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Abstract

Aspects of Exchangeable Partitions and Trees

by

Christopher Kenneth Haulk

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor James W. Pitman, Chair

Exchangeability – the probabilistic symmetry meaning “invariance under the action of
the symmetric group,” or less formally, “irrelevance of labels or indices” – has been the
subject of continuing interest to probabilists and statisticians since de Finetti’s celebrated
characterization of infinite exchangeable sequences of Bernoulli random variables as mixtures
of IID sequences. The topic of this dissertation is exchangeability as it pertains to random
partitions and trees.

The main result is a de Finetti-type theorem characterizing a class of exchangeable trees
called hierarchies which arise in connection with fragmentation processes and hierarchical
clustering problems. The other results are somewhat related in that they involve consid-
eration of moments of statistics of exchangeable partitions or trees. One of these concerns
random trees with leaves labeled by consecutive natural numbers which are exchangeable in
the sense that deterministic permutation of the leaf labels does not change the distribution
of the tree. In such trees, the set of interleaf distances is exchangeable, and so, for exam-
ple, the distance between leaf 1 and leaf 2 is equal in distribution to the distance between
leaf 2 and leaf 3. Distributional constraints of this type arising from exchangeability can
be used to characterize “finite dimensional marginals” of well-understood trees such as the
Brownian CRT. As an application we show that the Brownian CRT is the scaling limit of
uniform random hierarchies. Another result is the characterization of the two-parameter
family of Ewens-Pitman partitions by a kind of deletion property: speaking loosely, the
Ewens-Pitman family is the class of exchangeable partitions in which the block containing 1
carries no information about the rest of the partition.
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Chapter 1

Introduction

1.1 Exchangeability

A finite sequence (Xi, 1 ≤ i ≤ n) of random variables is said to be exchangeable if for every
permutation σ of [n] := {1, . . . , n} there is the following equality in distribution,

(X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n)), (1.1)

and likewise an infinite sequence (Xi, i ≥ 1) of random variables is said to be exchangeable if
(1.1) holds for all n ≥ 1 and all permutations σ of [n] [40]. Less formally, random variables are
exchangeable if the order in which they are presented is irrelevant or if labels are unimportant.
This latter formulation makes plain the appeal of exchangeability for modeling purposes, for
it is often tempting to regard the order in which data is presented as irrelevant [38]. The
key fact about exchangeable sequences is that they are mixtures of IID sequences. That is,
every infinite exchangeable sequence is derived as if by first sampling a realization µ0 of a
random probability distribution µ and then sampling a realization of an IID sequence with
common distribution µ0. Bruno de Finetti’s Theorem expresses this notion more precisely.

Theorem 1 (de Finetti [30, 15], Hewitt & Savage [59]). If (Xi, i ≥ 1) is an infinite sequence
of exchangeable random variables then on the same probability space as (Xi) there is random
probability distribution µ called the directing measure of (Xi) for which for every n ≥ 1 and
every sequence f1, . . . , fn of bounded measurable functions there is the following almost sure
equality,

E [f1(X1) . . . fn(Xn) | µ] =
n∏
i=1

∫ ∞
−∞

fi(x) µ(dx).

Furthermore, the sequence of empirical distributions of (X1, . . . , Xn) converges to µ in dis-
tribution almost surely; i.e., with δx denoting the Dirac mass at x,

µ = lim
n→∞

1

n

n∑
i=1

δXi
a.s.
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where the limit is taken in the distributional sense. The measure µ is therefore measurable
with respect to the tail sigma field

⋂
n≥1 σ(Xn, Xn+1, . . .) of (Xi).

For extensive discussion of exchangeability and related topics see see [11].

1.2 Exchangeable combinatorial structures

The notion of exchangeability has been generalized considerably in the 85 years since de
Finetti first opened the discussion on this topic. Notably there are now de Finetti-type
characterizations of infinite exchangeable random arrays [10], partially ordered sets [64],
graphs [33], total orders [62, 50], and partitions [70]. Exchangeability for these objects means
invariance in distribution for some obvious or natural action of the symmetric group [6]. The
case for exchangeable partitions is illustrative: a random partition Π = {B1, B2, . . .} of N
is said to be exchangeable if for every finite permutation σ of N, there is the distributional
equality

Π
d
= σ (Π) := {{σ(b) : b ∈ B} : B ∈ Π},

i.e. if for every bijection σ : N 7→ N that fixes all but finitely many natural numbers the
partition derived by relabeling the contents of the sets or blocks that constitute Π by σ is
equal in law to Π. The de Finetti-type characterization of exchangeable random partitions,
provided by Kingman, may be stated succinctly as follows:

Theorem 2 (Kingman [70]). If Π is an exchangeable partition of N then Π is equal in
distribution to a partition derived from an independent and identically distributed sequence
(Ui, i ≥ 1) of uniform[0,1] random variables and a random open subset U of the unit interval
by putting natural numbers i and j in the same block if and only if either i = j or Ui and Uj
fall in the same connected component of U .

By a de Finetti-type characterization is meant a theorem asserting that every distribution
of an exchangeable random object can be expressed as a mixture over simpler distributions.
Uniqueness of the mixture representation is often asserted. So, in the case of infinite se-
quences of exchangeable random variables, the class of simpler distributions is the class of
distributions of IID sequences, and in the case of exchangeable partitions of N, these simpler
distributions are distributions of partitions derived as in Theorem 2 from a sequence of IID
uniform random variables (Ui) and a nonrandom open set U by putting natural numbers i
and j in the same block if and only if Ui and Uj lie in the same connected component of U .

1.3 Exchangeable hierarchies

A hierarchy (a.k.a. total partition, laminar family, phylogeny) on a set S is a collection H of
subsets of S satisfying two conditions:
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Figure 1.1: Examples of graphs of hierarchies.

• ∅ ∈ H, S ∈ H, and for all s ∈ H, {s} ∈ H

• If A,B ∈ H then either A ∩B equals A or B or ∅.

The leaves of a hierarchy on a set S are the singleton subsets of S. Hierarchies are associated
to certain trees, as suggested by Figure 1.1 and explained in detail in Chapter 2. Hierarchies
appear as solutions of hierarchical clustering problems [1], and in probability hierarchies
appear in connection with fragmentation and coagulation processes [23]. In these contexts
it is natural to consider exchangeable random hierarchies, that is, random hierarchies whose
distributions are unchanged by permutations of the leaves. More precisely, if H is a random
hierarchy on a (nonrandom) finite set S then H is exchangeable if and only if there is the
equality in distribution

H d
= {{σ(s) : s ∈ H} : H ∈ H}

for every permutation σ of S. A sequence (Hn, n ≥ 1) of hierarchies is consistent if for all
n ≥ 1, Hn is a hierarchy on [n] and the restriction of Hn+1 to [n] equals Hn, i.e. if

Hn = Hn+1

∣∣∣
[n]

:= {H ∩ [n] : H ∈ Hn+1}.

An exchangeable hierarchy on N is a random sequence (Hn) of consistent hierarchies for
which for all n ≥ 1, Hn is exchangeable. In Chapter 2 we prove the following de Finetti-
type representation theorem for exchangeable hierarchies. A few definitions are necessary
to understand the statement of the Theorem: firstly, a real tree is a tree-like metric space
– a precise definition following [42] is given in Chapter 2 but the essential properties of a
real tree are that it be path-connected and loop-free, so that between any two points in the
space there is a unique geodesic path; secondly, weighted, rooted real tree (T, p) is a real tree
T that equipped with a distinguished element ρ called root and a probability measure p on
the Borel subsets of T ; lastly, for a point x in a in rooted real tree T , the fringe subtree of
T rooted at x is the set Fx(T ) := {y ∈ T : the geodesic path from y to root ρ passes through
x}.

Theorem 3. If H is an exchangeable hierarchy on N then H is equal in distribution to a
hierarchy H′ derived from a random weighted rooted real tree (T, p) and a sequence of random
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elements (t1, t2, . . .) of T that are independent and identically distributed with distribution p,
conditionally given (T, p), as follows,

H′ := {{n ∈ N : tn ∈ Fx(T )} : x ∈ T} ∪ {S,∅} ∪ {{n} : n ∈ N}. (1.2)

Therefore (1.2) in Theorem 3 says that the fringe subtrees of the weighted rooted real
tree (T, p) correspond to elements of the exchangeable hierarchy H′ of that theorem. This
is discussed in detail in Chapter 2.

1.4 The deletion property for exchangeable partitions

One way to get new partitions from old is by deleting blocks and remapping. To be more
explicit, suppose that π = {B1, B2, . . .} is a partition of N into at least two blocks B1, B2, . . .
that are ordered by least elements, so that 1 = minB1 < minB2 < . . ., and suppose that
N \ B1 is an infinite set. Let F denote the unique increasing bijection that maps the set⋃
j≥2Bj onto N, and define a new partition π′ by

π′ := {{F (i) : i ∈ Bj} : Bj ∈ Π and j ≥ 2}. (1.3)

Then π′ is the partition of N derived by deleting the first block of π and mapping the resulting
partition back to N.

Say that a random partition Π = {B1, B2, . . .} of N has the deletion property if N \ B1

is almost surely an infinite set and if B1 and Π′ are independent, for Π′ the partition of N
derived from Π by deleting the first block as above.

It is easy to construct random partitions with the deletion property. For example: let
(Li) be a sequence of independent positive integer-valued random variables and let Π =
{{1 . . . , L1}, {L1 + 1, . . . , L1 + L2}, . . .}. It is less easy to construct exchangeable partitions
with the deletion property. The partition of N into singletons is a trivial example of an
exchangeable random partition with the deletion property. For a less trivial example, fix an
integer M ≥ 1 and let (Xi) be a sequence of IID random variables with P(Xi = k) = M−1

for k = 1, . . .M . Then form the coupon-collector’s partition by declaring i and j to be in the
same block if and only if Xi = Xj.

In Chapter 3 we characterize the class of exchangeable random partitions of N with
the deletion property. Aside from the pure singleton partition and the coupon collector’s
partition, the only exchangeable partitions of N with the deletion property are members
of the two-parameter Ewens-Pitman family of partitions. The distribution of an Ewens-
Pitman(α, θ) partition Π is best described by its marginals: if Πn denotes the restriction of
Π to [n] and {B1 . . . , Bk} is a fixed partition of [n], then

P(Πn = {B1, . . . , Bk}) =
(α + θ) . . . ((k − 1)α + θ)

(θ + 1) . . . (θ + n− 1)

k∏
i=1

(1− α) . . . (#Bi − 1 + α). (1.4)
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Here, (α, θ) is a pair of real numbers satisfying the condition 0 ≤ α ≤ 1 and θ > 0, or α < 0
and θ = −αM for some integer M , the numerator in the ratio is understood to equal 1 if the
number k of blocks of {B1, . . . , Bk} equals 1, and #Bi denotes the size of the set Bi. This
characterization theorem was first published in [46], following Pitman [82, 83]. For earlier
work, see [69], where Kingman characterizes exchangeable partitions Π with the deletion
property and having the additional property that for Π′ derived by deleting the first block

of Π, Π′
d
= Π, as the class of partitions of the form (1.4) for α = 0, θ > 0.

1.5 Characterization of the Brownian CRT and appli-

cation to uniform hierarchies

A random real tree is a random metric space satisfying a few properties that informally mean
that the space is “tree-like.” The Brownian continuum random tree (CRT) is perhaps the
best example of a random real tree. It can be defined recursively as follows: let (Xi) denote
the sequence of interpoint distances of a Poisson point process of rate t dt on [0,∞); so in
particular X1 has Rayleigh distribution. Let T1 be a space isomorphic to a line segment of
length X1. This space T1 comes equipped with the uniform probability measure which is
simply normalized length measure on T1. Now, recursively for integers k ≥ 1, assuming Tk
has been defined,

• select a point uniformly at random from Tk according to normalized length measure

• graft to the chosen point a branch of length Xk+1

• call the resulting space Tk+1 and define normalized length measure on Tk+1 in the
obvious way.

As in [2] this “intrinsic” or coordinate-free construction can be made explicit by embedding
the trees (Tk) as subsets of `1, the Banach space of absolutely summable real sequences, since
this space affords an infinite number of “orthogonal” directions in which new branches can
lie without risk of unwanted collisions or intersections with other parts of the growing tree.
The Brownian CRT is the closure of the union

⋃
k≥1 Tk, and for k ≥ 1 the tree Tk is known

as the kth marginal of the Brownian CRT.
The construction above is called a line-breaking construction of a random real tree, be-

cause informally speaking the tree is constructed from broken-up bits of the line [0,∞)
[2, 3, 4]. It is possible to augment the trees (Tk) appearing in this construction with leaf
labels; that is, integer labels on the endpoints of the segments that are recursively grafted
onto the growing tree. So, the segment T1 has endpoints labeled root and 1, say, and when
a new branch is added to T1 to produce T2, the free endpoint of this new branch may be
labeled 2; and so on, recursively, so that for k ≥ 1 the tree Tk has endpoints or leaves la-
beled root, 1, 2, . . . , k. It is a remarkable feature of this construction that these leaf labels
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are exchangeable: for every k ≥ 1, if σ is a permutation of [k] (or of {root, 1, . . . , k}) and
σ(Tk) is the tree derived by permuting the leaf labels by σ, then σ(Tk) and Tk are equal in
distribution.

In Chapter 4 we prove that the marginals of the Brownian CRT – that is, the family (Tk)
of trees appearing in the construction of the Brownian CRT above – is the only family of
trees with labeled leaves

• that is derived by a line breaking construction, i.e. by a process of sequentially adding
branches whose endpoints have consecutive integer labels

• for which the places where new branches are attached are chosen uniformly at random
according to normalized length measure

• for which the first branch length X1 has Rayleigh distribution

• and for which leaf-labels are exchangeable.

In fact, this characterization of the marginals of the Brownian CRT will follow as a corollary
of a theorem with somewhat larger scope.

As an application of this characterization, we prove that the limits of uniform random
hierarchies – trees of the type appearing in Figure 1.1 – are the marginals of the Brownian
CRT. More explicitly: for n ≥ 1 let T (n) be a random tree selected uniformly at random from
the set of all rooted, nonplanar (unoriented) trees with n leaves and no internal vertices of
degree two except possibly the root, and edges of length n−1/22(log(2)−1)1/2. For 1 ≤ k ≤ n
let Tk(n) denote the subtree of T (n) spanned by the root and the leaves 1, 2, . . . , k. Then
for fixed k, as n→∞, Tk(n) converges in distribution to the kth marginal of the Brownian
CRT.
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Chapter 2

Exchangeable Hierarchies

A hierarchy on a set S, also called a total partition of S, is a collection H of subsets of
S such that S ∈ H, each singleton subset of S belongs to H, and if A,B ∈ H then A ∩ B
equals either A or B or ∅. Every exchangeable random hierarchy of positive integers has the
same distribution as a random hierarchy H associated as follows with a random real tree T
equipped with root element 0 and a random probability distribution p on the Borel subsets
of T : given (T , p), let t1, t2, . . . be independent and identically distributed according to p,
and let H comprise all singleton subsets of N, and every subset of the form {j : tj ∈ Fx}
as x ranges over T , where Fx is the fringe subtree of T rooted at x. There is also the
alternative characterization: every exchangeable random hierarchy of positive integers has
the same distribution as a random hierarchy H derived as follows from a random hierarchy
H on [0, 1] and a family (Uj) of IID uniform [0,1] random variables independent of H : let
H comprise all sets of the form {j : Uj ∈ B} as B ranges over the members of H .

2.1 Background

Definition 1. A hierarchy on a finite set S is a collection H of subsets of S such that

(a) if A,B ∈ H then A ∩B equals either A or B or ∅, and

(b) S ∈ H, {s} ∈ H for all s ∈ S, and ∅ ∈ H.

Hierarchies are known by several other names, including total partitions and laminar
families. For brevity we use the term hierarchy throughout the chapter. If H is a hierarchy
on a finite set S and S0 ⊆ S then the restriction of H to S0 is the hierarchy on S0 defined
as follows:

H
∣∣∣
S0

:= {H ∩ S0 : H ∈ H}. (2.1)
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Definition 2. A hierarchy on N is a sequence (Hn, n ≥ 1) where for each n, Hn is a

hierarchy on [n], and for every n, Hn = Hn+1

∣∣∣
[n]

.

Less formally, a hierarchy describes a scheme for recursively partitioning a set S into
finer and finer subsets, down to singletons. If S is finite, this has an elementary meaning:
S is partitioned into some set of blocks, then recursively: each non-singleton block that
remains is partitioned into further blocks, until only singletons remain, and the hierarchy is
the entire collection of sets that ever appear in this process. If S is infinite, matters can be
more complex: a continuous recursive process of splitting may be involved, as in Bertoin’s
theory of self-similar or homogeneous fragmentation processes [20, 21] which have a natural
regenerative structure. Alternatively, a hierarchy describes a process of coalescence, wherein
the singleton subsets of S recursively coagulate to reconstitute the set S. We emphasize
that time plays no role in our definition of a hierarchy: a hierarchy H encodes the contents
of the blocks of some process of fragmentation (or coagulation), but does not include any
additional information about the order in which these blocks appear in this fragmentation
(or coagulation) process.

Figure 2.1: The tree on the right is the graph of H = {{1, 2, 4}} ∪ Ξ([n]). The other trees

are the graphs of H
∣∣∣
[2]

and H
∣∣∣
[3]

. The trivial hierarchy Ξ([n]) is defined at (2.3).

Hierarchies on [n] are in bijective correspondence with certain trees. Explicitly, if T is a
tree

• with n leaves, each labeled by a distinct element of [n],

• and having a distinguished vertex called the root, which is not a leaf,

• with no internal vertices of degree two, except possibly the root

• and no edge lengths or planar embedding

then the map

T
g7→ {{j ∈ [n] : ν on path from leaf j to root} : ν ∈ V (T)} ∪ {∅}

sends T to a hierarchy on [n]. Here, V (T) denotes the set of vertices of T (including root and
leaves). The map g is a bijection, and we we say that T is the graph of the hierarchy g(T).
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Random hierarchies of both finite and infinite sets arise naturally in a number of applica-
tions, including stochastic models for phylogenetic trees [71, 78, 12, 37, 37, 8, 7, 72, 91, 72],
processes of fragmentation and coalescence [52, 5, 17, 18, 19, 22, 23, 24, 25, 26, 35, 39, 41,
47, 52, 56], and statistics and machine learning [1, 28, 58, 76, 27]. In these applications,
the object of common interest is a rooted tree which describes evolutionary relationships
(in the case of phylogentic trees) or the manner in which an object fragments into smaller
pieces (in the case of models of fragmentation) or some notion of class membership (in the
case of hierarchical clustering). Such trees sometimes have edges equipped with lengths that
measure the time between speciations, or the amount of time between fragmentation events,
or some measure of dissimilarity or distance between classes, but the hierarchies we consider
correspond with trees of this type without edge lengths.

Permutations act on hierarchies by relabeling the contents of constituent sets: if H is a
hierarchy on [n] and σ a permutation of [n], then

σ(H) := {{σ(h) : h ∈ H} : H ∈ H}.

An exchangeable hierarchy on N is a random hierarchy (Hn, n ≥ 1) on N for which for every
n and every permutation σ of [n] there is the distributional equality

σ(Hn)
d
= Hn. (2.2)

The main result in this chapter is a de Finetti-type characterization of exchangeable random
hierarchies on N. Theorem 4 states that every exchangeable random hierarchy H on N is
derived as if by sampling IID points (tj, j ≥ 1) from a random measure µ supported by
a random real tree T : the blocks of Hn are the sets of the form {j ∈ [n] : tj ∈ Fx} as
x ranges over T , where Fx is the fringe subtree of T rooted at x. Real trees are tree-like
metric spaces that are briefly discussed in Section 2.3.1; for a more complete treatment see
[42] and references therein. Theorem 6 is an alternate characterization: every exchangeable
hierarchy is derived as if from a sequence (Uj) of IID uniform[0,1] random variables and
an independent random hierarchy H on [0,1]: the blocks of Hn are the sets of the form
{j ∈ [n] : Uj ∈ B} as B ranges over elements of H . That H is a random hierarchy on [0,1]
means simply that H is a random collection of subsets of [0, 1] that satisfies (a) and (b) of
Definition 1 with [0,1] in place of S. For some measure theory details concerning random
hierarchies on [0,1] see the Remark at the end of Section 2.5.

As indicated in [16], an exchangeable hierarchy (Hn) of the set of positive integers N is
generated by each of Bertoin’s homogeneous fragmentation processes, and associated with
each of Bertoin’s homogeneous fragmentations there is a one-parameter family of self-similar
fragmentations, each obtained from the homogeneous fragmentation by a suitable family
of random time changes, and each generating the same random hierarchy (Hn) on N. For
more on fragmentation processes, see Chapter 3. An attractive feature of the self-similar
fragmentations of index α < 0 is that each sample path of such a fragmentation is associated
with a compact real tree [55]. The sample paths of Kingman’s coalescent [71] can likewise
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be naturally identified with a compact real tree [41]. There has been considerable interest in
describing real tree limits of discrete trees with edge-lengths [86, 57, 56, 92, 35], and Theorem
4 of this chapter is in a similar vein.

This work forms part of a growing list of characterizations of infinite exchangeable combi-
natorial objects by de Finetti-type theorems. For example, Kingman characterized exchange-
able partitions of N [70], Donelly and Joyce and Gnedin characterized composition structures
[50, 36], Janson characterized exchangeable posets [64] and Hirth characterized exchangeable
ordered trees [60], about which we will say a few words below. Many related de Finetti-type
theorems are known [10, 31, 32, 33, 45, 48, 49, 65, 79, 63], and there are excellent treatments
in [11, 67] of related material. Such de Finetti-type results are often proved via reverse
martingale convergence arguments, similar in spirit to the modern approach to de Finetti’s
theorem in [40, Chapter 4]. Alternate approaches use harmonic analysis [61, 62, 89, 90] or
isometries of L2 [13], or Choquet theory [59]. The results of this chapter are proved using a
third approach, the key idea of which is to encode an exchangeable hierarchy using a binary
array, show that this array inherits exchangeability from the hierarchy, and apply well-known
characterization theorems for arrays. A similar approach was first used by Aldous, who sim-
plified of Kingman’s proof characterizing of exchangeable partitions of N by encoding such
partitions as exchangeable sequences of real random variables [11].

There are several papers on related topics. In [4, Theorem 3] it is shown that if (R(k), k ≥
1) is a consistent family of exchangeable trees with edge lengths that is leaf-tight then
(R(k), k ≥ 1) is derived as if by sampling from a random real tree. (Aldous also assumes
that his trees are binary, but this assumption is not essential to his proof.) Since a hierarchy
on N corresponds to a sequence of consistent trees without edge lengths, the main result of
this chapter can be seen as a variation on this result of Aldous, showing that leaf-tightness
(and indeed any pre-defined notion of distance) is not needed to obtain a de Finetti type
theorem for trees with exchangeable leaves.

In [25], it is shown that every exchangeable P-coalescent process corresponds to a unique
flow of bridges. An exchangeable P−coalescent process is a Markov process (Πt, t ≥ 0)
whose state space P is the set of partitions of N, for which Πt is an exchangeable partition
of N for every t ≥ 0 whose increments are independent and stationary, if the notion of
“increments” of a P-valued function is properly understood. This provides a de Finetti-type
characterization of exchangeable coalescents. One may “forget” time by setting H := {B ⊂
N : B ∈ Πt for some t > 0}∪{N} and thereby obtain an exchangeable hierarchy H on N (the
notation B ∈ Πt means that B is a block in the partition Πt). The results of Bertoin and Le
Gall in [25] therefore provide a de Finetti-type characterization of hierarchies that arise in
this manner from exchangeable coalescents. Due to the stationary, independent increments
property, this class of hierarchies is far from including every exchangeable hierarchy, so the
present work may be seen as extending the results of Bertoin and Le Gall.

Haas and Miermont [55] provide a de Finetti-type representation of self-similar fragmen-
tations of index α < 0 that have no erosion or sudden loss of mass in terms of continuum
trees (T , p) as follows: every such fragmentation (F (t), t ≥ 0) is derived as if from a con-
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tinuum tree (T, p) by setting F (t) equal to the decreasing sequence of masses of connected
components of {t ∈ T : ht(v) > t} where ht(t) denotes the distance from t to the root of
T . This is proved by introducing a family (R(k), k ≥ 1) of trees derived from an associated
P-fragmentation (Πt) whose sequence of ranked limit frequencies equals (F (t)). Distances in
these trees R(k) are related to times between dislocations in F (t), and by using self-similarity
the leaf-tight criterion of [4] is checked. The existence of the representing tree (T , p) is then
a consequence of the aforementioned theorem of Aldous. This provides a de Finetti-type
theorem for self-similar fragmentations.

In [60], Hirth considers exchangeable ordered trees, which in our terms are exchangeable
hierarchies H on N for which every element B ∈ H besides N there is an associated pair of
nonnegative integer-valued times (NB,MB) which are the times at which B is “born” and the
times at which B “dies.” There is also a partial order on such blocks B that is unimportant
for our purposes. At the instant of its death, B gives birth to subsets born at that instant,
whose union is B. Hirth provides a de Finetti-type characterization of exchangeable ordered
trees using harmonic analysis techniques. Our hierarchies are more general than Hirth’s
trees, since there is no “discrete time” associated to the elements of a hierarchy. Our results
may therefore be seen as an extension of Hirth’s result using probabilistic techniques instead
of harmonic analysis.

2.2 Results

This section provides some basic definitions and a statement of the main results of the
chapter.

For arbitrary sets S we define

Ξ(S) := {S} ∪ {{s} : s ∈ S} ∪ {∅}. (2.3)

We call Ξ([n]) the trivial hierarchy on [n]; it is the smallest hierarchy on [n] and we will refer
to it numerous times throughout the chapter.

