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Abstract

The incompressibility method is an elementary yet powerful proof technique. It has
been used successfully in many areas [8]. To further demonstrate its power and elegance
we exhibit new simple proofs using the incompressibility method.

1 Introduction

The incompressibility of individual random objects yields a simple but powerful proof tech-
nique: the incompressibility method. This method is a general purpose tool that can be
used to prove lower bounds on computational problems, to obtain combinatorial properties
of concrete objects, and to analyze the average complexity of an algorithm. Since the early
1980’s, the incompressibility method has been successfully used to solve many well-known
questions that had been open for a long time and to supply new simplified proofs for known
results. A survey is [8].

The purpose of this paper is pragmatic, in the same style as [9, 7]. We want to further
demonstrate how easy the incompressibility method can be used, via a new collection of
simple examples. The proofs we have chosen to be included in [7] and here are not difficult
ones. They are from diverse topics and most of these topics are well-known. Some of our
results are new (but this is not important), and some are known before. In all cases, the
new proofs are much simpler than the old ones (if they exist).
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2 Kolmogorov Complexity and the Incompressibility Method

We use the following notation. Let x be a finite binary string. Then l(x) denotes the length
(number of bits) of x. In particular, l(ǫ) = 0 where ǫ denotes the empty word.

We can map {0, 1}∗ one-to-one onto the natural numbers by associating each string with
its index in the length-increasing lexicographical ordering

(ǫ, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . . (1)

This way we have a binary representation for the natural numbers that is different from
the standard binary representation. It is convenient not to distinguish between the first
and second element of the same pair, and call them “string” or “number” arbitrarily. As
an example, we have l(7) = 00. Let x, y,∈ N , where N denotes the natural numbers. Let
T0, T1, . . . be a standard enumeration of all Turing machines. Let 〈·, ·〉 be a standard one-one
mapping from N ×N to N , for technical reasons chosen such that l(〈x, y〉) = l(y)+O(l(x)).

Informally, the Kolmogorov complexity, [10], of x is the length of the shortest effective
description of x. That is, the Kolmogorov complexity C(x) of a finite string x is simply the
length of the shortest program, say in FORTRAN (or in Turing machine codes) encoded in
binary, which prints x without any input. A similar definition holds conditionally, in the
sense that C(x|y) is the length of the shortest binary program which computes x on input
y. Kolmogorov complexity is absolute in the sense of being independent of the program-
ming language, up to a fixed additional constant term which depends on the programming
language but not on x. We now fix one canonical programming language once and for all
as reference and thereby C(). For the theory and applications, as well as history, see [8]. A
formal definition is as follows:

Definition 1 Let U be an appropriate universal Turing machine such that

U(〈〈i, p〉, y〉) = Ti(〈p, y〉)

for all i and 〈p, y〉. The conditional Kolmogorov complexity of x given y is

C(x|y) = min
p∈{0,1}∗

{l(p) : U(〈p, y〉) = x}.

The unconditional Kolmogorov complexity of x is defined as C(x) := C(x|ǫ).

It is easy to see that there are strings that can be described by programs much shorter
than themselves. For instance, the function defined by f(1) = 2 and f(i) = 2f(i−1) for
i > 1 grows very fast, f(k) is a “stack” of k twos. Yet for each k it is clear that f(k) has
complexity at most C(k) + O(1).

By a simple counting argument one can show that whereas some strings can be enor-
mously compressed, the majority of strings can hardly be compressed at all. For each n
there are 2n binary strings of length n, but only

∑n−1
i=0 2i = 2n − 1 possible shorter descrip-

tions. Therefore, there is at least one binary string x of length n such that C(x) ≥ n. We
call such strings incompressible. It also follows that for any length n and any binary string
y, there is a binary string x of length n such that C(x|y) ≥ n.
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Definition 2 For each constant c we say a string x is c-incompressible if C(x) ≥ l(x)− c.

Strings that are incompressible (say, c-incompressible with small c) are patternless,
since a pattern could be used to reduce the description length. Intuitively, we think of such
patternless sequences as being random, and we use “random sequence” synonymously with
“incompressible sequence.” It is possible to give a rigorous formalization of the intuitive
notion of a random sequence as a sequence that passes all effective tests for randomness,
see for example [8].

