
UC San Diego
UC San Diego Previously Published Works

Title
Channel noise effects on neural synchronization

Permalink
https://escholarship.org/uc/item/5414j8bk

Authors
Maisel, Brenton
Lindenberg, Katja

Publication Date
2020-08-01

DOI
10.1016/j.physa.2019.123186
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5414j8bk
https://escholarship.org
http://www.cdlib.org/


Please cite this article as: B. Maisel and K. Lindenberg, Channel noise effects on neural synchronization, Physica A (2019) 123186,
https://doi.org/10.1016/j.physa.2019.123186.

Physica A xxx (xxxx) xxx

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Channel noise effects on neural synchronization
Brenton Maisel ∗, Katja Lindenberg
Department of Chemistry and Biochemistry, and BioCircuits Institute, University of California San Diego, La
Jolla, CA 92093-0340, USA

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Synchronization
Hodgkin–Huxley
Channel noise
Neural network

a b s t r a c t

Synchronization in neural networks is believed to be linked to cognitive processes,
while abnormal synchronization has been associated with disorders such as epilepsy
and schizophrenia. We examine the synchronization of small Hodgkin–Huxley neuronal
networks. The principal features of Hodgkin–Huxley neurons are protein channels in
the neural membrane that transition between open and closed states with voltage
dependent rate constants. The standard assumption of infinitely many channels neglects
the fact that real neurons have finitely many channels, which leads to fluctuations in the
membrane voltage and modifies neuronal spike times. These fluctuations are referred to
as channel noise. We demonstrate that regardless of channel noise magnitude, neurons
in the network reach a steady state synchronization level dependent only on the
number of neurons in the network, equivalent to the steady state level of uncoupled
Poisson neurons. The channel noise only affects the time to reach the steady state
synchronization level.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The human brain is estimated to contain over 100 billion neurons, with each neuron connected to approximately
104 other neurons [1]. Neurons influence each other through excitatory and inhibitory synaptic connections and, as a
result, neurons in a network are rhythmically activated and inhibited through their synaptic connectivity [2]. Synchronized
interactions across brain regions have been proposed to underly a wide variety of cognitive functions [3–7]. For example,
when monkeys learn categorical information (e.g., how to distinguish between groups of negative and positive objects),
experiments have shown increased neural synchronization between the prefrontal cortex and the striatum [8].

In addition to the cognitive roles of synchronization, abnormal synchronization has been linked to a number of brain
disorders such as epilepsy, schizophrenia, Alzheimer’s disease, and Parkinson’s disease [9–11]. For example, epilepsy has
commonly been associated with excessive synchronization of neural populations [11,12], whereas schizophrenia has been
associated with impaired neural synchronization [13,14]. In combination with cognitive functions, it is clear that the
balance between synchronized and asynchronized neural oscillations plays an important role in healthy brain activity.

In order to model neuronal synchronization, many studies have focused on networks of Hodgkin–Huxley neurons.
One defining property of the Hodgkin–Huxley neuron model that allows for action potential generation is the existence
of sodium and potassium channels in the neuron membrane that transition between open and closed states with voltage-
dependent rate constants. Each channel is composed of four gates: the sodium channel is composed of three activating
gates (known as type m gates) and one inactivating gate (known as a type h gate), and the potassium channel is composed
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of four activating gates of type n. At rest, the activating gates are closed and the inactivating gate is open, but as a neuron
receives synaptic input from other neurons, the membrane voltage rises, causing the activating gates to open. This starts
the depolarization of the membrane potential. When the voltage is sufficiently high, the sodium inactivating gate closes
while the potassium gates remain open, which repolarizes the membrane potential. The dynamics of the n gates and m
gates are similar, but the n gate dynamics evolve on a slower time scale [15].

However, while the Hodgkin–Huxley model assumes that there are infinitely many channels so that fluctuations in
the number of open channels remain undetected, real neurons have only finitely many channels and hence experience
intrinsic noise through the stochastic opening and closing of sodium and potassium protein channels in the neural
membrane [16–18]. This stochasticity leads to fluctuations in the membrane potential which can alter spike timing of
neurons. We refer to this stochasticity as channel noise, and its role in neural synchronization is the focus of our paper.

