

C =
√

εtεz + 1

εt + 1
Cms = Cms + CIST

eq = ξCms (2)

where Cms is the MS resonator’s capacitance per unit
cell when no QWs are considered (i.e., εz = εt ), CIST

eq =
Cms(

√
εtεz − εt )/(εt + 1) is the excess capacitance rep-

resenting the strong coupling to the ISTs, and ξ =
(
√

εtεz + 1)/(εt + 1) is a coupling coefficient. Strictly speak-
ing, ξ takes into account the perturbation of the electric field
lines of the capacitor due to the presence of the ISTs in QWs
with an anisotropic, frequency-dependent dielectric constant
εz in Eq. (1). However, since the parameter ξ is introduced only
in presence of QWs, it can also be understood as a coupling
coefficient. We do not need to know the exact distribution of
point charges in the MS since Cms will be determined using the
method described below. Nonetheless, the linear nature of the
sums required for the calculation of Cms and the establishment
of an excess capacitance show that this method is general for
any subwavelength resonator shape.

Circuit network theory is a common way to model meta-
material properties [36–42]. Equation (2) and the structure
depicted in Fig. 1 allow for the construction of the equivalent
circuit network model shown in Fig. 2, which embodies
the physical processes of the bare flat MS, as well as the
strong coupling to the QWs. The substrate branch (light blue
dashed contour) consists of a resistor Rs that models the wave
impedance of the dielectric layers below the MS. The MS is
modeled via a resistance, inductance, and capacitance resonant
circuit [37] (brown dashed contour) to capture the MS resonant
features (i.e., the “cavity” resonance). The coupling to the
ISTs in QWs is represented by the complex-valued equivalent
excess capacitor CIST

eq , which is arranged in parallel (green
dashed contour) with the MS resonators’ capacitance Cms

165133-2
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FIG. 2. (Color online) Circuit network model with MS
impedance Zms, composed by Rms, Lms, and Cms, and the equivalent
capacitor CIST

eq . The correlation of each circuit element to the real
structure is marked by the dashed contours.

according to Eq. (2). Therefore, when the resonators reside on
an isotropic substrate (i.e., no QWs), εz = εt , CIST

eq = 0, and
the total capacitance is C = Cms. When instead we consider
the flat resonators on top of the QWs, the total capacitance
is C = Cms + CIST

eq = ξCms, as in Eq. (2). From the above
equation, we can estimate the coupling coefficient based on
this quasistatic approximation as ξ = (

√
εtεz + 1)/(εt + 1),

which notably, as a first approximation, depends not on the
MS geometry but only on the QW design.

To obtain the circuit parameters, a full-wave simulation (us-
ing a commercial frequency-domain, finite-element simulator
[43]) of a MS without QWs is performed to determine the
magnitude and phase of the plane wave reflection coefficient
	 under normal incidence illumination with an electric field
polarized along y (we refer the phase to the top metal surface).
We then use a commercial circuit simulator [44] to match
the simulated 	 to the circuit reflection coefficient 	 =
(Z − Z0)/(Z + Z0), with Z0 = 377� (illumination is from
free space) and Z the input impedance of the circuit in Fig. 2,
evaluated just above the MS. This matching procedure in the
frequency band 15–40 THz leads to the frequency-independent
circuit parameters Rs , Rms, Lms, and Cms. The value of CIST

eq
is then simply obtained using Eq. (2)—no further fitting is
performed. The circuit parameters for the dogbone resonator
shown in Fig. 1(b) are given in Table I.

III. TOTAL ELECTRIC FIELD ENERGY EXCESS

To test the accuracy of our circuit model, we compare
the energy and spectral properties obtained from the model
with both full-wave simulations and experimental results. We

TABLE I. Rabi splitting from full-wave simulations and circuit
parameter values in Fig. 2 for the three resonator shapes in Fig. 5
without QWs. We consider a scaling factor of 1.0 for the dogbone
resonator and the circular SRR, and of 0.9 for the Jerusalem cross
resonator.