If T is a rooted real tree and (tn, n ∈ N) a deterministic or random sequence of points of
T , the hierarchy derived from T and (tn, n ∈ N) is the sequence (Hn, n ≥ 1) defined by

Hn := {{j ∈ [n] : tj ∈ Fx(T )} : x ∈ T } ∪ Ξ([n]) (2.4)

where Fx(T ) is the fringe subtree of T rooted at x,

Fx(T ) = {y ∈ T : x is in the geodesic path in T from y to the root of T }, (2.5)

Real trees are tree-like metric spaces discussed in more detail in Section 2.3.1.
Recall that a random measure p is said to direct a family (tn, n ∈ N) of random elements

if conditionally given p, (tn, n ∈ N) is an IID family with distribution p.
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Theorem 4. If (Hn, n ≥ 1) is an exchangeable hierarchy on N then there is a (Hn)-
measurable triple ((H′n, n ≥ 1), (T , p), (t1, t2, . . .)), where T is a random real tree, p is a
random probability measure with support contained in T almost surely, (t1, t2, . . .) is an ex-
changeable sequence directed by p, and (H′n) is a hierarchy both equal in distribution to (Hn)
and equal almost surely to the hierarchy derived from T and the samples (t1, t2, . . .).

Theorem 4 is the main result of the chapter, proved in Section 2.4, where we explicitly
construct the pair (T , p). One of the issues in this construction is how lengths in T are
defined. Our main device for defining lengths is the concept of most recent common ancestor.

Definition 3. If Hn is a hierarchy on [n] and i, j ∈ [n], then the most recent common
ancestor (MRCA) of i and j, denoted (i ∧ j)n, is the intersection of all elements of Hn that
contain both i and j,

(i ∧ j)n :=
⋂

G∈Hn:i,j∈G

G, (2.6)

so, e.g., (i ∧ i)n = {i} if i ≤ n. Later in the chapter, when considering hierarchies on N,
we will wish to consider sequences of the form (i ∧ j)1, (i ∧ j)2, (i ∧ j)3, . . ., and in order to
make sense of this notion we adopt the convention that if one of i or j is not in [n], then
(i ∧ j)n := ∅. If (Hn, n ≥ 1) is hierarchy on N, then we denote by (i ∧ j) the MRCA of i
and j in (Hn), which is the following set,

(i ∧ j) =
⋃
n≥1

(i ∧ j)n (2.7)

where (i ∧ j)n is the MRCA of i and j in Hn. When no confusion seems possible, we
sometimes drop parentheses and subscripts from MRCAs to improve legibility. Also, when
discussing more than one hierarchy, e.g. (Gn) and (Hn), we may write (i∧ j)Gn or (i∧ j)Hn

to denote the MRCA of i and j in Gn or in Hn.

To presage later developments, the family of indicators
(
1(k ∈ (i ∧ j)), k /∈ {i, j}

)
is

exchangeable, so the limit

1− lim
n→∞

1

n
#{k ∈ [n] : k ∈ (i ∧ j)}

exists almost surely. Also, the MRCA of i and j corresponds to a particular vertex in the
graph of Tn: the unique vertex found both in the path from root to leaf i and in the path
from from root to leaf j that is at maximal graph distance from the root. This vertex has
a counterpart ν, say, in the tree T of Theorem 4, and as will be made clear in the proof of
that theorem, the distance from root to ν will the limit displayed above.

For comparison with Theorem 4, we state a version of Kingman’s representation theorem
for exchangeable partitions. Some preliminary definitions are necessary. Suppose that P is
a fixed or random partition of [0, 1] and that (Un, n ≥ 1) is an IID sequence of uniform[0,1]
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random variables independent of P. We say that a random partition Π of N is derived as if
by uniform sampling from P if Π is equal in distribution to the partition of N which puts i
and j in the same block if and only if Ui and Uj lie in the same block of P. (We disregard
for the moment the measure-theoretic details concerning random partitions of [0, 1].)

A random partition Π of N is said to be exchangeable if the random array (p(i, j), i, j ∈ N)
defined by

p(i, j) =

{
1 i and j are in same block of Π

0 else

is exchangeable, meaning that for every n ≥ 1 and every permutation σ of [n](
p(σ(i), σ(j)), i, j ∈ [n]

)
d
=
(
p(i, j), i, j ∈ [n]

)
. (2.8)

The following is a weak version of Kingman’s representation theorem for such partitions.

Theorem 5 ([70]). If Π is an exchangeable partition of N then there is a Π-measurable
random partition P of [0, 1] for which Π is derived as if by uniform sampling from P.

A stronger version of this theorem is stated in Section 2.6.2. It is natural to ask whether
Theorem 4 might be reformulated to resemble Theorem 5, and such a reformulation is indeed
possible. Continuing to disregard measure-theoretic details, say that a random collection H
of subsets of [0, 1] is a random hierarchy on [0,1] if conditions (a) and (b) of Definition 1
hold with [0,1] in place of S. We say that (Hn) is derived as if by uniform sampling from
H if (Hn) is equal in distribution to the sequence of hierarchies (H′n) defined by

H′n = {{j ∈ [n] : Uj ∈ B} : B ∈H },

where (Un) is a sequence of IID uniform random variables independent of H .

Theorem 6. If (Hn) is an exchangeable hierarchy on N, then there is an (Hn)-measurable
random hierarchy H on [0, 1] for which (Hn) is derived as if by uniform sampling from H .

Theorem 6 is proved in Section 2.5 as a Corollary of Theorem 4. The rest of the chapter
is organized as follows. Section 2.3 contains three subsections of definitions, well-known
results, and elementary propositions needed for the proof of Theorem 4. Section 2.4 contains
a proof of Theorem 4. Some complementary discussion and miscellaneous results may be
found in Section 2.6.

2.3 Preliminaries

2.3.1 Real trees and hierarchies derived from real trees

Definition 4. A segment of a metric space X is the image of an isometry α : [a, b] 7→ X.
The endpoints of the the segment are α(a) and α(b). A real tree is a metric space (T , d) for
which
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(a) for every pair x, y of distinct elements of T there is a unique segment with endpoints
x and y, denoted [[x, y]],

(b) if two segments of T intersect in a single point, and this point is an endpoint of both,
then the union of these two segments is again a segment,

(c) If a segment contains distinct points u, v then it contains [[u, v]],

(d) if the intersection of two segments contains at least two distinct points, then this in-
tersection is a segment.

A real tree is rooted if there is a distinguished element of T called root. Every real tree we will
discuss will assumed to be rooted, with root denoted 0. Furthermore, we define [[x, x]] = {x}.

The uniqueness required in part (a) implies that real trees are loop free. In fact, parts (c)
and (d) of Definition 4 follow from parts (a) and (b). For more regarding real trees see [42].
The following example, however, provides sufficient background on real trees to understand
the proof of Theorem 4.

Example 2.3.1 (Line-breaking and a random real tree, following Aldous). Let `1 denote
the Banach space of absolutely summable real sequences, and let ei denote the ith element
of the usual basis, so that e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), and so on, and let (Ln)
be a sequence of positive numbers. We define a family of real trees as follows: first, let
u1 = (0, 0, . . .) and let

T1 = u1 + e1[0, L1] := {(0, 0, . . .) + e1x : 0 ≤ x ≤ L1}.

Next, select a point u2 from T1 and let

T2 = T1 ∪ (u2 + e2[0, L2]) := T1 ∪ {u2 + e2x : 0 ≤ x ≤ L2}.

We continue recursively: supposing Tk has been defined, we select a point uk+1 from Tk and
set

Tk+1 = Tk ∪ (uk+1 + ek+1[0, Lk+1]) ,

and let T be the closure of the union
⋃
n≥1 Tk. The tree Tk is therefore built up by “gluing

together” k line segments, and if we endow T with the `1 metric the geodesic paths in Tk
flow along these line segments as one would expect.

The idea of using the natural basis of `1 in order to obtain a countable family of “orthog-
onal directions” in which to grow the new branch of Tk, is due to Aldous [4].

To get a random real tree, simply randomize the construction above. For example, let
(Lk) be the interarrival times of a Poisson process of on R≥0 of rate t dt, and for k ≥ 2 select
uk according to normalized length measure on Tk. The resulting tree is Aldous’s Brownian
continuum random tree.
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We have defined in (2.4) the hierarchy derived from T and a sequence (tn, n ∈ N) of
points of T , but to make the definition precise we need to define the fringe subtree of T
rooted at a point x ∈ T , a concept used informally at (2.5).

Definition 5. If T is a real tree and x point of T , then the fringe subtree of T rooted at x
is the set

Fx(T ) := {y ∈ T : x ∈ [[0, y]]}.

Proposition 1. Let T be a real tree. Then for x, y ∈ T , either Fx(T ) ⊂ Fy(T ), or Fy(T ) ⊂
Fx(T ), or Fx(T ) = Fy(T ).

Proof. We claim that for all points x, y, t ∈ T ,

(i) if x ∈ [[0, y]] and y ∈ [[0, t]] then x ∈ [[0, t]], and

(ii) if x /∈ [[0, y]] and y /∈ [[0, x]] then Fx(T ) ∩ Fy(T ) = ∅.

If x, y, t are distinct non-root elements of T then (i) above follows from two applications of
Part (c) of Definition 4. Likewise, if x, y, t are distinct non-root elements of T and x /∈ [[0, y]]
and y /∈ [[0, x]], and t ∈ Fx(T )∩Fy(T ), then the segments [[t, x]]∪ [[x, 0]] and [[t, y]]∪ [[y, 0]]
are distinct (y is not in the first, x is not in the second), and since these segments have the
same endpoints we arrive at a contradiction with Part (a) of Definition 4, and (ii) follows.
If x, y, t are not distinct or one if one or more of these is the root of T , one may easily argue
by cases.

Corollary 1. If T is a real tree and (tj, j ≥ 1) a sequence of points of T then the sequence
(Hn) defined by

Hn := {{j ∈ [n] : tj ∈ Fx(T )} : x ∈ T } ∪ Ξ([n]),

is a hierarchy. Here, Ξ([n]) is the trivial hierarchy on [n] defined at (2.3).

2.3.2 Random hierarchies: details

In this section we prove the following elementary proposition and show that hierarchies on
N are in bijective correspondence with certain binary arrays.

Proposition 2. 1. If n ≥ 1 and Hn is a hierarchy on [n], then

Hn = {(i ∧ j)n : i, j ∈ [n]} ∪ Ξ([n])

where Ξ([n]) denotes the trivial hierarchy on [n] and (i ∧ j)n the MRCA of i and j in
Hn.

2. If (Hn, n ≥ 1) is a hierarchy on N then for every n

(i ∧ j) ∩ [n] = (i ∧ j)n,

where (i ∧ j) and (i ∧ j)n denote the MRCAs of i and j in (Hn) and Hn, respectively.
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Proof. 1. Note that the subset of Hn consisting of sets that contain i is totally ordered by
inclusion, by part (a) of Definition 1. The smallest member of this class that contains j is
then (i ∧ j)n. This shows that

Hn ⊇ {(i ∧ j)n : i, j ∈ [n]} ∪ Ξ([n]).

To prove the reverse inclusion, fix x ∈ Hn and i ∈ x. The class {(i ∧ j)n : j ∈ x} is
totally ordered by inclusion, with maximal element (i ∧ j′)n, say. Then for all k ∈ x,
k ∈ (i ∧ k)n ⊆ (i ∧ j′)n, so x ⊆ (i ∧ j′)n. On the other hand, i, j′ ∈ x and therefore
(i ∧ j′)n ⊆ x. This proves the reverse inclusion.

2. By consistency of the sequence (Hn), for every n ≥ max{i, j},

[n] ∩
⋂

G∈Hn+1:{i,j}⊆G

G =
⋂

G∈Hn:{i,j}⊆G

G.

It follows that (i∧ j)n ⊆ (i∧ j)n+1 for every positive n (recall (i∧ j)n = ∅ if max{i, j} ≥ n).
The second assertion follows from this and the fact (i ∧ j)n ⊆ [n].

Proposition 2 shows that if (Hn) is a hierarchy on N, then the class {(i ∧ j) : i, j ∈ N}
contains complete information about (Hn), where (i ∧ j) denotes the MRCA of i and j in
(Hn). More explicitly, if the MRCA of i and j in (Hn) is known, then by restriction we
obtain for every n the MRCA of i and j in Hn, and Hn consists precisely of such MRCAs.
The collection {(i ∧ j) : i, j ∈ N} can be conveniently encoded by the following array,

AH(i, j, k) =

{
1, if k ∈ (i ∧ j)
0, if k /∈ (i ∧ j)

(i, j, k ∈ N), (2.9)

Such an array has two notable properties:

(a) For all triples i, j, k ∈ N, A(i, j, k) = A(j, i, k); also A(i, j, j) = 1, and furthemore
A(i, i, k) = 1 if and only if i = k.

(b) For all pairs i, j and m,n of elements of N, either the two sets

{k ∈ S : A(i, j, k) = 1} and {k ∈ S : A(m,n, k) = 1}

are disjoint, or they are equal, or one of them contains the other.

Property (a) follows from symmetry of the roles of i and j in (2.6), and from the fact that
(i ∧ i) = {i}. Property (b) follows from part (b) of Definition 1.

Proposition 3. The correspondence (2.9) between hierarchies and binary arrays A : N3 7→
{0, 1} having properties (a) and (b) directly above, is bijective.

The proof of this proposition is elementary and is therefore omitted.
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2.3.3 Exchangeable Compositions

A composition of a set S is a partition of S together with a total order on blocks of this
partition. Starting from such a pair one obtains a binary array R by setting R(i, j) = 1 if
either i and j are in the same block of the partition, or the block containing i precedes the
block containing j, and otherwise setting R(i, j) = 0, for all pairs i, j ∈ S. A binary array so
derived necessarily has the following four properties, which hold for all i, j, k ∈ S.

(i) R(i, i) = 1

(ii) if R(i, j) = 0 then R(i, j) = 1

(iii) if R(i, j) = 1 and R(j, k) = 1 then R(i, k) = 1

(iv) if R(i, j) = 0 and R(j, k) = 0 then R(i, k) = 0

Conversely, starting from a such an array R one may define an equivalence relation ∼ on S
by

i ∼ j if and only if R(i, j) = R(j, i) = 1;

then the equivalence classes of ∼ form a partition of S, and we may totally order these
classes by declaring that [i] precedes [j] if and only if R(i, j) = 1, for all pairs i, j in S. This
correspondence between a composition of a set S and a binary array R is obviously bijective.
By (i)-(iv) above, the map

R 7→ {(i, j) ∈ S2 : R(i, j) = 1}

sets up a bijective correspondence between such binary arrays R and binary relations on S
that are reflexive, total, transitive, and whose complements are also transitive. Such relations
need not be antisymmetric, and therefore need not be total orders, but every total order is
such a relation. By abuse of notation we may use i R j and R(i, j) = 1 interchangeably.

We will find it more convenient to work with arrays than with totally ordered set parti-
tions or binary relations, so for our purposes, a composition of a set S will mean a binary
array R : S × S 7→ {0, 1} for which properties (i)-(iv) above hold. If S is a finite or countably
infinite set then an exchangeable composition on S is a random composition R for which for
every finite subset S0 of S and every permutation σ of S0, there is the distributional equality(

R(σ(i), σ(j)), i, j ∈ S0

)
=
(
R(i, j), i, j ∈ S0

)
.

Theorem 7 below is a de Finetti-type characterization of exchangeable compositions, origi-
nally given in [50, Theorem 11] and [36, Theorem 5]. Before stating the theorem we must
say a few words about left-uniformization.
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By the left-uniformization F∗ of a distribution F , we mean the image of F via the map
x 7→ Fl(x) from R to [0, 1], where Fl denotes the left-continuous version of the distribution
function of F . That is,

F∗[0, a] = P(Fl(X) ≤ a) for X with distribution specified by

P(X ≤ x) = F (−∞, x], and Fl(x) = limw↑x F (−∞, w] = F (−∞, x).

It is well-known that if F is a continuous distribution function, then F∗ is the uniform
distribution on [0, 1]. More generally, if the discrete part of F has atoms of magnitude fi
and locations xi, where fi ≥ 0 and

∑
i fi ≤ 1, then F∗ is characterized by the following three

properties:

• (i) the distribution F∗ has an atom of magnitude fi at ui ∈ [0, 1], where ui = F (−∞, xi),
for each i;

• (ii) the distribution F∗ places no mass on the interval Ii := (ui, ui + fi), for each i;

• (iii) the continous component of F∗ is the restriction of Lebesgue measure on [0, 1] to
the complement of ∪iIi.

We say that F is left-uniformized if F∗ = F .

Theorem 7 ( [50, Theorem 11] and [36, Theorem 5] ). If R is an exchangeable composition
of N then the limit

Xj = lim
m→∞

1

m
#{n ∈ {1, . . . ,m} : R(j, n) = 0} (2.10)

exists almost surely for every j ∈ N. The family (Xj, j ∈ N) so defined is exchangeable, and
the directing measure of the family is left-uniformized with probability one. Furthermore,
almost surely for all pairs j, k, R(j, k) = 1 if and only if Xj ≤ Xk.

Sketch of proof. For every j ≥ 1, the family (Y j
n , n ≥ 1) defined by

Y j
n := R(j, n′) n ∈ N, n′ :=

{
n if n < j

n+ 1 if n ≥ j

is exchangeable, and Xj = limm→∞m
−1
∑m

k=1 Y
j
k . The a.s. existence of the limit in (2.10)

is therefore a consequence of de Finetti’s theorem. Part of checking that the family (Xj)
has the asserted properties involves showing that if R(j, i) = 0 then Xi < Xj, and similar
arguments using exchangeable sequences derived from R shows that this implication holds
almost surely. The remainder of the argument is straightforward.
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Figure 2.2: The ith spinal spinal composition associated to a hierarchy is the partition of
leaves of the hierarchy into blocks according to attachment point on the spinal path from
root to leaf i, together with the following ordering on these blocks: block s precedes block t
if the attachment point for block s is nearer the root than the attachment point for block t.

2.3.4 Spinal Compositions

Definition 6. If (Hn, n ≥ 1) is a hierarchy on N and i an element of S, the ith spinal
composition of N \ {i} is the binary array Ri defined by

Ri(j, k) = AH(i, j, k) (j, k ∈ N \ {i}) (2.11)

where A is the binary array associated to (Hn) defined at (2.9).

The ith spinal composition of N \ {i} associated to a hierarchy (Hn, n ≥ 1) can be
described less formally as follows in terms of the graph of Hn defined in Section 2.1.

For 1 ≤ i, j, k ≤ n, draw the path from root to leaf i in the graph of Hn. Traverse
the vertices of this path starting at the root and moving towards i, and keep track
of which vertices contain j and which contain k. If every vertex that contains j
also contains k, then Ri(j, k) = 1, otherwise Ri(j, k) = 0.

See Figure 2.2 for a depiction of a spinal composition.
It is easily checked that Ri so defined is a composition of N \ {i}. Furthermore, if (Hn) is

an exchangeable hierarchy on N then Ri is an exchangeable composition of N\{i}. A version
of Theorem 7 then holds, showing the existence of [0,1]-valued random variables

X i
j :=

{
limm→∞

1
m

#{n ∈ [m] \ {i} : Ri(j, n) = 0} j ∈ N \ {i}
1 j = i

. (2.12)

The random variables (X i
j, j ∈ N \ {i}) are exchangeable and have a driving measure that

is left-uniformized almost surely, and for j, k ∈ N \ {i}, Ri(j, k) = 1(X i
j ≤ X i

k) holds a.s. We
call these variables (X i

j) spinal variables.
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Proposition 4. Let (Hn) be an exchangeable hierarchy on N, let AH and (Ri, i ∈ N) be the
binary array associated to (Hn) as by (2.9) and the family of spinal compositions associated
to (Hn), and for every i ∈ N let (X i

j, j ∈ N \ {i}) denote the family of spinal variables
associated to Ri by (2.12). Then for all i, j, k ∈ N with i /∈ {j, k} there is the almost sure
equality of events,

{X i
j ≤ X i

k} = {Ri(j, k) = 1} = {AH(i, j, k) = 1} = {(i ∧ k) ⊆ (i ∧ j)}, (2.13)

where for i, j ∈ N, (i ∧ j) denotes the MRCA of i and j in (Hn). Also,

X i
j = lim

m→∞

1

m
#{n ∈ {1, . . . ,m} : n /∈ (i ∧ j)} (2.14)

holds with probability one for all distinct i, j ∈ S. Finally, with probability one, for distinct
i, j, k, l in S,

(i) X i
j = Xj

i if i 6= j,

(ii) (i ∧ j) = {m ∈ S : X i
m ≥ X i

j or m = i},

(iii) X i
k < Xj

k implies X i
k = X i

j.

Proof. The almost sure equalities in (2.13) are immediate consequences of definitions; (2.13)
simply collects them in one place for easy reference. For (2.14) we note that for every distinct
triple i, j, k of distinct elements of S, there is the almost sure equality of events

{Ri(j, n) = 0} = {n /∈ (i ∧ j)}. (2.15)

which is immediate from (2.9) and (2.11). Now (2.14) follows from (2.15) and (2.12).
Assertion (i) follows from (2.14) and the fact that (i∧ j) = (j ∧ i). Assertion (ii) follows

from (2.13).
For assertion (iii), suppose thatX i

k < Xj
k, then from (i) and (2.14) we have (j∧k) ( (i∧k).

We will show that (i ∧ k) = (i ∧ j), by (2.14) this is enough for (iii). Already it is plain
that (i ∧ j) ⊆ (i ∧ k); it will suffice to show that k ∈ (i ∧ j). We proceed by cases: since
(i ∧ k) ∩ (i ∧ j) 6= ∅, either (i ∧ k) ⊆ (i ∧ j), in which case we are done, or (i ∧ j) ⊆ (i ∧ k).
So assume that (i ∧ j) ⊆ (i ∧ k).

• If (j ∧ k) ⊆ (i ∧ j), then k ∈ (i ∧ j) and we are done.

• If (i ∧ j) ⊆ (j ∧ k), then (i ∧ k) ⊆ (j ∧ k), which is absurd, since (j ∧ k) ( (i ∧ k).

Because (j ∧ k) ∩ (i ∧ j) 6= ∅, one of the two bulleted cases above must obtain, and we
conclude that k ∈ (i ∧ j) as desired.
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2.4 Proof of Theorem 4

Let (H′n, n ≥ 1) be an exchangeable hierarchy on N. For reasons that will soon become clear,
it will be much more convenient to work with a hierarchy on Z rather than on N. Therefore
fix an arbitrary bijection b : N 7→ Z, and for every n ≥ 1 set

Hn := {{b(k) : k ∈ (i ∧ j)} ∩ [±n] : i, j ∈ N} ∪ Ξ([±n]), (2.16)

where [±n] := {−n, . . . , 0, . . . , n} and Ξ is defined as at (2.3), and (i ∧ j) is the MRCA of

i and j in (H′n). Then Hn is a hierarchy on [±n] and Hn+1

∣∣∣
[±n]

= Hn for every n ≥ 1. We

still need the notion of MRCA in Hn and in (Hn). Happily, Definition 3 makes sense in the
present context with obvious minimal changes, e.g. reading [±n] for [n].

We will also need some auxiliary hierarchies, defined as follows.

Definition 7. For integers i < 0, k < 0, and n ≥ 1, and Ξ defined at (2.3), and (i ∧ l) the
MRCA of i and l in (Hn) we set

Hi
n := {(i ∧ l) ∩ [n] : l ∈ Z} ∪ Ξ([n]), (2.17)

Gkn := {(i ∧ l) : i ∈ {−1, . . . , k}, l ∈ Z} ∪ Ξ([n]) =
k⋃

i=−1

Hi
n. (2.18)

Gn := {(i ∧ l) : i < 0, l ∈ Z} ∪ Ξ([n]) =
−∞⋃
i=−1

Hi
n. (2.19)

It is easily checked that Hi
n, Gkn, and Gn defined above are hierarchies on [n]. We now

outline of the proof of Theorem 4.

(i) We define for every k ≤ 1 a random tree Tk and a sequence (tkj , j ≥ 1) of random
elements of Tk. Both the tree and the samples are contained in `1, the Banach space of
absolutely summable real sequences. We define another tree T and samples (tj, j ≥ 1)
by

T := cl
⋃
k≤1

Tk, tj := lim
k→−∞

tkj , (2.20)

where cl denotes `1-closure, and the limits exist almost surely. Both (tkj , j ≥ 1) for
k ≥ 1 and (tj, j ≥ 1) are exchangeable, and for the measure p of Theorem 4 we take
the directing measure of the sequence (t1, t2, . . .). For k < −1 we let pk denote the
directing measure of (tkj ). These random measures (pk) are not used in the proof of
Theorem 4, but see Figure 2.3 for an image of how pk and pk−1 are related.

(ii) We show that Gn is the hierarchy derived from T and the samples (t1, . . . , tn), almost
surely for all n. To do this, we first take the following intermediate step:
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(ii a) We show that Gkn is derived from Tk and the samples (tk1, . . . , t
k
n), almost surely

for all n ≥ 1, k ≤ −1. After taking this intermediate step, we establish the
assertion of (ii) by taking a limit as k → −∞.

(iii) We show that the hierarchy (Gn, n ≥ 1) is equal in distribution to the hierarchy
(H′n, n ≥ 1) on N with which we started.

Steps (ii) and (iii), taken together, prove Theorem 4. The proof of Theorem 4 occupies the
remainder of this section, and is broken into parts according the outline above.

2.4.1 Part (i)

Our main tool for constructing the real tree T and the samples (t1, t2, . . .) of Theorem 4
is the collection of [0, 1]-valued spinal variables associated to spinal compositions, i.e. the
family (X i

j, i, j ∈ Z, i 6= j) defined by

X i
j := lim

m→∞

1

2m
#{n ∈ [±m] : n /∈ (i ∧ j)} (i, j ∈ Z, i 6= j) (2.21)

where (i ∧ j) denotes the MRCA of i and j in (Hn). We adopt the convention that Xn
n ≡ 1

for n ∈ Z. Obviously Proposition 4 remains true in this context with minimal changes. It is
worth emphasizing at this point that superscripts i and k on X i

j’s and tij’s, Gkn’s and Ikn’s (to
be defined later) will be negative, and when taking limits we send k to −∞ rather than ∞.