In this study, we investigate the synchronization of a small network of noisy Hodgkin–Huxley neurons. We select this
neuron for study because of its close connection to biological reality and its ability to reproduce almost all single-neuron
properties [19–21]. A channel can only conduct when it is considered open, and a channel is considered open when
all the gates within the channel are open. The most direct approach to modeling the opening and closing of channels
is referred to as the Markov Chain model. This model is consistent with the Hodgkin–Huxley model in the statistics
of interspike intervals and is computationally much less intensive. In the Markov Chain model, each of N channels of
a particular type functions as a Markov process, transitioning between open and closed states with voltage-dependent
rate constant, independently of other same-type channels. At each time step, one then determines the fraction of open
channels of a particular type. These fractions are then used explicitly in the Hodgkin–Huxley voltage equation to model
fluctuations in the membrane voltage due to channel noise. Typically, the Markov Chain model is simulated using a
Gillespie algorithm [16,22,23]. However, while computationally more modest than the Hodgkin–Huxley model that it
is chosen to exemplify, simulating such a Markov Chain is still computationally exhaustive as the necessary time step
for simulations is of order N−1. As an alternative method to account for perturbations in the Hodgkin–Huxley model,
some studies have added an external perturbation to the Hodgkin–Huxley equations to assess the role of noise in
synchronization [24–26]. This method, however, lacks justification that it accurately models the stochastic opening and
closing of channels.

Fox and Lu derived a set of stochastic differential equations which approximate the behavior of the Markov Chain
model, and these equations will be used in this paper [27]. Their model was developed by using a system size expansion
applied to the Markov Chain version of the Hodgkin–Huxley equations. As a result, each dynamical variable in their system
of equations represents the fraction of ion channels in a specific configuration. The stochastic equations of Fox and Lu
do not modify the deterministic structure of the Hodgkin–Huxley equations, and they include stochastic perturbations
that account for the opening and closing of channels. We refer to these stochastic perturbations as channel noise to be
consistent with previous literature [28,29]. Results of numerical simulations of this model agree remarkably well with the
dynamical behavior predicted by the Markov Chain model of the channel states [28,29]. To summarize, we have discussed
three models: the original Hodgkin–Huxley model of a neuron, the Markov Chain model which models stochasticity in
the channels transitioning randomly between open and closed states, and the Fox and Lu model which we will use due to
its highly accurate approximation of the Markov Chain model but with a much faster computational time. Our goal is to
understand how channel noise affects the synchronicity of neurons in a network, and we will use the Fox and Lu model
to do so.

Our paper is organized as follows: In Section 2 we present a mathematical description of the stochastic Hodgkin–Huxley
neuron with a synaptic connectivity term. Then in Section 3 we derive a formula to estimate the degree of synchronization
based on the size of the neural network, and we demonstrate that channel noise causes the synchronization of the neural
network to behave as independent Poisson neurons. We then conclude with some closing remarks.

2. Model

One of the most important models in computational neurosciences is the Hodgkin–Huxley neuronal model of a squid
axon [19,30]. The deterministic dynamics of the Hodgkin–Huxley model are given by the following set of differential
equations:

CV̇ = I(t) − ḡNam3h(V − ENa)
− ḡKn4(V − EK ) − ḡL(V − EL)

ṅ = αn(V )(1 − n) − βn(V )n (1)
ṁ = αm(V )(1 − m) − βm(V )m
ḣ = αh(V )(1 − h) − βh(V )h,

where V (t) is the time-dependent voltage due to the charge difference inside and outside the membrane that surrounds
a neuron, and I(t) is the input current to the neuron from all sources. The membrane potential-dependent coefficients
are chosen to be given by

αn(V ) =
0.01V + 0.55

1 − exp[−0.1V − 5.5]
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Table 1
Parameter values used for simulation of the Hodgkin–Huxley model.
Parameter Definition Value

C Membrane capacitance 1 µF/cm2

ENa Sodium reversal potential 50 mV
EK Potassium reversal potential −77 mV
EL Leak reversal potential −54.4 mV
ḡNa Maximal sodium conductance 120 mS/cm2

ḡK Maximal potassium conductance 36 mS/cm2

ḡL Maximal leak conductance 0.3 mS/cm2

βn(V ) = 0.125 exp[−(V + 65)/80]

αm(V ) =
0.1V + 4

1 − exp[−0.1V − 4]
βm(V ) = 4 exp[−(V + 65)/18]
αh(V ) = 0.07 exp[−(V + 65)/20]

βh(V ) =
1

1 + exp[−0.1V − 3.5]
.

The numerical coefficients are those used in the original Hodgkin–Huxley paper. The values of the parameters (determined
experimentally) along with definitions are found in Table 1 [19]. The original parameter choices were made so that the
resting potential is 0 mV; most literature using the Hodgkin–Huxley model use these same values. Our resting potential is
−70 mV, which is a typical voltage across an animal cell membrane, and is easily obtained by shifting parameter values.
It is also more convenient for our further calculations.

