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ABSTRACT 

The Impact of Urban Development on Disparities in Exposures and Health in Xi’an, China 

By 

Meiling Gao 

Doctor of Philosophy in Environmental Health Sciences 

Professor Catherine P. Koshland, Co-Chair 
Associate Professor Edmund Y.W. Seto, Co-Chair 

China’s cities have been growing both in size and population at an unprecedented rate over the 
last three decades. The evolving urban landscape has important consequences for public health. 
However, the relationships among the physical environment, human behaviors, environmental 
exposures, and health are understudied in Chinese populations. Furthermore, more evidence from 
Chinese studies is needed to inform the design of urban environments and public health 
programs that promote and improve both mental and physical health.  

This dissertation examines how urban development trends in China affect health and quality of 
life. I approached this question by conducting a cross-sectional socio-behavioral and health 
survey of 1608 adults in 20 neighborhoods in Xi’an, China in 2013. This cross-sectional study 
includes residents of four types of neighborhoods that represent different stages of China’s 
urbanization: work-units, lane and courtyard housing, and two forms of commodity housing 
(high-density high rises and low-density high rises) neighborhoods. Although cross-sectional in 
design, this dissertation leverages the temporal history of the neighborhoods present in Xi’an to 
explore the relationships of development trends with behaviors and health. In particular, I 
examine the relationships between the natural and built environments and urban health. In 
addition, I identify neighborhood-specific factors that public health practitioners and urban 
planners might target to improve health. 

First, I apply land use regression (LUR) methodology and the deletion/substitution/addition 
(DSA) algorithm to select predictive models and create concentration surfaces for four pollutants: 
PM2.5, NO2, SO2, and O3. The LUR models identified substantial areas of Xi’an that had annual 
PM2.5, SO2, and NO2 concentrations exceeding current health standards set by the World Health 
Organization (WHO), providing more evidence for the potential health risks from ambient air 
pollution in Chinese cities.  

Because consistent and reliable air quality monitoring networks are rarely able to keep pace with 
urbanization in China, new technologies are needed to complement the existing methods of 
environmental management in cities. Thus, I also test the validity of a new low cost particulate 
matter sensor (PUWP) for use in high concentration areas like Xi’an. The PUWP sensor 
performed well as compared to mature PM monitors and could be used to rapidly screen for air 
pollution “hotspots” in large areas where setting up extensive monitoring stations is challenging. 
The analysis also observed a sinusoidal relationship between sensor response and PM2.5 
concentrations, indicating gradual saturation in the optical sensor’s ability to detect ambient 
concentrations in high PM environments above 300 µg/m3. 
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In addition, I present the results of the cross-sectional socio-behavioral and health survey where I 
examine the associations between self-reported perceptions of the built environment and quality 
of life, and assess whether these associations differ across the four types of neighborhoods. 
Neighborhood built environment was strongly associated with both mental and physical-health 
related quality of life in the commodity housing neighborhoods (high and low-density). In 
particular, pedestrian infrastructure, diversity of resources, access to and from the neighborhood, 
and neighborhood safety had the highest positive associations with increased mental health in the 
high-density high-rise neighborhoods. In the work-unit neighborhoods, increased access to and 
from the neighborhood was found to be a significantly associated with both mental and physical 
health. Pedestrian infrastructure, diversity of neighborhood resources, and esthetics were found 
to be positively associated with mental health in lane/courtyard neighborhoods. 

Finally, results from the LUR analysis are also used in an exposure assessment of ambient air 
pollution for the 20 surveyed neighborhoods. I examine the role of neighborhood air pollution in 
modifying the associations between leisure-time physical activity (LTPA) and adverse health 
impact and quality of life. Neighborhood ambient air pollution is included in health effects 
models in two ways: 1) categorical single pollutant and 2) categorical mixtures models. 
Increasing LTPA levels are associated with lower odds of adverse health impacts and higher 
reported quality of life. However, the health and quality of life benefits of physical activity are 
potentially lower in areas where ambient PM2.5 and O3 are elevated. In addition, single pollutant 
models are poor proxies of mixtures of pollutants, which indicate a need for considering multi-
pollutant exposures in epidemiological studies. 

Collectively, these results suggest the built, natural, and social environments should be 
considered simultaneously as potential targets of intervention to improve quality of life and 
health in Chinese cities.  
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Chapter 1 Introduction 
 

1.1 OVERVIEW 

The combination of rapid economic growth and changing physical landscapes in China is 
difficult to ignore. Economic development has led to dramatic changes in the physical and social 
environments of Chinese cities as they expand to accommodate a growing urban population. 
However, development trends bolstering decentralization of industries, suburbanization, and 
reliance on motorization raise concerns regarding the ability of the evolving cities to be healthy, 
sustainable, and equitable. The growing body of evidence supports a need for more health-
conscious urban planning. Because more than half the Chinese population now lives in urban 
areas and this proportion is growing, poor urban planning can have significant downstream 
effects on quality of life and health by affecting how people live, travel, and access goods and 
services (Hvistendahl 2011). Although cities, populations, and development trends are distinct 
from their Western counterparts, analogous environmental quality, justice and health issues are 
present and should be addressed. In an ever increasingly global economy, these potential public 
health burdens in one country could have widespread effects.  

This dissertation explores the environmental and social issues that urban communities in China 
are facing today by examining a cross-section of air pollution, socio-behavioral, and health data 
collected from an adult cohort residing in 20 neighborhoods across Xi’an, China. The 
exploration of these data provides insights for urban planners, environmental scientists, and 
public health practitioners. 

1.2 BACKGROUND 

The acceleration of global urbanization in the last century is one of modern society’s defining 
characteristics. Urbanization refers to the development and expansion of cities through 
population growth and land use changes from rural to urban. For the first time in human history, 
the urban population exceeded the rural population in 2007. Recent estimates for 2014 suggest 
that approximately 54% of the world’s population resided in urban areas. Continued population 
growth and urbanization is expected to add another 2.5 billion people to the urban population 
with China expected to contribute 11.7% (292 million) of this global growth (United Nations 
2014). 

1.2.1 History of Urbanization in China 

China has led the world’s urbanization shift in the past. Over the last 4000 years, China has been 
one of the primary urbanization regions around the world, and has experienced several 
urbanization periods (Wu, Xiang, and Zhao 2014; Friedmann 2006). In the early 19th century, 
Beijing was the largest city in the world, with a population of over 1 million. However, from the 
1840s to 1949, China’s urban population only grew by 5.5% annually while the global rate, 
attributed to the Industrial Revolution, was 22.8%. The Opium Wars, foreign invasions, end of 
Imperial China, and civil wars impeded the political stability and economic growth necessary to 
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shift away from an agriculture-based economy to support urban growth – both in population and 
land area – in China (Wu, Xiang, and Zhao 2014). 

After the creation of the People’s Republic of China in 1949, only 58 million (11%) of the 527 
million people in China lived in its 69 cities as compared the world’s 29% (S. Cao et al. 2014; 
Bai 2008). From 1949 to 1977, the central Chinese government, viewing cities as centers of 
production and not consumption, focused on planned economy industrialization and ignored 
urban development (Friedmann 2006). The city population was organized into work units (单位 
danwei) and physically, the city became organized around these work units with workers of the 
same work unit living together in organized communities. As part of the planned economy, 
migration was also restricted between the urban and rural areas using a household registration 
system (户口 hukou) which dictated where residents could obtain food stamps, education, 
healthcare, employment, etc. During this period, the economic project, the Great Leap Forward 
(1958-1961), which led to a famine and economic crisis, and the socio-political Cultural 
Revolution (1966-1976) also stunted economic and urban growth (Wu, Xiang, and Zhao 2014; Y. 
Zhou and Ma 2000).  

The economic reforms implemented in 1978 by Deng Xiaoping shifted the country to a socialist 
market economy (“socialism with Chinese characteristics”) by allowing foreign direct 
investments which boosted employment opportunities, decollectivization of agriculture, and 
permission for a private sector within China (Y. Zhou and Ma 2000). These reforms opened 
China to the global market and led to a decentralization of the government, continued 
industrialization, and increased internal migration to cities leading to higher urbanization. This 
period after 1978 focused on rapid urbanization. Urban areas experienced dramatic growth both 
in population size and land area as migration rules were loosened and rural areas were relabeled 
as urban as they became industrialization centers.  

At the start of the reforms the late 1970s, only 17.9% of the population lived in its 223 cities. By 
1979, a quarter – 969 million - of the world’s population was living in China on only 7% of the 
world’s arable land area. The government saw slowing population growth as key to continued 
economic growth. In 1979, the Chinese government introduced the one child policy to curb 
population growth by limiting the family size, encouraging late marriage, and controlling 
childbearing. Despite these restrictions by the 2000 Census, the actual population of 1.27 billion 
exceeded that of the targeted 1.2 billion goal (Hesketh, Lu, and Xing 2005). By 2011, total 
population had reached 1.34 billion and urbanization had reached 51.3% (World Bank 2015). 
While China’s urbanization lagged behind the rest of the world’s in the early 20th century, by 
2050 China is projected to have 77.5% of its population in cities as compared to 67.2% of the 
rest of the world’s population (Wu, Xiang, and Zhao 2014). Currently, 25 of the world’s largest 
100 cities are in China, all with populations over 2 million (City Mayors 2011) and more than 
half the population lives in urban areas (National Bureau of Statistics 2011). 

1.2.2 Trends in Modern Chinese Cities 

Post-2000 urbanization has altered urban form, land use, transportation sectors, and energy 
consumption in China. With a focus on economic growth as measured through gross domestic 
product (GDP), emphasis was placed on industries or sectors that would help boost GDP 
estimates such as real estate development and manufacturing (Bai 2008).  
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The economic reforms gave more autonomy to local governments, allowed foreign investments 
to enter and compete in the Chinese markets and also increased competition among domestic 
state-owned enterprises (SOE). To attract both domestic and foreign investments, local 
governments created development zones and industrial parks whose construction helped increase 
local GDP. In 2003, over 3,800 parks were created and this number increased to 6,015 in 2006 
(Y. Li 2010). The creation of industrial and technology parks also helped cities expand in size as 
the parks were built in the urban fringes bordering rural land and grow in population as 
employment opportunities grew (Pucher et al. 2007). Because local governments controlled the 
land, additional revenue from land sales to real estate developers became a significant part of a 
local government’s income, with much of the land coming from converting existing farmland to 
new plots of urban land for development (S. Cao et al. 2014). In extreme cases, governments 
have leveled mountains to make more land available for urban expansion (Clark 2014). 

Recent urbanization has also been strongly tied to changes in transportation. Government support 
for increasing private vehicle ownership also influenced the form of the new redesigned cities. A 
few decades ago, China was known as the bicycle kingdom (China Daily 2004) but starting in 
the 1990s, the car industry in China became a “pillar industry” that would help China 
industrialize (Kenworthy and Hu 2002). In 2009, China passed the United States and became the 
world’s largest car market, with over 50,000 vehicles sold per day and planning policies became 
car-centric to accommodate this boom in private vehicle ownership (J. Zhou et al. 2014). As 
private car ownership increased, China more than doubled its length of roads (Z.-R. Peng, Zhu, 
and Song 2006), while bicycle lanes were converted to parking or eliminated as  roads were 
widened to accommodate increased vehicular traffic (Schipper 2006). However, car ownership 
rates are still lower than that in the US (69 versus 786 cars every 1,000 persons in 2011) (The 
World Bank 2011).  

Urbanization has also profoundly changed energy consumption patterns in residential households. 
From 1980 to 2011, urban residential energy consumption (REC) more than tripled from 110.2 to 
374.1 million tons coal equivalent (Mtce) when urbanization increased 2.6 times to 51.3% of the 
population. REC of coal decreased to 8% over this period while petroleum was the fastest 
growing fuel type in residential households, as motorization increased (Qiang Wang 2014). 
Construction of new residential and commercial buildings and urban infrastructure in cities also 
increased industrial energy consumption, primarily by the energy-intensive steel and cement 
industries that manufacture products used in construction. From 1991 to 2005, output from 
cement and steel industries grew at annual rates averaging 11% and 12%, respectively (W. Zhou 
et al. 2012). Increased energy consumption is directly affecting the natural environment by 
increasing emissions of air pollutions and greenhouse gases, which have significant implications 
for urban health. 