Definition 8. Let (ej, j ≥ 1) be the natural basis of `1, so that e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .),
etc., and for m ≥ 1 let πm denote the orthogonal projection onto span{e1, . . . , em}, so that
πm((x1, x2, . . .)) = (x1, . . . , xk, 0, 0, . . .), and π0((x1, x2, . . .)) = (0, 0, . . .).

Following Aldous [4], for x ∈ `1 let [[0, x]]sp denote the path that proceeds from 0 to x
along successive directions, for which [[0, x]]sp equals the closure of [[0, x]]◦sp, where

[[0, x]]◦sp :=
⋃
m≥0

{tπm(x) + (1− t)πm+1(x) : 0 ≤ t ≤ 1} (2.22)

Observe that [[0, x]]sp differs from [[0, x]]◦sp only when x = (x1, x2, . . .) does not terminate in
zeros, i.e when xj > 0 for infinitely many j, and in this case the set difference [[0, x]]sp\[[0, x]]◦sp
consists of the singleton {x}.

Definition 9. Let (X i
j, i, j ∈ N, i 6= j) be the spinal variables defined in (2.21). For all

j ≥ 1, set t−1
j = e1X

−1
j and for every k ≤ −2 set

tkj := e1X
−1
j +

k∑
l=2

el max{0, X l
j −max{X−1

j , . . . , X l−1
j }} (j ≥ 1). (2.23)
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Figure 2.3: At top is shown the graph of Hn with leaf labels erased. The bold paths are
the spinal paths to leaves −1 and −2, respectively. In the middle, (T−2, p−2) is shown. The
arrows indicate the `1 basis directions, and atoms of p−2 are represented by black circles
or beads on T2, with circle size corresponding to atom size. At bottom is shown (T−1, p−1).
Note that (T−2, p−2) is derived from (T−1, p−1) by “crushing” a bead on T−1 into fragments
and stringing the crushed bead fragments out in the e2 direction.
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Define a family of trees (Tk, k ≤ −1) using the samples (tkj , j ≥ 1, k ≤ −1) as follows:

Tk = cl
⋃
j≥1

[[0, tkj ]]sp,

where cl denotes closure in `1. For every k ≤ −1 let dk be the `1-metric on Tk, and let Tk be
rooted at 0 ∈ `1.

It is easily checked that for every k ≤ −1, (tkj , j ≥ 1) is an exchangeable family. Observe

that by definition, ||tkj || = max{X−1
j , . . . , Xk

j } ≤ 1.

Definition 9 of the samples (tkj ) can be described as follows: once the samples (tkj ) and tree

Tk have been defined, to define (tk−1
j ) we select a subset of samples among those remaining

and push these out in the e|k−1|-direction, orthogonal to Tk (this subset may possibly be
empty). The next proposition shows that every one of these samples is selected from the
same spot on Tk; that is, Tk−1 is derived by adding a single branch to Tk (or perhaps not
adding a branch at all).

Proposition 5. For every k ≤ −1, the set {π|k|(tk−1
j ) : tk−1

j 6= tkj} is either a singleton or
the empty set.

Proof. Suppose that Xk−1
j > max{X1

j , . . . , X
k
j }. Then for every i ∈ {−1, . . . , k}, X i

j < Xk−1
j .

Thus by part (iii) of Proposition 4, for every i ∈ {−1, . . . ,−k}, X i
j = X i

k−1. We have shown
that

j ∈ {πk(tk−1
j ) : tk−1

j 6= tkj} implies (X1
j , . . . , X

k
j ) = (X1

k−1, . . . , X
k
k−1)

and we note that tkj is determined by (X1
j , . . . , X

k
j ) to conclude that {π|k|(tk−1

j ) : tk−1
j 6= tkj}

is a singleton. On the other hand, on the event that Xk−1
j ≤ max{X1

j , . . . , X
k
j }, for every

j ≤ 0 then tk+1
j = tkj for all j, and the set in question is empty.

From the definition of Tk it can be seen that Tk is a real tree with probability one. It
follows from Proposition 5 that Tk is furthermore a real tree derived by a line-breaking
construction, like the tree in the Example in Section 2.3.1.

Examples

The following two examples are not part of the proof of Theorem 4 but together with Figure
2.3 they may help the reader visualize the construction of the tree T .

Example 2.4.1. Let (Un, n ∈ Z) be a family of IID uniform[0,1] random variables, and let

Hn := {{j ∈ [±n] : Uj ≥ x} : 0 ≤ x ≤ 1} ∪ Ξ([±n])

Following the construction above it can be seen that

T1 := e1[0, U−1],
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that p−1 is length measure on e1[0, U−1), and that e1U−1 is an atom of p−1 of size 1−U−1. Now
let k1 = −1 and define a sequence (km,m ≥ 1) recursively by km+1 := max{i < 0 : Ui > Ukm}.
Then (T−1, p−1) = . . . = (Tk2+1, pk2+1) and

Tk2 := T1 ∪ (e1U−1 + ek2 [0, Uk2 − Uk1 ]) ,

i.e., Tk2 is an isometric embedding of [0, Uk2 ] in `1, with a kink or bend at the image of U−1

in `1. The measure pk2 is the sum of two measures: length measure on Tk2, and an atom of
size 1 − Uk2 at the “end” ek1Uk1 + ek2Uk2. In general, Tkm is a an isometric embedding of
[0, Ukm ] into `1 with |km| − 1 kinks, and pk is length measure on Tkm plus an atom of size
1 − Ukm at the end of Tkm. The limit tree T is an isometric copy of [0, 1], embedded in `1,
and p is length measure on T . The tree T has one leaf (nonroot element whose removal does
not disconnect the space), and this leaf has p-measure 0.

Example 2.4.2. Let Ĥ denote the following collection of subsets of [0, 1],

Ĥ :=
⋃
n≥1

{(
j

2n
,
j + 1

2n

)
: 0 ≤ j ≤ 2n − 1

}
∪ Ξ([0, 1]).

Let (Un, n ∈ Z) be a family of IID uniform[0,1] random variables, and let

Hn := {{j ∈ [±n] : Uj ∈ B} : B ∈ Ĥ} ∪ Ξ([±n])

Following the construction above it can be seen that

T1 := e1[0, 1],

and that p−1 is purely atomic. The atoms can be described thusly: with f1 := 0 and fn :=∑n−1
j=1 2−n, the atoms of p−1 are at the locations {e1fn}n≥1, and p−1({en}) = 2−n−1.
In fact, for every k < 0, the measure pk is purely atomic. The atoms can be visualized

as beads on the strings (segments) that constitute Tk. To create the next tree Tk−1, one of
the atoms of pk is selected with probability proportional to size and crushed into a sequence
of smaller atoms, which are then strung out on the new string, respecting left-uniformization
except at location of the crushed atom. More explicitly, suppose that Tk has been defined, and
that the selected atom x has pk-mass 2−m for some m. It will follow from the construction
that the distance from x to 0 ∈ `1 is 1− 2−m+1, and that for some finite increasing sequence
1 ≤ i1 < i2 . . . < ij−1 < ij = m, x looks as follows,

x = (fi1 , 0, fi2 − fi−1, 0, 0, 0, fi3 − fi2 , 0, 0, . . . , fij − fij−1
, 0, 0, 0, . . .),

say; i.e. x is derived by thinning the vector (fi1 , fi2−fi−1, fi3−fi2 , . . . , fij−fij−1
) with zeros.

Suppose that fij − fij−1
is found in the lth coordinate of x; this indicates that the branch on
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which atom x is found was added at the lth step of the construction. Now, to create the next
tree Tk−1, set

Tk−1 = Tk ∪ x+ e|k|+1[0, 2−m+1],

ie. add a new branch at x in the e|k|+1-direction so that the total distance from root to
tip of the new branch is 1. Note that for every point y in the new branch, there will be
|k| + 1 − l zeros between the penultimate and final nonzero entries of the y; this explains
“zero-thinning”.

The new measure pk−1 equals pk on Tk \ {x}. The atom x is crushed, and pk−1(x) = 0;
crushed bits of x are strung out on the new branch, so that pk−1 has atoms at the following
locations,

(fi1 , 0, fi2 − fi−1, 0, 0, 0, fi3 − fi2 , 0, 0, . . . , fij − fij−1
, 0, . . . , 0, 2n − 2m, 0, 0, . . .) (n > m)

ie. at x+ e|k|+1(2n − 2m) for every n ≥ m, and pk−1(x+ e|k|+1(2n − 2m)) = 1− 2−n−1.
The limit tree T has uncountably many leaves. The measure p is supported on these

leaves, and on the set
{x ∈ `1 : πj(x) 6= x for all j ≥ 1},

because for every j ≥ 1, all atoms on T−j are eventually selected, crushed, and strung out,
off of the set {x ∈ `1 : πj(x) = x}. It can also be seen that p is diffuse (i.e. nonatomic),
because every atom is eventually crushed into smaller atoms, so no atom of positive mass
can remain in the limit.

2.4.2 Part (ii)a

For n ≥ 1 and k ≤ −1, let Ikn denote the hierarchy derived from Tk and the samples
(tk1, . . . , t

k
n), that is,

Ikn := {{j ∈ [n] : x ∈ [[0, tkj ]]sp} : x ∈ Tk} ∪ Ξ([n]).

Proposition 6. For all positive integers n and k, Gkn = Ikn almost surely.

Several intermediate results are needed to prove Proposition 6.

Lemma 1. Let H be a hierarchy on a finite set S, and suppose that i ∈ B ∈ H. Then almost
surely there is j ∈ S such that B = (i ∧ j), where (i ∧ j) denotes the MRCA of i and j in
H. As a corollary, if every element of H contains i, then

{(j ∧ l) : j, l ∈ S, j 6= l} = {(j ∧ s) : j 6= s} a.s. (2.24)

Proof. Fix B ∈ H. By the argument for Proposition 2,

B =
⋃
j∈B

(s ∧ j).
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Since the members of {s∧j : j ∈ B} all have the point s in common, by part (a) of Definition
1 they are totally ordered by inclusion. Therefore there is some maximal element j′ of B for
which B = (s ∧ j′).

Lemma 2. With Hi
n as in Definition 7,

{B ∩ [n] : i ∈ B ∈ Hn} = Hi
n = {{j ∈ [n] : X i

j ≥ x} : 0 ≤ x ≤ 1}

holds almost surely for all n ≥ 1 and i < 0.

Proof. This follows from Lemma 1, Proposition 2, and part (ii) of Proposition 4.

Lemma 3. For all k < 0, and x ∈ Tk,

{j > 0 : tk−1
j ∈ Fx(Tk−1)} = {j ≥ 0 : tkj ∈ Fx(Tk)}. (2.25)

holds almost surely.

Proof. If tk−1
j is in Fx(Tk−1) for x ∈ Tk then x ∈ [[0, tk−1

j ]]sp, so x = π|k|(x) ∈ π|k|
(

[[0, tk−1
j ]]sp

)
=

[[0, tkj ]]sp, so tkj ∈ Fx(Tk). On the other hand, [[0, tkj ]]sp ⊆ [[0, tk−1
j ]]sp so tkj ∈ Fx(Tk) implies

tk−1
j ∈ Fx(Tk−1).

Proof of Proposition 6. Since t1j := e1X
1
j for j ≥ 1, for k = −1 the assertion is covered by

Lemma 2. We proceed by induction on k and argue by cases. Throughout, (i ∧ j) denotes
the MRCA of i and j in (Hn) and (i ∧ j)n denotes the MRCA of i and j in Hn.

The first case is that the following event occurs: Tk = Tk−1 and tk−1
j = tkj for every j ≥ 1,

or otherwise put, there is i ∈ {−1, . . . ,−k} so that X i
j ≥ Xk−1

j for all j ≥ 1. Noting that

(i ∧ j)n ∩ (k − 1 ∧ j)n 6= ∅ for sufficiently large n, from (2.14) and X i
j ≥ Xk−1

j we have
(i ∧ j) ⊆ (k − 1 ∧ j). Thus i ∈ (k − 1 ∧ j), so

{(k − 1 ∧ j)n ∩ [n] : j ∈ [n]} ⊆ {(i ∧ j)n ∩ [n] : j ∈ [n]},

so by Lemma 1,
Hk−1
n ⊆ Hi

n,

and it follows that Gk−1
n = Gkn. Since Ikn = Ik−1

n in this case, by the induction hypothesis,
Gkn = Ikn.

The second case is that the following event occurs: Tk ( Tk−1, or otherwise put, for some
j, Xk−1

j > max{X1
j , . . . , X

k
j }. It is enough to show two inclusions,

Ik−1
n ⊆ Gk−1

n and Hk−1
n ⊆ Ik−1

n

to conclude that Ik−1
n = Gk−1

n .
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For the first inclusion, we claim that for every point x in the “new branch” Tk−1 \ Tk,
the set {j ∈ [n] : tk−1

j ∈ Fx(Tk−1)} of Ik−1
n is also in Gk−1. Therefore fix such x and assume

without loss of generality that the set in question is nonempty. If x happens to equal tk−1
j0

for
some j0 ∈ [n] then set x′ = x, otherwise proceed along the new branch in the ‘outward’/away-
from-zero/increasing-norm direction until encountering the first sample tk−1

j0
with j0 ∈ [n],

and set x′ = tk−1
j . More precisely, define x′ by

x′ = an element of {tk−1
j : tk−1

j ∈ Fx(Tk−1), j ∈ S0} with minimal `1-norm,

Then {j ∈ [n] : tk−1
j ∈ Fx(Tk−1)} = {j ∈ [n] : tk−1

j ∈ Fx′(Tk+1)}. According to (2.23),

{j ∈ [n] : tk−1
j ∈ Fx′(Tk−1)} = {j ∈ [n] : Xk−1

j ≥ Xk−1
j0
} for every element j0 of {tk−1

j :

tk+1
j ∈ Fx(Tk−1), j ∈ [n]} that has minimal `1 norm among members of this set. According

to Proposition 4(ii), {j ∈ [n] : Xk−1
j ≥ Xk−1

j0
} = (k − 1 ∩ j0)n ∩ [n], which is an element of

Gk−1
n . The claim is proved, and in conjunction with the induction hypothesis and Lemma 3

the first inclusion follows.
For the second inclusion, note that if (k − 1 ∧ l) contains i ∈ {−1, . . . , k + 1} then

(k − 1 ∧ l) ∩ [n] appears in Gkn and hence in Gk−1
n by Lemma 2 and Lemma 3. On the other

hand, if (k − 1 ∧ l) is disjoint from {−1, . . . , k + 1} then

(k − 1 ∧ l) ∩ [n] = {j ∈ [n] : Xk
j ≥ X l

j} = {j ∈ [n] : tkj ∈ Fx(Tk)} where

x is the unique point of Tk \ Tk+1 at distance Xk
l from root.

The second inclusion follows, and we conclude that Ik−1
n = Gk−1

n .
The two inclusions taken together show that on the event Tk ( Tk+1, we have Ik−1

n = Gk−1
n

almost surely. This completes the inductive proof.

2.4.3 Part (ii)

Proposition 7. T−1 ⊆ T−2 ⊆ . . . almost surely, and the limits

tj := lim
k→−∞

tkj (j ≥ 1)

exist almost surely and are members of T := cl
⋃
k≤−1 Tk, where cl denotes `1-closure.

Proof. By (2.21) the spinal variables (X i
j) variables take values in [0, 1] almost surely. Ob-

serve that by definition, ||tkj || = max{X−1
j , . . . , Xk

j } ≤ 1, and π|k|(t
k−1
j ) = tkj . The assertions

of the proposition follow from definitions and these two facts.

Let In be the hierarchy derived from T and the samples (t1, . . . , tn), i.e.

In := {{j ∈ [n] : tj ∈ Fx(T )} : x ∈ T } ∪ Ξ([n])

where Ξ([n]) is the trivial hierarchy on [n].
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Proposition 8. For every positive integer n, In = Gn almost surely.

We need the following lemma.

Lemma 4. For every pair u, v of positive integers, (u∧ v)∩ {−1,−2, . . .} is nonempty with
probability one. Here, (u ∧ v) denotes the MRCA of u and v in (Hn).

Proof. Define a family (Wj, j ∈ Z \ {i}) by

Wj =

{
1 if (u ∧ j) = {u, j}
0 otherwise

(j ∈ Z \ {u, v}).

For distinct integers j1, j2, the event {Wj1 = Wj2 = 1} is null set, because Wj1 = Wj2 = 1
implies that {j1, u} and {j2, u} are both members of Hn for all sufficiently large n, con-
tradicting part (b) of Definition 1. Therefore there is almost surely at most one 1 in the
sequence (Wj). Since (Wj) is easily seen to be exchangeable, by de Finetti’s theorem Wj = 0
almost surely for all j.

It follows that (AH(u, v, j), j ∈ Z \ {i, j}) is a family of Bernoulli variables with at least
one 1, almost surely (see (2.9) for the definition of A). Since (AH(u, v, j)) is an exchangeable
family, the conclusion follows from de Finetti’s theorem.

Proof of Proposition 8. Set T ◦ :=
⋃
k<−1 Tk and ∂T := T \T ◦. By Proposition 6 and Lemma

3 it follows that

Gn =
⋃
k≤−1

Gkn =
⋃
k≤−1

Ikn ⊆ {{j ∈ [n] : tj ∈ Fx(T )} : x ∈ T ◦} ∪ Ξ([n])

holds for every positive integer n. It remains to establish that

{j ∈ [n] : tj ∈ Fx(T )} ⊆ Gn (2.26)

holds for every x ∈ ∂T . If the set in (2.26) is empty or a singleton it is in Gn by definition,
therefore without loss of generality suppose {u, v} ⊆ {j ∈ [n] : tj ∈ Fx(T )} for some distinct
pair u, v ∈ [n] and x ∈ ∂T . We will derive a contradiction.

We claim first that given these assumptions, tu = x = tv almost surely. To see this,
note that since x ∈ ∂T , x = (x1, x2, . . .) does not terminate in zeros, ie. xl 6= 0 infinitely
often. It follows that tu does not terminate in zeros, i.e. tu ∈ ∂T , for otherwise x could
not be in [[0, tu]]sp. Now, by definitions it follows that the only point of [[0, tu]]sp that does
not terminate in zeros is tu itself, so since x ∈ [[0, tu]]sp (because tu ∈ Fx(T )) we must have
x = tu, and similarly for tv.

Since x = tu = limk→−∞ t
k
u is in ∂T , it follows that there is a subsequence km of

{−1,−2, . . .} for which
||tk1u || < ||tk2u || . . . . (2.27)
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Let (km,m ≥ 1) be the subsequence of {−1,−2, . . .} consisting of the times at which (X i
u, i ≤

−1) exceeds its past maximum,

i1 = −1 im+1 := max{i < km : X i
u > Xkm

u }.

Since ||tku|| = max{X−1
u , . . . , Xk

u}, this sequence (km,m ≤ 1) is well-defined. Now by (2.14)
it follows that

(k1 ∧ u) ) (k2 ∧ u) ) . . .

is a strictly decreasing nested family of sets. We claim that v ∈
⋂
m≥1(km ∧ u). This is

apparent from the proof of Proposition 6, where it is shown that

(km ∧ u) ∩ [n] = {j ∈ [n] : tkm
j ∈ Ftkm

u
(Tk)},

since tkm
v = π|km|(tv) = π|km|(tu) = tkm

u .
Since u and v are both contained in

⋂
m≥1(km∧u), it follows that (u∧v) ⊆

⋂
m≥1(km∧u).

From Proposition 4 there is then with probability one a negative number – we can let i denote
the maximum such number – for which i ∈

⋂
m≥1(km ∧ u). It follows that (i∧ u) ( (km ∧ u)

for all m, so that X i
u ≥ Xkm

u for every m by (2.21), contradicting the definition of (km).
We have obtained the desired contradiction. It follows that for every fixed x ∈ ∂T , the

set {j ∈ [n] : tj ∈ Fx(T )}, if nonempty, is with probability one a singleton and therefore an
element of Gn. Now observe that

{{j ∈ [n] : tj ∈ Fx(T )} : x ∈ T } ∪ Ξ([n]) = {{j ∈ [n] : tj ∈ Fti(T )} : i ∈ [n]} ∪ Ξ([n]) a.s.

Proposition 8 follows.

Remark. The proof of Proposition 8 shows that the restriction of p to the set T \
⋃
k<−1 Tk

is diffuse, i.e. nonatomic.

2.4.4 Part (iii)

Proposition 9. The hierarchies (Gn, n ≥ 1) and (H′n, n ≥ 1) are equal in distribution.

It should perhaps be pointed out again that (H′n, n ≥ 1) is the hierarchy on N with which
we started, i.e. with which we defined the hierarchy (Hn) on Z. We will need the following
lemma:

Lemma 5. The following equality holds almost surely,

{(i ∧ j) ∩ [±n] : j ∈ Z, i < 0} = {(l ∧ j) ∩ [±n] : l, j ∈ Z},

where (i ∧ j) and (l ∧ j) denote MRCAs in (Hn).
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Proof. We need only prove the “⊇” direction of the equality. Fix l, j in Z, and let µj be the
directing measure of the exchangeable sequence (Xj

n, n ∈ Z \ {j}). There are three cases to
consider.

• Xj
l is an atom of the directing measure µj. Then there is almost surely some negative

integer i for which Xj
i = Xj

l . Then by Proposition 4 part (ii),

(i ∧ j) = {k ∈ Z : Xj
k ≥ Xj

i } = {k ∈ Z : Xj
k ≥ Xj

l } = (j ∧ l)

and the claim follows.

• Xj
l is not an atom of µj. Recalling the discussion of left-uniformization preceding

Theorem 7, it can be seen that with probability 1 there is some negative integer i for
which max{Xj

k :∈ [±n], k /∈ (j ∧ l)} < Xj
i < Xj

l . Then

(i ∧ j) ∩ [±n] = {m ∈ [±n] : Xj
m ≥ Xj

i } = {m ∈ [±n] : Xj
m ≥ Xj

l } = (l ∧ j) ∩ [±n].

The third case, on which we need not linger, is that a probability zero event occurs, e.g. Xj
l

lies outside the support of µj.

Lemma 6. There is the following equality in distribution for all n,

H′n
d
= {(l ∧ j)H ∩ [n] : l, j ∈ [n] ∪ Ξ([n])

where (l ∧ j)H is the MRCA of l and j in (Hn).

Proof. Let us say that (2.16) defines (Hn) as image of (H′n) under b, and write (Hn) =

b((H′n)) to express this succinctly. Let c be a bijection from Z to Z, and let (Ĥn) = c((Hn))
be the image of (Hn) under c. By exchangeability of (H′n), there is the following equality in
distribution,

(Ĥn) := c((Hn))
d
= (Hn) := b((H′n))

which holds for all fixed bijections c : Z 7→ Z and b : N 7→ Z. It follows that

Ĥn

∣∣∣
[n]

d
= Hn

∣∣∣
[n]
.

Now choose c so that c(b(j)) = j for j = 1, . . . , n. It is straightforward to check that

Ĥn

∣∣∣
[n]

= H′n almost surely for this choice of c. Note finally that

Hn

∣∣∣
[n]

= {(l ∧ j) ∩ [n] : l, j ∈ [n]} ∪ Ξ([n])

by Proposition 2. This establishes the claim.
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Proof of Proposition 9. From Lemma 5, Proposition 2, and Lemma 6 we have

Gn = {(i ∧ j)H ∩ [n] : i ≤ 0, j ∈ Z} ∪ Ξ([n])

= {(i ∧ j)H ∩ [n] : i, j ∈ Z} ∪ Ξ([n])

= {(i ∧ j) ∩ [n] : i, j ∈ [n]} ∪ Ξ([n])
d
= H′n,

where (i ∧ j)H denotes the MRCA of i and j in (Hn).

2.5 Proof of Theorem 6

Proof. Suppose WLOG that (Hn) is the hierarchy derived from a real tree T and an ex-
changeable family (tj, j ≥ 1) of random elements of T having directing measure p. We may
further suppose that T is embedded in `1 by a stick-breaking procedure as in the proof of
Theorem 4 or as in Example of Section 2.3.1. For k ∈ N let πk be the orthogonal projection
onto the the span of the first k standard basis elements of `1,

πk((x1, x2, . . .)) = (x1, . . . , xk, 0, 0, . . .).

We will define a map ξ : [0, 1] 7→ T such that for every k ≥ 1, and every point x ∈ Tk :=
{πk(x) : x ∈ T },

(a) ξ−1(Fx(T )) is an interval,

(b) the Lebesgue measure of ξ−1(Fx(T )) equals p(Fx(T )).

To that end, for k ≥ 1 let pk be the image of p under πk. The branches of Tk can be
visualized as strings, and atoms of pk can be visualized as beads on these strings. With this
imagery, (Tk+1, pk+1) is derived as if by selecting a bead of pk, crushing this bead into a series
of smaller beads, and then drawing these smaller beads out onto the new string Tk+1 \ Tk,
possibly leaving some mass at the location of the crushed atom. (There is also the possibility
that (Tk+1, pk+1) = (Tk, pk), but this may be ignored.) Let ξ1 : [0, 1] 7→ T1 be

• an increasing map, meaning that x < y implies ||ξ1(x)|| < ||ξ1(y)||

• such that p1 is the image of Lebesgue measure under ξ1.

Now, T2 is derived as if by selecting an atom of p1, crushing it, and stringing the crushed
bits in the e2 direction. If a is the selected atom of p1, then ξ−1

1 ({a}) is an interval (u, v] or
[u, v] in [0,1]. We may therefore define a modification ξ2 of ξ1, in such a way that

• ξ2 agrees with ξ1 off of (u, v] (or [u, v] as the case may be)
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• ξ2 sends (u, v) onto a ∪ T2 \ T1

• u ≤ s < t ≤ v implies ||ξ2(s)|| ≤ ||ξ2(t)||

• p2 is the image of Lebesgue measure under ξ2.