�R/(2π )
Resonator (THz) Cms (aF) Lms (pH) Rms (�) Rs (�)

Circular SRR 2.1 8.7 4.6 51.8 111.7
Jerusalem cross 2.6 14.6 3.2 17.6 101.9
Dogbone 2.9 16.7 2.6 34.2 117.4

FIG. 3. (Color online) Stored electric energy 
We per unit cell
computed by full-wave simulations (solid black) and circuit network
model (red dashed) for the dogbone resonator case in Fig. 1(b).

first consider the electric energy. In a medium characterized
by a dispersive, absorptive permittivity tensor εIST, the time-
averaged electric energy We contained within the unit cell
volume V is evaluated as [45–47]

We =
∫

V

[
1

4
ε0εt |Et |2 + 1

4
ε0

(
ε′
z + 2ωε′′

z

2γ

)
|Ez|2

]
dV, (3)

where εz = ε′
z + iε′′

z and Et and Ez are the transverse and
longitudinal components, respectively, of the electric field
generated by a (monochromatic) normal plane wave, with
incident power P = 1 W per unit cell with area A = ab.
Using the full-wave simulator, we perform the volumetric field
integral over V representing the various regions of space in
the simulation setup of Fig. 1, as described next. We evaluate
energies in two situations: with and without QWs. Then, we
estimate the amount of energy excess 
We (shown as the
black curve in Fig. 3) due to the presence of the Lorentzian
IST resonance in the QWs as


We = WQW
e − W no QW

e , (4)

where WQW
e and W no QW

e are the total electric energies in
the simulation with and without QWs, respectively. The term
WQW

e is computed by expanding the domain of integration into
subdomains as

WQW
e = 1

4
ε0

(
ε′
z + 2ωε′′

z

2γ

)∫
VQW

∣∣EQW
z

∣∣2
dV

+ 1

4
ε0εt

∫
VQW

∣∣EQW
t

∣∣2
dV +

∑
i

1

4
ε0εi

∫
Vi

|EQW|2dV,

(5)

where the first two terms refer to the QW region in the unit
cell and, in the last term, i = {vacuum (200 nm), cap layer}
represents the two volumetric regions outside the QWs in the
unit cell. As a first approximation we include only a narrow
portion (200-nm thickness) of the vacuum region because we
only account for the near-field energy close to the resonators;
likewise, we do not include the InP substrate because near
fields decay rapidly within the QWs. The permittivity εz is
dispersive in the QWs due to the ISTs; therefore, the energy
must be calculated accordingly. The energy term W no QW

e , in
the absence of the QWs (and thus without ISTs), is instead
computed as

W no QW
e =

∑
j

1

4
ε0εj

∫
Vj

|Eno QW|2dV , (6)
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with j = {vacuum (200 nm), cap layer, isotropic QW layer},
where the permittivity is nondispersive in all three volumetric
regions. Approximations to the volumetric regions mentioned
in regards to Eq. (5) are also applied to Eq. (6). These
energies are computed numerically using total fields (i.e.,
including both plane wave and reactive components) obtained
from full-wave simulation for both the absence and the
presence of the QWs, properly dividing the integration regions
and polarizations and considering the IST-induced frequency
dispersion in the QWs. Close to the resonators (i.e., in the near
field), the total field is, as a first approximation, dominated by
the reactive components.

We now show that 
We per unit cell can also be determined
using the circuit model and compare it to the full-wave result.
We can evaluate the magnitude of the driving (incident)
electric field as E0 = √

2Z0P/A. The total transverse electric
field at the input impedance terminals is then given by
Et = E0 (1 + 	) ŷ. The term WQW

e is then computed, assuming
an incident traveling voltage wave of Vinc = E0b, as

WQW
e = 1

4

(
C ′ + 2ωC ′′

2γ

) ∣∣V QW
C

∣∣2
, (7)

where V
QW
C (evaluated as shown in the appendix) is the voltage

acting on the total capacitor C = C ′ + iC ′′ given by Eq. (2).
In Eq. (7), we have applied the same dispersive condition as
in Eq. (3) in the framework of circuit theory [48], assuming
a damping rate as in Eq. (1). The term W no QW

e is instead
computed simply as

W no QW
e = 1

4Cms

∣∣V no QW
C

∣∣2
(8)

where V
no QW
C is the voltage acting on the MS resonators’