How many strings of length n are c-incompressible? By the same counting argument we
find that the number of strings of length n that are c-incompressible is at least 2n−2n−c+1.
Hence there is at least one 0-incompressible string of length n, at least one-half of all
strings of length n are 1-incompressible, at least three-fourths of all strings of length n are
2-incompressible, . . . , and at least the (1 − 1/2c)th part of all 2n strings of length n are
c-incompressible. This means that for each constant c ≥ 1 the majority of all strings of
length n (with n > c) is c-incompressible. We generalize this to the following simple but
extremely useful Incompressibility Lemma.

Lemma 1 Let c be a positive integer. For each fixed y, every set A of cardinality m has at
least m(1 − 2−c) + 1 elements x with C(x|y) ≥ ⌊log m⌋ − c.

Proof. By simple counting. ✷

As an example, set A = {x : l(x) = n}. Then the cardinality of A is m = 2n. Since it
is easy to assert that C(x) ≤ n + c for some fixed c and all x in A, Lemma 1 demonstrates
that this trivial estimate is quite sharp. The deeper reason is that since there are few short
programs, there can be only few objects of low complexity.

Definition 3 A prefix set, or prefix-free code, or prefix code, is a set of strings such that
no member is a prefix of any other member. A prefix set which is the domain of a partial
recursive function (set of halting programs for a Turing machine) is a special type of prefix
code called a self-delimiting code because there is an effective procedure which reading
left-to-right determines where a code word ends without reading past the last symbol. A
one-to-one function with a range that is a self-delimiting code will also be called a self-
delimiting code.

A simple self-delimiting code we use throughout is obtained by reserving one symbol,
say 0, as a stop sign and encoding a natural number x as 1x0. We can prefix an object with
its length and iterate this idea to obtain ever shorter codes:

Ei(x) =

{

1x0 for i = 0,
Ei−1(l(x))x for i > 0.

(2)

Thus, E1(x) = 1l(x)0x and has length l(E1(x)) = 2l(x) + 1; E2(x) = lg1(l(x))x and has
length l(E2(x)) = l(x) + 2l(l(x)) + 1. We have for example

l(E3(x)) ≤ l(x) + log l(x) + 2 log log l(x) + 1.

Define the pairing function
〈x, y〉 = E2(x)y (3)
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with inverses 〈·〉1, 〈·〉2. This can be iterated to 〈〈·, ·〉, ·〉.
In a typical proof using the incompressibility method, one first chooses an individually

random object from the class under discussion. This object is effectively incompressible.
The argument invariably says that if a desired property does not hold, then the object
can be compressed. This yields the required contradiction. Then, since most objects are
random, the desired property usually holds on average.

3 Number of Strings of Maximum Complexity

A simple counting argument shows that for every n there is at least one string x of length
n such that C(x|n) ≥ n and a string y of length n such that C((y) ≥ n. In fact, we can do
much better. With respect to the prefix version K(·) of Kolmogorov complexity reference
[4] gives an elegant proof that the number strings of length n that have maximal prefix
complexity (also known as self-delimiting complexity or program-size complexity) is Ω(2n).
1

The purpose of this section is analyse this matter in detail with respect to C(·) com-
plexity. The situation is different from prefix-complexity because here we have a simple
constructive upper bound. We also want to determine how large the C(·)-complexity in
fact can get (and how many such strings there are). That these matters are not mere
curiosities but can be used to obtain meaningful results are shown in [7]. 2

Theorem 1 There is a constant d > 0 such that for every n there are at least ⌊2n/d⌋
strings x of length n with C(x|n) ≥ n (respectively, C(x) ≥ n).

Proof. It is well-known that there is a constant c ≥ 0 such that for every n there is
a string x of length n such that C(x|n) ≤ n + c. Hence for every n and every x of length
l(x) ≤ n − c − 1 we have C(x|n) < n. Consequently, there are at most 2n − 2n−c programs
of length < n available as shortest programs for the strings of length n (there are 2n − 1
potential programs and 2n−c − 1 thereoff are already taken). Hence there are at least 2n−c

strings x of length n with C(x|n) ≥ n. ✷

Theorem 2 There are constants c, d > 0 such that for every large enough n there are at
least ⌊2n/d⌋ strings x of length n − c ≤ l(x) ≤ n with C(x|n) > n (respectively, C(x) > n).