With this type of construction we can establish the existence of a family of maps (ξk, k ≥ 1),
such that

1. for all x ∈ [0, 1], πk(ξk+1(x)) = ξk(x)

2. if ξk(x) = ξk(y) and x < y, then ξk+1(x) < ξk+1(y)

3. pk is the image of Lebesgue measure under ξk.

It is straightforward to show that the limit ξ := limk→∞ ξk exists Lebsegue a.e. and has the
asserted properties (a) and (b). Now set

H :=

{
ξ−1(Fx(T )) : x ∈

⋃
k

Tk

}
∪ Ξ([0, 1]).

For (Uj) an IID sequence of uniform[0,1] random variables independent of T and n ≥ 1 let

H′n := {{j ∈ [n] : Uj ∈ B} : B ∈H

and let
H′′n := {{j ∈ [n] : ξ(Uj) ∈ Fx(T )} : x ∈ T } ∪ Ξ([n]).

It is easily seen that H′n = H′′n almost surely. Also, conditionally given (T , p), the sequence
(ξ(U1), . . . , ξ(Un)) is an IID sequence of points with common distribution p. An argument
such as can be found in the proof of Proposition 8 shows that if x ∈ T \

⋃
k Tk then {j ∈

[n] : ξ(Uj) ∈ Fx(T )} is with probability one either empty or a singleton. It follows that

(H′′n)
d
= (Hn).

2.6 Complements

2.6.1 Properties of p and (Hn)

Let H denote the following class of subsets of the closed interval [0,3],

H : = {(0, 1), (1, 2), (2, 3)} ∪

{⋃
n≥1

{(
j

2n
,
j + 1

2n

)
: 0 ≤ j ≤ 2n − 1

}}
∪ {(2, x) : 2 < x < 3} ∪ Ξ([0, 3]).
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Let (Un, n ≥ 1) be an iid sequence of Uniform[0,3] random variables, and define an exchange-
able hierarchy on N by

Hn := {{j ∈ [n] : Uj ∈ B} : B ∈H }. (2.28)

Figure 2.4: Graph of the hierarchy defined by (2.28) with leaf labels omitted.

Figure 2.4 shows the graph Tn of Hn for large n, omitting leaf labels. Let us describe a
few key features of this graph Tn and relate them to H .

• The root of Tn has degree three. The three vertices v1, v2, v3 connected to the root
correspond to the three subintervals (0, 1), (1, 2), (2, 3) of [0, 3] contained in H .

• The graph of Tn exhibits recursive binary splitting below the vertex v1; this is a con-
sequence of the recursive binary splitting of (0, 1) in H .

• The graph of Tn looks star-like or broomstick-like below v2; this is because H contains
no nonsingleton subsets of (1,2).

• The graph of Tn looks like a comb or a caterpillar below v3; this is because H contains
a family of subsets of (2, 3) of the form (2, x) for x in a dense subset of (2, 3).

From this example, one might make the following naive conjecture.

Naive Conjecture: The three phenomena exhibited by (Hn) and its graph –
infinite recursive splitting, finite splitting, and comblike erosion – are the basic
building blocks out of which every exchangeable hierarchy is made.

However, we have difficulty seeing how to make this conjecture more precise: comblike erosion
can be interspersed with recursive splitting, splits need not be binary, and a countable family
of splits can precede another countable family of splits, and it may be that this latter family
of splits is not well-ordered by containment. It is easy to imagine pathological examples of
hierarchies.
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In lieu of a precise form of the conjecture, we offer the following propositions, which
in conjunction with Theorem 4 represent an effort at proving something like the Naive
Conjecture. But first, supposing that (Hn) is a hierarchy on N, we set

αn(j) :=
⋂

G∈Hn
j∈G,G 6={j}

G, (n ≥ j)

and call αn(j) the parent of j in Hn; it is easily checked that αn(j) ∈ Hn+j for all n, j ≥ 1.
Also, for (Hn) a hierarchy on N and i, j ∈ N we write i � j if either i = j or for all

n ≥ max{i, j},

• αn(i) ( (i ∧ j)n = αn(j), and

• if u is in {i} ∪ (i ∧ j)n \ αn(i) and v ∈ [n] then

αn(u) = αn(v) implies u = v.

Less formally, we write i � j for distinct i, j ∈ N if for every n ≥ max{i, j}, the graph of Hn

looks like a comb in the neighborhood of i and j, and i is “lower down” in this comb than is
j. Next, let Π be the partition of N derived by putting i and j in the same block if and only
if either i � j or j � i. We say that Π is the comb-partition of (Hn) and the blocks of Π are
the comb components of (Hn). It is easily checked that if (Hn) is an exchangeable random
hierarchy on N then the comb-partition is exchangeable.

Proposition 10. Suppose that (T , p) is a random weighted real tree, that (tj) an exchange-
able sequence directed by p, and that (Hn) is the exchangeable hierarchy on N derived from
T and (tj). On the event that

• there is a segment [[u, v]] of T that is oriented towards the root of T , with v further
from the root, meaning that [[u, v]] ⊆ [[0, v]]

• such that [[u, v]] does not sprout any branches of positive p-mass, meaning that for all
x in the support of p with x /∈ [[u, v]],

u ∈ [[0, x]] implies v ∈ [[0, x]]

• such that pa([[u, v]]) = 0 and pd([[u, v]]◦) > 0, where pa and pd are the atomic and
diffuse components of p, respectively, and [[u, v]]◦ denotes the interior of [[u, v]] for the
topology of T

the set {j : tj ∈ [[u, v]]◦} is a subset of one of the comb-components of (Hn). Conversely,
on the event that distinct positive integers i and j lie in the same comb-component of (Hn),
there is with probability one a segment [[u, v]] of T having the properties above for which
ti, tj ∈ [[u, v]]◦.
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The statement of the proposition is obvious from definitions.

Proposition 11. Suppose that (T , p) is a random weighted real tree, that (tj) an exchange-
able sequence directed by p, and that (Hn) is the exchangeable hierarchy on N derived from
T and (tj). On the event that a is an atom of p, for all distinct pairs u, v in the set
B = {j : tj = a}, (u∧ v) = B, where (u∧ v) denotes the MRCA of u and v in the hierarchy
derived from (tj) and T . Furthermore, tj is an atom of p if and only if

0 < lim
n→∞

1

n
#{k ∈ [n] : αm(j) = αm(k) for all m ≥ max{j, k}},

and if tj is an atom of p then p({tj}) equals this limit above almost surely.

The proof of this proposition is elementary and is therefore omitted.

Remark. The atomic and diffuse parts pa and pd of the random measure p of Theorem 4 are
“invariants,” loosely speaking, of the exchangeable hierarchy (Hn) of that theorem. More
formally, pa and pd are measurable functions of p, within the standard abstract setup for
random measures [66, Chapter 1].

2.6.2 Tail measurability and open problems

If (Hn) is a random hierarchy on N, define the tail sigma field of (Hn) as follows,

tail(Hn) =
⋂
n≥1

σ

(
Hn+1

∣∣∣
{n+1}

,Hn+2

∣∣∣
{n+1,n+2}

, . . .

)
.

If (Hn) is an exchangeable hierarchy, then the pair (T , p) of Theorem 4 is not tail-measurable
for the following reason. Let π1(x) = (x1, 0, 0, . . .) for x ∈ `1. Then the image of p under

π1 is the directing measure for the exchangeable spinal variables (X
b−1(1)

b−1(j) ) defined by (2.21),
where b is the bijection mentioned at the beginning of Section 2.4, but neither these spinal
variables nor their directing measure are tail measurable. On the other hand,

Proposition 12. The distribution of the pair (T , p) of Theorem 4 is measurable with respect
to tail(Hn).

Proof. This is a direct consequence of the fact that the bijection b mentioned at the beginning
of Section 2.4 can be chosen arbitrarily.

Instead of proving the assertion that (T , p) is not tail(Hn)-measurable, we offer the
following analogy using exchangeable partitions. Suppose that U is a random open subset
of [0, 1] having Lebesgue measure one, and let (Un) and (Vn) be independent IID sequences
of uniform[0,1] random variables, jointly independent of U . Form an exchangeable partition
Π of N by putting i and j in the same block of Π if Ui and Uj fall in the same connected
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component of U , and index the blocks {B1, B2, . . .} of Π by least elements, so that 1 =
minB1 < minB2 < . . .. Then the limits

Pi = Pi(Π) = lim
n→∞

1

n
#Bi ∩ [n]

exist almost surely, and Pi is the width of the interval of U containing UminBi
. Now form

another open subset U ′ by placing intervals of widths Pi in left-to-right order,

U ′ := (0, P1) ∪
⋃
n≥1

(P1 + . . . , Pn, P1 + . . .+ Pn+1).

Then U ′ is not measurable with respect to the tail of Π,

tail(Π) =
⋂
n≥1

σ

(
Π
∣∣∣
{n,n+1,...}

)
,

because P1(Π) is not measurable with respect to tail(Π), but P1(Π) equals almost surely the
length of the connected component of U ′ whose left-endpoint is zero. Our weighted tree
(T , p) is very much like the open subset U ′.

Continuing this discussion, it is evident that if (P ↓1 , P
↓
2 , . . .) is the sequence of Pi’s ranked

in nonincreasing order, and

Uranked := (0, P ↓1 ) ∪
⋃
n≥1

(P ↓1 + . . . , P ↓n , P
↓
1 + . . .+ P ↓n+1), (2.29)

then Uranked is measurable with respect to tail(Π). Deterministically reranking the compo-
nents of U ′ in nonincreasing order effectively erases the information contained in U ′ but
not contained in tail(Π). Obviously, the fact that the resulting order is by decreasing length
is immaterial; any deterministic ordering will do.

We may now state the previously-promised stronger version of Kingman’s theorem and
some open problems.

Theorem 8 ([70]). Suppose that Π is an exchangeable partition of N and that the probability
space supports a sequence (Un) of IID uniform[0,1] random variables independent of Π. Then
there is a Π-measurable random open subset U of [0,1] such that if Π′ is the partition defined
by

{i and j in same block of Π′} = {Ui and Uj in same component of U , or i = j} .

then there is the equality of joint distributions

(Π,U )
d
= (Π′,U ) (2.30)
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Question 1 Define an equivalence relation∼ on laws of weighted real trees, writing L (T , p) ∼
L (T ′, p′) if and only if (Hn)

d
= (H′n) for (Hn) and (H′n) exchangeable hierarchies derived by

sampling from (T , p) and (T ′, p′), respectively.
Is there a nice way of telling whether or not L (T , p) ∼ L (T ′, p′)? Speaking loosely, it

should be possible to prune away tree branches of T that carry no p-mass, and also stretch
segments of T arbitrarily, and not change the equivalence class of L (T , p). Purely topolog-
ical considerations are not quite enough to settle this question: suppose that T1 is the tree
[0,1] rooted at 1 and p1 is Lebesgue measure on [0,1], and suppose that T2 is is the half line
[0,∞) rooted at 0, and p2 is the exponential(1) distribution on T2. Then T1 and T2 are not
homeomorphic, but L (T , p) ∼ L (T ′, p′).

Question 2 Is there a nice way to select from each equivalence class of ∼ above a unique
representative of that equivalence class? Such a recipe would be akin to reordering compo-
nent intervals of open subsets of [0,1], as discussed above. By nice we mean measurable, and
you can pick the sigma fields, but the goal is to have an analogy of the strong version of
Kingman’s theorem involving an equality of joint distributions, as in (2.30).

Question 3 Repeat the previous questions in the context of Theorem 6, i.e. with hierarchies
on [0,1] instead of weighted real trees in `1.

I thank David Aldous, Steve Evans, and Matthias Winkel for helpful discussion of the
contents of this chapter.
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Chapter 3

Ewens-Pitman partitions

Let B1 be the first block – i.e., the block containing 1 – of a random partition Π of
N. If the complement N \ B1 of B1 is infinite one may form a new partition Π′ of N as
Π′ := {{F (b) : b ∈ B} : B ∈ Π, B 6= B1} for F the unique increasing bijection sending N\B1

to N. This new partition Π′ is the partition derived from Π by deleting the first block, and
we say that Π has the deletion property if Π′ and B1 are independent. The two-parameter
family of Ewens-Pitman partitions, described below, is a family of random partitions with
the deletion property.

The proof of the following theorem is the focus of this chapter. The random variables
(Wi) appearing below will be defined later; for now we anticipate the well-known result which
follows from Kingman’s theorem 10 that if Π is an exchangeable partition of N with first
block B1 then the limit

lim
n→∞

1

n
#{j ∈ [n] : j ∈ B1}

exists almost surely: W1 is by definition this limit, and the event {W1 < 1} is almost surely
equal to the event that the complement of B1 is infinite, which is the event that the partition
derived from Π by deleting the first block is a well-defined partition of N.

Theorem 9. If Π is an exchangeable partition such that P(W1 < 1) = 1 and Π has the
deletion property, then one of three cases obtains: (i) with probability one Π has exactly two
blocks, or (ii) with probability one Π is the partition of N into singletons, or (iii) Π is a
member of the Ewens-Pitman family of exchangeable partitions.

The proof of Theorem 9 may be found in Section 3.5. The proof may also be found in [46]
on which this chapter is based. A variant of the deletion property was studied by Kingman,
who characterized the class of partitions Π with the additional property that for Π′ derived

by deleting the first block of Π, Π
d
= Π′: the class of such partitions is exactly subset of the

Ewens-Pitman(α, θ) family for which the α parameter equals zero [69].
As will be made clear below, the problem of characterizing all partitions with the deletion

property is intimately related to the problem of characterizing the class of functions p
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• whose domain is the set
⋃
k≥2 Nk of integer compositions, and whose range is [0, 1]

• that satisfy the addition rule

p(λ1, . . . , λk) = p(λ1 + 1, . . . , λk) + . . .+ p(λ1, . . . , λk + 1) + p(λ1, . . . , λk) (3.1)

and the symmetry rule

p(λ1, . . . , λk) = p(λσ(1), . . . , λσ(k)) (3.2)

for every sequence (λ1, . . . , λk) and permutation σ of {1, . . . , k}

• that have the normalization condition p(1) = 1 and the additional property

lim sup
n→∞

p(n) = 0

• and that factorize as

p(λ1, . . . , λk) = g(λ1 + . . .+ λk, λ1)p′(λ2, . . . , λk)

for a function g and another nonnegative symmetric, additive function p′.

This characterization problem has an “algebraic” character, and after proving Theorem 9
by probabilistic arguments we give an independent algebraic proof using this reformulation
of the problem. This latter approach can be generalized to solve a problem posed in [57]
that arose in the study of homogeneous fragmentation processes, which are partition-of-N-
valued Markov processes (Π(t), t ≥ 0) having stationary “increments” [23]. Disregarding a
few details, every such process is characterized by a symmetric, additive function p as above
that describes the transition rates for the Markov process Πn(t) that is the restriction of Π(t)
to [n], except that in this setting p need only be defined on compositions having more than
one part – p(n) may not be defined for n ≥ 1 – and instead of p(1) = 1 we only require that
p(1, 1) < ∞. Such functions p are called exchangeable partition rate functions (EPRFs),
and each EPRF determines the distribution of a homogeneous fragmentation process [20].
The algebraic proof of Theorem 11 can be extended to characterize all EPRFs that factorize
as above: this is done in Section 3.8.

The first several sections of this chapter are expository and largely based on [81, 82, 83].

3.1 Exchangeable partitions

A partition of [n] = {1, . . . , n} is a collection {B1, . . . , Bk} of pairwise disjoint sets called
blocks whose union is [n], that are conventionally labeled in order of minimal elements, so
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that 1 = minB1 < . . . < minBk. A sequence (πn, n ≥ 1) of partitions is said to be consistent
if for all n ≥ 1,

πn = πn+1

∣∣∣
[n]

:= {B ∩ [n+ 1] : B ∈ πn+1}

i.e. if πn+1 is formed either by adding n + 1 to a block of πn or by adding the singleton
block {n+ 1} to Πn. Consistent sequences of partitions are in bijective correspondence with
partitions of N: if π is a partition of N then π corresponds to the sequence (πn) defined by

πn := π
∣∣∣
[n]

. Partitions π of N and consistent sequences of partitions (πn) are often spoken of

interchangeably, and because of this correspondence there is no harm in doing this.
A random partition Πn of [n] is said to be exchangeable if for every permutation σ of [n]

there is the equality in distribution

Πn
d
= σ(Πn) := {{σ(b) : b ∈ B} : B ∈ Πn}, (3.3)

i.e. if relabeling the contents of the blocks of Πn by σ produces a partition equal in distribution
to Πn. Likewise, a random partition (Πn) of N is exchangeable if (3.3) holds for all n ≥ 1.

For positive integers n a composition of n is a sequence λ = (λ1, . . . , λk) of positive
integers with sum n. The length k = kλ of λ may be regarded as a function of λ. If (Πn)
is an exchangeable partition of N then for all n ≥ 1 and any partition πn of [n] there is the
equality

P(Πn = πn) = P(Πn = σ(πn))

indeed, this is an equivalent form of (3.3). Consequently, the probability P(Πn = πn) only de-
pends on πn through its block sizes. The exchangeable partition probability function (EPPF)
associated to (Πn) is the [0,1]-valued function p of integer compositions defined by

p(λ1, . . . , λk) := P(Πn = {B1, . . . , Bk})

for any (and every) partition {B1, . . . , Bk} of [n] into blocks of size λi = #Bi, i = 1, . . . , k,
n ≥ 1 [82]. The EPPF of an exchangeable partition is symmetric, additive, and normalized as
discussed in the introductory remarks at the beginning of this chapter around (3.2) and (3.1).
The symmetry property of p follows from exchangeability of the partition Πn, additivity of
p follows from consistency of (Πn) as n varies, and the normalization property follows from
the fact that there is only one partition of the set [1].

Conversely, any [0,1]-valued function p of integer compositions with these three properties
is the EPPF of exactly one exchangeable partition.

Proposition 13 (Pitman [82]). If p is a [0,1]-valued function of integer compositions that is
symmetric, additive, and normalized as above, then there is an exchangeable partition (Πn)
of N for which p is the EPPF of (Πn).



CHAPTER 3. EWENS-PITMAN PARTITIONS 42

Proof. We construct the sequence (Πn) sequentially using p and external randomness in the
form of an IID sequence (Ui) of uniform random variables. Let Π1 = {{1}}. Now suppose
that Πn has been defined for some n and that Πn = {B1, . . . , Bk} for some partition of [n],
and it remains to construct Πn+1. For j ∈ [k], define xj by

xj := p(#B1, . . . ,#Bj + 1,#Bk)/p(#B1, . . . ,#Bk),

and set
xk+1 = p(#B1, . . . ,#Bk, 1)/p(#B1, . . . ,#Bk) = 1− x1 − . . .− xk.

Then let An+1 = inf{j ∈ [k + 1] : x1 + . . .+ xj > Un+1}, so that P(An+1 = j | Πn) = xj, and
form Πn+1 by

• adding element n+ 1 block BA(n+1) if An+1 < k + 1

• and adding a new singleton block {n+ 1} to Πn if An+1 = k + 1.

It is easily seen that for the sequence of partitions so constructed, P(Πn = {B1, . . . , Bk}) =
p(#B1, . . . ,#Bk) for any partition {B1, . . . , Bk} of [n] and all n ≥ 1. Thus Πn is exchange-
able. The sequence (Πn) is obviously consistent, and the claim follows.

3.1.1 Constructing exchangeable partitions

Let ∇ := {(si, i ≥ 1) : s1 ≥ s2 ≥ . . . ≥ 0,
∑

i≥1 si ≤ 1} be the set of nonnegative
nonincreasing sequences of real numbers with sum at most one, and let S = (S1, S2, . . . , )
be a random discrete distribution, which is to say a random element of ∇ [73]. Furthermore
let ν be the distribution of S, and let (Zi) be a sequence of integer-valued random variables
conditionally independent given S with

P(Zi = j | S = s) =

{
sj if j > 0

1−
∑

j≥1 if j = 0
(i ≥ 1, j ≥ 0). (3.4)

Then (Zj) is exchangeable, and by slight abuse of terminology of Aldous [11] we say that
(Zi) is directed by S. A PB(ν)-partition is any partition equal in distribution to a partition
derived as follows from exchangeable variables (Zi) directed by S: place natural numbers
i and j in the same block if and only if Zi = Zj 6= 0. If Π is derived in this manner, all
integers j for which Zj = 0 belong to singleton blocks {j} of Π. A paintbox partition is any
random partition of N that is a PB(ν)-partition for some probability distribution ν on ∇.

If U is a random open subset of [0, 1] and (Ui, i ≥ 1) an IID sequence of uniform[0,1]
random variables independent of U then one may form an exchangeable partition by stipu-
lating that natural numbers i and j be in the same block if and only if Ui and Uj fall in the
same connected component of U . Less formally, one may regard [0,1] as a paintbox and the
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connected components of U as wells containing different colors of paint. Each integer i is to
be dipped in the paint well in which Ui lies, and after all integers have been painted in this
manner one derives a partition of N by color [81]. The two notions of paintbox partition
are easily seen to be equivalent, for given a random open subset of U one may arrange the
lengths of the connected components of U in nonincreasing order to obtain a random dis-
crete distribution S, and conversely given a random discrete distribution S one may form a
random open subset by placing intervals of lengths Si in left-to-right order in [0,1].

For s ∈ ∇ define a function of integer compositions ps by

ps(λ1, . . . , λk) =
∑
I:I⊆I

(1− s1 − s2 . . .)
#I−#I

∑
f :f is injective
f :I∪M7→N

∏
i∈I∪I′

sλi

f(i) (3.5)

where I denotes the set {j ∈ [k] : λj = 1} of indices of singletons, M = {j ∈ [k] : λj > 1}
denotes the set of indices of nonsingletons, and the second sum is over all injective functions
with the given domain and range. If

∑
i≥1 si = 1, equation (3.5) simplifies:

ps(λ1, . . . , λk) =
∑

f :f is injective
f :[k]7→N

∏
i∈[k]

sλi

f(i) if
∑
i≥1

si = 1. (3.6)

The relevance of the function ps is apparent from the following proposition:

Proposition 14. If (Πn) is a PB(ν) partition derived from a random discrete distribution
S with distribution ν and πn = {B1, . . . , Bk} is a partition of [n] with block sizes (#B1, . . . ,
#Bk) = (λ1, . . . , λk) = λ, then

P(Π = πn | S) = pS(λ) (3.7)

and

pν(λ1, . . . , λk) :=

∫
∇
ps(λ1, . . . , λk) ν(ds) = P(Πn = πn). (3.8)

The proof is elementary and obvious from the definition of the random discrete distribu-
tion construction of an exchangeable partition. It may have been first noticed by Kingman
[69].

3.1.2 Size-biasing

Suppose again that S = (S1, S2, . . .) is a random discrete distribution and that the family
(Zi) of nonnegative integer-valued random variables is directed by S as in Section 3.1.1. Let
J1 = 1 and for i ≥ 2 let Ji = inf{n ≥ Ji−1 : Xn /∈ {XJ(1), . . . XJ(n−1)} or Xn = 0}. Then the
sequence (Y1, Y2, . . .) defined by

Yi =

{
SJ(i) if Ji <∞
0 if Ji =∞
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is known as a size-biased permutation of S [34]. The distribution of (Yi) can be described
informally in terms of an urn: put black marbles of weights S1, S2, . . . in an urn and add an
additional white marble having weight 1−

∑
i≥1 Si. Then recursively draw marbles from the

urn with probability proportional to weight, and

• when a black ball is drawn, record its weight, and do not replace the marble in the urn

• when the white marble is drawn, record zero, and replace the white marble in the urn.

With the convention that the white marble is always the next marble to be drawn if it is
the only marble remaining in the urn, this process can be continued indefinitely, and the
distribution of (Yi) is the same as the distribution of the sequence of numbers recorded by
this urn process. More formally, if the positive members of S are strictly decreasing, the
conditional distribution of (Yi) given S = s is easily seen to be

P(Y1 = Qi(1), . . . , Yk = Qi(k) | S) =
k∏
j=1

Si(j)

(
k∏
j=2

(1−Qi(1) − . . .−Qi(j))

)−1

1(E) a.s.

(3.9)
where for brevity we have written S0 in place of 1−

∑
i≥1 Si and where (Qi) is defined by

Qi :=

{
Si if i ≥ 1

0 if i = 0
,

and where E is the event that the nonzero members of the sequence (i(1), . . . , i(j)) are dis-
tinct positive integers. If S contains nonzero ties with positive probability, i.e. if P(Si =
Si+1 > 0) > 0, then (3.9) must be modified by introducing a combinatorial factor. Size-
biasedness is a distributional property: a sequence (Y ′i , i ≥ 1) of nonnegative random vari-
ables with sum almost surely no greater than one is said to be a size-biased permutation of
the sequence S derived by ranking (Y ′i ) in nonincreasing order, if the the joint distribution
of ((Y ′i ),S) is the same as the distribution of ((Yi),S) for an exchangeable sequence (Yi)
directed by the discrete distribution S.

For more developments of size-biasing see [51] and references therein.

3.2 Kingman’s theorem

Kingman’s proved a de Finetti-type characterization of exchangeable partitions:

Theorem 10 (Kingman [70] ). If Π is an exchangeable partition of N then Π is equal in
distribution to a partition directed by a random discrete distribution.
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Proof. (Aldous [11]) . Without loss of generality let (Ui) be a sequence of IID uniform ran-
dom variables independent of Π. For j ∈ N let Lj denote the minimal element of the block
of Π containing j. Thus if Π5 = {{1, 4}, {2, 5}, {3}} then (L1, L2, L3, L4, L5) = (1, 2, 3, 1, 2).
Next define a sequence (Xj) by Xj = UL(j). It is easily seen that because Π is exchangeable,
(Xj) is exchangeable as well, and furthermore Π is equal to the partition derived from the
sequence (Xi) by putting natural numbers i and j in the same block if and only if Xi = Xj.