The most direct method of working with the associated Markov Chain model is to take a population of ion channels
and a small time step dt , and then calculate the probability that each channel flipped from its current state to another
state during this time interval. Although this method works, it is extraordinarily slow when the number of ion channels
is large [31]. To counter this problem, we use the Fox and Lu system size expansion, which is a set of stochastic
differential equations that replicates the behavior of the Markov Chain model with high accuracy and less computational
exhaustion [27–29]. The Fox and Lu system size expansion is given by the following set of stochastic differential equations:

CV̇ = Iinj(t) + Isyn(t) − ḡNay31(V − ENa)
− ḡK x4(V − EK ) − ḡL(V − EL)

ẋ = AK (V )x +
1

√
NK

SK (V , x)ξK (2)

ẏ = ANa(V )y +
1

√
NNa

SNa(V , y)ξNa,

where the input current I(t) has been decomposed into two contributions. Iinj determines whether or not action potentials
occur [32]. Action potentials are variations in the voltage of the neuron membrane; when an action potential is triggered,
the membrane potential abruptly shoots upward (fires) and then equally abruptly shoots back downward . The Isyn term
represents current input from the chemical synapses of other neurons in the network. The matrices AK , ANa, SK , and SNa
are written out in Appendix. The vector x is composed of components xi (i = 0, 1, 2, 3, 4) representing the proportion of
potassium channels with i open gates of type n. The entries of y are denoted as yij (i = 0, 1, 2, 3 and j = 0, 1), representing
the proportion of sodium channels with i open m subunits and j open subunits of type h. While Eq. (2) is valid for a large
number of channels, it has been shown to be a very accurate representation of the Markov Chain model even for a small
number of channels [28].

We are interested in a neural network in which the connections between neurons are unidirectional and the local
dynamics are described by the Fox and Lu system size model Eq. (2). The Isyn term is given by

Isyn =
(Vr − Vi)

Ω

N∑
j=1

ϵijsj,

with time-dependent entries defined by the following set of ordinary differential equations: [24,33,34]:

ṡi =
5(1 − si)

1 + exp(− Vi+3
8 )

− si

Here, Vr is the synaptic reversal potential set to 20 mV [26], si is the post-synaptic potential of neuron i, ϵij represents
the synaptic coupling strength between the jth presynaptic neuron and the ith postsynaptic neuron, and Ω is the average
number of connections at each synapse, which we take to be 1. The remaining parameter, Iinj, determines whether or not
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Fig. 1. Relationship between input current and firing frequency for different membrane areas. Solid lines show the mean firing frequency averaged
over 50 simulations. Shaded areas show one standard deviation of firing frequency from the mean.

action potentials occur [32]. For small values of Iinj, Iinj < 6.27 µA/cm2, the deterministic Hodgkin–Huxley model resides
in a silent regime in that action potentials are not generated. When the injected current is greater than 9.78 µA/cm2, the
deterministic Hodgkin–Huxley model enters the repetitive firing regime, that is, action potentials are generated. Between
these values, known as the excitable region, the model shows bistability between silence and repetitive firing.

In this paper we are interested in how channel noise affects the synchronicity of neuron spiking at different firing
rates. In order to quantitatively study neural synchronicity, we use the order parameter R defined as

R(t) =

⏐⏐⏐⏐⏐⏐ 1N
N∑
j=1

exp(iθj)

⏐⏐⏐⏐⏐⏐ , (3)

where θj(t) is the phase of the jth neuron defined by [24,35]

θj(t) = 2πm + 2π
t − tj,m

tj,m+1 − tj,m
, (4)

and θj(t) = 0 for t < tj,1. In this equation, tj,m denotes the time when neuron j emits spike m (m = 0, 1, · · ·). Eq. (3) is
designed in such a way that the first spike begins at θ = 0 and the phase increases linearly until the next spike occurs at
θ = 2π . If all neurons are completely synchronized, then θ1(t) = · · · = θN (t), and hence

R =

⏐⏐⏐⏐⏐⏐ 1N
N∑
j=1

exp(iθj)

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐ 1N N exp(iθ1)
⏐⏐⏐⏐ = |exp(iθ1)| = 1.

Therefore R values are closer to unity when neurons have more synchronized spike times.

3. Synchronization

The stochastic differential equations Eq. (2) cannot be handled analytically, and so we must continue our analysis on
the basis of numerical simulations. We used the Euler–Maruyama method [36,37] with time step ∆t = 10 µs. Unless
noted otherwise, initially each neuron in the network was assumed to be in the resting state.