capacitor Cms (evaluated as shown in the appendix). The en-
ergy difference due to the QWs obtained using this procedure
is shown as the red dashed curve in Fig. 3. The agreement
between the energy 
We evaluated via full-wave simulations
and that evaluated via circuit network theory shown is quite
remarkable, given that the circuit network model is based on
a quasistatic approximation and the coupling coefficient ξ in
closed form, as in Eq. (2), and hence is extremely simple. If
instead of using Eq. (2) we evaluate CIST

eq via a second fitting
procedure, using the circuit simulator similar to what was done
for Cms but this time using full-wave data in the presence of
QWs, the agreement for the peaks’ locations would be further
improved, validating the circuit topology in Fig. 2; however,
our point is that even the simple formula in Eq. (2), with
coupling coefficient ξ determined analytically, provides a good
explanation.

IV. SPECTRAL REFLECTIVITY

Figure 4(a) shows the |	|2 reflectivity maps obtained from
full-wave simulations of the MS of dogbone resonators on
top of QWs as a function of the bare cavity resonance,
controlled by scaling the MS geometry. To generate this
map, we simulated a set of MSs for which all spatial
dimensions of the MS of dogbone resonators are scaled by
a common scaling factor that varied between 0.7 and 1.2
[relative to the dimensions shown in Fig. 1(b)]. For each
scaling factor, we performed a full-wave simulation of the

FIG. 4. (Color online) Maps of reflectivity |	|2 from (a) full-
wave simulation, (b) circuit network model, and (c) experimental
setup for the dogbone structure in Fig. 1(b) with QWs. Only the
values relative to bare cavity frequencies pertaining to scaling factors
0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 were used. Continuous plots are shown
for better visibility.

MS without the QWs to determine the bare cavity resonance
frequency as the location of maximum reflectivity. Next, we
performed simulations including the QWs and plotted the
obtained reflectivity spectra versus the bare cavity frequency.
Figure 4(b) shows the corresponding maps obtained from the
circuit model. For each scaling factor used in Fig. 4(a), we use
the full-wave simulation result (without the QWs) to obtain
the circuit parameters Rs , Rms, Lms, and Cms. We then use
Eq. (2) to calculate CIST

eq , which is then inserted in the circuit
model to obtain the reflectivity spectra. Finally, Fig. 4(c) shows
the experimentally measured reflectivity spectra for a set of
MSs with the same scaling factors [21]. The splitting around
24 THz is clearly visible in the experiment, as well as in the
simulations. In addition, extremely good agreement between
the circuit model and the full-wave simulation is observed.
The small reflectivity magnitude mismatch in the experimental
reflectivity with respect to other results is attributed to
fabrication imperfections. The results in Fig. 4, together with
those in Fig. 3, show that Eq. (2) is correct and confirm the
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FIG. 5. (Color online) Three resonator structures, along with
dimensions (in micrometers) for a scaling factor of 1.0.

validity of the circuit model introduced in Fig. 2. In turn, this
implies that the electrostatic near fields of dipoles can be used
to accurately describe the strong coupling processes, a result
that may not be as straightforward in complex systems as the
one analyzed here. To our knowledge, such an approach has
never been described before.

V. PARAMETERS CONTROLLING THE
COUPLING STRENGTH

It follows from Eq. (2) that only two parameters affect
strong coupling: the capacitance Cms and the coupling coef-
ficient ξ . The coupling coefficient ξ is the only parameter
that contains the Lorentzian dispersion in ISTs through the
quantity

√
εtεz, but it does not contain information on the MS

element shape, further stressing the elegance and simplicity
of the proposed model. More efficient ISTs (i.e., stronger
anisotropy, and thus larger ξ ) might lead to larger splitting. For
example, in our QW structure, the optically active transition
happens between the ground state and the first excited state.

A larger oscillator strength, and hence larger Rabi splitting,
can be achieved through the use of transitions between higher
states inside the same QW, for example as demonstrated in
[18]. When comparing the performance of different resonator
geometries using the same QWs, ξ will be unchanged and the
magnitude of the coupling will only change if Cms changes.
Other MS circuit parameters will, in principle, also affect
the spectral properties, because they contribute to reflection
magnitude and resonance quality factor.