Proof. For every n there are equally many strings of length ≤ n to be described and
potential programs of length ≤ n to describe them. Since some programs do not halt for

1Prefix complexity makes its brief and only appearance in this paper here; for more details check out
[8]. We remark that the prefix complexity K(x) is typically larger than C(x) and in fact for every n there
are x such that K(x) = n + K(n) + O(1). This is larger than C(x) which is upper bounded by n + O(1).
With respect to the the related question for C(x) complexity [4] states: “An earlier, unpublished version of
this result was obtained more than twenty years ago in connection with [C(·)]. . . . the proof shows that a
number is large because it is random.”

2 The history of interest and reinvention of these curious but useful facts makes it useful to archive them.
Theorems 1, 2 were independently proved by two of us [HB,PV] in June 1995, and Theorem 1 was also
independently found by both M. Kummer and L. Fortnow. This was not published but appears as Exercise
2.2.6 in [8]. Of course, the cited reference [4] giving the result for the prefix-complexity K(·) preceeds all of
this.
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every large enough n there exists a string x of length at most n such that n < C(x|n) ≤
l(x) + c and a string y of length at most n such that n < C(y) ≤ l(y) + c.

Let there be m ≥ 1 such strings. Given m and n we can enumerate all 2n+1−m−1 strings
x of length ≤ n and complexity C(x|n) ≤ n by dovetailing the running of all programs of
length ≤ n. The lexicographic first string of length ≤ n not in the list, say x, is described
by a program p giving m in log m bits plus an O(1)-bit program to do the decoding of x.
Therefore, log m + O(1) ≥ C(x|n) > n which proves the theorem for the conditional case.
The unconditional result follows similarly by padding the description of x up to length n+c′

for a constant c′ and adding the description of c′ to program p describing x. This way we
can first retrieve c′ from p and then retrieve n from the length of p. ✷

Remark 1 This shows that there are lots of strings x that have complexity larger than
their lengths. How much larger can this get? While the theorems above are invariant with
respect to the choice of the particular reference universal Turing machine in the definition
of the Kolmogorov complexity, the excess of maximal complexity over the length depends
on this choice.

For example, we can easily choose a reference universal Turing machine that has no
halting programs of odd length, or such that it has no halting programs of length i mod 100
for i = 0, . . . , 98. In such a case there are many x’s that have complexity at least l(x)+100.
In the opposite extreme, given an appropriate universal Turing machine U we can transform
it into a universal Turing machine U ′ such that U ′(1p) = p and U ′(0p) = U(p) for all p.
Taking U ′ as reference universal Turing machine we clearly have C(x) ≤ l(x) + 1 for all
x. Consequently, for every n the shortest programs of strings of length < n have length at
most n. This means that there are at most 2n+1 − 2n = 2n strings available of length at
most n to serve as shortest programs for strings of length n.

By definition of U ′ the Theorem 2 means that at least Ω(2n) strings of length n are
used as shortest programs for strings of length n− 1, while by definition of U ′ at least 2n/2
strings of length n are used as (not necessarily shortest) programs for strings of length n−1.
Consequently, at most 2n/2 strings x of length n have complexity C(x) = n and at least
Ω(2n) strings y of length n have complexity C(y) = n + 1. There are no strings z of length
n that have complexity C(z) > n + 1.

4 Average Time for Boolean Matrix Multiplication

We begin with a simple (almost trivial) illustration of average-case analysis using the in-
compressibility method. Consider the problem of multiplying two n × n boolean matrices
A = (ai,j) and B = (bi,j). Efficient algorithms for this problem have always been a very
popular topic in the theoretical computer science literature due to the wide range of appli-
cations of boolean matrix multiplication. The best worst-case time complexity obtained so
far is O(n2.376) due to Coppersmith and Winograd [5]. In 1973, O’Neil and O’Neil devised
a simple algorithm described below which runs in O(n3) time in the worst case but achieves
an average time complexity of O(n2) [12].