3.1. Frequency–current relationship

To understand how the number of channels affects the firing rate of a Hodgkin–Huxley neuron, we analyze the
relationship between firing frequency of a stochastic neuron and the input current. In the squid axon modeled by Hodgkin
and Huxley, the ratio of sodium channel density to potassium channel density is approximately 60 µm−2/18 µm−2, and
we use these values for our simulations [38]. Defining A to be the membrane area, the total number NNa of sodium
channels is proportional to 60×A and the total number NK of potassium channels is proportional to 18×A. From Eq. (2),
the parameter A therefore controls the magnitude of fluctuations from the channel noise as A−1/2. Therefore, a smaller
membrane area results in larger fluctuation magnitude and correspondingly larger membrane area results in smaller
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Fig. 2. Schematic drawing showing three unidirectionally connected excitatory neurons with coupling strengths ϵ13, ϵ21 , and ϵ32 .

Fig. 3. Simulations of Eq. (2) using the system shown in Fig. 2 for varying membrane areas. Bold lines represent the mean after 50 simulations
while shaded areas show one standard deviation from the mean. Injected current was 10.0 µA/cm2 .

fluctuation magnitude. The resulting firing frequencies as a function of input current for different membrane areas are
given in Fig. 1.

The results show that in the absence of input current, the size of the membrane area is what primarily determines the
rate of spontaneous firing. As the input current increases, the firing rates for all different areas converge towards each
other and the firing rate becomes independent of the membrane area. With an increase in current, the neurons enter the
repetitive firing regime so fluctuations in the membrane voltages should produce only minor changes in the frequency of
spikes. Therefore, channel noise has a larger effect on the firing rate at low input currents, in agreement with previous
literature [23,39,40].

3.2. Channel number effect on synchronization

To understand how the number of channels affects the synchronicity of neurons, we consider a simple three member
neural network with unidirectional excitatory connections and local dynamics given by Eq. (2). Such a system is shown
in Fig. 2. In this example we assume the connections to have identical coupling constants ϵ13 = ϵ21 = ϵ32 = 0.10 and
zero otherwise.

Because the neurons all start with the same initial condition, we have that R(0) = 1 regardless of the value of the
membrane area, i.e., the neurons begin completely synchronized. However, as time passes, the degree of synchronization
changes. Fig. 3 shows simulations of the three neuron neural network with different membrane areas. Although the
degree of synchronization for smaller area changes more rapidly than in the case of larger membrane area, the degree
of synchronization appears to reach the same steady state value and hover around this value. From this simulation,
the membrane area only affects the time to reach the steady state synchronization value but not the steady state
synchronization value itself. Since changing membrane area changes the firing rate (see Fig. 1), this suggests that there
is an inverse relationship between the firing rate and the time it takes to reach a steady state synchronization level (and
consequently, a direct relationship between membrane area and time to reach steady state).

3.3. Comparison to independent Poisson neurons

We wish to compare the observed steady state value in Fig. 3 with the predicted value of Eq. (3) when the neurons
are completely independent Poisson neurons, that is, neurons whose firing frequency is a Poisson process independent
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of other neurons. We will then later extend this result to a larger network. In large network modeling, the distribution
of spike times is highly irregular, and modeling neurons in the network as a Poisson process is widely used [1,41,42]. As
shown in Fig. 1, for a given input current, channel noise affects the firing rate of a neuron. We can therefore understand
the relationship between channel noise and synchronization by studying the relationship between synchronization and
firing rate.

To compare the steady state synchronization level observed in simulations with that of independent Poisson neurons,
we proceed to calculate the expectation of our order parameter R(t), which we denote as ⟨R(t)⟩. For simplicity, let us
initially assume we have two neurons N1 and N2 whose spike times follow a Poisson distribution with rate parameter λ,
and

⟨R(t)⟩ = ⟨

√
R(t)2⟩ =

1
2
⟨

√
|eiθ1(t) + eiθ2(t)|2⟩

=
1
2
⟨

√
2 + 2 cos (θ1(t) − θ2(t))⟩.

To compute this expectation, we are required to find the joint distribution of θ1 and θ2. Since we are assuming that the
Poisson neurons are independent, we only need to find the density function of θ1.