To elucidate the effect of the MS elements on strong
coupling, we consider the three MSs based on the three
resonator geometries shown in Fig. 5 (the dimensions of
structures for scaling factor 1.0 are indicated therein): (1)
circular split ring resonator (SRR); (2) Jerusalem cross; and
(3) dogbone. The three MSs are on top of the same QWs
described by εIST. For each resonator type, we perform both
full-wave and circuit model simulations over a range of scaling
factors to map out the polariton branches, corresponding to the
locations of two reflectivity maxima. The magnitude and phase
of the reflection coefficient 	 for the three resonator geometries
scaled to resonate with the ISTs are shown in Fig. 6. The
top row of Fig. 6 shows the situation without QWs. A single
resonance is observed for the three geometries, and in the
vicinity of this resonance, the circuit model results (dashed
curves) are in good agreement with full-wave results (solid
curves). This result further shows that our fitting procedure
recovers circuit parameters that accurately reproduce the
resonant features of the MS when CIST

eq = 0. Inserting CIST
eq ,

obtained from Eq. (2), in the circuit model corresponds to the
cases where QWs are present and leads to a splitting of the
primary resonance, as is shown in the bottom row of Fig. 6.
Again, good agreement between the circuit model and the

FIG. 6. (Color online) Magnitude and (unwrapped) phase of 	 from full-wave simulation (black solid) and circuit network model (red
dashed) for the three structures in Fig. 5 without QWs (top row) and with QWs (bottom row). We consider a scaling factor of 1.0 for the
dogbone resonator and the circular SRR, and of 0.9 for the Jerusalem cross resonator.
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FIG. 7. (Color online) Plot of the two polariton branches versus
the bare cavity frequency for the three resonator structures in Fig. 5
obtained from full-wave simulation (black solid) and circuit network
theory (red dashed).

full-wave results is observed in the vicinity of the resonances.
We recall that circuit parameters are retrieved considering the
frequency range 15–40 THz and that if one also desires to
match other frequencies, more complicated circuit branches
will be necessary.

Figure 7 shows the two polariton branches as a function
of the bare cavity frequency (controlled by the scaling factor)
for the three resonators obtained using the circuit model and
full-wave simulation. Excellent agreement with the full-wave
results is obtained. These plots nicely show the splitting due
to strong coupling, and through the use of Eq. (6) in [8], we
are able to estimate the Rabi splitting �R , which is reported
in Table I. Table I also lists the circuit parameters Rs , Rms,
Lms, and Cms for each resonator geometry for the scaling
factors that lead to nearly coincident MS and IST resonant
frequencies. Specifically, these parameter correspond to the
dogbone resonator and the circular SRR with a scaling of 1.0
and to the Jerusalem cross resonator with a scaling of 0.9. In
the parameter retrieval, we have allowed Rs to slightly change
for the different structures because higher-order transverse-
magnetic-polarized modes may propagate into the substrate
for the considered unit cell sizes and thus contribute to extra
losses in the structure.

Importantly, we see from Table I that the capacitance values
of the dogbone and Jerusalem cross resonators are similar
in magnitude, leading to similar Rabi splittings. In contrast,
the capacitance of the circular SRR is smaller, causing the
narrower splitting observed in the full-wave result in the
bottom row of Fig. 6 and in Fig. 7. This confirms the prediction
made earlier that the splitting only depends on the value of
Cms, assuming the coupling coefficient ξ does not change for
the three cases. To confirm this observation, we redesigned
the circular SRR with wider traces to increase its capacitance
(diameter of 1.15 μm and traces of 0.35 μm for scaling factor
1.0, exhibiting Cms ≈ 13.7 aF). With such a resonator, we get
the expected larger Rabi splitting of �R/(2π ) ≈ 2.4 THz.
Based upon our theory, we believe that the microcavity designs
featuring metallic backplanes, such as the ones presented in
[49,50], are good choices to enhance light-matter coupling,
since they should be characterized by a large capacitance.
However, to verify this concept, the current circuit model
would need to be updated to account for the backplane.