Algorithm QuickMultiply(A,B)

5



1. Let C = (ci,j) denote the result of multiplying A and B.

2. For i := 1 to n do

3. Let j1 < · · · < jm be the indices such that ai,jk
= 1, 1 ≤ k ≤ m.

4. For j := 1 to n do

5. Search the list bj1,j , . . . , bjm,j sequentially for a bit 1.

6. Set ci,j = 1 if a bit 1 is found, or ci,j = 0 otherwise.

An analysis of the average-case time complexity of QuickMultiply is given in [12] us-
ing simple probabilitistic arguments. Here we give an analysis using the incompressibility
method.

Theorem 3 Suppose that the elements of A and B are drawn uniformly and independently.
Algorithm QuickMultiply runs in O(n2) time on the average.

Proof. Let n be a sufficiently large integer. Observe that the average time of Quick-
Multiply is trivially bounded between O(n2) and O(n3). By the Incompressibility Lemma,
out of the 22n2

pairs of n × n boolean matrices, at least (n − 1)22n2

/n of them are log n-
incompressible. Hence, it suffices to consider log n-incompressible boolean matrices.

Take a log n-incompressible binary string x of length 2n2, and form two n × n boolean
matrices A and B straightforwardly so that the first half of x corresponds to the row-major
listing of the elements of A and the second half of x corresponds to the row-major listing
of the elements of B. We show that QuickMultiply spends O(n2) time on A and B.

Consider an arbitrary i, where 1 ≤ i ≤ n. It suffices to show that the n sequential
searches done in Steps 4 – 6 of QuickMultiply take a total of O(n) time. By the statistical
results on various blocks in incompressible strings given in Section 2.6 of [8], we know that at
least n/2−O(

√
n log n) of these searches find a 1 in the first step, at least n/4−O(

√
n log n)

searches find a 1 in two steps, at least n/8 − O(
√

n log n) searches find a 1 in three steps,
and so on. Moreover, we claim that none of these searches take more than 4 log n steps. To
see this, suppose that for some j, 1 ≤ j ≤ n, bj1,j = · · · = bj4 log n,j = 0. Then we can encode
x by listing the following items in a self-delimiting manner:

1. A description of the above discussion.

2. The value of i.

3. The value of j.

4. All bits of x except the bits bj1,j, . . . , bj4 log n,j.

This encoding takes at most

O(1) + 2 log n + 2n2 − 4 log n + O(log log n) < 2n2 − log n

bits for sufficiently large n, which contradicts the assumption that x is log n-incompressible.
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Hence, the n searches take at most a total of

(
log n
∑

k=1

(n/2k − O(
√

n log n)) · k) + (log n) · O(
√

n log n) · (4 log n)

< (
log n
∑

k=1

kn/2k + O(log2 n
√

n log n)

= O(n) + O(log2 n
√

n log n)

= O(n)

steps. This completes the proof. ✷

5 Average Complexity of Finding the Majority

Let x = x1 · · · xn be a binary string. The majority bit (or simply, the majority) of x is the
bit (0 or 1) that appears more than ⌊n/2⌋ times in x. The majority problem is that, given
a binary string x, determine the majority of x. When x has no majority, we must report
so.

The time complexity for finding the majority has been well studied in the literature
(see, e.g. [1, 2, 3, 6, 13]). It is known that, in the worst case, n − ν(n) bit comparisons
are necessary and sufficient [2, 13], where ν(n) is the number of occurrences of bit 1 in the
binary representation of number n. Recently, Alonso, Reingold and Schott [3] studied the
average complexity of finding the majority assuming the uniform probability distribution
model. Using quite sophisticated arguments based on decision trees, they showed that on
the average finding the majority requires at most 2n/3 −

√

8n/9π + O(log n) comparisons
and at least 2n/3 −

√

8n/9π + Θ(1) comparisons.
In this section, we consider the average complexity of finding the majority and prove a

pair of upper and lower bounds tight up to the first major term, using simple incompress-
ibility arguments.

We start by proving an upper bound of 2n/3 + O(
√

n log n). The following standard
tournament algorithm is needed.