1.2.3 Public Health Issues in Chinese Cities 

As with many developing economies, China has made substantial public health improvements by 
decreasing infant mortality and limiting the spread of communicable diseases through improved 
infrastructure, healthcare, and sanitation. The life expectancy of men and women increased from 
60.4 and 63.5 years, respectively, in 1970 to 72.9 and 79.0 years, respectively, in 2010 (G. Yang 
et al. 2013a). However, the current wave of urbanization in China has raised some concerns for 
creating healthy and sustainable cities. Several public health issues are especially pressing: 
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Increasing Chronic Disease 
While urbanization increases access to healthcare, rising household incomes and longer lifespans 
of urban populations are changing China’s health profile through exposure to environmental risk 
factors such as ambient air pollution and behavior risks factors such as smoking, poor diet 
(increased consumption of sugar and salt), and a more sedentary lifestyle, which all can 
contribute to non-communicable diseases (NCD) (G. Yang et al. 2013b; The World Bank Human 
Development Unit 2011). The prevalence of NCD is increasing in China, especially in urban 
areas. Of the 8.2 million deaths per year in China, about 7 million are due to non-communicable 
diseases. The leading causes of death are stroke, ischemic heart disease, and chronic obstructive 
pulmonary disease (Yuanli Liu et al. 2013). NCDs also contribute almost 70% of the total 
disease burden with 50% of the burden occurring in people under 65 (The World Bank Human 
Development Unit 2011). Diabetes prevalence has increased from 0.67% in the 1980s to 9.7% in 
2008. With about 200 million people estimated to be overweight or obese, overweight and 
obesity prevalence reached 22.8% and 7.1%, respectively, in the population in 2002 (The World 
Bank Human Development Unit 2011).  

Changing Social Environments 
Rapid economic growth has also led to significant changes in social relationships. With increased 
mobility and the shift away from the relative stability of the work-unit communities into new 
commodity housing high-rise neighborhoods, even residents of the same neighborhoods are 
frequently distrustful of one another (Hazelzet and Wissink 2012). In 2012, trust among people 
was a record low with only 30% saying strangers can be trusted (J. Wang and Yang 2013). 

China’s Gini coefficient, a measure of income inequality, is estimated to be 0.53-0.55, higher 
than that in the United States, despite having low income inequality up until the late 1980s (Xie 
and Zhou 2014). This shift is partly attributed to regional disparities, as economic development 
started earlier along the geographically accessible and densely populated coastal region; and 
partly attributed to the rural-urban divide in the population.  Urban residents, who have access to 
better educational and employment opportunities, broader social networks and are more socially 
mobile, had incomes that were 45 times that of rural residents in 2011. Even in cities, this 
income disparity persists where urban hukou residents on average make 1.3 times than of their 
rural hukou counterparts living in the same city (Démurger et al. 2009). Further, 95% of China’s 
total wealth belongs to only 5% of its population (S. Cao et al. 2014). The widening income gap 
and concentrated wealth have serious implications for happiness, social cohesion, trust, crime, 
and social stability across the country (C. Wang, Wan, and Yang 2014).  

Widening Social Inequities 
Economic development, while improving living standards and quality of life for the population 
as a whole, has also created marginalized groups in China. As labor demands increased in the 
cities, restrictions placed on rural residents were loosened to allow rural to urban migration. 
From 1978 to 2004, an estimated 300 million rural residents migrated to cities (Y. Li 2010). 
Migrant workers are relatively young, predominantly male, and poorly educated (L. Shi 2008a). 
Because of their low educational attainment, migrant workers often accept undesirable manual 
jobs that permanent urban residents avoid. 

Migrant workers also face social stigmas, exploitation, and discrimination due to their hukou 
status (Human Rights Watch 2008). A migrant worker’s wages can be a quarter of that of local 
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urban workers; they often work seven days a week and work more hours per day than urban 
residents (L. Shi 2008a). Long hours, stressful work conditions, and low pay increase the 
vulnerability of this group to experiencing higher health risks. In addition, surveys have shown 
migrants are less aware of and have less access to social and health services in the cities (L. Shi 
2008a). They often live in urban villages1 (城中村cheng zhong cun) where low-cost housing 
exists (Y. Li 2010). Migrant workers, along with the urban poor, could be further marginalized 
through inequitable development. 

Worsening Air Pollution 
Decentralized cities and growth in vehicle ownership are major contributors to China’s poor air 
quality. The “getting rich first” approach prioritized economic development at the expense of 
environmental degradation (C. Fan 2010). Twenty of the thirty most polluted cities around the 
world are in China with annual concentrations of SO2 (50 µg/m3) and PM10 (30-200 µg/m3) 
exceeding both World Health Organization (WHO) and US Environmental Protection Agency’s 
(EPA) air quality guidelines (HEI 2010). However, China’s current air quality guidelines, 
although acceptable limits have been lowered since they were first set in 1989, are usually more 
lenient than those set by the U.S. EPA and WHO in part to account for its status as an 
industrializing country (Fang, Chan, and Yao 2009).  Growing car ownership also increased 
emissions of nitrous oxides (NOx), particulate matter (PM), black carbon (BC), and carbon 
monoxide (CO) in cities (Vennemo et al. 2009; He, Huo, and Zhang 2002). 

China’s asthma prevalence increased 40% from 2000 to 2005 and has been attributed to 
worsening environmental conditions from economic development (Watts 2006). Epidemiology 
studies in China found health effect estimates similar to those in Western populations (HEI, 
2010). Short-term exposures to PM2.5 were found to be significantly associated with increased 
rate of mortality: 0.37% increase in total mortality, 0.51% in respiratory mortality, 0.44% in 
cardiovascular mortality, for every 10 µg/m3 increase in PM2.5 (Shang et al. 2013). Chinese 
populations of lower socioeconomic status face higher health risks from air pollution, hinting at 
disproportionate burdens of air pollution risks on already disadvantaged populations (Haidong 
Kan et al. 2008).  

                                                 
1 Urban villages are previously rural villages surrounding the periphery of the city whose administrative 
classification was changed from “rural” to “urban” as the land was expropriated for urban expansion. However, the 
villagers retain their residential areas/housing which prevents the need for relocation (Liu et al. 2010) 
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1.3 RESEARCH OBJECTIVES 

My research aims to better understand the current status of the built environment, human 
behaviors, social interactions, and air quality, and their associations with health indicators in an 
urban Chinese urban population.  

Specific objectives include the following: 

1. Quantify spatial and seasonal patterns in PM2.5, NO2, ozone (O3), and SO2 across the six 
urban districts of Xi’an, China. (Chapter 2) 

2. Calibrate and validate a new low cost particulate matter sensor alongside mature PM2.5 
monitors to determine if the low cost sensor can provide additional information that can 
be used for human health exposure assessment. (Chapter 3) 

3. Assess the associations between residential neighborhood built environment and health-
related quality of life (HRQOL) across four types of urban neighborhoods.  (Chapter 4) 

4. Assess how multi-pollutant exposures modify the associations between leisure-time 
physical activity levels and adverse health impacts and health-related quality of life 
(HRQOL) across four types of urban neighborhoods. (Chapter 5) 
 

1.4 STUDY SITE 

The research presented in the following chapters relies on primary data collected from Xi’an, 
China in 2013. As the capital of Shaanxi province with almost 8.1 million residents and an 
average gross domestic product growth above 10% every year since 2000, Xi’an is a sub-
provincial city in central China and a major city in the expansion and development of central and 
western China (Statistical Bureau of Shaanxi Province 2010). Xi’an also has one of the worst air 
pollution records in China (HEI 2010) driven by a heavy reliance on coal burning and coal 
mining industries, development projects, unique topography, and environmental conditions for 
accumulation of air pollutants (J. Cao 2014).
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Chapter 2 Development of Multi-Pollutant Air Quality Maps 
 

2.1 OVERVIEW 

This chapter models the spatial variability of air pollutants (PM2.5, NO2, O3, and SO2) across 
Xi’an, China and assesses the feasibility of using land-use regression to understand city-wide air 
quality and exposures in large cities. Results from this chapter will be used in approximating 
exposure to air pollutants in the population of adults surveyed within 20 neighborhoods. 

 
2.2 BACKGROUND 

2.2.1 China’s urban air quality problems  

The rise in China’s environmental problems correlates with its economic development trajectory. 
The economic reforms that began in 1978 had a goal of modernizing China’s primarily 
agricultural economy by strengthening industry, agriculture, national defense, and science and 
technology (Xu 2011). As a result, from 1978 to the early 2000s, China’s economy grew at an 
unprecedented annual rate of  11.4% or more (H. Shi and Zhang 2006). While improving the 
quality of life for millions of Chinese, economic development also intensified fossil fuel 
consumption and pollutant emissions.  

Although China’s Environmental Protection Leadership Group (now the Ministry of 
Environmental Protection), created in 1973, was able to slow down the environmental 
degradation stemming from the rapid growth in the last three decades, industry continues to be a 
major emitter of sulfur oxides (SOx), nitrogen oxides (NOx), carbon dioxide (CO2), and 
particulate matter (PM) as energy consumption increases (H. Shi and Zhang 2006). Coal remains 
China’s main energy source and in 2012, China accounted for 50% of the world’s total coal 
consumption (Z. Chen et al. 2013). Cities are growing larger in both population and size leading 
to increased infrastructure and real estate development. A growing and motorizing middle class 
is also changing consumption patterns of both goods produced and energy consumed (Haidong 
Kan, Chen, and Tong 2012).  

In 2010 as a result of the government’s emphasis on installing emission control technologies, 
SO2 emissions were estimated to be 11 to 14% lower than levels in 2005 (Y. Zhao, Zhang, and 
Nielsen 2013; S. Wang and Hao 2012). NOx controls, however, still lagged behind in 
implementation and emissions grew with construction of new power plants and increased 
motorization. From 2000 to 2010, NOx emissions from power plants doubled while that from the 
transportation sector tripled (S. Wang and Hao 2012). With increasing emissions of ozone 
precursors such as NOx and volatile organic compounds (VOCs), increasing tropospheric ozone 
formation has been observed in both cities and rural areas where concentrations have exceeded  
health guidelines (S. Wang and Hao 2012).  
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China also has one of the highest PM2.5 levels in the world (van Donkelaar et al. 2010) but both 
PM10 and PM2.5 emissions have steadily decreased over the last decade with increased use of 
emission control technologies (Cheng et al. 2013; Y. Zhao, Zhang, and Nielsen 2013; B. Zhao et 
al. 2013). In general, northern parts of China have higher levels of PM than in the south because 
of increased coal use, especially in the winter for heating (Cheng et al. 2013; Haidong Kan, Chen, 
and Tong 2012). Cities like Beijing and Xi’an in the arid and semiarid northern regions also 
experience dust events with increasing frequency in the spring that reduce visibility, increase air 
pollution, and increase soil erosion. Desertification from cropland expansion has contributed to 
this phenomenon (Y. Chen, Cai, and Tang 2003). 

Stricter ambient and emission standards, adoption of cleaner fuels, relocation of polluting 
industries, and land-use rezoning efforts have led to some improvements in air quality in Chinese 
cities, as the decreases in SO2 and PM10 levels have demonstrated (Z. Chen et al. 2013; Haidong 
Kan, Chen, and Tong 2012). However, the Ministry of Environmental Protection (MEP) is 
frequently unable to provide sufficient monitoring to ensure compliance across the country 
(Junfeng Zhang et al. 2010). Therefore, China still ranks as one of the countries with the worst 
air pollution as continued economic development competes with a growing concern for 
environmental protection. 

2.2.2 Public health relevance of air pollution 

Ambient air pollution is a growing health burden for China’s population of 1.35 billion. The 
2010 Global Burden of Disease has listed PM2.5 as the country’s fourth largest health risk (Cheng 
et al. 2013), resulting in an estimated 1.2 million premature deaths in 2010 (G. Yang et al. 
2013b). Of the air pollutants in the atmosphere, four are of interest in this study: PM2.5, NO2, SO2, 
and O3.  

Particulate matter (PM), liquid and solid particles suspended in the air, can be emitted directly 
(primary pollutant) or formed in the atmosphere (secondary pollutant). Anthropogenic sources 
include soot generated from fuel combustion. Secondary PM can form in the atmosphere through 
reactions of NOx, VOCs, SOx, and ammonia (NH3). The spatial variability of PM depends on its 
aerodynamic diameter with ultrafine (PM1) and coarse (PM2.5-10) particles having greater spatial 
variability since they tend to aggregate into larger particles or deposit out of the atmosphere 
while fine particles (PM2.5) will remain suspended longer and have less spatial variability. PM2.5 
sources include gasoline and diesel engines, biomass burning, and secondary formation through 
gaseous precursors.  