We have seen that the Rabi splitting directly depends on the
capacitance Cms and thus on the resonator geometric param-
eters. For isolated SRRs without substrate, the capacitance
can be expressed as [51] CSRR = Cgap + Csurf , with Cgap =

ε0hw/g + ε0 (h + w + g) (which comprises the parallel-plate
capacitor formed by the gap and a correcting term due to
the fringing fields) and Csurf = [2ε0(h + w) log(4R/g)]/π as
the surface capacitance, where h is the SRR thickness, w

is the SRR trace width, g is the SRR gap, and R is the
SRR inner radius. Using such formulas for the two SRR
geometries analyzed above, we obtain CSRR

∼= 7 aF and ∼=12.6
aF, respectively, showing the same order of magnitude as
reported above for the two MSs. More accurate formulas would
require us to account for the substrate. However, similar trends
with geometric parameters are expected.

VI. CONCLUSION

We have reported an equivalent electrodynamic model
for strong coupling between a MS and the ISTs in QWs
by resorting to an equivalent circuit network theory and the
electrostatic near fields of the flat MS dipoles. Such a model
qualitatively and quantitatively explains the energy stored near
the MS and the energy exchanged between the MS and the ISTs
in QWs. It is also able to recover the reflection and transmission
spectral properties of systems where electromagnetic fields
and ISTs are strongly coupled. We have adopted this model
at midinfrared frequencies, but our findings will apply in any
given wavelength range. Despite the 3D (volumetric) nature of
the light-matter coupling, we observed that the strong coupling
mechanism is governed mainly by only two parameters: the
coupling parameter ξ , which depends on the QW design and
not on the MS geometry, and the MS resonator’s capacitance
Cms in the absence of QWs. Although the use of the electro-
static fields of a dipole to describe the strong coupling process
may at first seem surprising, its validity is based on two main
observations. First, the QWs interact only with z-polarized
electric fields. Due to the subwavelength period of the array,
the propagating transmitted and reflected electric fields contain
no z component. Thus, z-polarized fields occur only in the
quasistatic (i.e., near-field) zone of the MS resonators and are
well described by electrostatic dipolar fields. Second, near-
field interactions among resonators in the MS are negligible
due to the rapid decay of the fields. Through the use of this
parameterization, we have demonstrated that the Rabi splitting
increases with the capacitance Cms, thereby providing a
phenomenological explanation of why different Rabi splittings
have been observed with different resonator shapes. The results
reported in this paper provide us with a pathway to increase
the Rabi splitting by (1) optimizing the MS by increasing the
resonators’ capacitance and (2) optimizing the QW design
(e.g., by increasing the oscillator strength). Such optimization
may enable us to go beyond strong coupling regime by using
planar MSs coupled to ISTs in QWs at infrared frequencies.
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APPENDIX

1. Steps to achieve Eq. (2)

Consider a uniaxial anisotropic material with a (relative)
dielectric tensor

ε = εt (x̂x̂ + ŷŷ) + εzẑẑ. (A1)

The displacement field is expressed as D = ε · E. We also
know that the equation ∇ · D = ρe has to be satisfied, where
ρe is the electric charge density. Limiting the analysis to
electrostatic fields, because the structures used in the MS are
subwavelength, the electric field near the MS resonators is well
approximated by

E = −∇φe (A2)

where φe is the scalar electric potential generated by the charge
density ρe accumulated at the ends of the dogbone shape in
Fig. 1(b), for example.

Consider now the scenario of a point charge qe (thus
ρe = qeδ(r − re), with re = sẑ) located close to the interface
between the free space and a uniaxial anisotropic material (the
ISTs in QWs), as shown in Fig. 8, where the point charge is in
the free space side at a distance s from the interface.

Following the steps in Refs. [34,35], the potential φe at a
point (x,y,z) within free space is given by

φe = qe

4πε0

⎡
⎣ 1

R−
−

√
εt εz−1√
εt εz+1

R+

⎤
⎦ (A3)

where R± =
√

x2 + y2 + (z ± s)2 represents the distance
either from the charge or from its image, whereas within the
anisotropic material, φe is

φe = 1

4πε0

2qe√
εtεz + 1

1√
x2 + y2 + (√

εt

εz
z − s

)2
(A4)

The potential is continuous across the interface at z = 0.
Knowing Eqs. (A3) and (A4) for a single charge, we now
consider a transverse dipole made of two displaced and

opposite charges ±qe with separation d located very close to
the interface, i.e., s = 0+. We further assume that the charges
are uniformly distributed around small spherical surfaces
with radius rc � d (so that we can consider it uniformly
distributed). We can then estimate the capacitance associated
with such a two-charge system as

C = qe

φ+ − φ−
, (A5)

where φ+ − φ− is the potential difference between the two
charges and φ+ and φ− are the potentials at the surface
of the positive and negative charge spherical distributions,
respectively.