Algorithm Tournament(x = x1 · · · xn)

1. If n = 1 then return x1 as the majority.

2. Elseif n = 2 then

3. If x1 = x2 then return x1 as the majority.

4. Else return “no majority”.

5. Elseif n = 3 then

6. If x1 = x2 then return x1 as the majority.

7. Else return x3 as the majority.

7



8. Let y = ǫ.

9. For i := 1 to ⌊n/2⌋ do

10. If x2i−1 = x2i then append the bit x2i to y.

11. If ⌊n/2⌋ is even then append the bit xn to y.

12. Call Tournament(y).

Theorem 4 On the average, algorithm Tournament requires at most 2n/3 + O(
√

n log n)
comparisons.

Proof. Let n be a sufficiently large number. Again, since algorithm Tournament
makes at n comparisons on any string of length n, by the Incompressibility Lemma, it
suffices to consider running time of Tournament on log n-incompressible strings. Let x =
x1 · · · xn be a log n-incompressible binary string. For any integer m ≤ n, let σ(m) denote
the maximum number of comparisons required by algorithm Tournament on any log n-
incompressible string of length m.

We know from [8] that among the ⌊n/2⌋ bit pairs (x1, x2), . . . , (x2⌊n/2⌋−1, x2⌊n/2⌋) that
are compared in step 10 of Tournament, there are at least n/4−O(

√
n log n) pairs consisting

of complementary bits. Clearly, the new string y obtained at the end of step 11 should satisfy

C(y) ≥ l(y) − log n − O(1)

Hence, we have the following recurrence relation for σ(m):

σ(m) ≤ ⌊m/2⌋ + σ(m/4 + O(
√

m log n))

By straightforward expansion, we obtain that

σ(n) ≤ ⌊n/2⌋ + σ(n/4 + O(
√

n log n))

≤ n/2 + σ(n/4 + O(
√

n log n))

≤ n/2 + (n/8 + O(
√

n log n)/2) + σ(n/16 + O(
√

n log n)/4 + O(
√

(n log n)/4))

= n/2 + (n/8 + O(
√

n log n)/2) + σ(n/16 + (3/4) · O(
√

n log n))

≤ · · ·
≤ 2n/3 + O(

√

n log n)

✷

Now we prove a lower bound which differs from the above upper bound only by O(
√

n log n).

Theorem 5 Every algorithm requires at least 2n/3 − O(
√

n log n) comparisons to find the
majority, on the average.
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Proof. Consider an arbitrary majority finding algorithm A. Again, let n be a suffi-
ciently large number and x = x1 · · · xn a log n-incompressible binary string. Without loss
of generality, we assume that A never makes redundant comparisons, i.e. if the relationship
between bits xi and xj can be inferred from the previous comparisons, then A will not
compare xi with xj again. It will be useful to think of the comparisons of A as partitioning
the bits x1, . . . , xn of x into “clusters” where each cluster contains all the bits whose rela-
tionships to each other have been established. Let C1, . . . , Cp be the clusters formed when
A terminates. For each cluster Ci, let w(Ci), called the weight of Ci, denote the absolute
value of the difference between the number of 0’s and the number of 1’s in Ci. Clearly, in
order for algorithm A to be correct, there must be a unique cluster Ci such that

w(Ci) >
∑

j 6=i

w(Cj).

(Otherwise how can the algorithm declare the majority)
We first claim that for each cluster Ci, its weight w(Ci) ≤ O(

√
n log n). Suppose that Ci

contains m bits xi1, . . . , xim , listed in the order that they were first compared. Clearly, given
the algorithm A, the bits in the clusters C1, . . . , Cp, listed in the order that they were first
compared, encode the string x. Since the total number of the bits is n and C(x) ≥ n− log n,
we have C(xi1 · · · xim) ≥ m− log n−O(1). Hence, from the results in [8] we know that the
numbers of 0’s and 1’s in these bits differ by at most O(

√
m log n) ≤ O(

√
n log n).

Suppose that A makes a total of k comparisons. In order to relate k to the Kolmogorov
complexity of the string x, we re-encode x by listing the following information in the self-
delimiting form:

1. The above discussion and the algorithm A.

2. For each of the k comparisons made by A, a bit indicating the outcome of the com-
parison. This gives rise to a string y of length k.