From the definition of θ , only the random term (t− tm)/(tm+1− tm) has any bearing on the order parameter (cf. Eq. (4)).
Therefore, to understand the distribution of θ , we only need to understand the distribution of (t−tm)/(tm+1−tm). Since we
observe a steady state of synchronization in the simulations after time passes, consider a time t where t is large enough
so that at least one spike has occurred before time t . Let X be a random variable describing the length of time between
our time t and the time of the most recent spike before time t . Moreover, let Y be the length of time between time t and
the next spike after time t . Notice that the ratio X/(X + Y ) corresponds directly to the (t − tm)/(tm+1 − tm) term in the
definition of θ in Eq. (4). We need to add one constraint to X . Because X is the length of time between t and the previous
spike, the maximum value X can take is t (otherwise the previous spike had to occur before time 0, which is not relevant
to our calculations). Therefore, (t− tm)/(tm+1 − tm) can be modeled by min {X, t} /(min {X, t}+Y ). Since the spike times of
the neurons are being treated as Poisson processes, the wait time between spikes is an exponential distribution with rate
parameter λ. Therefore, we have that Y has an exponential distribution with rate parameter λ, X also has an exponential
distribution with rate parameter λ, and X and Y are independent of each other.

Exponential distributions have the scaling property, which means that if X has an exponential distribution with rate
λ, then X has the same distribution as λ−1ξ where ξ is an exponential random variable with rate 1. Thus, Y also follows
the distribution λ−1η where η is an exponential random variable with rate 1. Putting everything together, we have:

t − tm
tm+1 − tm

∼
min {X, t}

min {X, t} + Y
=

min
{
λ−1ξ, t

}
min

{
λ−1ξ, t

}
+ λ−1η

=
min {ξ, λt}

min {ξ, λt} + η
.

We next assume that λt is large enough so that min{ξ, λt} = ξ . We can then approximate the distribution of θ to be that
of ξ

ξ+η
where ξ and η are independent exponential random variables with rate parameter 1. To find the density function

of θ , we only need to determine the density function for ξ

ξ+η
. This is known to be a uniform distribution, but we will

show this for the purpose of completeness [43]. To calculate this density function, we will find the cumulative distribution
function and take its derivative. Note that 0 <

ξ

ξ+η
< 1, so we can pick an arbitrary value a ∈ (0, 1) to use for calculating

the distribution function. We use fξ (x) to mean the density function of ξ in the derivation. We have:

P
(

ξ

ξ + η
≤ a

)
= P

(
ξ + η

ξ
≥

1
a

)
= P

(
η ≥ ξ

(
1
a

− 1
))

=

∫
∞

0
P

(
η ≥ s

(
1
a

− 1
))

fξ (s)ds

=

∫
∞

0
e−s

(
1
a −1

)
e−sds

=

∫
∞

0
e−

s
a ds

= a.

This means that ξ

ξ+η
has the same distribution as a uniform random variable on (0, 1), as expected. Consequently, the

density function of θ is just 1. Returning to our calculation of the expectation of synchronization:

⟨R(t)⟩ =
1
2
⟨

√
2 + 2 cos (θ1(t) − θ2(t)) ⟩
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Table 2
Steady state synchronization values estimated from Monte Carlo simulations of Eq. (6).
Number of neurons (N) Steady state synchronization value

2 0.636
3 0.525
4 0.450

=
1
2

∫ 1

0

∫ 1

0

√
2 + 2 cos (2πx1 − 2πx2)dx1dx2. (5)

This double integral can be solved exactly by utilizing a simple substitution and recognizing that we are integrating
over one period of the cosine function,

⟨R(t)⟩ =
1
2

∫ 1

0

∫ 1

0

√
2 + 2 cos (2πx1 − 2πx2)dx1dx2

=
1

8π2

∫ 2π

0

∫ 2π

0

√
2 + 2 cos (x1 − x2)dx1dx2

=
1
4π

∫ 2π

0

√
2 + 2 cos (x1)dx1

=
2
π

.

Remarkably, we have shown that in the long-time limit of weakly coupled neurons, the expected steady state
synchronization level has no dependence on the firing rate (membrane area) of the neurons. We will confirm, as already
implicit, that the steady state synchronization depends only on the number of neurons in the network. In order to obtain
a solution for the two-neural-network system, we needed to make a few assumptions: (a) the neurons in the network
were weakly coupled to approximate them as independent of each other, and (b) the quantity λt is sufficiently large.
Expanding on the second point, recall that we approximated min {ξ, λt} by ξ . Since ξ is exponentially distributed with
rate parameter 1, then P (ξ ≤ λt) = 1 − exp(−λt). Because of the exponential decay dependence on λt , this means that
λt does not have to be very large before one can approximate min {ξ, λt} by ξ with high probability. With the application
to neurons, this implies that when the firing rate of neurons is higher (small membrane area), we should expect less
time to reach a steady state synchronization level. Conversely, with a lower firing rate (large membrane area), we should
expect a longer time to reach steady state synchronization. The high and low firing rates correspond with lower and
higher channel noise magnitude respectively. Therefore, this derivation provides justification for the observation in Fig. 3
that larger channel noise magnitude in neurons results in faster desynchronization.