Using Eq. (A3), the potential at any observation point within
free space is

φe = qe

4πε0r1

[
1 −

√
εtεz − 1√
εtεz + 1

]
− qe

4πε0r2

[
1 −

√
εtεz − 1√
εtεz + 1

]

(A6)

where r1 and r2 are the distances from the given observation
point to the positive and negative charge positions, respec-
tively. In particular, for the observation point at the surface
location of the positive distributed charge, we have r1 = rc

and r2 ≈ d because rc � d. Therefore, the potential φ+ is
given by

φ+ = qe

4πε0

2√
εtεz + 1

(
1

rc

− 1

d

)
. (A7)

Similarly, at the surface location of the negative distributed
charge, we have r1 ≈ d because rc � d and r2 = rc, so the
potential φ− is given by

φ− = qe

4πε0

2√
εtεz + 1

(
1

d
− 1

rc

)
. (A8)

Thus, the potential difference is equal to

φ+ − φ− = qe

4πε0

4√
εtεz + 1

(
1

rc

− 1

d

)
. (A9)

Therefore, we can obtain the formula for the capacitance, under
the assumption rc � d:

C = πε0rc(
√

εtεz + 1). (A10)

In this construction, the charge size rc does not need to be
known. (Any distribution can be used; however, this would
result in different geometrical factors in Eq. (A10) instead of
the factor rc.) The capacitance associated with the same two-
charge system on top of a fully isotropic material (i.e., when the
anisotropic layer is replaced by an isotropic material with εz =
εt ) is C0 = πε0rc(εt + 1). (In free space, εt = 1 and C0 =
2πε0rc as the result in the literature for a two-charge system
in free space [52–56].) Therefore, we can rewrite Eq. (A10) as

C =
√

εtεz + 1

εt + 1
C0 = ξC0 (A11)

and most importantly, the ratio C/C0 = (
√

εtεz + 1)/(εt + 1)
does not depend on the unknown size rc of the charge
distribution.

A flat resonator (like those in Figs. 1 and 5) is in
general described by a distributed set of charge pairs, i.e.,
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dipoles sharing the same potential difference under the static
approximation. To determine the same functional dependence
C/C0 shown above for a set of charges, we assume that the
charge distribution is flat; i.e., all charges are at the same
distance from the substrate underneath. This in turn means that
the effect of each pair of charges is accounted for by Eq. (A11)
and that after applying the superposition of effects, Eq. (A11)
can be generalized to Eq. (2) by substituting Cms for C0, which
results from the summation over the resonator’s distributed
charge distributions. This is an approximate equation to model
the complex system of a flat MS and the ISTs in QWs
underneath. The use of Eq. (A11) provides us with the means
for understanding which parameters affect the strong coupling
processes and is found to be remarkably accurate for the ana-
lyzed flat MSs, also based on what is shown in the next section.

2. Comparison of electric fields under a MS made of dogbone
resonators, calculated with electrostatic and full-wave models

We show that the field generated by a set of electrostatic
charges placed on the paddles of a dogbone resonator, as
in Fig. 9, recovers the electric field calculated via full-wave
simulations, validating the quasistatic approximation used in
the circuit model.

To do so, we perform two full-wave simulations of a MS
made of dogbone resonators: (1) as in Fig. 1, where the
anisotropic region has finite thickness, denoted as Full-wave
1, and (2) as in Fig. 8, where the anisotropic region has infinite
thickness, denoted as Full-wave 2. In both simulations, the
environment below the resonators starts at z = 0. We then
apply the formalism reported in Eq. (A2) in the prior section
at the IST resonance frequency of 24.2 THz and evaluate the
electrostatic field generated by two sets of opposite charges
uniformly distributed on the two paddles of the dogbone, as
in Fig. 9 (we consider them to be at z = s = 50 nm, i.e.,
midway through the thickness of the dogbone resonator). The
anisotropic region starts at z = 0.