3. For each cluster Ci, a bit indicating the value of the lowest indexed bit in Ci.

Since A does not make redundant comparisons, the length of the above description is
at most n + log n + O(1). Hence,

k + p = l(y) + p = n ± log n ± O(1)

Thus, C(y) ≥ k−2 log n. Again, by the results in [8], we claim that at most k/2+O(
√

k log n)
of the k comparisons identify pairs of complementary bits.

Observe that for any cluster Ci, in order for the weight w(Ci) to equal zero, at least one
of the comparisons that form Ci must involve complementary bits. Hence, from the above
discussion, the number of clusters with zero weight is at most k/2 + O(

√
k log n). Since the

maximum weight of a cluster is O(
√

n log n), we have

p − k/2 − O(
√

k log n) ≤ O(
√

n log n)

Since p ≥ n − k − O(1), we obtain

n − k − O(1) − k/2 − O(
√

k log n) ≤ O(
√

n log n)
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That is,
k ≥ 2n/3 − O(

√

k log n) − O(
√

n log n) = 2n/3 − O(
√

n log n).

✷

6 Communication Complexity

Consider the following communication complexity problem (for definitions see the book by
Kushilevitz and Nisan [11]). Initially, Alice has a string x = x1, . . . , xn and Bob has a string
y = y1, . . . , yn with x, y ∈ {0, 1}n. Alice and Bob use an agreed-upon protocol to compute
the inner product of x and y modulo 2

f(x, y) =
n

∑

i=1

xi.yi mod 2

with Alice ending up with the result. We are interested in the minimal possible number
of bits used in communication between Alice and Bob in such a protocol. Here we prove
a lower bound of n − 1, which is almost tight since the trivial protocol where Bob sends
all his n bits to Alice achieves this bound. In [11] it is shown that the lower bound is
in fact n. We also show an n − O(1) lower bound for the average-case complexity and a
n − 1 + log(1 − ǫ) lower bound for randomized algorithms (private coins) that output the
correct answer with probability at least 1 − ǫ.

Theorem 6 Assume the discussion above. Every protocol computing the inner product
function requires at least n − 1 bits of communication.

Proof. Fix a communication protocol P that computes the inner product. Let A be
an algorithm that we describe later. Let z be a string of length 2n such that C(z|A,P, n) ≥
2n − 1. Let z = x1 . . . xny1 . . . yn Let Alice’s input be x = x1 . . . xn and Bob’s input be
y1 . . . yn. Assume without loss of generality that f(x, y) = 0 (the innerproduct of x and y
is 0 modulo 2). 3 Run the communication protocol P between Alice and Bob ending in a
state where Alice outputs that f(x, y) is 0. Let C be the sequence of bits sent back and
forth. Note that P can be viewed as a tree with C a path in this tree [11]. Hence C is
self-delimiting. Consider the set S defined by

S := {a : ∃b such that P (a, b) = 0 and induces conversation C , a, b ∈ {0, 1}n}.

Given n, P and C, we can compute S. Let the cardinality of S be l. The strings in S form
a matrix M over GF(2) with the ith row of M corresponding to the ith string in S (say in
lexicographic ordering). Since for every a ∈ S it holds that f(a, y) = 0 it follows that y is
an element of the Null space of M (y ∈ Null(M)). Application of the Null space Theorem
from linear algebra yields:

rank(M) + dim(Null(M)) = n. (4)

3By symmetry there are precisely 22n−1 strings z = xy l(x) = l(y) = n with inner product x, y equal 0.
There are only 22n−1

− 1 programs of length less than 2n − 1. Hence there must be a z as required.
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Since the cardinality of S is l and we are working over GF(2) it follows that the rank of M
is at least log(l) and by (4) it follows that dim(Null(M)) ≤ n − log(l). The following is an
effective description of z given n and the reconstructive algorithm A explained below:

1. C;

2. the index of x ∈ S using log(l) bits; and

3. the index of y ∈ Null(M) with n − log(l) bits.