To expand the result above to a larger neuron network, note that the only place where changes will occur is in the
term under the radical. That term results from simplifying

√
R(t)2, and a formula for ⟨R(t)⟩, as follows:

⟨R(t)⟩ =
1
N

∫ 1

0

√N +

N∑
j,k=1
j̸=k

cos
(
2πxj − 2πxk

)
dx1 . . . dxN . (6)

Unlike the two neural network case, higher dimensional cases of Eq. (6) must be evaluated numerically. Numerical
estimations for the steady state synchronization predicted by Eq. (6) for different numbers of neurons N can be found in
Table 2.

The comparison between the values obtained above and numerical simulations is shown in Fig. 4. As shown in Fig. 4,
our estimations of the steady state synchronization values as determined by Eq. (6) is quite accurate, demonstrating that
in the presence of channel noise, the synchronization of our neural network behaves just as that of independent Poisson
neurons.

It is also worth noting that based on our results, the connectivity of neurons in the network has no bearing on the
steady state synchronization as long as the coupling is weak. To emphasize, the importance of synchronization of the
network is not the connectivity of neurons, or the initial states of the neurons, but only the number of neurons involved
in the network. The role of noise is to help change the rate at which the network reaches a steady state synchronization
level but does not appear to change the level itself. To generalize this result a bit further, we consider two additional cases.
We will examine what happens if we change the connectivity strengths so that the connections are no longer equal, and
we will change the areas so each one is affected by a different magnitude of channel noise. These results are shown in
Fig. 5.

For the case of unequal coupling constants, we considered the network in Fig. 2 with all neurons having a membrane
area of 40 µm2 and coupling constants of ϵ21 = 10, ϵ32 = 10−1, and ϵ13 = 10−3. For the case of various channel noise
magnitudes, we considered all synaptic connections to be 0.10. Neurons 1, 2, and 3 had membrane area of 10 µm2,
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Fig. 4. Simulations showing synchronization parameter behavior for neuron networks of 2, 3, and 4 neurons. Straight lines show estimated steady
state synchronization values as determined by Eq. (6). Each neuron in the network had an area of 40 µm2 and an injected current of 8.0 µA/cm2 .
Bold lines represent the mean after 100 simulations while shaded areas show one standard deviation from the mean.

Fig. 5. Simulations of the network shown in Fig. 2. For the coupling constant plot, we use the parameters ϵ21 = 10, ϵ32 = 10−1 , and ϵ13 = 10−3

with each neuron having a membrane area of 40 µm2 . For the membrane area plot, we considered each neuron having a different membrane area
of 10 µm2 , 40 µm2 , and 90 µm2 . All coupling constants for the different membrane area simulation were set to 0.10.

40 µm2, and 90 µm2 respectively. In both cases, the expected steady state deviation again approaches that of independent
Poisson neurons, and this was observed over a wide range of values. This result suggests that the resulting formula for
the expected steady state synchronization obtained for independent Poisson neurons is applicable not just to Poisson
neurons or a Hodgkin–Huxley network with equal coupling constants, but generalizes to Hodgkin–Huxley networks that
have unequal coupling and differing membrane areas.

3.4. Large membrane area

In the derivation of our formula, we have approximated the spiking pattern as a Poisson distribution due to the
irregularity of spike times in neural networks. One might expect that if the area of the neurons grows very large so that
the magnitude of fluctuations is smaller and the dynamics of the stochastic model align very closely with the deterministic
behavior, then the synchronization would not reach the steady state and would instead retain a synchronization value
close to 1 (i.e. completely synchronized). It might be tempting to think that one could ignore the fluctuations due to
channel noise when the number of channels is extraordinarily large. Surprisingly, the answer to this is no. To examine
this, we have considered an area of 300 µm2 (equivalent to 18,000 sodium channels and 5400 potassium channels) whose
results are shown in Fig. 6.