Let µ be the directing random measure of (Xi), and let S = S(µ) be the sequence of atom
sizes of µ ranked in nonincreasing order. By de Finetti’s theorem the conditional distribution
of (Xi) given µ = m is the distribution of a sequence of IID variables with common law m,
and such a sequence can be coupled to a sequence of independent random variables (Zi) with

P(Zi = k) =

{
sk(µ) if k ≥ 1

1−
∑

i≥1 si(µ) if k = 0

in an obvious way so that the partition Π′ derived by putting i and j in the same block if
and only if Zi = Zj 6= 0 is equal to the partition derived by putting i and j in the same
block if and only if Xi = Xj. Thus Π is equal in distribution to a partition Π′ directed by a
discrete distribution.

Corollary 2. If Π = {B1, B2, . . .} is an exchangeable partition of N, then for every block Bi

of Πn the limit

Pi := lim
n→∞

1

n
#Bi ∩ [n] (3.10)

exists almost surely and equals zero if and only if Bi is a singleton block of Π. With the
convention that Pi = 0 if Π has fewer than i blocks, the sequence (Pi) is a size-biased
permutation of the sequence S derived by ranking (Pi) in nonincreasing order. Finally, if C
denotes the class of singletons, C := {j ∈ N : {j} ∈ N}, then C is almost surely empty if∑

i≥1 Pi = 1, and

lim
n→∞

1

n
#C ∩ [n] = 1−

∑
i≥1

Pi

holds almost surely.

The statement of the corollary is obvious for partitions directed by discrete distributions
and so follows from Kingman’s theorem [81]. The limits (Pi) are known as the limit frequen-
cies of Π, or sometimes limit frequencies of Π in order of discovery. By convention Pi := 0 if
Π has fewer than i blocks. For later reference we define the residual limit frequencies (Wi):
if Π is an exchangeable partition with limit frequencies (Pi) then W1 = P1 and

Wi :=

{
Pi/(1− P1 − . . .− Pi−1) if P1 + . . .+ Pi−1 < 1

0 if P1 + . . .+ Pi−1 = 1
. (3.11)
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Proposition 15 (Kingman, Pitman [81, 82]). If Π is an exchangeable partition of N with
EPPF p and S = (Si) denotes the random sequence derived from the limit frequencies (Pi)
of Π by ranking these limits in nonincreasing order, then for every partition {B1, . . . , Bk} of
[n] with λi := #Bi, for i ∈ [k], there are the following almost sure equalities,

P(Πn = {B1, . . . , Bk} | S) = pS(λ1, . . . , λk), (3.12)

and

P (Πn = {B1, . . . , Bk} | (Pi)) =
k∏
i=1

P λi−1
i Ri (3.13)

where R1 := 1 and Ri := 1− P1 − . . .− Pi−1 for i ≥ 1. Additionally,

P(Πn = {B1, . . . , Bk} | (Wi)) =
k∏
i=1

W λi−1
i W

Λi+1

i (3.14)

for W i := 1−Wi and Λi := λi + . . .+ λk.

Proof. According to Kingman’s theorem, without loss of generality it may be assumed that
Π is a paintbox partition derived from a sequence of nonnegative integer-valued random
variables (Zi) directed by the discrete distribution S by putting i and j in the same block if
and only if Zi = Zj 6= 0. Equation (3.12) then follows from Proposition 14. For an idea of
how (3.13) may be obtained, let Ji := minBi for {B1, B2, . . .} the sequence of blocks of the
partition Π of N, and observe that Pi = SJi

unless Ji = 0 in which case Pi = 0. Next note
that for m ≥ k,

P(Πn = {B1, . . . , Bk}, J1 = j1, . . . , Jm = jm | S)

P(J1 = j1, . . . , Jm = jm | S)
=

∏k
i=1 S

ni
ji∏k

i=1 Sji/(1− P1 − . . .− Pi−1)
,

holds almost surely, where for brevity we write S0 in place of 1 −
∑

i≥1 Si. The left-hand
side of this display equals P(Πn = {B1, . . . , Bk} | J1 = j1, . . . , Jm = jm,S). On taking
expectation with respect to the sigma field generated by (P1, . . . , Pm) we obtain

P(Πn = {B1, . . . , Bk} | P1, . . . Pm) =
k∏
i=1

P λi−1
i Ri,

now send m upwards to the number of blocks of Π to obtain the desired result. For more
details see [82]. Finally, (3.14) is derived from (3.13) by the change-of-variables (3.11).
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3.3 The two-parameter family

It was shown in [82] that for each pair of real parameters (α, θ) with

0 ≤ α < 1, θ > −α (3.15)

the formula

pα,θ(λ) :=

∏k−1
i=1 (θ + iα)

(θ + 1)n−1

k∏
j=1

(1− α)λj−1 (3.16)

where k = kλ, n = nλ, and

(x)n := x(x+ 1) . . . (x+ n− 1) =
Γ(x+ n)

Γ(x)

is a rising factorial, defines the EPPF of an exchangeable random partition of positive integers
whose limit frequencies (Pi) in order of appearance as defined by (3.10) admit the stick-
breaking representation

Pi = Wi

i−1∏
j=1

(1−Wj) (3.17)

for residual limits (Wj) such that

W1,W2, . . . are mutually independent (3.18)

with Wj having the Beta(1− α, θ + jα) distribution.
Formula 3.16 also defines an EPPF for (α, θ) in the range

α < 0, θ = −Mα for some M ∈ N, (3.19)

in which case the stick-breaking representation (3.17) makes sense for 1 ≤ k ≤M , if the last
factor WM , which has “Beta(1−α, 0)” distribution for these parameter values, is understood
to be equal to 1 almost surely. The frequencies (P1, . . . , PM) in this case are a size-biased
random permutation of (Q1, . . . , QM) with the symmetric Dirichlet distribution with M
parameters equal to κ := −α > 0. It is well known that the Qi can be constructed as
Qi = γ

(i)
κ /Σ, 1 ≤ i ≤ M , where Σ =

∑M
i=1 γ

(i)
κ and the γ

(i)
κ are independent and identically

distributed copies of a gamma variable γκ with density

P(γκ ∈ dx) = Γ(κ)−1xκ−1e−x dx (x > 0). (3.20)

As shown by Kingman [69], the (0, θ) EPPF (3.16) for α = 0, θ > 0 arises in the limit of
random sampling from such symmetric Dirichlet frequencies as κ = −α ↓ 0 and M ↑ ∞
with νM = θ held fixed. In this case, the distribution of the partition Πn is that determined
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by the Ewens sampling formula with parameter θ, the residual fractions Wi in the stick-
breaking representation are independent and have identical Beta(1, θ) distributions, and the
ranked frequencies Si can be obtained by normalization of the jumps of a gamma process
with stationary independent increments (γκ, 0 ≤ κ ≤ θ). Perman, Pitman and Yor [80]
gave extensions of this description to the case 0 < α < 1 when the distribution of ranked
frequencies can be derived from the jumps of a stable subordinator of index α. See also
[84, 80, 87, 81] for further discussion and applications to the description of ranked lengths
of excursion intervals of Brownian motion and Bessel processes.

In the limit case when κ = −α →∞ and θ = Mκ→∞, for a fixed positive integer M ,
the EPPF (3.16) converges to

pM(λ) :=
M(M − 1) · · · (M − k + 1)

Mn
, (3.21)

corresponding to sampling from M equal frequencies

P1 = P2 = · · · = PM = 1/M

as in the classical coupon collector’s problem with some fixed number M of equally frequent
types of coupon. We refer to the collection of partition structures defined by (3.16) for
the parameter ranges (3.15) and (3.19), as well as the limit cases (3.21), as the extended
two-parameter family.

The partition 0 of N into singletons and the partition 1 of N into a single block both
belong to the closure of the two-parameter family. As noticed by Kerov [68], a mixture of
these two trivial partitions with mixing proportions t and 1− t also belongs to the closure,
as is seen from (3.16) by letting α→ 1 and θ → −1 in such a way that (1− α)/(θ + 1)→ t
and (θ + α)/(θ + 1)→ 1− t.

3.4 The deletion property

Recall from the first paragraph of this chapter the definition of the partition Π′ derived by
deleting the first block B1 of a partition Π of N.

Definition 10. A random partition Π = {B1, B2, . . .} of N has the deletion property if
N \B1 is almost surely an infinite set and if B1 and Π′ are independent, for Π′ the partition
of N derived by deleting the first block of Π.

We will not discuss the possibility of deleting the first block for partitions where the
complement of the first block is finite or empty. However, it follows from Kingman’s theorem
that if Π is an exchangeable partition of N then there is the almost sure equality of events

{N \B1 is infinite} = {W1 < 1} = {Π 6= {N}}

for W1 the first residual limit frequency of Π. For this reason, throughout the rest of this
chapter it will often be assumed that P(W1 < 1) = 1 .
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Proposition 16 (Gnedin, Haulk and Pitman [46]). Suppose Π is an exchangeable partition
of N with residual limits (Wi), suppose P (W1 < 1) = 1 and let Π′ be the partition of N
derived by deleting the first block of Π. Let (Pi) and (P ′i ) [resp., (Wi) and (W ′

i )] be the
limit frequencies [resp., residual limit frequencies] of Π and Π′, respectively. Then Π′ is an
exchangeable partition of N, and for i ≥ 1, P ′i = Pi+1/(1−P1) and W ′

i = Wi+1 almost surely.

Proof. Exchangeability of Π′ follows directly from exchangeability of Π. The assertions about
the limits and residual limits are likewise straightforward to check.

The following proposition provides some alternative descriptions of the deletion property
under the additional assumption of exchangeability.

Proposition 17 (Gnedin, Haulk and Pitman [46]). Let Π be an exchangeable partition of N
with residual limits (Wi), and suppose that P(W1 < 1) = 1. Let Π′ be the partition derived
by deleting the first block B1 of Π. Then the following conditions are equivalent:

(i) Π has the deletion property: B1 and Π′ are independent.

(ii) W1 is independent of (W2,W3, . . .).

(iii) There is a pair of functions g and p′ such that for every every integer composition λ
of having at least two parts, the EPPF p factorizes as follows,

p(λ1, . . . , λk) = g(nλ, λ1)p′(λ2, . . . , λk) (3.22)

for nλ := λ1 + . . . + λk, for a function g : {(n,m) : 1 ≤ m ≤ n < ∞} 7→ [0, 1] that is
additive, meaning

g(n,m) = g(n+ 1,m) + g(n+ 1,m+ 1)

for all 1 ≤ m ≤ n, such that g(1, 1) = 1, and p′ a [0,1]-valued function of compositions
that is symmetric, additive, and normalized, that is, p′ that is an EPPF.

Finally, if any of these conditions hold, then p′ and g appearing in (iii) are uniquely deter-

mined: p′ is the EPPF of Π′, and g(n,m) = E[W n−1
1 W

n−m
1 ] for 1 ≤ m ≤ n <∞.

Proof. To see that (i) implies (ii), note that W1 is a function of B1 and (W2,W3, . . .) is a
function of Π′ by Proposition 16. To see that (ii) implies (iii), take expectation in (3.14) and
use independence of W1 and (W2,W3, . . .) to factorize the expectation of the product,

p(λ) = E[W λ1−1
1 W

n−λ1

1 ] E

[
k∏
i=2

W λi−1
i W

Λi+1

i

]
.

Then set g(n,m) = E(Wm−1
1 W1

n−m
) and

p′(λ2, . . . , λk) = E

[
k∏
i=2

W λi−1
i W

Λi+1

i

]
.
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Additivity of g follows from the fact that E[Wm−1
1 W

n−m
1 ] = E[Wm−1

1 W
n−m
1 (W1 +W 1)], and

p′ is an EPPF by Proposition 16. To see that (iii) implies (i), without loss of generality
suppose that Π = {B1, B2, . . .} is constructed using the EPPF p and external randomness
in the form of an IID sequence of uniform random variables (Ui) as described in the proof of
Proposition 13, and let (An) be the random variables that appear in this construction and
that have the property that the equality of events

{An = j} = {n ∈ Bj}

holds almost surely. Furthermore, let Π′′ be an exchangeable partition of N constructed in
this same manner from the EPPF p′ and a different sequence (Vi) of IID uniform random
variables, so that Π and Π′′ are independent. Now let πn be a partition of [n] with block
sizes (λ1, . . . , λk) = λ and suppose that p(λ) > 0. The equality

p(λ1 + 1, λ2, . . . , λk)

p(λ)
=
g(n+ 1, λ1 + 1)

g(n, λ1)

shows that

P(An+1 = 1 | Πn = πn) =
g(n+ 1, λ1 + 1)

g(n, λ)
,

and thus, by additivity, P(An+1 6= 1 | Πn = πn) = g(n+ 1, λ1)g(n+ 1, λ1)−1. Therefore

P(An+1 = j | Πn = πn, An+1 6= 1) =

{
p′(λ2,...,λj ,...,λk)

p′(λ2,...,λk)
if 2 ≤ j ≤ k

p′(λ2,...,λk,1)
p′(λ2,...,λk)

if j = k + 1
, (3.23)

and it can then be easily checked that there is the distributional equality

Π
d
= Π0

def
= {B1} ∪ {{G(j) : j ∈ B} : B ∈ Π′′}

where G is the increasing bijection from N \ B1 to N; that is, Π is equal in distribution to
a partition Π0 derived by first “breaking off” the block B1 from N and then partitioning
the remainder N \ B1 according Π′′. Since Π′′ and B1 are independent, and Π′′ equals the
partition Π′0 derived from Π0 by deleting the first block, this shows that (iii) implies (i), and
also shows that Π′ has EPPF p′. Since p determines the law of Π, and thereby determines
the law of Π′, p thus determines p′ uniquely, and so by the equality p = gp′ determines g
uniquely as well.

Let us now restate Theorem 9 more precisely.

Theorem 11 (Gnedin, Haulk, Pitman [46]). If Π is an exchangeable partition with residual
limits (Wi) such that P(W1 < 1) = 1, and Π has the deletion property then either

(i) with probability one Π is the trivial partition of N into singletons, or
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(ii) Π is an exchangeable partition that almost surely has exactly two blocks, or

(iii) Π is a member of the extended two-parameter family of Ewens Pitman partitions with
EPPF p that either has the form specified by (3.16) for parameters in the range (3.15)
or in the range {α < 0, θ = Mα for some integer M ≥ 2}, or p has the form (3.21)
for some integer M ≥ 2.

Conversely, if any one of these three cases obtains then Π is an exchangeable partition,
P(W1 < 1) and Π has the deletion property.

The “converse” part of theorem 11 is known from previous work [82]; we will not discuss
it in this chapter.

Corollary 3. If Π is an exchangeable partition with residual limits (Wi) with P(W1 < 1)
and W1 is independent of (W2,W3, . . .), then the distribution of W1 determines that of
(W2,W3, . . .), and the random variables (Wi, i ≥ 1) are jointly independent.

Proof. The symmetry condition p(r + 1, s + 1) = p(s + 1, r + 1) and the moment formula
(3.14) in conjunction with Proposition 17 give

E(W r
1W

s+1

1 )E(W s
2 ) = E(W s

1W
r+1

1 )E(W r
2 ) (3.24)

for non-negative integers r and s. Setting r = 0, this expresses moments of W2 in terms of
the moments of W1. So the distribution of W1 determines that of W2. In fact, more is true:
if P(0 < W1 < 1) = 1 then as as is shown in Lemma 12 of [82], first two moments of W1

determine all moments of W1 and of W2, and one of three cases obtains:

• W2 = 1 almost surely,

• (P1, P2) = ( 1
M
, 1
M

) almost surely for some positive integer M

• W1 and W2 have nondegenerate beta distributions.

From the distribution of W1 it can be seen whether P(0 < W1 < 1) = 1, and if this holds
then the law of W1 determines which of these three possibilities occurs. In the first two cases
the distribution of W1 obviously determines that of (W2,W3, . . .). Likewise, in the third
case, W1 has Beta(1− α, θ + α) distribution for some α, θ, and then the remaining residual
limits have distributions determined by these parameters as a consequence of Theorem 11.
If on the other hand P(0 < W1 < 1) < 1, then we must be in case (i) of Theorem 11 and so
(W2,W3, . . .) = (1, 0, 0, . . .) almost surely and so is trivially determined by the law of W1. In
any case, independence of (Wi) follows from Theorem 11
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3.5 Proof of Theorem 11

According to Kingman’s theorem we may assume without loss of generality that Π is a PB(ν)
partition for some distribution ν on ∇, so that p = pν is the EPPF of Π. First assume that

pν(2, 2, 1) = 0. (3.25)

It follows that ν({s : s2 > 0, s1 + s2 < 1}) = 0. We claim that ν{0 < s1 < 1, s2 = 0} = 0.
Indeed, supposing otherwise we have by (17)

0 < pν(2, 1, 1, 1) = g(5, 2)p′(1, 1, 1)

and
0 < pν(2, 1, 1) = g(4, 1)p′(2, 1)

for some EPPF p′, which shows that

0 < g(5, 2)p′(2, 1) = pν(2, 2, 1),

a contradiction that proves the claim. It follows that ν concentrates on {s1 = 0} ∪ {0 <
s2 = 1 − s1}. We claim furthermore that if ν(s1 = 0) > 0 then ν(s1 > 0) = 0. Supposing
otherwise we have

0 < pν(m,n) = g(m+ n,m)p′(n)

and
0 < pν(1

n+1) = g(n, 1)p′(1n)

for all m,n ≥ 2 and therefore

0 < g(m+ n,m)p′(1n) = pν(m, 1
n)

for all m,n ≥ 2, contradicting ν({s2 > 0, s1 + s2 < 1}) = ν{0 < s1 < 1, s2 = 0} = 0 and
thus proving the claim. Therefore either s1 = 0 ν-a.e. and we are in case (i) of Theorem 11,
or 0 < s2 = 1− s1 ν-a.e., and we are in case (ii) of Theorem 11.

We may now suppose that the EPPF p of Π has the property that

p(2, 2, 1) > 0. (3.26)

As mentioned in the proof of Corollary 3, it was shown in Lemma 12 of [82] that if the
residual limits (Wi) are independent and P(0 < W1 < 1) = 1 then

• W2 = 1 almost surely

• W1 is a degenerate random variable, almost surely equal to 1/M for some positive
integer M
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• W1 and W2 have nondegenerate beta distributions.

In fact, the proof of this Lemma of [82] goes through if P(0 < W1 < 1) = 1 is weakened to
the conjunction P(0 ≤ W1 < 1) = 1 and P(W1 > 0) > 0, so that this trichotomy is holds
in the present context. However, the regularity condition (3.26) reduces the situation either
to the case with M > 2 equal frequencies with sum 1, or to the case where W1 has a beta
distribution, and hence so does W2, by consideration of (3.24). There is nothing more to
discuss in the first case, so we assume for the rest of this section that

each of W1 and W2 has a non-degenerate beta distribution, with possibly different parameters.
(3.27)

Recall that
P1 = W1 and P2 = (1−W1)W2.

As observed in [83],

the conditional distribution of (P3, P4, . . .) given P1 and P2 depends symmetrically
on P1 and P2.

This can be seen from Kingman’s paintbox representation, which implies that conditionally
given S1, S2, . . ., as well as P1 and P2, the sequence (P3, P4, . . .) is derived by a process of
random sampling from the frequencies (Si) with the terms P1 and P2 deleted. No matter
what (Si) this process depends symmetrically on P1 and P2, so the same is true without the
extra conditioning on (Si).

Since P1 + P2 is a symmetric function of P1 and P2, and (W3,W4, . . .) is a measurable
function of P1 + P2 and (P3, P4, . . .),

the conditional distribution of W3,W4, . . . given (P1, P2) depends symmetrically
on P1 and P2.

The condition that W1 is independent of (W2,W3,W4, . . .) implies easily that

W1 is conditionally independent of (W3,W4, . . .) given W2.

Otherwise put:

P1 is conditionally independent of (W3,W4, . . .) given P2/(1− P1),

hence by the symmetry discussed above

P2 is conditionally independent of (W3,W4, . . .) given P1/(1− P2).
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Let X := P2/(1− P1), Y := P1/(1− P2) and Z := (W3,W4, . . .). Then we have both

X is conditionally independent of Z given Y , (3.28)

and
Y is conditionally independent of Z given X, (3.29)

from which it follows under suitable regularity conditions (see Lemma 7 below) that

(X, Y ) is independent of Z, (3.30)

meaning in the present context that

W1, W2 and (W3,W4, . . .) are independent. (3.31)

Lauritzen [74, Proposition 3.1] shows that (3.28) and (3.29) imply (3.30) under the assump-
tion that (X, Y, Z) has a positive and continuous joint density relative to a product measure.
From (3.27) and strict positivity of the beta densities on (0, 1), we see that (X, Y ) has a
strictly positive and continuous density relative to Lebesgue measure on (0, 1)2. We are not
in a position to assume that (X, Y, Z) has a density relative to a product measure. However,
the passage from (3.28) and (3.29) to (3.30) is justified by Lemma 7 below without need for
a trivariate density. So we deduce that (3.31) holds. By Proposition 16, (W2,W3, . . .) is the
sequence of residual fractions of an exchangeable partition Π′, and W2 has a beta density.
So either W3 = 1 and we are in the case (3.19) with M = 3, or W3 has a beta density, and
the previous argument applies to show that

W1, W2, W3 and (W4,W5, . . .) are independent.

Continue by induction to conclude the independence of W1,W2, . . .Wk for all k such that
p(1k) > 0.

Lemma 7. Let X, Y and Z denote random variables with values in arbitrary measurable
spaces, all defined on a common probability space, such that (3.28) and (3.29) hold. If the
joint distribution of the pair (X, Y ) has a strictly positive probability density relative to some
product probability measure, then (3.30) holds.

Proof. Let p(X, Y ) be a version of P(Z ∈ B | X, Y ) for B a measurable set in the range of
Z. By standard measure theory (e.g. Kallenberg [66, 6.8]) the first conditional independence
assumption gives P(Z ∈ B | X, Y ) = P(Z ∈ B | X) a.s. so that

p(X, Y ) = g(X) a.s. for some measurable function g.

Similarly from the second conditional independence assumption,
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p(X, Y ) = h(Y ) a.s. for some measurable function h,

and we wish to conclude that

p(X, Y ) = c a.s. for some constant c.

To complete the argument it suffices to draw this conclusion from the above two assumptions
about a jointly measurable function p, with (X, Y ) the identity map on the product space
of pairs X ×Y , and the two almost sure equalities holding with respect to some probability
measure P on this space, with P having a strictly positive density relative to a product
probability measure µ⊗ ν. Fix u ∈ (0, 1), from the previous assumptions it follows that

{p(X, Y ) > u} = {X ∈ Au} = {Y ∈ Cu} a.s. (3.32)

for some measurable sets Au, Cu, whence

{p(X, Y ) > u} = {X ∈ Au} ∩ {Y ∈ Cu} a.s., (3.33)

where the almost sure equalities hold both with respect to the joint distribution P of (X, Y ),
and with respect to a product probability measure µ⊗ ν governing (X, Y ). But under µ⊗ ν
the random variables X and Y are independent. So if q := (µ⊗ν)(p(X, Y ) > u), then (3.32)
and (3.33) imply that q = q2, so q = 0 or q = 1. Thus p(X, Y ) is constant a.s. with respect
to µ⊗ ν, hence also constant with respect to P .

3.6 Fragmentation processes and factors

3.6.1 Fragmentation processes background

Following Bertoin [20, 23], let P denote the space of partitions of positive integers N, and
introduce a metric d on P by setting d(π, π′) = 2−I(π,π

′) where I(π, π′) denotes the largest
integer n for which the restriction of π to [n] = {1, 2, . . . , n} is equal to the restriction
of π′ to [n]. Say that a càdlàg P-valued Markov process (Π(t), t ≥ 0) is a homogeneous
fragmentation process (an HFP) if

• (refining property) Π(0) is the trivial partition of N into one block, and for all pairs
0 ≤ s < t, Π(t) is almost surely equal to or finer than Π(s),

• (nontriviality) Π does not immediately jump to the trivial partition 0 of N into single-
tons: P(Π(0+) = 0) = 0. Furthermore, P(Π(t) = {N})→ 0 as t→∞.

• (exchangeability) (Π(t), t ≥ 0) is exchangeable, which is to say that the law of (Π(t), t ≥
0) is the same as the law of (σΠ(t), t ≥ 0) for all permutations σ of N, the action of a
permutation being to relabel the contents of the blocks of a partition,
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• (homogeneity) conditionally given Π(t) = π for some partitition π with blocks (B1,
B2, . . .), the post-t process (Π(t + s), s ≥ 0) has the same law as the process whose
state at time s ≥ 0 is the partition of N whose blocks are those of Bi ∩ Π(i)(s), where
(Π(i), i ≥ 1) is a sequence of iid copies of Π.

Such processes have been the subject of much recent interest, see [20, 23] for more back-
ground. By a result of Bertoin, for all times every time t ≥ 0 the blocks B1(t), B2(t), . . . of
Π(t) have limiting frequencies – that is, for every integer j the limits ξj(t) := limn→∞ n

−1#Bj(t)∩
[n] exist, with the convention that ξj(t) equals zero if Π(t) has fewer than j blocks. Another
result of Bertoin shows that the law of an HFP Π is determined by a pair (ν, c) where ν is
a non-negative dislocation measure on the Kingman simplex ∇ := {(s1, s2, . . .) : s1 ≥ s2 ≥
. . . ≥ 0,

∑
i≥1 si ≤ 1} and c ≥ 0 is the erosion coefficient that describes the rate at which

blocks of Π lose singletons. This result – Proposition 12 below – provides an explicit formula
for the transition rates of the process (Πn(t), t ≥ 0) that is the restriction Πn(t) := Π(t)∩ [n]
of Π to [n] for every positive integer n. These restrictions (Πn(t), t ≥ 0) are Markov processes
for every integer n ≥ 1.