The three items above can be concatenated without delimiters. Namely, C itself is self-
delimiting, while from C one can generate S and hence compute l. From the latter item
one can compute the binary length of the index for x ∈ S, and the remaining suffix of
the binary description is the index for y ∈ Null(M). From the given description and P, n
the algorithm A reconstructs x and y and outputs z = xy. Consequently, C(z|A,P, n) ≤
l(C) + log l + (n − log l). Since we have assumed C(z|A,P, n) ≥ 2n − 1 it follows that
l(C) ≥ n − 1. ✷

We can improve this lower bound to n as follows:

Theorem 7 Assume the discussion above. There exists a constant c such that for all m
there is an n (2m − c ≤ 2n ≤ 2m) such that every protocol computing the inner product
function of two n-bit strings requires at least n bits of communication.

Proof. Using a similar argument as in Theorem 2 there is a constant c such that for
every m we can choose z of length 2n (2m− c ≤ 2n ≤ 2m) with associated inner product 0
and C(z|A,P, n) ≥ 2n. The remainder of the proof is the same as above. ✷

Approximately the same lower bound holds for the average-case communication com-
plexity of computing the inner product of two n-bit strings:

Theorem 8 The average communication complexity of computing the inner product of two
n-bit strings is at least n − O(1) bits.

Proof. There are exactly 22n−1 strings z of length 2n such that z = xy, l(x) = l(y) = n
and inner product of x and y modulo 2 equals 1. For such z define z̄ = x̄ȳ as z but with
the first bit of x and the first bit of y changed so that the inner product of the resulting
strings x̄ and ȳ equals 0. C(w̄|n) = C(w|n) + O(1) for every w ∈ {z, x, y}. Let δ(n) be a
function and choose in the proof above C(z|A,P, n) ≥ 2n− δ(n). By simple counting there
are at least

22n(1 − 1/2δ(n)) (5)

such z’s. If the above inner product associated with z equals 1 then the inner product
associated with z̄ equals 0 and C(z̄|A,P, n) ≥ 2n − δ(n) − O(1)

Hence we can apply the proof of the previous theorem for all z with randomness defi-
ciency at most δ(n) as follows:

• If z has an associated inner product 0 then the proof as above yielding l(Cz) ≥ n−δ(n)
where Cz is the communication sequence associated with the computation with input
z.
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• If z has associated inner product 1 then the proof as above to z̄ yielding l(Cz̄) ≥
n − δ(n) − O(1).

There are at least 22n(1 − 1/2δ(n)) strings z of length 2n with C(z|A,P, n) ≥ 2n − δ(n).
Altogether we obtain that the average communication complexity is

∑

z∈{0,1}2n

Pr(z)l(Cz) = 2−2n
∑

z∈{0,1}2n

l(Cz)

≥ 2−2n
n

∑

δ(n)=1

∑

z∈{0,1}n&C(z|A,P,n)=2n−δ(n)

l(Cz)

≥ 2−2n
n

∑

δ(n)=1

22n 1

2δ(n)
(n − δ(n) − O(1))

=
n

∑

δ(n)=1

n

2δ(n)
−

n
∑

δ(n)=1

δ(n) + O(1)

2δ(n)

≥ n − O(1).

This proves the theorem. ✷

A similar proof establishes a lower bound of about n bits for the communication com-
plexity of equality of the strings held by both parties.

Theorem 9 The communication complexity of a randomized protocol using private coins
computing the inner product of two n-bit strings that outputs the correct answer with prob-
ability at least 1 − ǫ is at least n − 1 + log(1 − ǫ) bits.

Proof. The proof is similar to that of the determinsitic lower bound. Assume that
Alice and Bob compute probabilistically, that is, they can each flip a private fair coin (whoes
output does not depend on the input) and decide their next step depending on the result of
the coin flip, and the error rate of their computation is ǫ. Because for each pair of inputs,
there is 1 − ǫ chance to output the correct result, there must exist a coin flipping sequence
such that using it Bob and Alice output the correct result for 1 − ǫ portion of the inputs.
Fix such a sequence R. Out of such 22n(1 − ǫ) strings of length 2n, choose z such that

C(z|A,P,R, n) >= 2n − 1 + log(1 − ǫ).

Such z exists according to Lemma 1. Then we procede as before in the edeterministic case
to show that Alice and Bob must communicate

n − 1 + log(1 − ǫ)

bits to compute f(x, y), where z = xy, |x| = |y| = n. ✷
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