Nitrogen dioxide (NO2), a component of NOx, is monitored as a gaseous marker for combustion 
of fossil fuels in stationary sources (e.g., power generation) and in motor vehicles (internal 
combustion engines). NO2 is mostly converted from primary nitric oxide (NO) emissions in the 
atmosphere and is a major source of tropospheric ozone. NO2 has greater spatial variability than 
other pollutants because of its chemical reactivity in the atmosphere, and geographical 
distribution of local sources that in urban areas are major roadways. Ozone (O3) is a secondary 
gaseous pollutant generated in the troposphere from reactions of NOx with VOCs and light. 
Spatial variability within cities can be high as it is chemically reactive with traffic emissions. 
Because of reliance on ultraviolet light and temperature, ozone levels generally are lower in the 
winter. Sulfur dioxide (SO2) is primarily emitted during combustion of fossil fuel combustion for 
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energy production or industrial processes although it can also be a marker of diesel combustion 
in vehicles.  

A substantial body of evidence links exposure to PM2.5 to adverse acute and chronic health 
outcomes, in particular to the respiratory and cardiovascular systems. PM2.5 exposure has been 
found to be associated with increased hospital admissions (Atkinson et al. 2014; Bell et al. 2013; 
R. D. Peng et al. 2009; Ostro et al. 2009; A Zanobetti, Schwartz, and Dockery 2000), decreased 
lung function (Adam et al. 2015; Rice et al. 2015), preterm birth (Fleischer et al. 2014; Stieb et al. 
2012), and premature mortality (Atkinson et al. 2011; Evans et al. 2013; Laden et al. 2006; 
Jerrett, Burnett, et al. 2005; Dockery et al. 1993). These impacts on health have been shown to be 
consistent across geographic areas in both developing and developed countries with no signs of a 
safe threshold of PM2.5 exposure. NO2 is frequently used as a marker for the complex mixture of 
pollutants from combustion in epidemiological studies. Therefore disentangling the effects of 
NO2 alone is challenging. NO2 exposure has been shown to increase the incidence of and 
exacerbate asthma, decrease lung function, although mixed results were found with total and 
cardiovascular mortality (Weinmayr et al. 2009; McCreanor et al. 2007; Samoli et al. 2006; 
McConnell et al. 2003). Exposure to a respiratory tract irritant, SO2, can increase airway 
resistance, cough, and decrease lung function (Johns and Linn 2011); the effects of long term 
ambient exposure are not as clear as the effects of SO2 are difficult to disentangle from that of 
PM (World Health Organization 2005). Increases in ambient O3 have been associated with short 
term increased hospital admissions, exacerbated asthma symptoms, decreased lung function, and 
mortality (Jerrett et al. 2009; Weschler 2006; Ito, De Leon, and Lippmann 2005; Hubbell et al. 
2005). 

Because of the body of evidence linking these pollutants to adverse health effects, the United 
States Environmental Protection Agency (US EPA), China’s Ministry of Environmental 
Protection (MEP), and the World Health Organization (WHO) have set ambient air quality 
standards for these pollutant (Table 2-1), in addition to others, to protect public health. The US 
EPA and the WHO’s standards are called the National Ambient Air Quality Standards (NAAQS) 
and Air Quality Guidelines (AQG), respectively. China’s most recent Ambient Air Quality 
Standards, GB 3095-2012, were updated in February 2012 and included the first PM2.5 standards 
for China. 
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Table 2-1 Comparison of regulatory standards for ambient NO2, PM2.5, SO2, and O3 set by US 
EPA, China MEP, and the WHO 
 Averaging Time Unit1 US EPA2 China MEP3 WHO 
NO2 Annual ppb 53 21 21 

 1 hour ppb 100 106 106 

PM2.5 Annual µg/m3 12 35 10 

 24 hour µg/m3 35 75 25 

SO2 24 hour ppb -- 57 8 

 1 hour ppb 75 23 -- 

O3 8 hour ppb 75 80 50 
1Mass concentrations (µg/m3) converted to ppb using following conversion factors for NO2, SO2, and O3: 1.88, 2.62, 
and 2.00 µg/m3 per ppb, respectively 
2Primary standards to protect public health 
3Grade II standards for Residential, Commercial, Industrial, and Rural Areas  
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2.2.3 Air quality in Xi’an, China 

Xi’an has one of the worst air pollution records in China (HEI 2010). From 2003 to 2013, the 
annual average PM2.5 concentration of 167 µg/m3 was 4.8 times China’s annual standard (35 
µg/m3), 14 times U.S. EPA’s annual average standard (12 µg/m3), and 17 times WHO’s standard 
(10 µg/m3) (J. Cao 2014). From 2004 to 2012, Xi’an remained below China’s daily PM2.5 
standard (75 µg/m3) only 11.6% of the time. Although annual PM2.5 levels have decreased over 
the last decade from 192.5 to 158.1 µg/m3, Xi’an air pollution problems are exacerbated by 
terrain and meteorology, reliance on coal burning, urban growth, and increased motorization. 
Xi’an’s location in the Yellow River Basin, low wind speeds (45% of the time in the winter with 
no wind), and little precipitation in the winter exacerbates air quality issues by limiting natural 
dispersion of pollutants (J. Cao 2014).  

Xi’an has 13 government monitoring stations within the six urban districts that are home to over 
8 million residents. In addition to a limited number of continuous monitoring sites covering a 
total area of over 800 km2, obtaining data from government operated monitoring sites is 
bureaucratically challenging. Daily air quality indices (AQI) are available online but to convert 
AQI values to mass concentrations, additional data are required. Because of data access and 
spatial resolution issues, fast and affordable methods of exposure assessment are desirable to 
help collect these data and understand spatial variability of air pollutants in Xi’an.  

2.2.4 Land-use regression (LUR) 

Air pollution epidemiology studies have relied on various methods to assess a person’s or a 
group’s exposure to air pollution (Jerrett, Arain, et al. 2005). While these range in complexity in 
data requirements and analysis, land-use regression (LUR) was chosen for this study based on 
the types of data and resources available. Land-use regression incorporates actual air pollution 
measurement data but estimates concentrations at unsampled locations (Y) using surrounding 
site information including population density, traffic volumes, roads, and land use type (X) 
within zones of influence (buffers of varying distances) around the location of interest (Briggs et 
al. 1997). An assumption of these models is these land use factors are surrogates for air pollution 
sources of concern, and hence, to some degree can explain nearby air pollutant concentrations.  
These multivariate regression models can then be applied to the area of interest to predict 
concentration surfaces.  

LUR has been used to model pollutants including VOCS, NO2, PM, SO2, and O3 over cities, 
states, or countries. Data from existing monitoring networks can be used to create the models or 
short-term sampling conducting at 20 to 100 sites can be used in areas with low spatial resolution 
or poor monitoring. LUR models have a wide range of abilities to predict pollutant 
concentrations with coefficient of determination (R2) ranging from approximately 0.50 to 0.90, 
depending on pollutant type, size of study area, and density of empirical data sites (Beelen et al. 
2013; Hoek et al. 2008).  

While the reliance on empirical data is a major strength, these models are limited by their ability 
to extrapolate pollutant concentrations in areas with vastly different land use, population, and 
sources, as compared to the one upon which the original model was built.  Generally, models 
created for one site cannot be directly applied to another location that has different air pollution 
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sources and land use patterns. In addition, because of the reliance on short term sampling or 
monitoring data, LUR models only provide limited information about temporal variations in 
pollutants. Sampling usually occurs during time periods determined to best estimate the annual 
average concentrations (e.g., during heating and non-heating periods) but information about 
diurnal trends or more temporally resolved trends are not available. Finally, LUR models are 
unable to provide definitive information linking specific sources to predicted pollutant levels at a 
site of interest. Despite these limitations, LUR modeling can still be a useful approach to rapidly 
assess environmental exposures over large areas when data are too limited for more complex 
atmospheric transport and dispersion modeling and the existing monitoring network is sparse. 

2.3 MATERIALS AND METHODS 

2.3.1 Sampling Location Determination 

The study area covers the central parts of the densely populated areas of Xi’an (833 km2), mostly 
within the 3rd Ring Road surrounding the city (Figure 2-1). At the start of this study, the Xi’an 
municipal government operated 13 monitoring sites that provide publicly available daily Air 
Quality Indices (AQI) for NO2, SO2, and PM10 within the 6 districts (Xi’an Environmental 
Protection Bureau 2015). However due to the limited number of sites and difficult in obtaining 
data or access to these monitoring stations, a short-term sampling network was deployed in Xi’an 
to capture higher resolution air pollution data for gaseous pollutants (NO2, O3, and SO2) and 
PM2.5.  

The sampling periods for summer and winter seasons were determined by the availability of 
equipment borrowed from IEECAS collaborators in Xi’an. We also tried to identify days of low 
precipitation and avoided holidays where ambient pollution patterns would not be representative 
of typical situations. Because detailed historical air quality data for Xi’an were unavailable and 
we did not want to bias sampling based on any a priori models of spatial variations in air 
pollutant concentrations, using existing quantitative methods to determine sampler allocation 
spatially to capture maximum variability in concentrations were infeasible (J G Su, Jerrett, and 
Beckerman 2009; Jason G Su et al. 2009; Kanaroglou et al. 2005). Instead, the study sites were 
chosen in an attempt to capture variability based on knowledge of Xi’an’s sources, population of 
interest, and pollutant behaviors. 

Six categories of sites were identified: background, near road, industrial, commercial, residential, 
and academic/government. With the assistance of local collaborators at Chinese Academy of 
Science’s Institute for Earth Environment (IEECAS), potential sites were identified within each 
category across Xi’an. The sites were chosen where equipment could be placed unobstructed 
with minimal theft and vandalism risks and access by researchers was permitted. While 
collocation with the existing government network would have been ideal, obtaining the 
necessary approvals was difficult. Therefore, data from the thirteen government operated 
monitoring sites were not included in the analysis.  



 

13 
 

 

2.3.2 Measurement and Analysis Methods 

NO2, O3, and SO2 Sampling 

Time-integrated concentrations of NO2, O3, and SO2 were measured using passive samplers 
(Ogawa & Co., USA) for two campaigns from June 7 to June 23, 2013 and from December 2 to 
December 16, 2013 to capture heating and non-heating seasons. In the summer, Ogawa samples 
collected one week (7 day) samples for each pollutant, resulting in two samples per gas species 
per site during the two week campaign. In the winter, because concentrations were expected to 
be higher and saturation of the sampling pads was a concern, sampling durations were shorter for 
each sample. Three samples per pollutant per site were collected during the two week winter 
campaign. Sampling durations were four (December 2 to 6, 2013), five (December 6 to 11, 2013), 
and five (December 11 to 16, 2013) days at each site.  

A total of 34 sites were sampled but in the winter campaign, two sites were lost due to problems 
accessing the sites by the researchers. Number of sampling sites, durations, and timing of 
sampling campaigns are comparable to that of other LUR studies (Hoek et al. 2008). Seven 
duplicates and six blanks were also collected every week with each batch of samples. Blanks 
filters were prepared with the samples and remained inside their traveling containers and bags 
provided by Ogawa & Co. during the sampling periods. Site locations were confirmed with a 
global positioning system (GPS) device (Garmin GPSMAP 62SC). Each sampling site contained 
an Ogawa pad for each pollutant. Loaded samplers were protected with covers from weather 
while allowing for sufficient airflow. Samplers were placed 2 to 4 floors above street level to 
minimize vandalism. Meteorological data were collected from IEECAS.  Ogawa samples were 
analyzed according to standard protocols using colorimetry and ion chromatography (Ogawa & 
Co., USA, Inc. 2006; Ogawa & Co., USA, Inc. 2001).  

The mean of the blank Ogawa filters was subtracted from the samples. Each batch of samples 
analyzed contained at least 3 blank samples. The time-integrated Ogawa samples for each season 
were averaged to represent the seasonal average for summer and winter. The seasonal averages 
were averaged to calculate the annual concentration for each pollutant.  

PM2.5 Sampling 

Daily (24 hour) filter samples of PM2.5 were collected using mini-volume (MiniVol) samplers 
(Airmetrics, Oregon, USA) at 19 sites that also contained Ogawa samplers.  Summer sampling 
ran from June 7, 2013 to June 23, 2013. Winter sampling ran from December 2, 2013 to 
December 16, 2013. Because of large distances between sampling sites, a local person for 17 of 
the 19 the MiniVol sites was trained to change the filter each morning between 8am and 10am. 
MiniVol samplers operated with flow rates of 5 L/min. MiniVols had been calibrated prior to 
deployment.   