Theorem 12 (Bertoin [20]). For every HFP Π there is a characteristic pair (ν, c), where c
is a nonnegative real constant and ν is a nonnegative measure on ∇ that assigns no mass to
(1, 0, 0, . . .) and for which

∫
∇(1 − s1)ν(ds) < ∞, such that for every positive integer n and

every partition πn of [n] having block sizes λ = (λ1, . . . , λk) for some k ≥ 2, the rate K(λ)
at which Πn transitions from [n] to πn is equal to Kν,c defined by

Kν,c(λ) :=

∫
∇
ps(λ)ν(ds) + c

(
1
(

min{λ1, . . . , λk} = 1
)

+ 1
(
λ = (1, 1)

))
(3.34)

where ps is the function of (3.5) above, and 1(•) is the indicator function of •. This pair (ν, c)
is uniquely determined by the distribution of Π, and the exchangeable partition rate function
(EPRF) K is a [0,∞)-valued function of compositions that is symmetric and additive in the
sense of (3.2) and (3.1) hold with K in place of p for every composition λ with at least two
parts. Conversely, every symmetric, additive, [0,∞)-valued function K ′ of compositions with
at least two parts is the EPRF of some HFP Π′, implying that K ′ = Kν,c for some unique
pair (ν, c) as above.

For a proof of Proposition 12 see [20].

Remark. To clarify the role of the integrability constraint
∫
∇(1 − s1)ν(ds) < ∞, note that

for (s1, s2, . . .) ∈ ∇, since s1 ≥ s2 ≥ . . . ≥ 0,

1− s1 ≤ 1− s1

(∑
i≥1

si

)
≤ 1−

∑
i

s2
i ≤ 1− s2

1 ≤ 2(1− s1).

Since ps(1, 1) = 1 −
∑

i s
2
i , the integrability constraint is equivalent to pν(1, 1) < ∞, which

by additivity is equivalent to pν(λ) <∞ for all compositions λ having at least two parts.



CHAPTER 3. EWENS-PITMAN PARTITIONS 57

Note furthermore that if ν̂ is derived from ν by the addition of an atom at (1, 0, 0, . . .) ∈ ∇
then pν(λ) = pν̂(λ) for all compositions λ having at least two parts. In this case, pν and
pν̂ may only differ on the composition (n), (and even then may not differ if they are both
infinite on this composition). The imposition of the constraint ν((1, 0, 0, . . .)) = 0 ensures
the uniqueness of the representation of symmetric additive K ′ as Kν,c asserted in Proposition
12: without this constraint, there are are whole family of pairs (ν, c) that represent the given
K ′, each differing by the value of ν((1, 0, 0, . . .)).

Finally, note that the functions ps(n, 1) converge to monotonically zero as n→∞, point-
wise in s, and are dominated by ps(1, 1). Thus in the present setting dominated convergence
shows that the constant c can be recovered as

c = lim
n→∞

p(n, 1). (3.35)

Let us illustrate Theorem 12 for an HFP Π with characteristic pair (0, c). In this case,
we may construct the process directly using a sequence (Y1, Y2, . . .) of IID exponential(c)
random variables by setting

Π(t) = {{j ∈ N : Yj ≥ t}} ∪ {{j} : j ∈ N, Yj < t}.

In words, the process Π is a single block from which singletons break off at exponentially-
distributed times, together with a collection of singleton blocks. It is easily seen that (Πn(t))
has the desired transition rates, and Π(t) is exchangeable by exchangeability of (Yj). From
the law of large numbers, almost surely after time t the unique nonsingleton block of Π(t)
has limit frequency exp(−ct).

It is likewise easy to describe the fragmentation process (Π(t), t ≥ 0) with characteristic
pair (ν, 0) by describing the evolution of the tagged fragment B1(t), which is the block of
Π(t) containing 1, and of the blocks that break off of the tagged fragment. Following [20],
construct (B1(t), t ≥ 0) from a Poisson random measure on R×∇ with rate λ⊗ ν – let η be
such a random measure. For every atom a = (t, s) of η, use external randomization to form
an exchangeable partition π(a) of N with limit frequencies s, and do this independently for
all atoms. Then set

B1(r) := block of
⋂

π(a) that contains integer 1 (3.36)

where the intersection is over all atoms (t, s) of η with t ≤ r, and the intersection of partitions
is understood to mean common refinement. To describe the blocks that break off of B1, let
B1(t−) =

⋃
s<tB1(s) denote the contents of B1 immediately before time t. For every atom

a = (t, s) of η, stipulate that the blocks of the restriction of Π(t) to B1(t−) are the blocks
of π(a) restricted to B1(t−):

Π(t)
∣∣∣
B1(t)

:= π(a)
∣∣∣
B1(t)

if η has atom a = (t, s).
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This completes the description of the evolution of the tagged fragment and the blocks that
break off of the tagged fragment, and by exchangeability and homogeneity specifies the law
of (Π(t), t ≥ 0). For more details, see [20].

In the sequel we will focus exclusively on homogeneous fragmentation processes without
erosion, i.e. processes having characteristic pairs (ν, c) for which c = 0. Our focus on
fragmentations with no erosion is not quite as narrow as it may initally seem:

Proposition 18 (Bertoin, [23]). If Π1 and Π2 are independent HFPs with characteristic
pairs (ν1, c1) and (ν2, c2) then the common refinement Π1 ∩ Π2, which is the partition-of-N-
valued process whose blocks at time t are the nonempty intersections B1 ∩B2 for Bi a block
of Π1(t) for i ∈ [2], is an HFP with characteristic pair (ν1 + ν2, c1 + c2).

Proof (sketch). It is straightforward to construct Π1 and Π2 directly from independent Pois-
son random measures as in [20] and sequences (Y i

n, n ≥ 1) of IID exponential(ci) random
variables, i ∈ {1, 2}. The assertion then follows from the superposition property of Poisson
random measures and the well-known fact that the minimum of exponentially distributed
random variables has exponential distribution. See [20] for more detail.

As a consequence of this proposition, an HFP with characteristic pair (ν, c) can be re-
garded as the refinement of an HFP with characteristic pair (ν, 0) by a pure-erosion HFP
with characteristic pair (0, c). The latter process, as we have just seen, is very simple; this
provides some justification for focusing attention on processes without erosion.

We now state some results of Bertoin that clarify the meaning of ν(∇) < ∞ in the
fragmentation process context.

Proposition 19 (Bertoin [20] ). Let Π be an HFP with characteristic pair (ν, 0), and let
Tn := inf{t ≥ 0 : Πn(t) 6= {[n]}} denote the first time that Πn exits state [n]. Then Tn is an
exponential random variable with rate Φ(n) for Φ(n) defined by (3.40), and

Φ(n) :=

∫
∇

1−
∑
i≥1

sni ν(ds) =

∫
∇

(1− ps)(n)ν(ds).

Furthermore, the following are equivalent:

• ν(∇) =∞

• p(1) =∞

• p(n) =∞ for at least one integer n

• λn →∞ as n→∞
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Finally, letting ξ1(t) denote the asymptotic frequency of the first block B1(t) of Π at time t,

ξ1(t) = lim
n→∞

1

n
#B1(t) ∩ [n] a.s.

St := − log ξ1(t) is an increasing process with stationary, independent increments, i.e. a
subordinator, and the sample paths of St have jump discontinuities in every open interval
with probability one if and only if ν(∇) =∞.

3.6.2 Factorization

We now say what it means for a measure ν on ∇ to admit a factor, and thereby specify the
problem addressed in this section of the chapter.

Definition 11 (Haas, Pitman, Winkel [57]). For positive σ-finite measures ν and ν on ∇,
say that ν admits ν as a factor if ν satisfies the regularity condition

∫
∇(1− s1)ν(ds) <∞, if

ν is a probability measure, if ν((1, 0, 0, . . .)) = 0, and if there is a function g : {(n,m) : n >
m ≥ 1} 7→ R≥0 for which

pν(λ1, . . . , λk) = g(|λ|, λ1)pν(λ2, . . . , λk) (3.37)

holds for every composition (λ1, . . . , λk) with at least two parts, where |λ| := λ1 + . . . + λk.
If ν admits ν as a factor, we say that ν factorizes.

The following Theorem provides a characterization of measures that factorize. It has not
appeared elsewhere.

Theorem 13. If a positive measure ν on ∇ factorizes, then one of the following cases
obtains.

(i) ν is atomic, with a single atom at (0, 0, . . .).

(ii) ν concentrates on the set {s : s2 = 1− s1 > 0}, and for n > m ≥ 1,

pν(n,m) = g(n,m) =

∫ 1

0

sm(1− s)n−mΣ(ds),

for Σ(ds) = ν(s1 ∈ ds) + ν(s2 ∈ ds), and for compositions (λ1, . . . , λk) with more than
two parts, pν(λ1, . . . , λk) = 0.

(ii) ν is a member of the augmented two-parameter Poisson-Dirchlet family of measures,
defined below in Section 3.7, and pν satisfies (3.42) below, or ν is a positive multiple of
Dirac mass on the sequence with first M terms equal to 1/M for some integer M ≥ 3,
and remaining terms equal to zero, and there is a positive constant c such that for every
composition (λ1, . . . , λk),

pν(λ1, . . . , λk) = cM(M − 1) . . . (M − k)

(
1

M

)λ1+...+λk

. (3.38)
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At first sight the notion of factorization presented in Definition 11 appears unmotivated,
so let us say a few words about what factorization means. First some notation: for an HFP
Π let Tn := inf{t : Πn(t) 6= {[n]}} denote the first time Πn exits [n]. If the dislocation
measure ν of Π admits ν as a factor, it follows that for every partition {B1, . . . , Bk} having
a least two parts,

P(Πn(Tn) = {B1, . . . , Bn}) =
g(n, λ1)

Φ(n)
pν(λ2, . . . , λk), (3.39)

for λ the sequence of block sizes of {B1, . . . , Bk} and Φ(n) the total rate at which nontrivial
jumps occur,

Φ(n) =
∑

π 6={[[n]}

pν(λ)1(λ = block sizes of π) (3.40)

where the sum is over all partitions π of [n] except the trivial partition {[n]}. Since ν is a prob-
ability measure it follows from Proposition 16 that pν is an EPPF. By summing (3.39) over
all partitions {B1, . . . , Bk} having at least two parts it can be seen that

∑n−1
i=1

(
n−1
i−1

)
g(n, i) =

Φ(n), where the combinatorial factor arises as the number of ways to choose a subset of [n]
of size i that contains 1. It follows that Πn(Tn) is derived as if by splitting off from [n] a
block B1(n) containing 1 with P(B1(n) = B) = 1(B contains 1)g(n,#B)/Φ(n), and then
partitioning the remaining set [n] \B1 according to an independent PB(ν)-partition, that is,
a partition independent of B1(n) and having EPPF pν . This reasoning can be reversed to
show that if this property holds for all n ≥ 2 then ν admits ν as a factor; see also Theorem
14 below.

From this discussion it is clear that if ν factorizes then the process Π has a property very
much like the deletion property. The relevant distinction is that ν need not be a probability
measure: pν(n) = ∞ is possible in this context, whereas in the EPPF/deletion property
context p(1) = 1 and 0 < p(n) ≤ 1 for all n ≥ 1. See Proposition 19 above for discussion of
what pν(n) =∞ signifies in terms of the associated fragmentation process.

The next theorem is a translation of a theorem from [57] that provides a condition on
Π equivalent to factorization. First, some definitions: we define the coarse spinal partition
Πcoarse of N′ := {2, 3, 4, . . .} as follows: put integers i and j in the same block of Πcoarse if
and only if

inf{t ≥ 0 : i /∈ B1(t)} = inf{t ≥ 0 : j /∈ B1(t)},
where B1(t) denotes the block of Π(t) containing 1. In other words, i and j are in the same
block of Πcoarse if and only if i and j break off of B1(t) at the same time. Next we define
the fine spinal partition Πfine of N′ by putting integers i and j in the same block of Πfine if
and only if i and j are in the same block of the coarse spinal partition and

i and j are in the same block of Π(T ) for T = inf{t > 0 : i /∈ B1},
where Π(T ) in the display is the value of the fragmentation process Π evaluated at time T .
In other words, i and j are in the same block of Πfine if and only if i and j break off of B1

at the same time and in the same piece.
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Theorem 14 ([57], Theorem 5). If Π is an HFP with characteristic pair (ν, 0), then the
following are equivalent.

• ν admits ν as a factor

• The fine spinal partition is derived by shattering the blocks of the coarse spinal partitions
with independent copies of PB(ν)-partitions.

The proof of Theorem 13 depends on a detailed analysis of the function g appearing in
(11). Let us relate this function to ν.

Proposition 20. Suppose that ν admits ν as a factor and that g is the function appearing
in (11). Then for 1 ≤ m < n,

g(n,m) =

∫
∇

∑
i≥1

smi (1− si)n−m + 1(m = 1)

(
1−

∑
i≥1

si

)
ν(ds). (3.41)

Proof. Let Π be a HFP with characteristic pair (ν, 0), fix a subset B of [n] of size m with
1 ∈ B, and compute the rate R at which Πn exits state [n] and enters partitions with first
block B. On one hand,

R =
∑
π

pν (λ(π)) =

∫
∇

∑
π

ps (λ(π)) ν(ds)

where the sum is over all partitions π in which the block containing 1 equals B and λ (π)
denotes the sequence of block sizes of π. The integrand on the right can be simplified:
regarding ps (λ(π)) as the EPPF of a PB(δs) partition, where δs is Dirac mass at s, we have

ps (λ(π)) =
∑
i≥1

smi (1− si)n−m + 1(m = 1)

(
1−

∑
i≥1

si

)

for every partition π in which the block containing 1 equals B. On the other hand,

R = g(n,m)
∑
π

pν (λ(π)) = g(n,m),

the second equality holding by virtue of the fact pν is an EPPF and therefore sums to one.
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3.7 The augmented two-parameter family of Poisson-

Dirichlet measures

Say that a nonnegative sigma-finite measure ν on ∇ is a member of the augmented Poisson-
Dichlet family of measures if

∫
∇(1− s1)ν(ds) <∞ and

pν(λ1, . . . , λk)

pν(1, 1)
=

(θ + 2α)(θ + 3α) . . . (θ + (k − 1)α)

(2 + θ)(3 + θ) . . . (n− 1 + θ)

k∏
i=1

(1− α)λi−1 (3.42)

for (α, θ) in the range {0 ≤ α < 1, θ > −2α} ∪ {α < 0,−θ/α ∈ N} and (y)j := y(y +
1) . . . (y + j − 1). Dividing by pν(1, 1) removes scaling: it is easily seen that if ν is in this
family then so is xν for every x > 0. See [57, 77] for developments related to (3.42).

The right-hand-side of (3.42) is a symmetric, additive [0,∞)-valued function of compo-
sitions for parameters in the indicated range, and it is easily seen that if ν is a member of
the augmented Poisson-Dirichlet family then

lim
n→∞

p(n, 1) = 0

Thus it follows from Proposition 12 and (3.35) that ν is determined by (3.42) up to a
multiplicative constant. That is, for every x > 0 and every pair of parameters (α, θ) in the
indicated range there is exactly one positive sigma-finite measure ν on ∇ with pν(1, 1) = x
that puts no mass on (1, 0, 0 . . .) and that verifies (3.42). On the other hand, for parameters
not in the indicated range it is possible to find compositions λ for which the right-hand-side
of (3.42) is negative or involves division by zero.

Conditions equivalent to finiteness of ν in the augmented Poisson-Dirichlet family are
known from [57]:

ν(∇) <∞⇔

{
α < 0 θ = −Mα, M ∈ {1, 2, 3 . . .}
α ≥ 0 θ > −α

(3.43)

Before continuing let us say a few words about another specification of part of the aug-
mented Poisson-Dirichlet family. For 0 < α < 1, let η be a Poisson point process on (0,∞)
with intensity α(Γ(1− α))−1x−α−1dx, and let the atoms of η be ranked in decreasing order
∆1 ≥ ∆2 ≥ . . .. Then T :=

∑
i≥1 ∆i has the distribution of the value at time 1 of an α-stable

subordinator, and it is known that

Γ(1− α) lim
j→∞

(
j∆j

T

)
= T−α

holds almost surely [81]. Then for every real θ the formula∫
∇
f(s)PD ∗ (α, θ)(ds) := E

[
T−θf(∆1/T,∆2/T, . . .)

]
,
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which holds by fiat for every nonnegative measurable function f on ∇, defines a measure
that in [57] is called the PD∗(α, θ) measure. For θ > −2α this measure satisfies (3.42), and
is thus a member of what is here called the augmented Poisson-Dirichlet family. We use the
term “augmented” to avoid confusion with the extended Ewens-Pitman family defined in
Section 3.3 as the closure of the class of distributions of exchangeable partitions of N with
EPPFs satisfying (3.16), because in [57] the term extended is used to describe the PD∗(α, θ)
measures.

3.8 Proof of Theorem 13

The case where p(2, 2, 1) = 0 is covered already by the proof of Theorem 11, so we will
assume throughout that

pν(2, 2, 1) > 0. (3.44)

The proof of Theorem 13 in this case relies on the following proposition.

Proposition 21. If ν admits ν as a factor and g is the function for which pν = gpν as in
(3.37) or (3.41), and (3.44) holds, then g uniquely determines pν by the formulas

pν(λ1, . . . , λk) = p(1k)
g(Λ1, λ1)

g(k, 1)

k−1∏
j=1

g(Λj+1 + j, λj+1)

g(Λj+1 + j, 1)
(3.45)

which holds for all compositions (λ1, . . . , λk) having k ≥ 2 parts, where 1k denotes a sequence
of k ones and Λj := λj + . . .+ λk for 1 ≤ j ≤ k, and

pν(1
k) = g(2, 1)

k∏
j=3

(
1− (j − 1)g(j, 2)

g(j − 1, 1)

)
, (3.46)

which holds for all k ≥ 3, and the trivial identity g(2, 1) = pν(1, 1).

Proof. Fix a composition (λ1, . . . , λk) having at least two parts, and for 1 ≤ i ≤ k set
Λi := λi + . . .+ λk. From (3.44) we deduce that ν({s1 ≥ s2 > 0}) > 0, so from (3.41) it can
be seen that g(n,m) > 0 for all n > m ≥ 1. From (3.37) it follows that

pν(1, . . . , λk)

g(Λ2 + 1, 1)
= pν(λ2, . . . , λk) =

pν(λ1, . . . , λk)

g(Λ2 + λ1, λ1)
,

which implies

pν(λ1, . . . , λk) =
g(Λ1, λ1)

g(Λ2 + 1, 1)
pν(1, λ2, . . . , λk).

One part of the composition (λ1, . . . , λk) has been reduced to 1, and by using symmetry of
pν and iterating we can likewise reduce the other parts to 1 as well, eventually obtaining



CHAPTER 3. EWENS-PITMAN PARTITIONS 64

(3.45). Now, from additivity of p we have pν(1
k) = kpν(2, 1

k−1) + pν(1
k+1), so if pν(1

k) 6= 0
then we may divide to obtain

pν(1
k+1)

pν(1k)
= 1− kpν(2, 1

k−1)

pν(1k)
= 1− kg(k + 1, 2)

g(k, 1)
, (3.47)

where the second equality following from (3.45). By additivity, for k ≥ 3, if pν(1
k) > 0 then

pν(1
k−1) > 0, and of course pν(1, 1) > 0. Thus if pν(1

k) > 0 may write pν(1
k)/pν(1, 1) as

a product of terms of the form pν(1
j+1)/pν(1

j) as in (3.47) and arrive at (3.46), which a
fortiori holds for k < k0 := inf{j : pν(1

j) = 0} but perhaps not for all k ≥ 3. However, if k0

is finite then from (3.47) we see

0 = pν(1
k0) = p(1k0−1)

[
1− (k0 − 1)

g(k0 − 1, 2)

g(k0, 1)

]
,

and it follows that (3.46) holds for all k ≥ 3.

Proof of Theorem 13. First assume (3.44), which evidently implies that ν({s2 > 0, s1 + s2 <
1}) > 0 which in turn ensures that for every integer m, either pν(2, 3,m) > 0 or pν(2, 3, 1

m) >
0, or both, where 1m denotes a sequence of m ones. Accordingly we let lm equal either 1m

or m so that pν(2, 3, lm) > 0. Upon using (3.45) to express pν(2, 3, lm) in product form,
and equating this with the analogous expression for pν(3, 2, lm), and then canceling common
nonzero factors, we arrive at the relation

g(m+ 5, 3)g(m+ 3, 2)

g(m+ 3, 1)
=
g(m+ 5, 2)g(m+ 4, 3)

g(m+ 4, 1)
(3.48)

which holds for every positive integer m. For m ≥ 0, make the following definitions:

xm := g(m+ 2, 1), ym :=
xm+1

xm
, zm :=

1

1− ym
. (3.49)

Additivity of g implies that g(m + 2, 2) = xm − xm+1, and together with (3.41) and (3.44)
this shows that ym ∈ (0, 1) for all m ≥ 0. Another application of additivity of g yields the
further relation g(m+4, 3) = xm−2xm+1 +xm+2. We can therefore rewrite (3.48) as follows,

(xm+1 − 2xm+2 + xm+3)(xm − xm+1)

xm+1

=
(xm+2 − xm+3)(xm − 2xm+1 + xm+2)

xm+2

and after multiplying both sides by x−1
m , passing to y-variables, expanding and simplifying,

this becomes

−2ym+1 + ym+1ym+2 + ymym+1 = −ym − ym+2 + 2ymym+2.
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Make the substitution ym = (zm − 1)z−1
m , bring all terms to to the left hand side of the

equality, and multiply both sides by zmzm+1zm+2. The resulting expression simplifies to

zm+2 − 2zm+1 + zm = 0

which shows that zm = a + bm for some constants a and b. Since 0 < ym < 1 for all m it
follows that a > 1 and b ≥ 0. There are now two cases to consider.

1. Case b > 0. In this case, from (3.49) we find that

xm+1

xm
=
a+ bm− 1

a+ bm

and thus that
g(m+ 2, 1)

g(2, 1)
=
xm
x0

=
(u)m
(v)m

, (3.50)

where u := (a − 1)/b and v := a/b, and (r)m = r(r + 1) . . . (r + k − 1) denotes the
rising factorial. Since g(m+ 2, 2) = g(m+ 1, 1)− g(m+ 1, 1) for m ≥ 1 it follows from
(3.50) that

g(m+ 2, 2)

g(2, 1)
=

(v − u)(u)m−1

(v)m

and continuing inductively using the relations g(n+ 1,m+ 1) = g(n,m)− g(n+ 1,m)
it can be seen that

g(n,m)

g(2, 1)
=

(v − u)m−1(u)n−m−1

(v)n−2

(3.51)

holds for 1 ≤ m < n. After substitution into (3.45) and cancellation we arrive at

pν(λ1, . . . , λk) = pν(1
k)

(v)k−2

(v)n−2

k∏
i=1

(v − u)λi−1 (3.52)

where n = λ1 + . . .+ λk and 1k denotes the composition of k into k ones.

Similarly, we find

1− (j − 1)g(j, 2)

g(j − 1, 1)
=
v − 2 + (j − 1)(1− v + u)

v − 2 + j − 1

for j ≥ 3, and substitution into (3.46) yields

pν(1
k)

pν(1, 1)
=

((v − 2) + 2(1− v + u)) . . . (v − 2 + (k − 1)(1− v + u))

(v)k−2

. (3.53)

Combination of (3.52) and (3.53) yields (3.42) for θ = v − 2, α = 1 − (v − u). Note
that since v = a/b we have θ > −2, and because α = 1− 1/b we have α < 1.
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2. If b = 0 then we find from (3.49) that

g(n+ 2, 1) = g(2, 1)wn

for w := (a− 1)/a. From additivity, g(n+ 2, 2) = g(n+ 1, 1)− g(n+ 2, 1) holds for all
n ≥ 1, and thus

g(n+ 2, 2)

g(2, 1)
= wn−1(1− w)

holds for n ≥ 1. Now define a measure µ on [0, 1] by

µ(ds) =
s2w

(1− w)g(2, 1)

∑
i≥1

ν(si ∈ ds), (3.54)

so that ∫ 1

0

(1− s)nµ(ds) =
wg(n+ 2, 2)

(1− w)g(2, 1)
= wn.

This shows that µ is Dirac mass at w := 1−w, which implies the following constraint
on ν: for ν-almost every s ∈ ∇, and for every entry si of s, si equals w or 1 or 0. And
in fact, from Definition 11 it follows that ν((1, 0, 0, . . .)) = 0: there are no ones. We
claim that ν(s1 + s2 + . . . < 1) = 0. Indeed, supposing otherwise, since

pν(1
k) ≥

∫
∇

(
1−

∑
i≥1

si

)k

ν(ds)

it follows that pν(1
k) > 0 for all k. From (3.41) and (3.44) it can be seen that g(n,m) >

0 for all 1 ≤ m < n < ∞, and then from Proposition 21 one obtains pν(2
k) > 0 for

all k ≥ 2, where 2k denotes a sequence of k twos. Note furthermore that pν(2
k) > 0 is

implies that ν puts mass on some subset of ∇ with first k entries strictly positive. On
the other hand, since

∑
i si ≤ 1 for all s ∈ ∇ it follows that ν-almost-every s has at

most w−1 positive entries. This contradiction proves that w−1 is an integer M and that
ν is Dirac mass on the the sequence (1/M, . . . , 1/M, 0, 0, . . .) consisting of M copies of
1/M , followed by zeros. Then (3.38) can be seen directly. In light of (3.44) we see that
M ≥ 3.