We then show in Fig. 10 the magnitude of the electric
field components (each component is normalized to its own
maximum) in the x-y plane (cut at z = −100 nm for all
simulation setups within the anisotropic region). The two

FIG. 9. (Color online) Sketch of the two sets of electrostatic
positive and negative charges displaced on the paddles of a dogbone
resonator (the charges are uniformly distributed). Dimensions in
micrometers are reported.

full-wave simulations provide similar electric field patterns
(the decay along the z direction is also similar but is not
shown for brevity), so the approximation that assumes the
anisotropic medium below the MS to be half space can be
safely applied to determine the electric fields and thus the
capacitance. In the presence of QWs, the strongest near-field
component at resonance is the Ez component for all resonator
shapes considered. This in turn shows that with QWs present,
most of the electric energy is stored by Ez in the near fields of
the resonators. This is precisely the field component required
for the excitation of the ISTs according to the dipole selection
rule. However, in the absence of QWs the strength of the
Ez relative to the other field components depends upon the
resonator shape. However, in the electrostatic case in Fig. 10,
which provides field distributions in remarkable agreement,
we are simulating an isolated unit cell, not a periodic set
of dogbones. Therefore, coupling among MS unit cells is
neglected in this simulation. Moreover, we are considering
a uniformly distributed set of charges on the dogbone paddles,
and this seems not to be exactly the case when looking
at full-wave simulation results. Nonetheless, the result in
Fig. 10 proves that the near-zone electric field generated by
the dogbones can be predicted by a distribution of electric
dipoles. As such, the electrostatic approximation adopted in
part of this paper is valid. Finally, in the equivalent circuit
model, the capacitors mainly store only electric energy, which
is associated to the volumetric integrals integrating the strong
energy density over the small volume above and below the MS
elements. In particular, CIST

eq is defined assuming only Ez, and
since this field component cannot propagate away from the
MS, it is completely defined in the near field.

Though the circuit model uses capacitors to represent
the MS-QW coupling, highlighting the Ez electric energy
channel for the strong coupling, the circuit model in Fig. 2
could also be devised based on a simple pole-zero expansion
in the polynomial approximation of the numerator and the
denominator of the reflection coefficient 	. Indeed, it is well
known that certain polynomial expansions are associated with
realizable (i.e., physical) passive circuit elements and that
the polynomial coefficients can be expressed in terms of
lumped elements values. Therefore, despite the use of a static
approximation in this paper, such equivalent circuit models
can be generalized to more complicated structures.

3. Computation of V QW
C and V no QW

C in Eqs. (7) and (8)

We provide here the steps to compute the voltages V
QW
C

and V
no QW
C across the capacitors, with and without QWs in

the region below the MS, as required for the calculation of the
energy 
We via circuit network theory.

Given the circuit model in Fig. 2, and knowing the incident
traveling voltage wave Vinc = E0b, evaluated just above the
MS layer, the total transverse voltage at the input impedance
terminals accounts for the reflected wave as Vt = E0(1 + 	)b.
The current flowing in the upper branch of the circuit network
can be calculated as follows. Let us consider first the case
without QWs (i.e., CIST

eq = 0). In such a case, the current
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FIG. 10. (Color online) Magnitude of the electric field components in the x-y plane (cut at z = −100 nm for all simulation setups within
the anisotropic region) in the case of a MS made of dogbone resonators. Comparison between electrostatic and full-wave solutions shows
agreement. The difference between the two full-wave simulations is in the anisotropic region thickness, of finite extent for Full-wave 1 and
infinite extent for Full-wave 2, as described in the text.

flowing in the MS branch is given by

Ims = Vt

Zms
= E0(1 + 	)b

Rms − iωLms + i/(ωCms)
. (A12)

The voltage across the MS capacitor is then given by the
generalized Ohm’s law for impedances:

V
no QW
C = i

ωCms
Ims. (A13)

In the presence of QWs, similar steps can be applied. In
particular, assuming the two capacitors in parallel, Ims is now

given by

Ims = Vt

Z′ = E0(1 + 	)b

Rms − iωLms + i
/[

ω
(
Cms + CIST

eq

)] . (A14)

The voltage across the IST capacitor is then given by

V
QW
C = i

ω
(
Cms + CIST

eq

)Ims. (A15)
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