PM2.5 filters from the MiniVols were analyzed by IEECAS staff. PM2.5 filters (47 mm Whatman 
quartz microfiber) were pre-heated at 900°C for three hours before sampling to remove carbon 
contamination. Exposed filters were stored in a 4°C refrigerator before analysis to minimize 
evaporation of volatile components. All pre- and post-sampling filters were weighed using a 
Sartorius MC5 electronic microbalance with ±1ug sensitivity. Filters were reweighed until the 
differences between replicate weights were less than 20ug and less than 10ug for samples and for 
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blanks, respectively. Replicate weights were then averaged to represent the pre- and post-
sampling mass of the filters. Mass concentrations were calculated from dividing the net change 
in mass by the total volumetric flow during the sampling time of each filter.  

2.3.3 Predictive Model Selection 

Spatial Covariates 

Independent covariates used for prediction models included land use, population density, and 
road length within circular buffers of varying distances from each sampling point (Table 2-2). 
Population data were obtained from the 2010 Census. Because NO2 is a key component in O3 
formation, NO2 concentrations were included as a covariate in the annual and seasonal O3 
models. Road types were obtained from a commercially purchased road network map of Xi’an 
(2011). Roads were categorized into the following: highways, axis, major, and city. Highways 
included provincial highways and the 3rd Ring Road. Axis roads included the first and second 
Ring Roads and the major north-south and east-west corridors. Major roads were roads that 
comprised the majority of the urban grid-like network. City roads were smaller roads that 
connected sections of major roads or were dead end roads. 

Because land use data for Xi’an was not available, greenness, wetness, and brightness measures 
were used (Jason G Su et al. 2009). Landsat Enhanced Thematic Mapper Plus (ETM+) imagery 
(spatial resolution 30m) from USGS (June 2010) was downloaded which provided six bands (1, 
2, 3, 4, 5, and 7). Using a linear transformation, these six bands were summed after multiplying 
with the appropriate coefficients to calculate greenness, brightness, and wetness (Table 2-3). 
Brightness is associated with bare soil and man-made and natural features like concrete, gravel, 
and asphalt. Greenness is associated with green vegetation and wetness is associated with water 
bodies, soil moisture, and other moist features. The arithmetic mean of the layer’s values within 
each buffer around the sampling point resulting layer was used as covariates.2  

Population density data were obtained from the 2010 Census. Because population density data 
were only available down to the district level, population density within each buffer was 
estimating based on relative area of “urban areas” within each buffer. To calculate the percentage 
of each buffer that is urban versus non-urban, “Image Classification” in Spatial Analyst was used 
to classify base map imagery according to urban versus non-urban land use based on a training 
dataset. For instance, if only 50% of the area of a buffer was considered urban, the population 
density of that district that the buffer falls within would be halved. Creation of data layers for the 
covariates was completed in ArcGIS 10.2 and QGIS 4.2.0. 

Predictive Model Selection and Cross-Validation 

A 10-fold deletion/substitution/addition (DSA) algorithm was used for selecting predictive 
models for PM2.5, NO2, SO2, and O3 (S. E. Sinisi and M. J. van der Laan 2014; Haight et al. 
2010). The DSA algorithm first divides the full dataset into training and validation datasets. 
Using the training dataset, DSA builds a model space comprised of subspaces where each one 

                                                 
2 Because the Zonal Statistics python tool in ArcGIS 10.2 doesn’t allow for overlapping polygons, QGIS 2.4.0 
software was used for portions of this analysis. 
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represents different combinations of model size and complexity, based on user-specified 
constraints. This model space approximates the entire set of potential model forms available to 
fit the dataset. DSA selects the “best” model form for each type of model complexity by 
minimizing empirical risk. To prevent overfitting the data (i.e., largest and most complex models 
would always be selected), cross validation is also used to determine model fit and selection. The 
models selected using the training data are now applied to the validation data to test robustness. 
The cross-validation risk (CV risk), average residual between observed and predicted values by 
the models, is calculated for each model. This process is repeated for each division (v-folds) of 
the full data set into training and validation. The model complexity that has the lowest average 
CV risk over the total number of training datasets is chosen as the final model form to apply to 
the full dataset. 

The constraints for the DSA algorithm in this study are the following: 

1. Base form only includes an intercept. No covariates will be forced into the final model.  
2. Maximum of 10 terms (excluding intercept) allowed in final model. 
3. No interactions are allowed. 
4. Terms are only allowed raised to the power of 1.  

 

These constraints were chosen to provide the model sufficient room to test different model forms 
(i.e., allowed up to 10 terms as covariates) and limit bias by forcing covariates into the final 
model without making the results difficult to interpret. We limited the number of interactions in 
the model to allow for ease of interpreting results, although future models may include 
interaction terms and polynomial terms to improve prediction. The DSA algorithm was run at 
least five times per pollutant with a different random seed number to determine how the dataset 
will be split into 10 parts. If the same final model form is not selected 3 out of the 5 runs, more 
runs are completed with different random seeds until the algorithm converges upon a final model 
form. The coefficient of determination (R2) was reported as a measure of the model’s goodness 
of fit. Model selection using the DSA algorithm and cross validation were completed using R 
3.1.2 software. 

2.3.4 Prediction Map Creation 

After the models have been selected by DSA and cross-validated, the resulting model forms are 
applied to data layers to predict concentrations of each pollutant for a 30 by 30m grid across the 
6 urban districts of Xi’an. Creation of air pollution surfaces was completed in ArcGIS 10.2 and 
QGIS 4.2.0. 
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Table 2-2 Land-use regression covariates 

Variable Description Buffer Distance (m) 

Land-use Category  

100, 250, 500, 750,  
1000, 1500, 2000, 
3000 

Greenness Green vegetation 

Wetness Water, soil moisture 

Brightness Bare soil, man-made surfaces (asphalt, concrete) 

  

Road Length (m)  

Highway 3rd ring road, roads connecting 3rd ring to 2nd ring 
road 

Major Roads Contains majority of vehicular traffic 

Axis 1st and 2nd ring roads, two roads (E-W and N-S) 
that divide Xi’an into four quadrants 

City Less-trafficked minor roads (often dead end streets) 

  

Population Density Number of people/km2 
 
 
 
 
 
 
Table 2-3 Coefficients for the linear transformation of Landsat ETM+ bands 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Greenness -0.2848 -0.2435 -0.5436 0.7243 0.0840 -0.1800 

Brightness 0.3037 0.2793 0.4343 0.5585 0.5082 0.1863 

Wetness 0.1509 0.1793 0.3299 0.3406 -0.7112 -0.4572 
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2.4 RESULTS 

2.4.1 Descriptive Analysis: Sites, Meteorology, and Mass Concentrations 

Thirty-four sites were selected (Figure 2-1). Site descriptions are available in Appendix A. We 
had to rely on social connections to find safe and accessible sites. The sites skewed towards 
residential sites but we tried to capture residential areas with different environments: villages, old 
neighborhoods, and new high-rises. Academic institutions, commercial areas, and public sites 
were also selected.  

Ambient temperatures were lower in the winter while relative humidity was approximately the 
same in both seasons. During the summer campaign, average temperatures and relative humidity 
(RH) were 25°C (range: 18 to 33°C) and 60% (range: 44 to 88%), respectively. During the 
winter campaign, average temperatures and relative humidity (RH) were 2°C (range: 0 to 6°C) 
and 58% (range: 41 to 72%), respectively. Pollutant concentrations were higher in the winter 
than in the summer for all pollutants except for ozone (Figure 2-2). City-wide mean NO2, SO2, 
and PM2.5 concentrations were 2.5, 5.8, 2.4 times higher, respectively, in the winter than in the 
summer. Mean winter O3 levels were 6.0 times lower than in the summer. Across the 19 PM2.5 
sites, PM2.5 mass concentration ranges were wider in the winter (Figure 2-3).  

The concentration differences between duplicate samples of NO2, SO2, and O3 collected at 7 sites 
averaged 4.7, 22.1, and 16.1%, respectively, for both seasons. Correlations between pollutants 
were generally small (Figure 2-4). The strongest Pearson’s correlation in the summer was 
between NO2 and O3 (r= -0.61), between O3 and SO2 (r = -0.50), and between NO2 and SO2 (r = 
0.45). The strongest winter correlations were between SO2 and O3 (r = 0.50) and between NO2 
and SO2 (r = 0.32). The Pearson correlations for the predictive covariates are shown in Figure 
2-5. There are strong negative associations between population density and brightness variables, 
between wetness and brightness, and between all roads and brightness. Brightness is associated 
with road layers except for the highway layers. Because of the limited number of sites spread out 
over the large area, spatial autocorrelation, as measuring using Moran’s I, was only seen in the 
summer SO2 data (p = 0.006) at the 0.05 significance level.  
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Figure 2-1 Map of air pollution sampling sites in Xi'an, China 
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Figure 2-2 Boxplots of seasonal and annual NO2, O3, SO2, and PM2.5 concentrations 

 

 

Figure 2-3 Distributions of summer and winter PM2.5 concentrations by site 
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Figure 2-4 Pairwise correlations among summer and winter PM2.5 (µg/m3), NO2, SO2, and O3 
(ppb) concentrations 
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Figure 2-5 Correlation matrix of spatial covariates 

The slope (negative or positive) of the major axis of the ellipse provides directionally of 
correlation between two variables. The size of the secondary axis of the ellipse represents the 
magnitude of the correlation. If a circle, correlation is close to 0. Symbols closer to a thin line 
approach correlations of 1.  
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2.4.2 Model Selection Results 

The log base 10-transformed concentrations of each pollutant were used in the models because 
there was a slight right skew. The transformation also prevents the prediction of negative 
pollutant concentrations. Final models selected and model fit for each pollutant are summarized 
in Table 2-4. R2 values of the models indicated these variables were able to explain 57%, 60%, 
26%, and 56% of the variability in the annual NO2, SO2, O3, and PM2.5 concentrations, 
respectively. Because O3 levels are low in the winter, when the summer O3 model was run 
separately, the coefficient of determination increased to 49%. Seasonal models for pollutants not 
shown were excluded due to poor model convergence. 

Table 2-4 Model selection results for NO2, SO2, O3, and PM2.5 

Pollutant Variablesa Beta SE R2 
log(Annual NO2) Intercept 2.150000 0.181974 0.57 
 Green500 -0.000775 0.000150  
 Bright1000 -0.000180 0.000048  
 Green1000 0.000655 0.000161  
     
log(Summer NO2) Intercepts 1.222995 0.013223 0.63 
 Axis100 0.000752 0.000171  
 Green500 -0.000333 0.000087  
     
log(Annual SO2) Intercept 2.041291 0.137369 0.60 
 Green100 -0.000249 0.000069  
 Bright100 -0.000254 0.000047  
 Wet500 -0.000385 0.000101  
     
log(Annual O3) Intercept 1.422602 0.012778 0.26 
 Axis2000 -0.000003 0.000001  
     
log(Summer O3) Intercept 1.710692 0.036269 0.49 
 Summer [NO2] -0.007624 0.002362  
 Axis2000 -0.000002 0.000001  

log(Annual PM2.5) Intercept 1.794589 0.015584 0.56 

 Highway2000 0.000004 0.000001  

log(Summer PM2.5) Intercept 1.794589 0.015584 0.59 
 Highway3000 0.000004 0.000001  
     
log(Winter PM2.5) Intercept 2.1831610 0.0139310 0.50 
 Highway2000 0.0000070 0.0000017  

aNote: The number following the variable name refers to the circular buffer distance (m). 
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2.4.3 Cross-validation Results 

The DSA algorithm selected the models with the lowest CV risk. Average CV risk for the model 
selected for each pollutant is low (Table 2-5) and a CV risk plot (Figure 2-6) shows the expected 
prediction error as a function of number of covariates included in the model tested. The 
maximum is 11 because a maximum of 10 terms (excluding intercept) were specified in the DSA 
algorithm. The CV risks for PM2.5 models with 10 and 11 terms were reported as “infinite”; 
therefore, these were not shown (Figure 2-9). 

 

Table 2-5 Cross-validation parameter results for NO2, SO2, O3, and PM2.5 

Pollutant Average CV risk 

NO2 (Annual) 0.0046 

NO2 (Summer) 0.0086 

SO2 (Annual) 0.0060 

O3 (Annual) 0.0021 

O3 (Summer) 0.0031 

PM2.5 (Annual) 0.0032 

PM2.5 (Summer) 0.0056 

PM2.5 (Winter) 0.0036 
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Figure 2-6 CV risk plotted against NO2 models of given size, selected by DSA algorithm 

 

 

Figure 2-7 CV risk plotted against SO2 models of given size, selected by DSA algorithm 
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Figure 2-8 CV risk plotted against O3 models of given size, selected by DSA algorithm 

 

 

Figure 2-9 CV risk plotted against PM2.5 models of given size, selected by DSA algorithm 
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2.4.4 Predicted Air Pollution Maps 

Predicted concentration maps were created for annual PM2.5, SO2, and NO2. Maps were also 
created for summer O3 and NO2 concentrations. Because summer and winter PM2.5 models were 
similar, only the annual PM2.5 surface was created. Descriptive statistics of predicted 
concentrations compared to sampled results are summarized in Table 2-6.  