Despite the similarity of the stochastic and deterministic dynamics (Fig. 6), there are slight mismatches in spike timing
due to the stochasticity of the Fox and Lu model. These slight mismatches accumulate over a lengthy period of time, and
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Fig. 6. (a) Comparison of membrane voltages for the deterministic Hodgkin–Huxley model and Fox and Lu model with membrane area of 300 µm2 .
Both plots were conducted with input current of 10.0 µA/cm2 . Membrane voltage for the Hodgkin–Huxley model was offset by 10 mV for clarity.
(b) Order parameter for the system shown in Fig. 2 where all three neurons are either deterministic or stochastic with an area of 300 µm2 . The
bold line shows the mean order parameter value over 50 realizations, and the shaded area shows one standard deviation from the mean.

hence the order parameter decreases over time, albeit slowly. Even with the magnitude of the fluctuations from the
channel noise being very small so that the spike timing is reasonably predictable, the degree of synchronization still
decreases to the steady state value predicted by Eq. (6). Our simulations and results suggest that channel noise should be
accounted for in the modeling of real neuron synchronization regardless of the magnitude of fluctuations.

3.5. Expected time to reach steady state

As we have shown, increasing membrane area does not change the expected steady state synchronization value, but
instead increases the time it takes to reach that value. Here, we would like to quantify this observation. In our simulations,
once the synchronization level gets near the expected value we calculated in Eq. (6), it hovers around that value. We
consider the time to reach the steady state when our order parameter is within 0.02 of the value calculated by Eq. (6).
The results are shown in Fig. 7. Here we have considered the case of repetitive firing where we inject each neuron with
a current of 10.0 µA/cm2. As suggested by Fig. 7, there is a linear relationship between the membrane area and the
expected time to synchronization. This also means that in the limit of infinitely many channels where the dynamics
become identical to the Hodgkin–Huxley model, the time to reach the steady state synchronization is ‘‘infinite’’ in the
sense that it never happens, which is in agreement with the order parameter of the Hodgkin–Huxley model never reaching
a steady state value less than 1. However, as long as the number of channels is finite, Fig. 7 shows that the order parameter
will eventually reach the expected steady state synchronization.

4. Conclusion

In this paper, we have sought to examine the effects of channel noise on neural network synchronization. Because real
neurons have finitely many channels, the stochastic opening and closing of these channels leads to fluctuations in the
membrane voltage that are not accounted for in the deterministic Hodgkin–Huxley model. In order to account for these
fluctuations, we used the Fox and Lu system size expansion model because (a) it is a highly accurate approximation to
the gold standard (but computationally expensive) Markov Chain model, and (b) it is a far more computationally efficient
model than the Markov Chain model [27,28]. We first looked at the relationship between firing frequency and input
current in the presence of different magnitudes of channel noise. These simulations showed that channel noise had a larger
effect on the firing rate in the absence of input current, but the effect was weakened as input current increased. We then
looked at numerical simulations to qualitatively describe the effect of channel noise on neural network synchronization.
We observed in Fig. 3 that (a) the neural networks hovered around a steady state synchronization level after some time,
and (b) that increasing channel noise shortened the time it took to reach that synchronization level. In addition, we were
able to derive a formula based on independent Poisson neurons to accurately estimate the long term expected steady
state synchronization level. The key result is that even with a tiny amount of channel noise in coupled Hodgkin–Huxley
equations, the steady state synchronization behaves identically to independent Poisson neurons. In addition, the derivation
required λt to be large, where λ is the firing rate. This requirement illustrates two features: that (a) as firing rate decreases
(i.e. number of channels increases), the time to reach the steady state synchronization level increases, and (b) as firing rate
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Fig. 7. Expected time (triangles) for the mean order parameter to reach the steady state synchronization level. To calculate the expected time, we
used the three neuron network in Fig. 2 with each neuron modeled by the Fox and Lu equations in Eq. (2), injected each neuron with 10.0 µA/cm2 ,
and measured the time for the mean order parameter over 50 simulations to come within 0.02 of the expected steady state based on Eq. (6). Vertical
bars show 1 standard deviation from the mean.

increases, the steady state synchronization is reached faster. This observation was confirmed by the simulations shown in
Fig. 3. Our work suggests that despite the randomness within the model, channel noise causes neural networks to reach a
steady state level of synchronization, and the steady state value only depends on the number of neurons in the network
as suggested by Fig. 4.

We next considered two cases, one where the coupling constants were all different and one of them was much stronger
than the others, and one where the membrane areas of each neuron were different but the coupling constants were the
same. In both of these cases, we observed the same behavior of the synchronization level reaching the same value as
predicted by independent Poisson neurons. We then considered the network in Fig. 2 where the membrane area was
very large for each neuron, and each neuron was in the repetitive firing regime. The purpose of doing this was to observe
the synchronization behavior when the stochastic dynamics are very close to the deterministic dynamics. Even when the
dynamics are extremely similar, the small amount of channel noise causes a big change in the degree of synchronization.
While three coupled Hodgkin–Huxley neurons (without noise) remain completely synchronized, the small amount of
channel noise causes them to desynchronize as observed in Fig. 6. The reason for this is that the small variation in the
timing of the spikes causes the phases of the neurons to gradually drift apart