Second Proof of Theorem 11. Suppose that Π has the deletion property and P(W1 < 1) = 1,
where W1 is the first residual limit frequency of Π, and let ν be the distribution of the
ranked sequence of limit frequencies of Π. Then according to Proposition 17 ν factorizes.
If ν is atomic, or if ν concentrates on {s : s2 = 1 − s1 > 0}, or if ν is a pointmass at
(1/M, . . . , 1/M, 0, 0, . . .), we are done. Therefore suppose that (3.42) holds for pν for some
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(α, θ), so that for integer compositions λ with at least two parts, pν(λ) is determined up to a
multiplicative constant pν(1, 1). This constant could be determined by revisiting the proof of
Theorem 11. Instead, note that since P(W1 < 1) = 1 it follows that pν(n) = E(W n−1

1 ) → 0
as n→∞, and because ν is a probability measure,

1− p(n) =
∑
π

p(λ(π))

where the sum is over all partitions of [n] having at least two parts and λ(π) denotes the
sequence of block sizes of π. Therefore the multiplicative constant is determined by the ratios
(3.42) by taking a limit, and thus pν(λ) is determined uniquely by (3.42) for all compositions:
if ν̂ is a probability measure on ∇ for which

pν(λ)

pν(1, 1)
=

pν̂(λ)

pν̂(1, 1)

holds for all compositions λ having at least two parts, then ν̂ = ν. From (3.43), either
α < 0, θ = −Mα for some integer M ≥ 1 or α ∈ [0, 1) and θ > −α.
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Chapter 4

Uniform Hierarchies

Suppose that Tn is a random rooted unoriented (i.e. nonplanar) tree, with edges endowed
with lengths, having n leaves labeled by [n] := {1, . . . , n}, and suppose that these leaf-
labels are exchangeable, meaning that for every permutation σ : [n] 7→ [n] the trees Tn
and σ(Tn) are equal in distribution, where σ(Tn) is the tree derived by relabeling every leaf
leaf i of Tn by σ(i). For example, Tn may be the subtree of a weighted rooted real tree
(T, µ) spanned by the root of T and (Y1, . . . , Yn) which are exchangeable elements of T with
directing measure µ; alternatively, Tn may be a Galton-Watson tree conditioned to have n
leaves. The exchangeability of leaves of Tn implies a collection of distributional constraints
on interleaf distances: for example, in such a tree the distance between leaves 1 and 2 is equal
in distribution to the distance between leaves 2 and 3. The main theorem in this chapter is
a characterization of the Brownian CRT, the proof of which uses distributional constraints
imposed by leaf-exchangeability. As an application of this characterization we show that the
Brownian CRT is in a limited sense the n→∞ scaling limit of uniform random hierarchies,
that is, rooted unoriented trees on n leaves that have no internal vertices of degree two.

4.1 Introduction and statement of results

There is the following “leaves-up” method of describing a rooted tree T with no non-root
vertices of degree 2 by recursively describing the subtrees Tk spanned by the first k leaves
of T for k = 1, 2, . . .: to specify T one first says what is the length X1 of the path [[ρ, 1]]
connecting root to leaf 1, then T1 is known to be (isometric to) a line segment of length X1.
Then, recursively for k ≥ 1, letting [[ρ, k + 1]] denote the path in T from root to leaf k + 1,
one specifies the attachment point Jk+1 which is the point furthest from the root in the set
[[ρ, k+ 1]]∩Tk, one specifies the distance Xk+1 from leaf k+ 1 to the attachment point Jk+1,
and Tk+1 is then known to be (isometric to) the tree derived by grafting a branch of length
Xk+1 to the attachment point Jk+1 in Tk. See [2, 29, 9] for tree models of this type. For
contrast, see [75, 54] and references therein for an introduction to a large literature on “root
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down” constructions of trees.
The recipe above can be carried out explicitly by embedding the growing trees as subsets

of `1. This construction is due to Aldous who writes that the main idea is to “always add
edges orthogonally” [4]. In Aldous’s sequential construction, (0, 0, . . .) ∈ `1 is regarded as
root, T1 is a tree with one branch of length X1 that lies in the first coordinate direction,
T1 := {(t, 0, 0, . . .) : 0 ≤ t ≤ X1}, and the point (X1, 0, 0, . . .) may be regarded as the
first leaf, labeled 1. After specifying a point J2 ∈ T1 to be the first attachment point, one
may form T2 by adding a branch of length X2 lying in the second coordinate direction,
T2 := T1 ∪ {J2 + (0, t, 0, 0, . . .) : 0 ≤ t ≤ X2}, and the point J2 + (0, X2, 0, 0, . . .) may be
regarded as a leaf labeled 2. The construction continues in this manner; see Chapter 3 for a
longer description.

We call pair of sequences ((Xi), (Ji)) of branch lengths and attachment points a line-
breaking representation of a tree. There is a convenient planar representation which can
encode a line-breaking representation, and therefore a tree, as follows.

Definition 12 (Aldous, Pitman [9]). A planar representation of a rooted, unoriented tree
Tn having n leaves is a pair (U, V ) = ((Ui, 1 ≤ i ≤ n), (Vi, 1 ≤ i ≤ n − 1)) of sequences
of real numbers satisfying the inequalities 0 < U1 < U2 < . . . < Un and 0 < Vi < Ui, for
1 ≤ i ≤ n−1. The pair (U, V ) encodes a tree as follows: set U0 := 0, and define line-segments
Xi by

Xi =

{
[0, U1] if i = 1

(Ui−1, Ui] if ≤ i ≤ n
, (4.1)

let T1 = X1, and for 1 ≤ m ≤ n−1 construct Tm+1 recursively by gluing the open end “(Ui−1”
of Xm+1 onto the point Vm, which is located somewhere on some segment of Tm. For i ∈ [n],
the closed end “Ui]” is then the ith leaf of the tree, and 0 is the root. More formally, one
may set X1 = U1 and set Xi := Ui − Ui−1 for i ≥ 2, let (ei) denote the standard basis in `1,
let J1 := (0, 0, . . .) be root, let T1 = {te1 : 0 ≤ t ≤ X1}, and recursively for m ≥ 1, once Tm
has been defined, set

Bm+1 = max{k : Uk < Vm} Jm+1 := JB(m+1) + (Vm − UB(m+1))em+1;

this specifies the pair ((Xi), (Ji)) explicitly.
In another direction, the tree Tn can be understood as a random metric space ([0, Un], d)

where the metric d on the interval [0, Un] depends on the sequence (U1, . . . , Un, V2, . . . , Vn).
See [9] for more about this.

It is obvious that every unoriented rooted tree on n ≥ 1 labeled leaves with no internal
vertices of degree two except perhaps the root has a planar representation as above. The best
example of a line-breaking representation of a random tree is provided by Aldous’s Brownian
continuum random tree (CRT):
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Definition 13 (Line-breaking construction of Brownian CRT [2, 4]). Let (Xi) be the se-
quence of inter-point distances of a Poisson point process on R≥0 of rate t dt. Let T1 be a
line segment of length X1, with one end declared to be the root ρ and the other end declared
to be a leaf and labeled 1. Then for k ≥ 1, supposing Tk has been defined, let Jk+1 be a point
chosen from the normalized length-measure on Tk and let Tk+1 be derived by grafting a branch
of length Xk+1 to the point Jk+1, labeling the new leaf – i.e. the free end of the newly-grafted
branch – by k + 1. For n ≥ 1, the tree Tn defined above is known as the nth marginal of the
Brownian CRT.

It is easily checked (see [2]) that if ((Ui), (Vi)) is the planar representation of the nth

marginal of the Brownian CRT then (U1, V1, ), . . . , (Un−1, Vn−1) are the first n− 1 points of
a Poisson process of unit rate on the orthant G := {(x, y) : 0 < y < x}, when points are
ordered by their first coordinates. We will later make use of this fact to show that certain
random trees converge to marginals of the Brownian CRT.

It is not obvious (but still true, see [4]) that the nth marginal of the Brownian CRT is
leaf-exchangeable in the following sense.

Definition 14. If Tn is a random tree on n labeled leaves, with each leaf bearing a distinct
label in the set [n], say that Tn has exchangeable leaves or exchangeably labeled leaves if for
every permutation σ of [n], there is the distributional equality

Tn
d
= σ(Tn)

where σ(T ) is the tree derived by relabeling the leaves according to the permutation σ.

For a tree Tn on n leaves with planar representation (U, V ) define Wi by

Wi = Wi(Tn) = Vi/Ui (1 ≤ i ≤ n− 1). (4.2)

Definition 15. Say that a tree Tn satisfies hypothesis H if Tn is a rooted tree on n ≥ 1
leaves labeled by [n] with no non-root vertices of degree two,

(a) Tn has exchangeably-labeled leaves,

(b) P(W1 > 0) > 0,

(c) W1 and (X1, . . . , Xn) are independent, for W1 defined by (4.2)

(d) Xm+1 and (W1, . . . ,Wm+1) are conditionally independent given (X1, . . . , Xm) for 1 ≤
m < n,

(e) For all λ ∈ R, E[exp(λX1)] <∞.
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Here (U, V ) is the planar representation of Tn and (Xk) is the sequence of branch-lengths of
Tn, Xi = Ui − Ui−1, 2 ≤ i ≤ n, X1 = U1.

For example, the trees (Tn) appearing in the construction of the Brownian CRT evidently
satisfy hypothesis H, because in that case (W1, . . . ,Wn−1) are uniform random variables
independent of (U1, . . . , Un). Part (d) is perhaps the most substantial part of hypothesis H:
it is meant to encapsulate something a little stronger than the idea that the distribution of
the length of the next branch to be added does not depend on where that branch is to be
added.

Before stating the main theorem we must also introduce the notion of an attachment
mechanism.

Definition 16. If Tn is a random rooted tree with planar representation (U, V ) then an
attachment mechanism (a1, . . . , an−1) is a sequence of regular conditional distributions for
which

P(Wi ∈ • | U1, . . . , Ui,W1, . . . ,Wi−1) = ai(U1, . . . , Ui,W1, . . . ,Wi−1, •) (4.3)

holds almost surely for i = 1, . . . , n− 1, for (Wi) defined by (4.2).

For example, in the Brownian CRT case, (Wi) is a family of IID random variables in-
dependent of the (Ui), in this case the left hand side of 4.3 is almost surely equal to the
Lebesgue measure of • ∩ [0, 1].

Theorem 15. Suppose that Tn is a tree satisfying hypothesis H. Let X1 denote be the
distance in Tn from leaf 1 to root, and let (ak) be an attachment mechanism for Tn. Then
(L(X1), (ak)) determines L(Tn).

Here and throughout this chapter L(Z) denotes the law of a Tk. Put otherwise, Theorem
15 asserts that if two trees satisfying hypothesis H have the same attachment mechanism and
the same first branch length, then they are equal in law. The following corollary is perhaps
of greater interest than Theorem 15: it is an immediate consequence of Theorem 15 and the
easily checked observation that the nth marginal of the Brownian CRT satisfies hypothesis
H.

Corollary 4. Suppose that the tree Tn with planar representation (U, V ) satisfies hypothesis
H, and that (Wi) is defined by (4.2). If X1 := U1 has Rayleigh(1) distribution and if for
all 1 ≤ m ≤ n the conditional distribution of Wm given ((U1, . . . , Um), (W1, . . . ,Wm−1)) is
the uniform[0, 1] distribution, then then Tn has the distribution of the nth marginal of the
Brownian CRT.

We illustrate the potential utility of Corollary 4 by using it to prove the following theorem.

Theorem 16. For n ≥ 2 let Tn have the uniform distribution on the set of unoriented trees
having n leaves labeled by {1, . . . , n}, a root that is not a leaf, no non-root vertices of degree
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two, and edges of length 2(2 log 2− 1)1/2n−1/2. Let Tn,k denote the subtree of Tn spanned by
the root and the first k leaves. Then Tn,k converges in distribution to kth marginal of the
Brownian CRT as n→∞.

More explicitly, Theorem 16 asserts that if (Ui(n, k), Vi(n, k)) is the planar representation
of Tn,k above then (U1, . . . , Uk) converge in distribution to the locations of the first k points
in a Poisson process on (0,∞) of rate t dt and that ((Ui, Vi), i = 1, . . . , k − 1) converge in
distribution to the locations of the first k − 1 points of a Poisson process of unit rate in the
orthant G = {(x, y) : 0 < y < x} (note that there are k − 1 Vi’s but k Ui’s). Trees of the
type considered in Theorem 16 are called hierarchies [44, IV.47], and

Theorem 16 may be regarded as saying that the sequence ((Tn, µn), n ≥ 2) converges to
the Brownian CRT Gromov-weakly almost surely, where for n ≥ 2, Tn is the tree appearing
in Theorem 16 and µn is the discrete uniform distribution on the leaves of Tn. See [53] for a
discussion of this convergence. It is of interest to prove the stronger statement that uniform
hierarchies converge to the Brownian CRT in the weighted Gromov-Hausdorff sense [43] –
this has been done by Doug Rizzolo and Jim Pitman [85], who provide an argument relying on
fragmentation-process formalism instead of the heavy use of symmetry and exchangeability
found in this chapter.

4.2 Proof of Theorem 15

We begin by discussing a special case of Theorem 15 pointed out by Jim Pitman. Suppose
that T2 is a tree satisfying the conditions of Theorem 15, derived by selecting a point J2

uniformly at random from a line segment of length X1 and grafting to this point a line
segment of length X2. Let W :=(distance from root to J2)/X1. Then T2 is a tree

• with a root of degree 1, incident to a single edge of length X1W

• and at the end of this edge is an interior vertex of degree 3 (and therefore of out-degree
two)

• and the two other edges incident to this interior vertex have lengths X1(1 −W ) and
X2, respectively,

• and at the ends of these edges are leaves labeled 1 and 2, respectively.

Assume that T2 has exchangeable leaves. Then the joint distribution of edge-lengths encoun-
tered on the path from root to leaf 1 is the same is as the joint distribution of edge-lengths
encountered on the path from root to leaf 2; that is, (X1W,X1(1−W )) and (X1W,X2) are
equal in distribution. It is plausible – and Lemma 8 addresses this issue directly – that the
joint distribution of (X1W,X2) may determine that of (X1, X2). Therefore from the joint
distribution of (X1, J2) may determine the joint distribution of (X1, X2, J2). Theorem 15 is
proved by formalizing and generalizing this line of reasoning.
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Lemma 8. Suppose that (W,X1, . . . , Xn) is a random element of R × Rn for some n ≥ 1
and suppose furthermore that

(i) W has the Uniform[0,1] distribution and is independent of (X1, . . . , Xn), and

(ii) E[exp(λXi)] <∞ for every λ ∈ R and i ∈ [n].

Then the distribution of (X1, . . . , Xn) is determined by the distribution of (WX1, X2, . . . , Xn).

Proof. The hypotheses allow to compute

E[
λn

n!
Xn

1 exp(λ2X2 + . . .+ λnXn)] =
(n+ 1)λn

n!
E[(UX1)n exp(λ2X2 + . . .+ λnXn)]

(it can be seen by e.g. Hölder’s inequality that these expectations are finite). By summing
terms as above one may compute E[exp(λ1X1 + . . .+ λnXn)] by dominated convergence for
any (λ1, . . . , λn) ∈ Rn. These collection of expectations of this type for λ ∈ Rn determines
the joint law of (X1, . . . , Xn).

Definition 17 (Erasure operator). For n ≥ 2 and tn a rooted tree on n leaves labeled by [n]
with no non-root, non-leaf vertices of degree 2, let ei(tn) denote the tree derived by erasing
the leaf i from tn and also erasing the edge of tn incident to leaf i, but retaining the non-leaf
vertex of the this edge incident to the erased leaf. Therefore ei(tn) is a tree on n− 1 leaves
that are labeled by [n] \ {i}, together with a mark that distinguishes a vertex of the tree.

Figure 4.1: A hierarchy t3 and e1(t3). In this case, U1X1 = b, so (W1X1, X2, X3) is measur-
able w.r.t. e1(t3).

Proposition 22. Suppose that ((Xk), (Jk)) is the line-breaking representation of a tree Tn
with n leaves, having planar representation (U, V ) and let W be defined by (4.2). Then
(X1W1, X2, . . . , Xn) is a measurable function of e1(Tn).

Proof. The proposition is obvious from pictures; see for example in Figure 4.1.

Proof of Theorem 15. We also remark at the outset that (e) of hypothesis H may be strength-
ened to
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(e’) E[exp(λXi)] <∞ for all λ ∈ R and i ∈ [n].

Indeed, for i ≥ 2, the distance Xi from leaf i to Ti−1 is smaller than the distance from leaf i
to root, and this latter distance is equal in distribution to X1 by leaf-exchangeability.

We argue inductively. The base case is obviously true: L(T1) is determined by (L(X1), (ak)),
since T1 is a segment of length X1 with one end labeled root and the other end a leaf labeled
1.

For the inductive step, suppose that (L(X1), (ak)) determines the law of Tm, the subtree
of Tn spanned by the root and the first m < n vertices. Thus

(L(X1), (ak)) determines L(Tm, Jm+1) (4.4)

Observe that em+1(Tm+1) is a measurable function of (Tm, Jm+1): in fact, em+1(Tm+1) is
exactly equal to the tree Tm decorated with the mark Jm+1 indicating where the branch with
leaf m+ 1 attaches to Tm. Thus

(L(X1), (ak)) determines L
(
em+1(Tm+1)

)
. (4.5)

Next observe that for any permutation σ of [m+1] for which σ(1) = m+1, and with erasure
and permutation operators e and σ defined as Definitions 17 and 14, respectively,

σ−1
(
em+1(Tm+1)

)
d
= σ−1

(
em+1

(
σ(Tm+1)

))
= e1

(
Tm+1

)
. (4.6)

The first equality in (4.6) is an equality in distribution which holds by exchangeability, and
the second equality holds pointwise and therefore almost surely. This pointwise equality
simply asserts that the tree derived from Tm+1 by relabeling leaf 1 by m + 1, then erasing
the leaf labeled m + 1, and then undoing the relabeling, is equal to the tree derived from
Tm+1 by just erasing the leaf labeled 1. Figure 4.2 illustrates this second equality.

From (4.5), (4.6) and Proposition 22 it follows that (L(X1), (ak)) determines the joint
distribution of (X1W1, X2, . . . , Xm+1). By Proposition 8 (L(X1), (ak)) therefore determines
the joint distribution of (X1, . . . , Xm+1), and thus also the conditional distribution of Xm+1

given (X1, . . . , Xm), which is the same, by part (d) of hypothesis H, as the conditional
distribution of Xm+1 given (Tm, Jm+1). From (4.4) it follows that (L(X1), (ak)) determines
L(Tm, Jm+1, Xm+1); this completes the inductive step.

4.3 Proof of Theorem 16

Throughout this section, Tn will denote a random rooted unoriented tree having the uniform
distribution on the set of trees having n ≥ 1 leaves labeled by {1, . . . , n}, no non-root vertices
of degree two, and edges of length cn := 2(2 log 2− 1)1/2n−1/2. By abuse of terminology we
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Figure 4.2: Illustration of the second equality of (4.6).

refer to trees of this type as hierarchies since trees of this type are in bijective correspondence
with set hierarchies, discussed extensively in Chapter 2, and we refer to Tn as a uniform
random hierarchy. There is only one hierarchy having one leaf: the trivial graph with a
single vertex labeled 1 that is both leaf and root. For hierarchies having at least two leaves,
we stipulate that the root is required to be a non-leaf vertex.

Proposition 23. For n ≥ 1 let Tn be a uniform random hierarchy on n leaves with edges of
length cn := 2(2 log 2− 1)1/2n−1/2, and let X1(n) denote the distance from the leaf labeled 1
to the root. Then X1(n) converges in distribution as n→∞ to a random variable X1 having
Rayleigh(1) distribution,

P(X1 ∈ dx) = x exp(−x2/2)1(x > 0)

I first heard this result from Douglas Rizzolo, who provided a proof using standard
techniques of analytic combinatorics [85]. Section 4.3.1 contains a slightly different proof
using such techniques.

Before proceeding we need some preliminary definitions. For 1 ≤ j ≤ n let Tn,k denote
the subtree of Tn spanned by the leaves 1, . . . , k, and let (U(n, k), V (n, k)) denote the planar
representation of Tn,k. Let

Xi(n) = Xi(n, k) =

{
U1(n, k) if i = 1

Ui(n, k)− Ui−1(n, k) if 2 ≤ i ≤ k

be the branch-lengths of Tn,k (note that branch lengths are scaled by cn = O(n−1/2), and let

Wi(n) = Wi(n, k) =
Vi(n, k)

Ui(n, k)
(1 ≤ i ≤ k − 1). (4.7)
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Proposition 24. For all k ≥ 1 the family (Tn,k, n ≥ 1) is tight; i.e.,(
(Xj(n, k),Wi(n, k), j ∈ [k], i ∈ [k − 1]), n ≥ 1

)
is a tight family for all k ∈ N.

Proof. For j ≥ 2, the distance from leaf j to root is greater than the distance from leaf j to
the subtree Tn,j−1 spanned by the root and first j − 1 leaves, so by exchangeability, X1(n)
stochastically dominates Xj(n) for j ≥ 2. From Proposition 23 (X1(n), n ≥ 1) is tight. It
follows that ((X1(n), . . . , Xk(n)), n ≥ 1) is tight. Since (Wi(n), n ≥ 1) are contained in the
interval [0,1], the claim follows.

Proposition 25. Suppose that (X1, . . . , Xk,W1) is a weak subsequential limit of ((X1(n, k),
. . . , Xk(n, k), W1(n, k)), n ≥ 1). Then

(a) (X1, . . . , Xk) and W1 are independent

(b) W1 has uniform distribution

(c) P(Xi = 0) = 0 for i ∈ [k]

Proof. Consider the spinal path starting from the leaf labeled 1 and ending at the root in
the uniform hierarchy Tn. Cutting or erasing every edge along this path shatters Tn into
a sequence of subtrees called bushes, and the length N of this sequence is the number of
edges along the path, that is, N = X1(n)/cn. Let (Bj, j ∈ [N ]) denote this sequence of
bushes, so that B1 is the first bush encountered on the spinal path, and BLn is the last
bush, attached to the root of Tn. Let {Bj, j ∈ [N ]} denote the unordered collection of these
bushes, that is, the collection of trees in the sequence (Bj) with relative order forgotten.
Put otherwise, {Bj, j ∈ Ln} is an equivalence class of sequences of trees, two sequences
(b1
j , j ∈ [l1]) and (b2

j , j ∈ l2) being equivalent if l1 = l2 and there is a permutation σ of l1 for
which (b1

j , j ∈ [l1]) = (b2
σ(j), j ∈ [l2]). The following claims are straightforward to check:

• W1(n, k) is measurable with respect to (Bj, j ∈ [N ]). Moreover, if In equals the index
of the subtree BIn containing leaf 2, then W1(n, k) = (N − In)/N .

• Conditionally given {Bj, j ∈ [N ]}, the distribution of (Bj, j ∈ [N ]) is uniform over all
N ! possible linear arrangements of the members of {Bj, j ∈ [N ]}.

• (X1(n), . . . , Xk(n)) is measurable with respect to {Bj, j ∈ [N ]}.

Thus, conditionally given {Bj, j ∈ [N ]}, the distribution of W1(n, k) is discrete uniform
on {0, 1/N, . . . , (N − 1)/N} where N = X1(n)/cn and, conditionally given X1(n), W1(n, k)
independent of (X2(n, k), . . . , Xn(n, k)). Since P(Nn < K)→ 0 as n→∞ for all fixed K as
a consequence of Proposition 23, Parts (a) and (b) follow.
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Part (c) is obvious for i = 1 from Proposition 23. For the general case, let (i ∧ j)n
denote the vertex of Tn where the path from root to leaf i first diverges from the path from
root to leaf j. By leaf-exchangeability it follows that the distance from leaf 1 to (1 ∧ 2)n
is equal in distribution to the distance from leaf 2 to (1 ∧ 2)n. The former distance is

(1−W1(n, k))X1(n, k) and the latter distance is X2(n, k), and thus X2
d
= X1W1, proving (c)

for i = 2.
For the general case, fix δ > 0 and consider the set S in defined as

S in = {hierarchies tn on n leaves : {Tn = tn} ⊆ {Xi(n, k) < δ}},

i.e. S in is the set of hierarchies on n leaves for which the ith branch has length less than
δ. Now, if tn ∈ S in has its ith branch attached to its jth branch, then any permutation of
[n] that sends j to 1 and i to 2 sends tn to a tree in S2

n. Let Σ denote a uniform random
permutation of [k] independent of Tn, let T ′n,k := Σ(Tn,k), and let (X ′1(n, k), . . . , X ′k(n, k)) be
the first k branch lengths of T ′n,k. Since Tn is uniformly distributed, Tn,k is leaf exchangeable,

so X2(n, k)
d
= X ′2(n, k), and thus

1

k(k − 1)
P(Xi(n, k) < δ) ≤ P(X ′2(n, k) < δ).

Now send n→∞, follow with δ → 0, and apply the i = 2 case of (c) to obtain the general
case.

Proposition 26. For 1 ≤ k ≤ n let Bn,k be the probability that Tn,k is binary. Then for
each k ≥ 1, P(Bn,k)→ 1 as n→∞.

Proof. Consider the spinal paths from leaf i to root for i ∈ {1, 2}. Let S be the set of vertices
of Tn,2 that are found on both of these spinal paths, and let (1∧2)n denote the member of S
that is furthest from the root. Thus (1 ∧ 2)n is the vertex in Tn,2 where the path from root
to leaf 1 diverges from the path from root to leaf 2.

Let

R =
2⋃
i=1

{vertices v ∈ Tn : v is on the spinal path from leaf i to root.}

Cutting all of the edges of Tn,2 that lie between vertices of R shatters Tn,2 into bushes, and
each vertex that lies on one of these paths becomes the root of exactly one bush. After
cutting edges, 1 and 2 form singleton bushes. The bush rooted at (1∧ 2)n is special: it may
be a singleton, consisting solely of (1∧2)n, as in Figure 4.3. It is easily seen that when edges
between vertices of R are cut, except for (1∧ 2)n and the first two leaves, every vertex in R
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Figure 4.3: The two highlighted vertices are members of the set {v : v is the vertex at
which the path from root to leaf i diverges from the path from root to leaf j for some
distinct i, j ∈ [3]}. When edges along the first three spinal paths are erased, one of these
highlighed vertices becomes a singleton bush, the other becomes a nonsingleton bush, and all
other vertices along the first three spinal paths except the leaves 1,2,3 become nonsingleton
bushes.
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must become the root of a nonsingleton bush. Letting Yn denote the number of nonsingleton
bushes, we have thus

Yn ∈ {(X1(n) +X2(n))/cn, (X1(n) +X2(n))/cn − 1} a.s.