NO2 concentrations are higher in the central part of the city where the road network is denser. 
NO2 levels are lower in the summer but still the highest in the downtown area (Figure 2-12 and 
Figure 2-13). SO2 concentrations were highest in the northern and western parts of the city 
(Figure 2-10). Ozone concentrations are higher away from large roads (Figure 2-11). PM2.5 
concentrations were highest around the highway networks (Figure 2-14). 

 

Table 2-6 Measured and predicted concentrations for NO2, SO2, O3 (ppb), and PM2.5 (µg/m3) 

  Measured Predicted 

Pollutant Type Mean (SD) Range Mean (SD) Range 

NO2 Annual 29.65 (4.48) 12.87 – 40.37 25.91 (5.15) 7.69 – 58.60 

NO2 Summer 16.76 (4.34) 11.34 – 35.23 13.25 (3.03) 4.36 – 26.04 

SO2 Annual 23.57 (4.48) 11.50 – 38.30 19.29 (5.63) 5.26 – 67.26 

O3 Summer 36.64 (5.50) 23.39 – 47.97 38.47 (5.21) 15.00 – 47.58 

PM2.5 Annual 118.18 (19.15) 97.42 – 168.56 71.78 (14.11) 62.31 – 166.50 
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Figure 2-10 Prediction surface for annual SO2 concentrations (ppb) in Xi’an, China 

 

Figure 2-11 Prediction surface for summer O3 concentration (ppb) in Xi’an, China 
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Figure 2-12 Prediction surface for annual NO2 concentrations (ppb) in Xi’an, China 

 

Figure 2-13 Prediction surface for summer NO2 concentrations (ppb) in Xi'an, China 
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Figure 2-14 Prediction surface for annual PM2.5 concentrations (µg/m3) in Xi’an, China 
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2.5 DISCUSSION 

2.5.1 Predictive models 

The DSA selected models explained a moderate amount of the variability observed in the 
pollutant levels (R2 = 0.49 to 0.60) and cross-validation results reported small expected errors in 
prediction (CV risks), indicating a good model fit and prediction of pollutant concentrations.  

The directions of associations between land use or road types and pollutant levels were generally 
as expected. For SO2,green space and vegetation (greenness), water and soil moisture (wetness), 
and soil or man-made surfaces (brightness) had negative associations, indicative of fewer 
industrial sources in these natural areas  as measured by greenness and wetness or dense urban 
areas (buildings or roads) as measured by brightness. For PM2.5, increased length of highways 
within 2000 m was associated within increased PM2.5 concentrations, most likely a result of 
increased mobile emissions. In the seasonal models, highway length was significant within a 
smaller radial buffer (2000 m) in the winter than in the summer. This difference could result 
from lower mixing layers in the winter that prevents the dispersion of mobile emissions over 
longer distances.  

In the summer O3 model, the inverse relationship of ozone with NO2 is expected. Near roads 
where there are higher levels of NO, a primary mobile emission, NO is converted to NO2 in the 
atmosphere in the presence of oxygen, resulting in higher levels of NO2 near mobile sources. 
Farther away from the mobile sources, NO2 generally will break down into NO and oxygen 
radical, with faster degradation rates in the presence of sunlight and warmer temperatures. The 
oxygen radials then can form O3 with oxygen, leading to higher ozone in areas where there are 
depleted NO2 level. This relationship between ozone and mobile emissions also explains the 
inverse relationship seen with axis roads.  

In the NO2 models, higher values of greenspace within 500 m is associated with lower NO2 
levels as we would expect lower mobile emissions in these areas. However, the negative 
association of brightness within 1000 m with annual NO2 levels was more difficult to interpret. 
Brightness represents both bare soil and man-made surfaces liker roads and tops of buildings. 
Increased brightness could be explained by the following scenarios (1) high-density urban areas 
or (2) more bare soil indicating fewer mobile sources, resulting in lower NO2 concentrations. 
Because traffic volumes and congestion are still high in high-density areas, the second scenario 
seems more plausible for Xi’an. 

In addition, more greenspace within 1000 m was associated with higher NO2 levels. Within the 
500 m buffer, we could assume a high greenness value at a site could be result from a park, 
academic campus, large residential complex, or government compound. As expected, mobile 
emissions within these areas are low. However, within a 1000 m buffer, we would expect this 
area to be beyond the confines of a single residential complex or government office building 
complex. If the greenness within a buffer of 1000 m is high, it is possible that the area covers 
multiple densely populated residential complexes that often have increased greenspace for 
residents. Higher population density areas could increase NO emission from more traffic in the 
area, leading to increased NO2.  
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2.5.2 Predicted air pollution concentrations 

The spatial predictions of pollutants generally correspond to the spatial distribution of sources in 
the city. NO2 and ozone maps are inversely related with higher NO2 near the center of the city 
where road networks are denser, while ozone levels are higher farther away from mobile sources 
where ozone is produced from the oxygen radicals generated by the breakdown of NO2 in the 
presence of sunlight. NO2 levels are higher in areas north and west of downtown.  These are also 
areas of Xi’an with lower population density and emissions of SO2 from industrial activity could 
be plausible. In addition, the general wind direction in Xi’an is to the northeast which could 
transport SO2 along the north-east axial through downtown into northeastern parts of the city. 
There are also higher ozone concentrations in the eastern regions of the city which have fewer 
roads and less development activity. The PM2.5 levels throughout the city are generally elevated 
above 60 µg/m3 but the predictive model shows there are hotspots around highways especially 
near the 3rd Ring Road. 

The annual PM2.5 levels were exceeded in both the measured and predicted concentrations. As 
reference, the annual PM2.5 concentrations standards have been set at 10 and 15 µg/m3 by the 
World Health Organization (World Health Organization 2005) and the U.S. EPA (US EPA 2012), 
respectively.  Substantial areas of Xi’an also exceed the WHO standards for NO2 (21ppb). While 
an annual standards for SO2 is not available, the predicted annual SO2 (19 ppb) exceeds the 24 
hour averaged standard set by the WHO (8 ppb), signifying potential adverse health effects. 

The city-wide annual mean PM2.5 predicted by the model (72 µg/m3) is lower than the annual 
average measured by IEECAS’ monitoring station using a MiniVol (152 µg/m3, SD: 103 µg/m3) 
and E-BAM (142 µg/m3 SD: 121 µg/m3) but this is a result of using data from 19 sampling sites 
in this study. In a previous paper, IEECAS’ monitoring site in the High-technology Zone was 
identified as having higher ambient PM2.5 levels than in other samples locations in Xi’an (Gao, 
Cao, and Seto 2015).  

2.5.3 Limitations 

As with many other land-use regression models, these predicted pollutant models are based on 
short-term (2 week) sampling in two seasons for one year. They do not incorporate other 
temporal variations that occur within and between seasons. Also, the two weeks of sampling 
ideally would have been chosen by examining the historical pollutant concentrations to 
determine which months would represent the best times to sample to represent seasonal or annual 
averages. However, because this study relied on sampling equipment borrowed from IEECAS, 
deployment dates and times were constrained.  

There are several ways to improve model prediction. Although the measured air pollution dataset 
has already been collected, the covariates used for model selection could be improved. First, 
using data layers for 2013 could improve predictions. The road network is from 2011 and the 
Land Sat ETM+ imagery was from June 2010.  Because Xi’an changes so rapidly, using the most 
recent data layers would improve air pollution predictions. Increasing the number sampling sites 
and campaigns would also improve prediction but also comes with increased costs. 

In addition, the other types of data could be obtained to supplement the existing data including 
traffic volumes, more detailed road classification, and land use type. While we have assumed 
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road types are a proxy for air pollution sources, traffic volumes and types on different roads 
could better approximate air pollution levels. Using Landsat classification provides adequate 
model prediction but the results were sometimes difficult to interpret, as seen in the NO2 model. 
Because our road classification was crude and not based on actual traffic volume data, improved 
categorization of roads using traffic flow could improve prediction models. For example, ozone 
and PM2.5 models were predicted using road network data. As a result, the final predicted 
surfaces, PM2.5 especially, captured less spatial variability than the other surfaces that included 
land use covariates in their final models.  

2.6 CONCLUSIONS 

This study demonstrates the feasibility of using land use regression to increase knowledge of 
spatiotemporal viability in air pollutants in areas where monitoring is difficult. While the 
covariates used in the prediction models could be improved with a dataset that contained up to 
date data for 2013, the models selected using the deletion/substitution/addition (DSA) algorithm 
had small prediction errors and generated reasonable pollutant concentration surfaces.  
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Chapter 3 Field Validation of Low Cost Particulate Matter Sensor 
 

3.1 OVERVIEW3 

This chapter supplements the preceding Chapter 2 on a city-wide assessment of air pollutant 
spatial variability by focusing on evaluating a new low-cost particular matter sensor for use in 
high pollutant settings and areas where full-scale monitoring networks are unable to keep up with 
the pace of development. 

3.2 BACKGROUND 

The past few decades of rapid economic growth in China has led to increased emissions of 
ambient air pollution from increased motorization, urbanization, and energy consumption 
(Haidong Kan, Chen, and Tong 2012). Ambient air pollution is a growing health burden for 
China’s population of 1.35 billion as the country’s fourth largest health risk and has been 
estimated to result in 1.2 million premature deaths in 2010 (G. Yang et al. 2013b). The increased 
focus on the health effects of ambient fine particulate matter (PM2.5) has led to new policies 
aimed at controlling ambient air pollution. Stricter emission standards, cleaner fuels, relocation 
of polluting industries, and rezoning efforts have led to some improvements in air quality 
(Haidong Kan, Chen, and Tong 2012). However, China still ranks globally as one of the 
countries with the worst air pollution.  

Effective management of air pollution is limited by sparse monitoring networks, and the high 
investment costs of running and maintaining monitoring sites hinder the ability to increase 
coverage and quality of air pollution data (Briggs et al. 1997). Routine monitoring of PM2.5 
recently began in China in 2012, but current regulatory networks fail to capture spatiotemporal 
variations in air pollution exposures that can occur due to local emissions sources such as urban 
transportation and finer scale meteorology, which limits the ability of regulatory agencies to 
identify at risk or vulnerable populations, control relevant emissions that contribute to exposures, 
and protect public health. 

Effective management is particularly difficult in sprawling Chinese cities. Filter-based integrated 
instruments mask temporal patterns while continuous monitoring instruments are expensive and 
limit spatial coverage. In Xi’an, China only ten PM2.5 regulatory monitoring stations exist with 
six urban districts that cover an area of 833 km2 (Statistical Bureau of Shaanxi Province 2010).  
Yet, new lower-cost continuous monitoring instruments for PM2.5 are available, which can 
potentially fill in gaps in the regulatory monitoring network to enhance understanding of 

                                                 
3 Portions of this chapter are taken from previously published material in Gao, Meiling, Junji Cao, and Edmund Seto. 
2015. “A Distributed Network of Low-Cost Continuous Reading Sensors to Measure Spatiotemporal Variations of 
PM2.5 in Xi’an, China.” Environmental Pollution 199 (April): 56–65. doi:10.1016/j.envpol.2015.01.013. 
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pollution hotspots. Previously, an affordable portable optical aerosol sensor, the Shinyei 
PPD42NS was calibrated with reference instruments in an urban area of the United States, and its 
measurements were found to be highly correlated with monitoring conducted by a regulatory 
agency and with other optical instruments (Holstius et al. 2014). At lower concentrations present 
in the U.S., approximately linear relationships were found between the sensor’s response and a 
U.S. EPA Federal Equivalent Method instrument (MetOne Instruments BAM-1020) and other 
instruments (TSI DustTrak and GRIMM 1.108). However, there is limited understanding of how 
the same low-cost PM sensor performs in high concentration environments that exist in China. 
Further, the previous study was primarily concerned with sensor calibration, and only deployed 
these instruments at a single fixed site.  

This chapter focuses on a simultaneously distributed deployment of these monitors in Xi’an, 
China to (1) evaluate the performance of low-cost sensors in high concentration environments 
against other reference instruments, (2) demonstrate the benefits of using affordable continuous 
monitors to identify at risk areas or populations, and (3) test the ability of these instruments to 
capture spatiotemporal variability across a range of environments to inform more targeted 
emissions reduction policies. 