Finally, we showed that there seems to be an approximately linear relationship between the membrane area and
the expected time to reach the steady state synchronization level. This result shows that in the limit of infinitely many
channels, the steady state synchronization we expect to reach from Eq. (6) is never reached. This is in agreement with
the simulation shown in Fig. 6 where as the channel number grows to infinity, the stochastic dynamics converge to the
deterministic dynamics, and the order parameter does not change for all time. However, for any finite number of channels,
the simulation suggests that the expected steady state will be reached eventually. Ultimately, our paper strongly supports
the notion that valuable insight can be gained by incorporating channel noise in the study of neural synchronization. In
future work, we hope to compare our results obtained for the Fox and Lu model to other stochastic neuron models used
to simulate channel noise.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

We gratefully acknowledge support by the U.S. Office of Naval Research (ONR) under Grant No. N00014-13-1-0205.
We also wish to acknowledge Patrick Fitzsimmons for his help in deriving a formula for the steady state synchronization
level, and Sadique Sheik for his assistance in developing numerical simulations.

Appendix

The matrices used for numerical simulations and included in Eq. (2) are defined as:
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AK =

⎡⎢⎢⎢⎣
−4αn βn 0 0 0
4αn −3αn − βn 2βn 0 0
0 3αn −2αn − 2βn 3βn 0
0 0 2αn −αn − 3βn 4βn
0 0 0 αn −4βn

⎤⎥⎥⎥⎦

ANa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3αm − αh βm 0 0 βh 0 0 0
3αm −2αm − βm − αh 2βm 0 0 βh 0 0
0 2αm −αm − 2βm − αh 3βm 0 0 βh 0
0 0 αm −3βm − αh 0 0 0 βh

αh 0 0 0 −3αm − βh βm 0 0
0 αh 0 0 3αm −2αm − βm − βh 2βm 0
0 0 αh 0 0 2αm −αm − 2βm − βh 3βm

0 0 0 αh 0 0 αm −3βm − βh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
SK and SNa are the square root matrices of the following diffusion matrices:

DK =

⎡⎢⎢⎢⎢⎢⎣
4αnx0 + βnx1 −4αnx0 − βnx1 0 0 0

−4αnx0 − βnx1 4αnx0 + (3αn + βn) x1 + 2βnx2 −2βnx2 − 3αnx1 0 0
0 −2βnx2 − 3αnx1 3αnx1 + (2αn + 2βn)x2 + 3βnx3 −3βnx3 − 2αnx2 0
0 0 −3βnx3 − 2αnx2 2αnx2 + (αn + 3βn)x3 + 4βnx4 −4βnx4 − αnx3
0 0 0 −4βnx4 − αnx3 αnx3 + 4βnx4

⎤⎥⎥⎥⎥⎥⎦

DNa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 −3αmy00 − βmy10 0 0 −αhy00 − βhy01 0 0 0
−3αmy00 − βmy10 d2 −2αmy10 − 2βmy20 0 0 −αhy10 − βhy11 0 0

0 −2αmy10 − 2βmy20 d3 −αmy20 − 3βmy30 0 0 −αhy20 − βhy21 0
0 0 −αmy20 − 3βmy30 d4 0 0 0 −αhy30 − βhy31

−αhy00 − βhy01 0 0 0 d5 −3αmy01 − βmy11 0 0
0 −αhy10 − βhy11 0 0 −3αmy01 − βmy11 d6 −2αmy11 − 2βmy21 0
0 0 −αhy20 − βhy21 0 0 −2αmy11 − 2βmy21 d7 −αmy21 − 3βmy31
0 0 0 −αhy30 − βhy31 0 0 −αmy21 − 3βmy31 d8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and with diagonal entries:

d1 = (3αm + αh)y00 + βmy10 + βhy01
d2 = (βm + 2αm)y10 + 2βmy20 + 3αmy00 + αhy10 + βhy11
d3 = (2βm + αm)y20 + 3βmy30 + 2αmy10 + αhy20 + βhy21
d4 = 3βmy30 + αmy20 + αhy30 + βhy31
d5 = 3αmy01 + βmyy11 + βhy01 + αhy00
d6 = (βm + 2αm)y11 + 2βmy21 + 3αmy01 + βhy11 + αhy10
d7 = (2βm + αm)y21 + 3βmy31 + 2αmy11 + βhy21 + αhy20
d8 = 3βmy31 + αmy21 + βhy31 + αhy30
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