The nonsingleton bushes in Tn,2 are exchangeable. More explicitly, if b1 is a nonsingleton
bush rooted at r1 ∈ R and b2 a nonsingleton vertex rooted at a different vertex r2 ∈ R, one
may prune off b1 and b2 and regraft b2 to r1 and b1 to r2 to produce a new hierarchy. Since
Tn is uniformly distributed this operation preserves probability. Since the leaf 3 lies in a
nonsingleton bush, it follows that

P(Bc
n,3 | X1(n), X2(n)) ≤ cn

X1(n) +X2(n)− cn
and then by Proposition 23 it follows that

lim sup
n→∞

P(Bc
n,3) = 0. (4.8)

Now for distinct integers i, j ∈ [k] let (i ∧ j)n denote the vertex of Tn,k at which the path
from root to leaf i first diverges from the path from root to leaf j. Then

P(Bc
n,k) ≤

∑
i,j,k distinct

P ((i ∧ j)n = (j ∧ k)n) .

Since Tn is uniformly distributed, Tn,k is leaf-exchangeable, so∑
i,j,k distinct

P ((i ∧ j)n ≤ (j ∧ k)n) ≤ k3P((1 ∧ 2)n = (2 ∧ 3)n) = k3P(Bc
n,3)

and the claim follows from (4.8).

Proposition 27. Suppose that ((X1, . . . , Xk), (W1, . . . ,Wk−1) is a weak subsequential limit
of ((X1(n, k), . . . , Xk(n, k)), (W1(n, k), . . . ,Wk−1(n, k))). Then (W1, . . . ,Wk−1) is a sequence
of independent and identically-distributed uniform[0,1] random variables independent of (X1,
. . ., Xk).

Proof. Fix open intervals (r1, s1), . . . , (rk, sk) in (0,∞) with ri > 0 for i = 1, . . . , n, and
suppose that n is large enough that P(X1(n, k) > r1, . . . , Xk(n, k) > rk) > 0, for example
n > 2(r1 + . . .+ rk)/cn suffices. Also fix intervals (a1, b1), . . . , (ak−1, bk−1) contained in [0, 1].
Our first goal is to approximate the probability

P (Wi(n, k) ∈ (ai, bi) for i ∈ [k − 1], X1(n, k) = x1, . . . , Xk(n, k) = xk) (4.9)

for sequences (x1, . . . , xk) in
∏k

i=1(ri, si) with P(X1(n, k) = x1, . . . , Xk(n, k) = xk) > 0.
Fixing such a sequence, we will compute a lower bound for (4.9) by means of the following
stochastic algorithm for generating hierarchies tn on n leaves having first k branch lengths
equal to x1, . . . , xk.
?-Algorithm: Part 1
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1. Let t1 be a branch of length x1 with leaf 1 at the end of the branch. Put a grid of
width cn along this first branch so that the branch has x1/cn grid points, not counting
the leaf 1 as a grid point.

2. Next, select one of these grid points of t1 uniformly at random, mark this grid point
with a ?, and attach to this grid point a branch of length x2. Put a leaf labeled 2 at the
end of this second branch and as before add a grid of width cn to the second branch.
As before the leaf 2 is not to be regarded as a point in the grid. Call the resulting tree
t2.

3. Next, select a grid point from t2 uniformly at random from among the x1/cn+x2/cn−1
grid points in t2 that are not marked with a ?. Mark this new grid point with another
? and attach to it a branch of length x3. Put a leaf labeled 3 at the end of this branch
and likewise put a grid along this new branch. This produces a tree t3 with 3 leaves
and (x1 + x2 + x3)/cn internal vertices, two of which are marked with stars.

4. Proceed in this manner, selecting new grid points uniformly at random, marking each
selected grid point with a star and adding a branch to the selected grid point, subject
to the constraint that once a point is marked with a ? it can never be chosen again.
This procedure produces a binary tree tk having (x1 + . . .+ xk)/cn− (k− 1) unstarred
grid points and k − 1 starred grid points and k leaves labeled by {1, . . . , k}. We will
regard these grid points as ordered: the first x1/cn − 1 grid points lie on the first
branch, etc., the first starred grid point is the first grid point to receive a star, etc.

The second part of the algorithm adds bushes to tk to produce a hierarchy. Before specifying
the second part of the algorithm let us say a few more words about bushes.

Let tn be a hierarchy with n leaves and let

Rk :=
k⋃
i=1

{ vertices v of tn : v is on path from leaf i to root}

denote the collection of vertices of tn that lie in the first k spinal paths from leaves i ∈ [k]
to root. Remove every edge of tn that lies between vertices of Rk to form a new graph G′n,
and remove from G′n the leaves 1, . . . , k, which form singleton components, to form another
graph Gn. The connected components of this graph are bushes. The root of a bush b in Gn

is the unique vertex of b that belongs to Rk. It is easily seen that if b bush on j ≥ 2 leaves,
then either b has no internal vertices of degree two except perhaps the root, or the root ρ of b
has degree 1 and the graph H derived by rerooting b at the neighbor of ρ and then removing
ρ, has no internal vertices of degree two except perhaps the new root. In other words, bushes
look very much like hierarchies. If b is a singleton bush– that is, a single vertex in Rk – it
follows that b must be the vertex at which the path in tn from root to leaf i diverges from
the path from root to leaf j. There are at most k − 1 such singleton bushes since there are
at most k − 1 exceptional vertices where spinal paths diverge.
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Now let C(n, k) be the set of sequences s of length L = (x1 + . . . + xk)/cn, where each
entry in s is a bush, and for each i ∈ {1, . . . , i ≤ L − (k − 1)} the ith entry si of s is a
nonsingleton bush (so that any or all of the final (k − 1) entries of s may be, but are not
required to be, singleton bushes), such that all bushes have disjoint leaf-sets, and such that
the union of leaves in the bushes of s is the set {k + 1, k + 2, . . . , n}. We can now describe
the second part of the ?−algorithm.

?−Algorithm, part 2

5. Once tk has been produced, select uniformly at random a sequence s = (s1, s2, . . .) from
Cn,k. Sequentially attach the bushes s1, s2, . . . to the grid-points of tk by identifying
grid-points with roots of bushes, saving the last k−1 entries of s to be attached at the
starred grid points of tk. This produces a hierarchy tn.

It can then be seen the hierarchy tn produced by the ?-algorithm is uniformly distributed
over the set S,

S := { hierarchies τn on n leaves : the subtree τn,k spanned by the root and first
k leaves of τ is binary and has first k edge-lengths equal to x1, . . . , xn }.

Indeed, regarded in another light, the ?-algorithm simply provides an explicit parametriza-
tion or coordinatization of S: speaking a little loosely, every element of S corresponds to

• a sequence (j1, . . . , jk−1) of real numbers, each ji taking values in a grid, subject to a
ties constraint that ensures binary-ness of τn,k: this sequence parameterizes τn,k,

• an element of Cn,k that parametrizes “the complement, τn \ τn,k”.

The uniform measure on S is the pushforward of uniform measure on the space of parameters
{(j1, . . . , jk−1)}× Cn,k via this parametrization, and the ?-algorithm produces hierarchies by
selecting an element of the parameter space uniformly at random.

Now let us define events En and Fn by{
En := {X1(n, k) = x1, . . . , Xk(n, k) = xk}
Fn = {Wi(n, k) ∈ (ai, bi) for i ∈ [k − 1]}

(4.10)

Note that because Tn is uniformly distributed, conditionally given En and the event Bn,k

that Tn,k is binary, Tn is uniformly distributed over the set S above. Then

P (En, Fn) ≥ P(Fn | En, Bn,k)P(En, Bn,k) ≥ P(Fn | En, Bn,k)(P(En)− P(Bc
n,k))

and we may compute P(Fn | E,Bn,k) by summing over attachment points for “next branches”
in part one of ?-algorithm. We find

P(EnFn) ≥ (P(En)− P(Bn,k))
k−1∏
i=1

(
(bi − ai)(x1 + . . .+ xi)

cn
− 2− (i− 1)

)
cn

x1 + . . .+ xi
;

(4.11)
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where the 2 comes from possible “edge effects” when counting the number of discrete grid-
points in a real interval, and the (i − 1) comes from possibly having to avoid previous
attachment points. In a more manageable form,

P(EnFn) ≥
(
P(En)− P(Bc

n,k)
)(k−1∏

i=1

(bi − ai)

)
(1−Dcn

x1

) (4.12)

where D is a constant not depending on ((ai, bi), i ≥ 1) or on x2, . . . xk. Likewise,

P(EnFn) ≤ P(Bc
n,k) + P(Fn | En, Bn,k)P(En)

and thus

P(EnFn) ≤ P (Bc
n,k) + P(En)

k−1∏
i=1

(
(bi − ai)(x1 + . . .+ xi)

cn
+ 2

)
cn

x1 + . . .+ xi
, (4.13)

or more simply

P(EnFn) ≤ P(Bc
n,k) + P(En)

(
k−1∏
i=1

(bi − ai)

)
(1 +D

cn
x1

) (4.14)

for another constant D that does not depend on x2, . . . , xk or ((ai, bi), i ∈ [k − 1]). Now set

Ên := {X1(n, k) ∈ (r1, s1), . . . , Xk(n, k) ∈ (rk, sk)}

and sum (4.12) and (4.14) over the set the set {(x1, . . . , xn) : xi ∈ (ri, si), for i ∈ [k]} to
obtain (

P(Ên)− P(Bc
n,k)
)(k−1∏

i=1

(bi − ai)

)
(1−Dcn

r1

) ≤ P(Ên, Fn) (4.15)

and

P(Ên, Fn) ≤ P(Bc
n,k) + P(Ên)

(
k−1∏
i=1

(bi − ai)

)
(1 +D

cn
r1

) (4.16)

Send n→∞, noting that cn ↓ 0 and P(Bn,k)→ 1 by Proposition 26, to conclude that

P(Ê, F ) = P(Ê)
k−1∏
i=1

(bi − ai) (4.17)

for {
Ê = {X1 ∈ (r1, s1), . . . , Xk ∈ (rk, sk)}
F = {W1 ∈ (a1, b1), . . . ,Wk−1 ∈ (ak−1, bk−1).

At the outset we required ri > 0 for i ∈ [k]. However, in view of Part (c) of Proposition 25,
the desired conclusion still follows from (4.17).
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Proof of Theorem 16. Suppose that ((X1, . . . , Xk), (W1, . . . ,Wk−1)) is a weak subsequential
limit of ((Xi(n, k),Wj(n, k), i ∈ [k], j ∈ [k − 1]), n ≥ 1). Then ((Xi(n, k), Vj(n, k), i ∈
[k], j ∈ [k − 1]), n ≥ 1) converges in law along the same subsequence as well to the planar
representation of a tree Tn. The limit satisfies hypothesis H, and X1 has Rayleigh distribution
by Proposition 23. In view of 24, the conclusion follows from Corollary 4.

The following proposition is not needed to prove any of the results mentioned in the
beginning of this chapter. Nonetheless it may be of some interest, because speaking loosely
it can be said to rely principally on symmetry or uniformity as does the rest of this section.
The proposition also follows from stronger results derived using different methods [85].

If (τn, n ≥ 1) is a family of random trees with τn having n leaves, then (τn) is said to be
leaf-tight if for all ε > 0,

lim sup
n→∞

P(min{ distance between leaf 1 and leaf j in τn : 2 ≤ j ≤ n} > ε) = 0. (4.18)

Proposition 28. The family (Tn) of uniform random hierarchies is leaf tight.

Proof. Cutting the edges on the spinal path from 1 to root shatters Tn into a collection of
subtrees called bushes. Each bush b has a distinguished vertex rb called the root of b which
is the unique vertex of b found on this spinal path – say that b is rooted at rb to indicate this
relationship. If b is bush then cutting the edges of b that are adjacent to rb shatters b into a
collection of subtrees, each nominally rooted at the vertex previously adjacent to rb. These
subtrees are easily seen to be a almost-hierarchies, i.e. graphs that satisfy the postulates
of a hierarchy except that leaves need not be consecutively ordered. This defect of leaf-
labeling can be remedied by relabeling the leaves of such a graph h′ by the unique increasing
bijection sending the set S(h′) of leaves of h to {1, . . . ,#S} to produce a graph h that is
a hierarchy in the strict sense. A tedious straightforward counting argument establishes
that the entire collection of hierarchies Hn derived by first shattering Tn into bushes, then
shattering these bushes into almost hierarchies, and then relabeling these almost-hierarchies
to produce hierarchies, is a collection of independent hierarchies, each uniformly distributed,
conditionally given the collection of sizes of leaf sets, ie. conditionally given the multiset
{#h : h ∈ Hn}.

Fix n > 1 and ε > 0. Then by Proposition 23 are then OP (ε
√
n) vertices on the spinal

path from leaf 1 to root within distance ε of the leaf 1. As above let Hn denote the collection
of hierarchies derived from the the bushes rooted at these OP (ε

√
n) vertices by the edge-

cutting recipe described above. For a hierarchy h ∈ Hn let N(h) denote the number of
leaves of h, and let d(h) denote the distance from rb to the first leaf of h. Conditionally
given N(h) = m, h is uniformly distributed and d(h) is equal in distribution to X1(m)cn/cm
for sequences (cn) and (X1(n)) defined as in Proposition 23. We claim that there are integers
(m0, n0) for which

inf{P(X1(m)cn/cm ≤ ε) : m ≥ m0 or n ≥ n0} > 0; (4.19)
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Indeed, the existence of m0 for which

inf{P(X1(m)cn/cm ≤ ε) : m ≥ m0} > 0;

is obvious from Proposition 23 and then any n0 for which cn0 < (1/2)εm−1
0 can be shown to

work for (4.19), for then X1(m)cn0/cm < ε almost surely for all m < m0.
Now set Mn := min{distance between leaf 1 and leaf j in Tn: 2 ≤ j ≤ n}. Observe that

0 ≤Mn ≤ ε+ cn + min{d(h) : h ∈ Hn}. (4.20)

In view of (4.19), for n > n0, for every hierarchy h appearing in (4.20) there is some δ > 0
not depending on n for which P(d(h) ≤ ε) > δ. By the previously-asserted conditional
independence of the family (h : h ∈ Hn) given the sizes (N(h) : h ∈ Hn), and the easily
checked fact, following from Proposition 23, that the number of hierarchies in Hn grows
without bound almost surely, it follows that P(Mn ≤ 2ε)→ 1 as n→∞. Therefore (Tn) is
leaf-tight.

4.3.1 Proof of Proposition 23

This section closely follows ideas from [44, pp 128, 280, 472-4, 479], which contains a number
of facts about hierarchies. The main result (4.30) was first obtained in [85] by methods similar
to those employed here.

Let Ln denote the class of hierarchies having exactly n leaves, let Ln := #Ln, and let
L(z) denote the exponential generating function for the class L :=

⋃
n≥1 Ln of hierarchies,

L(z) :=
∞∑
n=1

Ln
n!
zn. (4.21)

By convention, L0 = 0.

Proposition 29. For n ≥ 1, Ln < 3nn!. Furthermore, L(z) defines a complex-analytic
function on the disc {z ∈ C : |z| < 1/3}.

Proof. For a hierarchy tn having n ≥ 2 leaves write tn

∣∣∣
[n−1]

to denote the hierarchy derived

from tn by erasing the leaf labeled n and the edge adjacent to this leaf, and then erasing any
non-root degree-two vertices formed by this erasure. Then tn is derived as if by attaching a
branch to tn−1 in one of three ways:

• selecting an internal vertex of tn−1 and attaching an extra branch to this vertex

• selecting an edge of tn−1 and attaching an extra branch to this edge, thereby creating
a new internal vertex
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• creating a new root, attaching the new branch to this new root and attaching the old
root of tn−1 to this new root as well.

It follows that with Hn denoting the set of hierarchies on n leaves, and tn−1 any hierarchy
on n− 1 leaves,

#{t ∈ H : t
∣∣∣[n− 1] = tn−1} = e(tn−1) + v(tn−1) + 1 (4.22)

where e(tn−1) and v(tn−1) denote the number of edges and number of vertices of tn−1, respec-
tively. Since e(tn−1) + v(tn−1) + 1 ≤ 3n, as can be seen by induction, the claim Ln ≤ 3nn!
follows by induction. Analyticity of L(z) follows by comparison with a geometric series.

Let Ln denote the class of pointed hierarchies on n leaves,

Ln := {(h, k) : h a hierarchy with n leaves and k ∈ [n]},

and let L :=
⋃
n≥1 Ln. Obviously, Ln := #Ln = nLn. Less formally, a pointed hierarchy is a

hierarchy together with a distinguished leaf. A pointed hierarchy (h, i) has a distinguished
spinal path, which is the path in h from leaf i to the root. Erasing the edges in this path
shatters h into a collection of subtrees called bushes that inherit a linear order from their
position on the path. Conversely, a vertex labeled i for some i ∈ [n] followed by a linearly
ordered collection of bushes with distinct labels in [n] \ {k} can be stitched together in the
obvious manner to produce a pointed hierarchy.

Let us say a little more about bushes. Let (h, i) be a pointed hierarchy, and let v be a
vertex different from leaf k in the spinal path in h from leaf k to root. When edges in this
spinal path are erased, v will belong to a unique bush b. We define the leaves of b to be
those vertices of b that are leaves in h. The degree of v in b is one if and only if v has two
children in h, and in this case it is easily checked that the graph derived from b by

- declaring the unique neighbor of v in b to be root

- and then erasing v and the edge from v to its neighbor

is a hierarchy. Also, if the degree of v in the bush b is two or more, it is easily checked
that the graph derived from b by declaring v to be root is a hierarchy. Furthermore, if b has
exactly one leaf then the degree of v in b must be 1. Letting Bn denote the class of bushes on
n leaves with leaves labeled by [n] and Bn := #Bn, this discussion establishes that B1 = 1
and

Bn = 2Ln (n ≥ 2).

Therefore

B(z) :=
∞∑
n=1

Bn
zn

n!
= 2L(z)− z. (4.23)
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Proposition 30. If Ln,k,1 denotes the number of hierarchies on n leaves where vertex 1 is
at distance kcn from the root then

Ln,k,1 = (n− 1)![zn−1] (B(z))k (4.24)

(recall that all edges in a hierarchy on n leaves have length cn, so that a distance equal to
kcn in Tn corresponds to “graph distance” k).

Proof. From the discussion above relating pointed hierarchies and sequences of bushes, Ln,k,1
equals ∑

(n1,...,nk)`n−1

(
n− 1

n1, . . . , nk

) k∏
i=1

Bni
= (n− 1)!

∑
(n1,...,nk)`n−1

k∏
i=1

Bni

ni!

where the sums are over all sequences (n1, . . . , nk) of positive integers with sum n− 1. The
right-hand-side of the equality above is evidently (n− 1)![zn−1] (B(z))k, since B0 = 0.

Proposition 31. There are the following equalities of formal power series:

(a) L(z) = exp (L(x))− L(x)− 1 + x

(b) B(x) = G(x,B(x)) for G(z, w) := 2(exp(z/2 + w/2)− w/2− 1).

Proof. Let h be a hierarchy having at least two vertices, and k ≥ 2 be the degree of the root
of h. Erasing the root of h and all edges attached to the root shatters h into a forest of k
subtrees. For every subtree h′ derived in this manner, declare the root of h′ to be the vertex
of h′ that was adjacent to the root in h. Each of these subtrees h′ has all the properties
of a hierarchy except that the union of leaf labels in h′ may not be a consecutive set of
integers {1, . . . ,m}. Conversely any collection of k such subtrees can be glued together in
the obvious manner to form hierarchy on n leaves in which the root has degree k, provided
that the leaves of the subtrees are have distinct labels and jointly constitute the set [n]. From
standard combinatorial facts it then follows that n![zn] 1

k!
(L(z))k is the number of hierarchies

on n leaves in which the root has degree k for k ≥ 2. There is only one hierarchy on one
leaf, and it is the only hierarchy in which the root has degree 1. It follows that

L(z) = z +
∞∑
k=2

(L(z))k

k!
,

which proves (a). Using (4.23) in conjunction with (a) yields (b):

B(x) = 2L(x)− x
= 2(exp(L(x))− L(x)− 1 + x)− x
= 2(exp((2L(x)− x)/2 + x/2)− (2L(x)− x)/2− 1− x/2 + x)− x
= 2(exp(B(x)/2 + x/2)−B(x)/2− 1)

= G(x,B(x))
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Definition 18. Let y(z) =
∑

n≥0 ynz
n be a function complex-analytic at 0, with y0 = 0 and

yn ≥ 0 for all n ≥ 0. Then y is said to belong to the smooth implicit-function schema
defined by G if

y(z) = G(z, y(z))

for z in a neighborhood of zero, where G(z, w) =
∑

m,n≥0 gm,nz
mwn is a bivariate function

analytic in a domain |z| < R, |w| < S, for some R, S > 0, additionally satisfying the
following conditions:

• The coefficients of G satisfy gm,n ≥ 0 for all m,n ≥ 0; g0,0 = 0, g0,1 6= 1, and gm,n > 0
for some n ≥ 2, m ≥ 0.

• There exist two numbers r, s such that 0 < r < R and 0 < s < S, satisfying the system
of equations

G(r, s) = s Gw(r, s) = 1

which is called the characteristic system.

Here and henceforth, subscripts denote differentiation, so e.g. Gww(w0, z0) is the second
derivative of G with respect to its first argument, evaluated at the point (w0, z0). For the
next theorem, recall that a generating function or power series

∑
n ynz

n is called aperiodic
if there exist three indices i, j, k such that yiyjyk 6= 0 and gcd(i, j, k) = 1.

Definition 19 ([44] p 389). For real numbers R > 1 and φ ∈ (0, π/2], let ∆(φ,R) be the
following subset of the complex plane:

∆(φ,R) = {z : |z| < R, z 6= 1, | arg(z − 1)| > φ}.

A domain is a ∆-domain at ζ ∈ C if it is the image under z 7→ zζ of ∆(R, φ) for some R
and φ as above.

Theorem 17 ([44], Theorem VII.3). Let y(z) belong to the implicit function schema defined
by F (z, w) with (r, s) the positive solution of the characteristic system. Then y(z) converges
at z = r, where it has a square-root singularity, meaning

y(z) = s− γ
√

1− z/r +O(1− z/r), (4.25)

as z → r within a ∆-domain, where γ :=
√

2 z0Fz(z0,w0)
Fww(z0,w0)

. Additionally, if y(z) is aperiodic,

then
[zn]y(z) ∼ γ

2
√
πn3

r−n
(
1 +O(n−1)

)
as n→∞. (4.26)

A proof of Theorem 17 may be found in [44][Theorem VII.3].
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Corollary 5. With r := 2 log 2− 1 and γ = 2(2 log 2− 1)1/2, and B defined by (4.23)

B(z) = 1− γ(1− z/r)1/2 +R(z) (4.27)

for a function R(z) analytic in a ∆ domain at z that is O(1 − z/r) as z → r, in this
∆-domain. Furthermore,

[zn]B(z) =
1√
πn3

(2 log 2− 1)−n+1/2
(
1 +O(n−1)

)
(4.28)

as n→∞.

Proof. From Proposition 29 and (4.23) function B(z) is analytic in a neighborhood of zero;
furthermore B is obviously aperiodic. Proposition 31 (b) shows that B belongs to the smooth
implicit function schema defined by G(z, w) = 2(exp(z/2 + w/2) − w/2 − 1). It is easily
checked that the solution of the characteristic system G(r, s) = s, Gw(r, s) = 1 is s = 1,
r = 2 log 2− 1. The claim then follows from Theorem 17.

Theorem 18 ([44], Theorem IX.16). If y(z) satisfies the hypotheses of Theorem 17 then for
any compact subset F ⊆ (0,∞), any sequence x = xn contained in F , and and k := [xn1/2],
the coefficient of zn in y(z)k admits the following asymptotic estimate:

[zn]y(z)k ∼ skr−n
1

n

xγ/s√
π

exp(−1

2
x2γ2/s2), (4.29)

for r, s, γ the constants appearing in Theorem 17 and [u] the nearest integer to u ∈ R.

This is the “λ = 1/2” instance of Theorem IX.16 of [44]. See also [14].

Proposition 32. If Tn is is a uniform random hierarchy and D1(n) denotes the number of
vertices on the path from the leaf labeled 1 to the root, then

√
nP(D1(n) = [xn1/2])→ c x exp

(
−1

2
cx2

)
(4.30)

as n→∞, where c = 4(2 log(2)− 1) and [u] denotes the nearest integer to u ∈ R.

Proof of Proposition 23. According to (4.23), Ln = 1
2
Bn for n ≥ 2. Making use of Proposi-

tion 30, we have

√
nP(X1(n) = [xk]) =

Ln,k,1
Ln

=

√
n(n− 1)![zn−1] (B(z))k

1
2
n![zn]B(z)

. (4.31)

The claim then follows from (4.28) and (4.29).

Proof of Proposition 23. All branches in Tn have length 2(2 log 2 − 1)−1/2n1/2 so the result
follows from Proposition 32 and Scheffé’s Lemma [88, p 57] after convolving Tn with an
independent Uniform[0, cn] random variable.
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Saint-Flour, XIII—1983, volume 1117 of Lecture Notes in Math., pages 1–198. Springer,
Berlin, 1985.

[12] David J. Aldous. Stochastic models and descriptive statistics for phylogenetic trees,
from Yule to today. Statist. Sci., 16(1):23–34, 2001.

[13] Tim Austin. On exchangeable random variables and the statistics of large graphs and
hypergraphs. Probab. Surv., 5:80–145, 2008.

[14] Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, and Michèle Soria. Random maps,
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