3.3 MATERIALS AND METHODS 

3.3.1 Study Area 

As the capital of Shaanxi province and the largest city in northwestern China with almost 8.5 
million residents, Xi’an is a major city in the expansion and development of central and western 
China (Statistical Bureau of Shaanxi Province 2010). Xi’an also has one of the worst air 
pollution records in China (HEI 2010). In the last ten years (2003 to 2013), the annual average 
PM2.5 concentration of 167 µg/m3 was 4.8 times China’s annual standard (35 µg/m3), 14 times 
U.S. EPA’s annual average standard (12 µg/m3), and 17 times WHO’s standard (10 µg/m3) (J. 
Cao 2014, 5). From 2004 to 2012, Xi’an met China’s daily PM2.5 standard (75 µg/m3) only 11.6% 
of the time. Although annual PM2.5 levels have decreased over the last decade from 192.5 to 
158.1 µg/m3, Xi’an air pollution problems are exacerbated by terrain and meteorology, reliance 
on coal burning, urban growth, and increased motorization. Xi’an’s location in the Yellow River 
Basin, low wind speeds (45% of the time in the winter with no wind), and little precipitation in 
the winter exacerbates air quality issues by limiting natural dispersion of pollutants (J. Cao 2014, 
5).  

3.3.2 The PUWP Monitor 

We developed the Portable University of Washington Particle (PUWP) monitor, which consists 
of a low-cost PM sensor (Shinyei PPD42NS, $15 USD) that measures particle counts based on 
the principle of light scattering, a microprocessor, real-time clock, data logger, and temperature 
and relative humidity sensor, and a small LED display (Figure 3-1). The specifications of the 
Shinyei sensor are described in the manufacturers datasheet (Shinyei Corp. 2010), which indicate 
that it is designed to sense particles primarily 1 µm in diameter.  The sensor is sampled by the 
microprocessor according to the manufacturer’s specifications, continuously over a 30-second 
interval, which produces a raw uncalibrated sensor signal (low pulse occupancy time). The only 
calibration data provided by the manufacturer’s datasheet is for cigarette smoke particle count 
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concentration. Based on these data, there is an approximate error of 25% in particle measurement 
across most of the sensor’s range. At very low concentrations, the error becomes substantial (e.g., 
over 50% error below 100,000 particles per cubic feet). For outdoor ambient monitoring 
applications, the sensor’s raw signal must to be calibrated with co-located reference instruments 
to obtain mass concentration measurements. The calibration and performance of the Shinyei 
PPD42NS has been previously described for lower ambient air concentrations found in the U.S. 
(Holstius et al. 2014), but is reassessed in this study for the different particle composition and 
higher concentrations found in Xi’an. Although the PUWP monitor is designed to operate on a 
rechargeable lithium polymer battery, for this study, all monitors were connected to 240 V wall 
outlet power because outlet power was readily available and because this was a pilot study, 
resources were not available to change the batteries for the PUWPs deployed at more remote 
sampling sites.  The battery allows it to continue to operate during short-term power outages.  
Larger batteries can be used to provide greater protection from outages as necessary. 

 

 

Figure 3-1 The Portable UW Particle (PUWP) monitor (left), and internal components (right) 

 

3.3.3 Field deployment 

Calibration of Sensors 

To calibrate the raw sensor readings from the PUWP monitors, and to assess between-monitor 
variations, seven PUWPs were co-located alongside an optical instrument (TSI DustTrak II 
Model 8532) equipped with a PM2.5 impactor, 24 hour gravimetric filter measurements 
(Airmetrics MiniVol Tactical Air Sampler) of PM2.5, and an hourly beta-attenuation monitor 
(MetOne Instruments E-BAM). During the calibration phase, the PUWP monitors, DustTrak, E-
BAM, and MiniVol were co-located on the roof of the Institute of Earth Environment Chinese 
Academy of Sciences (IEECAS) in Xi’an, China from December 16 to 20, 2013.  

MiniVol filters were changed daily between 8 to 10 am.  PM2.5 filters (47 mm Whatman quartz 
microfiber) for the MiniVols were pre-heated at 900 °C for three hours before sampling to 
remove carbon contamination. Exposed filters were stored in a 4 °C refrigerator before analysis 
to minimize evaporation of volatile components. All pre- and post-sampling filters were weighed 
using a Sartorius MC5 electronic microbalance with ±1 µg sensitivity. Filters were reweighed 
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until the differences between replicate weights were less than 20 µg and less than 10 µg for 
samples and for blanks, respectively. Replicate weights were then averaged to represent the pre- 
and post-sampling mass of the filters. Mass concentrations were calculated from dividing the net 
change in mass by the total volumetric flow during the sampling time of each filter.   

The DustTrak data from the calibration phase were adjusted using the gravimetric MiniVol 
results to account for humidity effects and local PM composition. The DustTrak was co-located 
with a MiniVol measuring 24 hour samples of PM2.5 during the four day calibration phase. 
DustTrak PM2.5 measurements were time-matched with the start and end sampling times of the 
co-located MiniVol for each of the four 24 hour samples. The resulting ratio of the MiniVol-
DustTrak 24 hour PM2.5 mass concentration from the DustTrak was used to adjust the 1 minute 
DustTrak PM2.5 data.   

Because the DustTrak was able to give higher time-resolution PM2.5 mass concentrations, we 
decided to use the MiniVol-corrected DustTrak as the reference instrument in this study. After 
correcting DustTrak data using co-located MiniVol mass concentrations, we established a 
calibration relationship between each PUWP’s raw sensor readings and the PM2.5 mass 
concentration from the DustTrak. 

Pairwise plots between the instruments’ were compared after smoothing data using 1 minute and 
hourly averages. Coefficients of determination (R2) were used to assess the strength of linear 
correlations. Based on evidence of a non-linear sensor response at middle to high concentrations, 
polynomial regression was used to model the relationship between each PUWP’s raw sensor 
values and mass concentration measurements obtained from the co-located DustTrak. We also 
examined the effects of including temperature and relative humidity in the models. The number 
of terms in the polynomial models was assessed using the Bayesian information criterion (BIC) 
and standard error of the regression (S) to select the best fit model for each PUWP. A predictive 
model was selected for each PUWP monitor. 

Distributed Sensor Network 

To assess concentrations at different sites in Xi’an, we established a network of eight locations 
across Xi’an, which were monitored from December 9 to 16, 2013. The eights sites were located 
in residential, commercial, governmental, and academic areas and were varying distances from 
major roads with different types of traffic intensities during the day (Table 3-1). The sampling 
heights (3 to 13m) also varied to find a safe, accessible location for the devices. At each site, one 
PUWP monitor was co-located with a MiniVol that collected 24 hour filter measurements of 
PM2.5. MiniVol filters were changed daily between 8-10 am. Sites were selected to capture 
environments with varying sources and conditions typical of a Chinese city. Sites included (A-B) 
residential neighborhoods, (C-D) university campuses, (E-F) villages, (G) a building in Xi’an 
High-technology Zone (location of IEECAS, where the calibration described in 2.3.1 was 
conducted), and (H) public library near a busy intersection (Figure 3-2).4  

                                                 
4 Sites A, B, C, D, E, F, G, and H correspond to sites A02, A16, A09, A07, A19, A13, B07, and A03, respectively, 
as listed in Chapter 2.  
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Raw sensor data from each of site’s PUWP was converted to a time series of 1 minute mass 
concentrations using the PUWP’s corresponding best-fit calibration model derived during the 
calibration phase. This time series was further aggregated into 24 hour averages, which were 
then compared to the 24 hour integrated mass concentration measurements from each site’s 
MiniVol using coefficients of determination (R2). Aside from 1 minute and 24 hour averaging, 
which provides some low-pass filtering and smoothing of outliers, no other signal processing 
was applied to the data.  

To test if integrated PM measurements could be misclassifying or masking differential exposures, 
we compared the mean concentrations from the PUWP monitors to each site’s MiniVol 
measurements, to determine if the sites rank ordered in the same manner regardless of instrument, 
and quantified the presence of extreme values, defined as more than 1 standard deviation from 
the city-wide mean of the MiniVol mass concentrations across all the sites for that day. A 
standard deviation above the city-wide average concentration was chosen as the threshold for 
comparison because 24 hour PM2.5 conditions in Xi’an exceeded existing health standards. For 
reference, 24 hour PM2.5 concentrations standards have been set at 25 and 35 µg/m3 by the World 
Health Organization (World Health Organization 2005) and the U.S. EPA (US EPA 2012), 
respectively.  
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Table 3-1 Descriptions of sampling sites in the distributed sensor network 

Site Type Environment Sampling 
Height (m) 

Distance to 
Major Roada (m) Type of Traffic 

A Residential Medium-rise 
housing within old 
city walls, one-lane 
tree-lined roads 
 

10 255 Medium 

B Residential Medium-rise 
housing 

3 105 Heavily 
congested due 
to subway 
construction 

C Academic Campus 3 242  

D Academic Near 2nd ring road 
 

3 476 Congested 

E Village Near new high-rise 
developments 
 

13 1,150 Light 

F Village Near 3rd ring road 
 

3 828 Light 

G High-
technology 
Zone Office  

Mix of office 
buildings and 
residential high rises 
 

10 66 Congested 

H Public 
Library 

Near intersection of 
2nd ring road and 
major corridor 

10 72 Heavily 
congested 

a Major roads include highways, ring roads, major arterials in the east-west and north-south direction. 
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Figure 3-2 Map of calibration and field sampling sites in Xi’an, China 
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3.4 RESULTS 

3.4.1 Calibration Phase PM Concentration, Relative Humidity, and Temperature  

The 1 minute DustTrak PM2.5 measurements averaged 328.3 (range: 66.6 to 563.7 µg/m3), hourly 
E-BAM PM2.5 concentrations averaged 485.0 µg/m3 (range: 77.0 to 889.0 µg/m3), and 24 hour 
integrated PM2.5 concentrations from the MiniVol ranged from 330.47 to 413.45 µg/m3. Relative 
humidity averaged 6.1% (range: 3.2 to 16.9%) and temperatures averaged 11.4°C (range: -3.5 to 
19.2°C). 

3.4.2 Calibration Phase PUWP Raw Correlations with DustTrak and E-BAM  

Under the high ambient PM2.5 concentrations observed in Xi’an, China, the PUWPs performed 
well against the commercially available reference monitors, the DustTrak and the E-BAM, in 
both the 1 minute and hourly comparisons (Figure 3-3). Raw sensor (low pulse occupancy) units 
are shown for the PUWPs.  Loess smoothers are superimposed on pairwise plots. PUWP5 (Site 
H) was excluded because the sensor was lost. 

Pairwise correlations among the 1 minute averaged individual PUWPs raw data (R2 = 0.97-0.98) 
and between the PUWPs raw data and the DustTrak (R2 = 0.86-0.89) were high. The 1 hour 
averaged correlations among the individual PUWPs, between the PUWPs and the DustTrak, 
between the PUWPs and the E-BAM, and between the DustTrak and the E-BAM were also high 
(R2 = 0.97-1.00, 0.86-0.89, 0.85-0.90, 0.91, respectively). PUWP2 logged than two days of data 
and fewer data points resulted in a higher correlation (R2 = 0.97) for PUWP2 with the DustTrak 
as compared with the other PUWPs. 

3.4.3 Predictive Models 

Using the Bayesian information criterion (BIC) and standard error of regression (S) (Table 3-2 
and Table 3-3, respectively) as indicators of model fit, a separate model was selected for each 
sensor using 1 minute averaged DustTrak data. A lower BIC when comparing two models for the 
same data indicates a better fitting model while accounting for complexity of the model. A 
smaller S indicates better model fit with lower values indicating smaller average distances 
between data points to the model’s regression line. Fifth order polynomial models that included 
relative humidity (RH %) and temperature (°C) was found to best convert PUWP signals into 
PM2.5 mass concentrations. Because the correlations between the PUWPs and the DustTrak 
followed a sinusoidal form (Figure 3-3), second order models were not considered. The 
correlations between predicted PM2.5 concentrations from each PUWP after applying the model 
and the MiniVol-corrected DustTrak readings had R2 ranging from 0.91-0.94.  

When comparing models with and without relative humidity and temperature variables, models 
including these two variables had improved fit to the data. All models had significant (P <0.001) 
relative humidity (RH) and temperature (T) terms. Although the lowest BIC and S values were 
associated with sixth order polynomials, we found very small improved model fit to the data 
when comparing the fifth and sixth order models as measured by the decreases in BIC and S. 
Therefore, fifth order polynomial models were selected. 
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(a) 

 

(b) 

Figure 3-3 Pairwise correlations between (a) 1 minute averaged PUWPs and DustTrak data and 
(b) 1 hour averaged PUWPs, DustTrak (µg/m3), and E-BAM (µg/m3). 
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Table 3-2 Predictive models comparison using Bayesian information criterion (BIC)  

 Bayesian Information Criterion (BIC)b 

Modela PUWP1 
(Site A) 

PUWP2 
(Site B) 

PUWP3 
(Site C) 

PUWP4 
(Site E) 

PUWP6 
(Site F) 

PUWP7 
(Site D) 

PUWP8 
(Site G) 

Linear 58888 7094 57649 58368 59103 57945 58673 

Linear with RH and T 58522 7082 57435 58271 58789 57650 58484 

3rd Order Polynomial 57530 7039 55641 57146 57681 55962 57292 

3rd with RH and T 57546 6906 55397 57159 57649 55852 57274 

4th Order Polynomial 57021 7022 54889 56697 57366 55374 56831 

4th Order with RH and T 56578 6887* 54829 56188 56460 55193 55785 

5th Order Polynomial 57028 6969 54897 56704 57368 55369 56837 

5th Order with RH and T 56559* 6893 54827 56164 56422* 55141 55764* 

6th Order Polynomial 57017 6969 54897 56687 57375 55342 56845 

6th Order with RH and T 56564 6899 54759* 56160* 56430 55124* 55772 
aAll models were specified to have an intercept of zero. 
bModels with lowest BIC are marked with an asterisk (*) for each PUWP. 
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Table 3-3 Predictive models comparison using standard error of regression (S) of models 

 Standard Error of Regressionb (S) in µg/m3 

Modela PUWP1 
(Site A) 

PUWP2 
(Site B) 

PUWP3 
(Site C) 

PUWP4 
(Site E) 

PUWP6 
(Site F) 

PUWP7 
(Site D) 

PUWP8 
(Site G) 

Linear 48.89 19.25 43.72 46.65 49.85 44.90 47.95 

Linear with RH and T 47.24 18.98 42.83 46.18 48.39 43.67 47.08 

3rd Order Polynomial 43.20 17.72 34.86 40.50 42.97 36.01 40.95 

3rd with RH and T 43.20 16.91 35.59 41.72 43.61 37.08 42.16 

4th Order Polynomial 41.23 17.48 33.99 40.05 42.52 35.54 40.53 

4th Order with RH and T 39.56 16.64* 33.79 38.20 39.15 34.92 36.83 

5th Order Polynomial 41.23 17.48 33.87 39.98 42.52 35.54 40.51 

5th Order with RH and T 39.47 16.65 33.76 38.09 38.98* 34.73 36.74* 

6th Order Polynomial 41.16 17.51 34.02 39.95  42.51 35.39 40.52 

6th Order with RH and T 39.46* 16.66 33.53* 38.05* 38.98* 34.65* 36.74* 
aAll models were specified to have an intercept of zero. 
bModels with lowest S are marked with an asterisk (*) for each PUWP. 
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(a) 

 

(b) 

Figure 3-4 Diminishing returns in improved model fit as measured by changes in (a) BIC and (b) 
S with increasing model complexity when comparing models (linear, third, fourth, fifth, and 
sixth order polynomials) that include relative humidity (RH) and temperature.  
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3.4.4 Distributed Field Deployment  

Pairwise comparison between the 24 hour integrated PUWP and the MiniVol data across all sites 
was moderate (R2 = 0.53). PUWP monitors reported 24 hour averaged PM2.5 mass concentrations 
that on average were 39.39 µg/m3 lower that reported from their co-located MiniVol monitors 
(Figure 3-5). Temperature (°C) and relative humidity (%) across the sites averaged -2.7°C and 
9.4%, respectively (Table 3-4). The average temperatures during the deployment phase were 
markedly lower than those during the calibration phase. During the field deployment, one sensor 
was lost (site H) and two (sites E and F) had incomplete data due to power or data logging issues. 
Sites with substantial missing data (Sites E and F) were not included in this analysis.  

When rank ordering the sites according to mean concentrations (Table 3-4), the PUWPs and the 
MiniVols were generally both able to identify the areas with higher level of pollution, 
specifically identifying the High-Technology Zone (Site G) as the site with the highest average 
PM2.5 concentrations in this study. Sites varied in the number of hours per day (range: 0 to 13.3 
hours) a high concentration threshold was exceeded, which was defined as greater than or equal 
to one standard deviation above the daily city-wide mean calculated from the MiniVol samples 
across all sites (Figure 3-6). The PUWPs were also able to identify Site G also as the site with 
the most hours of concentrations considered high as compared to the rest of the city (mean: 3.97 
hours, range: 0.16 to 13.6 hours) (Figure 3-6). Temporally, the sites generally had similar trends 
with most of the extreme PM2.5 concentrations occurring in the early morning before 9am. 
However, for Site G, these extreme concentrations had a peak in the early morning and also 
another peak mid-day (Figure 3-7).   
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Table 3-4 Distributed deployment 24 hour averaged site summary statistics 

 PUWP 
(µg/m3) 

MiniVol 
(µg/m3) 

Relative 
Humidity (%) 

Temperature 
(°C) 

Site Mean SD Mean SD Mean SD Mean SD 

A 106.90 25.72 133.67 40.21 10.56 1.88 -3.88 2.97 

B 85.91 27.91 154.63 47.64 9.00 3.49 -2.86 4.03 

C 108.47 22.66 140.16 42.08 9.47 3.67 -3.44 3.99 

D 84.06 27.93 133.67 42.34 9.29 2.65 -2.20 3.51 

E Incomplete Data 148.83 51.92 Incomplete Data 

F Incomplete Data 253.04 88.70 Incomplete Data 

G 153.23 32.99 175.60 56.91 9.68 5.07 -1.38 5.76 

H Sensor lost 134.51 37.39 Sensor lost 
 

 

 

Figure 3-5 PUWP monitor compared to co-located MiniVol 24 hour PM2.5 concentrations across 
distributed deployment sites.  

Sites B, E, and F had missing data that prevented calculation of complete 24 hour PM2.5 data. 
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Figure 3-6 Total hours per day where mass concentrations of PUWPs exceeded one standard 
deviation above the daily city-wide average (as calculated from the mean of the MiniVol samples 
from all sites). 

 

Figure 3-7 Daily temporal variation of high PM2.5 mass concentrations from PUWP monitors 
across the sites over the days sampled showing the count of 1 minute averaged samples where 
mass concentrations exceeded one standard deviation above the daily city-wide average. 
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3.5 DISCUSSION 

3.5.1 Main Findings 

Our main objective was to determine how the low-cost PUWP sensor would perform in areas 
with high PM2.5 levels. The 24 hour averages of PM2.5 concentrations from the PUWPs had a 
moderate correlation (R2 = 0.53) with their co-located MiniVol monitors. While this correlation 
may not seem high, when identifying potential air pollution hotspots among the sites, both the 
PUWPs and the MiniVols identified Site G as having the highest PM2.5 level. Given the cost 
difference between the two monitors, the PUWPs performed well and has potential to be used to 
rapidly screen large areas to help identify where more targeted monitoring is necessary. 

Identifying the High-Technology Zone site (Site G) as a hotspot was unexpected because the 
area is considered to be cleaner and better planned area with more green space, lower population 
densities, higher property values, and higher socioeconomic status of residents. However, the 
high ambient PM2.5 levels may result from our site being close to a major road (66m, Table 3-1) 
and the High-Technology Zone bordering western areas of Xi’an that are undergoing 
development and renovation. The high PM2.5 concentrations could be a result of the increased 
emissions from high polluting vehicles such as construction trucks and biomass burning that are 
then dispersed to the east, as the dominant wind direction in Xi’an is to the northeast.  

Site G also had a different temporal pattern for its extreme values as compared to other sites. The 
increase in counts of extreme values in the early morning (before 9am) is most likely due to the 
lower mixing layer in the winter evenings and mornings. Site G’s first peak in the early morning 
is following by another larger peak mid-day that is sustained until 4pm while other sites only had 
a peak in the early morning hours. While more information about sources is necessary to parse 
out the reasons for this trend, we can speculate that this increase is not a result of increased 
vehicle traffic because it does not seem correspond with traffic trends which are higher in in the 
morning and evenings. Increased construction activity during the day from the western 
neighborhoods could be a potential reason.  

While we have identified a potential PM hotspot in this study relative to the other sites, the 24 
hour health guidelines have far been exceeded across all the sites every day. Using the PUWP 
monitors provided insights into the temporal patterns of when extreme concentrations occur.  
However, the health effects of exposure to PM2.5 at the highly variable 1 minute and 1 hourly 
time scale is not yet well understood. Further, health standards are not yet available for the 
general population at these finer time scales. 

In calibrating the PUWP monitors, this study found that at high concentrations of PM2.5, a fifth 
order polynomial model fit the data best. A previous study in the US found that the relationship 
was linear (Holstius et al. 2014). The difference in calibration models is most likely due to 
gradual saturation in the ability of the Shinyei optical sensor in the PUWPs to detect ambient 
concentrations above 300 µg/m3, as observed from the sinusoidal relationships. This saturation at 
higher concentrations is consistent with chamber studies conducted using monodispersed 
particles (paper forthcoming). We also observed higher pairwise correlations (R2= 0.87-0.89) of 
the PUWP monitors with the DustTrak and E-BAM than Holstius et al. did (R2 = 0.64-0.70). We 
believe this is due to the larger errors in detection at the low concentrations, as shown in the 
Shinyei’s manufacturing specification sheet (Shinyei Corp. 2010). Because the concentrations at 
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the US site are lower than the ones in this paper, we would expect lower R2 values at lower 
ambient concentrations. 

In addition, the standard error of regression (S) averaged 34 µg/m3 across the PUWPs between 
the predicted PM2.5 values estimated by the 5th order polynomial models and the corresponding 1 
minute DustTrak concentrations (average of 328.3 µg/m3). This 10% measurement error can be 
expected because we created the models using nosier 1 minute DustTrak data. We would expect 
this error to be lower had we used 1 hour averaged data. As expected, in Holstius et al., the 
measurement error was found to be 1 to 10 µg/m3 based on hourly PM2.5 data. The magnitude of 
measurement error depends on the time resolution selected of the reference instruments and 
suggests tradeoffs between precision and temporal resolution should be considered based on the 
purpose of the study.  

Finally, this study found significant effects from relative humidity and temperature in the 
predictive models while these variables were not found to be statistically significant previously. 
This difference in findings could result from differences in meteorological conditions between 
the spring and summer seasons. This study’s December mean temperatures and relative humidity 
were lower than those in the US study which was conducted in April and had slightly larger 
diurnal temperature changes and less variability in relative humidity (approximately range of 3 to 
17% versus range of 10 to 60%). The significance of relative humidity and temperature in this 
study is most likely due to the diurnal trends of these two variables correlating with time of day, 
which plays a larger role in determining PM concentration in this study. The inversion layer 
during the winter is more pronounced and has a diurnal pattern, resulting in concentrating PM by 
preventing particle dispersion at night and in the early mornings.  Therefore, relative humidity 
and temperature were found to be significantly associated with PM2.5 concentrations in this 
winter study.  

3.5.2 Limitations  

The findings that indicate the usefulness of low-cost PM monitoring at higher ambient 
concentrations in Xi’an were comparable to the ones found in a collocation study conducted in 
the United States (Holstius et al., 2014). However, the detection of a saturation point in the field, 
as also observed in chamber studies (paper forthcoming), requires more work to understand the 
technological limitations of the device and environmental parameters under which these PUWPs 
can be used. In addition, studies thus far have not examined the effects of different optical and 
chemical PM2.5 compositions, seasonal variation, and meteorological conditions (e.g., 
temperature, precipitation, and relative humidity) on PUWP detection and calibration. More tests 
are needed to understand how variability in PM composition can change the PUWP monitor’s 
performance.   While fifth order polynomials were determined to be the best fitting for this Xi’an 
study, this same model may not necessarily hold in another location. Presently, new calibrations 
must be conducted prior to any field deployment in new study sites and more studies should be 
conducted under different seasonal and environmental conditions to test how well this calibration 
model holds.  

In addition, we selected Site G as our calibration site but the aerosol composition, optical 
properties, and size distribution at one site could differ from that of other sampled sites around 
the city. While resource limitations prevented us from creating calibration curves specific to each 
sampling site in this pilot study, we believe using one local site for calibration is an improvement 
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over using pre-existing calibration data. In some research applications, the use of less accurate 
lower cost sensors to estimate exposure for a population over a large area may outweigh the 
benefits of using a few more accurate but expensive instruments. 

In the current study, because we were primarily interested in calibrating the PUWPs at all 
deployment sites, they were co-located with reference instruments. In future studies, once co-
location of the PUWPs at a single regionally representative site, and the relationships between 
the PUWPs sensors and a reference instrument like the E-BAM or DustTrak is observed, a large 
number of PUWPs can be distributed across a city. Given the low cost of the sensor ($15 USD) 
and of each PUWP monitor (<$500 USD), which is several orders of magnitude lower than that 
of the E-BAM or DustTrak, such large deployments considerably more cost-effective than 
deploying traditional gravimetric samplers like the MiniVols. Moreover, because the instruments 
are optical and continuous logging, they require less field staff involvement compared to filter 
pre and post-weighing, and exchange of filters every 24 hours as necessitated by gravimetric 
methods. These future deployments could be focused in city regions where we have initially 
identified relatively high concentrations (e.g., the High-technology Zone region G in Xi’an) to 
better understand PM sources, secondary aerosol formation, dispersion, and population 
exposures.  This hierarchical approach of city-wide screening, followed by more spatially dense 
deployments in hotspots is made easier by the fact that the instruments are low-cost and highly 
portable, and can lead to increasingly focused monitoring important emission and population 
exposure areas of the urban environment.  

Additionally, more affordable direct-reading monitors like the PUWPs can be used to enhance 
air pollutant exposure assessments through land-use regression (LUR) (Briggs et al. 1997), 
where sampling is often conducted in short campaigns in select seasons of the year to represent 
seasonal or annual averages, but limited to no temporally-resolved data are available to inform 
how concentrations vary on finer spatial and temporal scales. This lack of data limits the LUR 
models’ ability to identify hotspots for use in regulatory applications where emissions and 
resulting population exposures vary temporally (e.g., on the order of minutes to hours).  The 
combination of spatially and temporally resolved data available from PUWPs could potentially 
solve these problems for future health effects and air quality management studies. 

3.6 CONCLUSIONS 

This study demonstrated that the PUWP monitors could be used to enhance existing PM2.5 
sampling networks and for use in health-related studies as an affordable technology to increase 
spatiotemporal resolution of PM2.5 datasets, both in ambient monitoring networks and even in 
higher PM2.5 conditions for rapid screening. Although additional calibration studies under 
varying meteorological conditions in different regions would be useful, the PUWPs show 
promise as a viable lower cost aerosol sensor that can be used in developing or industrializing 
area applications where obtaining expensive instrumentation to monitor air quality can be costly 
but where the need for monitoring is especially urgent to protect public health. 
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Chapter 4 Associations of the Built Environment and Quality of Life 
 

 
4.1 OVERVIEW 

This chapter evaluates the relationships between seven perceived dimensions of one’s residential 
neighborhood’s built environment and self-reported health-related quality of life (HRQOL) from 
a cross-sectional study of 1608 adults in Xi’an, China. By examining these relationships, we 
determined aspects of both physical and mental health that should be considered as Chinese 
cities modernize and evolve. Because neighborhoods are changing so quickly, Chinese cities 
provide interesting opportunities to study relationships between urban design and quality of life.  

 
4.2  BACKGROUND 

4.2.1 Built Environment and Health 

The World Health Organization (WHO) defines health as “a state of complete physical, mental 
and social well-being and not merely the absence of disease or infirmity” (World Health 
Organization 2006). The built environment – the surroundings built or made by people - has 
particular influence on risk factors for disease. The built environment is modifiable and can be 
designed to promote health, improve quality of life, and reduce health inequalities. Because the 
built and natural environments are modifiable and have been estimated to contribute up to 20% 
to total health (McGovern, Miller, and Hughes-Cromwick 2014), urban design is increasingly 
recognized has having widespread implications for population health. In fact, the health in all 
policies (HiAP) approach to designing public policy is increasingly popular in cities around the 
world to create more “livable” neighborhoods that are dense, walkable, accessible, and mixed-
use (Wernham and Teutsch 2015).  

There is a rich body of literature describing the associations between the built environment and 
physical activity. Neighborhood walkability, a measure of availability of pedestrian 
infrastructure and connectivity of the streets, is positively associated with increased walking for 
both leisure and transportation (Lovasi, Grady, and Rundle 2012; Saelens and Handy 2008; 
Frank et al. 2005; Saelens, Sallis, and Frank 2003), physical activity (Van Holle et al. 2012; 
Durand et al. 2011), and lower body mass index (BMI) (Leal and Chaix 2011; Feng et al. 2009). 
Walking is an important part of physical activity (Haskell et al. 2007; Eyler et al. 2003) and can 
provide health benefits (Sattelmair et al. 2011; Eyre, Kahn, and Robertson 2004). Studies have 
also found neighborhood esthetics are positively associated with active travel choices like 
walking (Nasar, Holloman, and Abdulkarim 2015; Michael, Green, and Farquhar 2006) and 
physical activity (Van Dyck et al. 2011; Boone-Heinonen et al. 2010). The associations between 
the built environment and physical activity may be mediated by the reliance on non-active forms 
of transportation like cars in low-density areas, and through limited availability of parks and 
recreational facilities (Sallis et al. 2006).  
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Neighborhood design can influence human behaviors. Those living in denser, mixed-use 
neighborhoods tend to walk more and drive less (Duncan et al. 2010; Frank et al. 2006), which 
can affect vehicle emissions. Greater exposure to vehicle emissions are associated with higher 
BMI in children (Jerrett et al. 2014) and increased risks of adverse pregnancy outcomes 
including low birth weight and preterm birth (Padula et al. 2014; Ghosh et al. 2012). Exposure to 
emissions can trigger cardiac events and can contribute to the development of cardiovascular 
disease (Franklin, Brook, and Pope 2015). The built environment has also been linked to risk 
factors for poor health and chronic disease. Poor neighborhood design has been found to be 
associated with obesity with unhealthy dietary intake through limited access to healthy or diverse 
food options (Story et al. 2008). Poor neighborhood infrastructure perceptions have also been 
found to be associated with increased smoking and binge drinking (Jitnarin et al. 2015). 

Much less well understood is the impact of the built environment upon social health.  It is 
hypothesized that neighborhood design may influence how people interact with each other within 
their communities. For instance, mixed-land use, pedestrian-oriented designs, green spaces, and 
esthetics may play a role in promoting social interactions and relationships – more generally 
labeled as social capital – which have been shown to be associated with higher self-rated health 
and improved mental well-being (Kim, Subramanian, and Kawachi 2008).  

Attributes of neighborhoods have been measured (1) objectively using geographic information 
systems (GIS), environmental audits, or databases of existing resources or (2) subjectively using 
self-report (Casey et al. 2014). Each measurement approach depends on data availability and 
resource restraints for primary data collection (H. Lin, Sun, and Li 2015). Studies have found 
there are frequent mismatches between objective measures and self-reported subjective 
perceptions with perceptions potentially being  more proximally associated with behaviors 
(Gebel et al. 2011; Gebel, Bauman, and Owen 2009; Ball et al. 2008).  

While many studies have found significant but frequently small associations between various 
neighborhood designs and positive health behaviors, these studies are usually limited in their 
abilities to test causality. In particular, neighborhood self-selection is a limitation for cross-
sectional studies where individuals living in certain neighborhoods chose to live there because 
they already are inclined toward healthier behaviors. Results from relocation studies, randomized 
trials (Ludwig et al. 2012; Ludwig et al. 2011; Votruba and Kling 2009), natural experiments 
(Garvin, Cannuscio, and Branas 2013), and longitudinal studies (Hirsch et al. 2014; Knuiman et 
al. 2014) that circumvent the self-selection issue are more mixed and inconclusive than the cross-
sectional studies regarding magnitude and significance of independent associations between 
neighborhood attributes and behaviors or health outcomes (Oakes 2004). The effort to isolate 
independent effects of neighborhood on health has been deemed both difficult and futile, as the 
measured “neighborhood effect” is a result of complex relationships between both context (the 
place) and composition (the people). Rather than trying to isolate the independent effects of the 
built environment, framing the role of built environment in determining one’s health within the 
larger relationships of behaviors, perceptions, and socioeconomic factors is a start to 
understanding these complex relationships.   
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4.2.2 Built Environment in China 

Cities undergoing rapid urbanization provide unique opportunities to see how changing built 
environments are affecting the population that resides there (H. Lin, Sun, and Li 2015). The 
rapid growth rate in Chinese cities allows for a unique comparison of old neighborhoods co-
existing alongside newer modern ones. In a single city, a larger variability in built environment 
attributes and neighborhood types can be observed. 

Health-conscious urban design and policies are becoming increasingly important in Chinese 
cities where economic growth and population migration have led to dramatic changes in the 
physical and social environments. Urban areas have experienced dramatic growth both in 
population size and land area since the 1980s. Urbanization (proportion of population living in 
urban areas) is already over 50% and is expected to reach 60 to 65% by 2020 (Bai 2008).  

Urban forms changed when the central government starting viewing cities as potential global 
commercial hubs during the transition to the market economy rather than as centers of industrial 
production as they were during the socialist planned economy period (S. Li, Zhu, and Li 2012; P. 
Zhao, Lu, and de Roo 2011). During the planned economy period from 1949 to the late 1970s, 
clustered development around the work units (danwei) was prominent. These were separated 
from the city centers and were areas where workers of large state-owned enterprises (SEO) 
worked and lived together (J. Yang et al. 2012).  The state controlled all aspects of daily life 
including work, marriage, family planning, meal provisioning, and access to social services.  

After the economic reforms in 1978 that led to the new market economy, the gradual dissolution 
of the work units began. The development strategy for cities focused on building a city center 
surrounded by satellite communities, which would be anchored by the infrastructure of the 
remaining work units, universities, or other enterprises, and would be connected to each other 
and the city center through ring and radial roads (Figure 4-1). The satellite communities would 
also be separated from each other and the city center through green space.  
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Figure 4-1 Typical ring and radial road structure of Chinese cities (Xi’an, China) 

 

However in reality, the city center engulfed the nearby satellite communities as it grew in size 
and became a high-density monocentric city rather than one with multiple clusters of 
development. The municipal governments prioritized infrastructure and social service (e.g., 
healthcare, education) development in the city center and as a result, living near the city center 
was still coveted. Although manufacturing and construction became increasingly decentralized, 
moving to the outskirts of the city, employment in the service industries still remained in the city 
center (P. Zhao 2010), resulting in the overgrowth of city centers. 

The green spaces also disappeared as the land was used for highly coveted and profitable 
commercial and residential development. To attract both domestic and foreign investments, local 
governments created development zones and industrial parks that consumed large tracts of land. 
In 2003, over 3,800 industrial parks were created and this number increased to 6,015 in 2006 (Y. 
Li 2010). The creation of industrial and technology parks that decentralized residential areas 
while raising real estate prices in the city centers often pushed low- and middle-income 
households to the periphery near the rural-urban fringe (Pucher et al. 2007). Because local 
governments control the urban land, additional revenue from land leases to real estate developers 
became a significant part of a local government’s income, with much of the land coming from 
converting existing farmland to new plots of urban land for development (S. Cao et al. 2014). In 
extreme cases, governments are leveling mountains to make more land available for cities and 
industries (Clark 2014). 

Government support for increasing private vehicle ownership also influenced the form of the 
new cities. In 2009, China passed the United States in becoming the world’s largest car market. 
Although car ownership rates are still lower than in the US (69 versus 786 cars for every 1,000 
persons in 2011), planning policies became car-centric to accommodate this boom in private 
vehicle ownership (The World Bank 2011). China more than doubled its length of roads (Z.-R. 
Peng, Zhu, and Song 2006), while bicycle lanes were narrowed or eliminated in the repaving of 
roads to decrease congestion (Schipper 2006). This motorization trend means the Chinese 
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population participates less in active modes of transportation such as walking, biking, and public 
transportation which contributes to overall sedentary behavior (W.-S. Ng, Schipper, and Chen 
2010). Between 1991 and 2006, average weekly physical activity dropped by 32% in adults (R. 
Zhou et al. 2013) . With about 200 million people estimated to be overweight or obese in 2002, 
overweight and obesity prevalence reached 22.8% and 7.1%, respectively (The World Bank 
Human Development Unit 2011).  

Previous research has examined the relationships among built environment, behaviors, and 
health in the US, Europe, and Japan but research on the urban environments in China has been 
limited mostly within the transportation literature. Much of the research has focused on the 
association between objective measures of built environment (distance to city, density, distance 
to transit, etc.) and travel behaviors where higher density neighborhoods with more connected 
streets and transit options were found to be associated with more walking and less driving (Y. 
Zhang et al. 2014; D. Wang, Chai, and Li 2011; J.-J. Lin and Yu 2011; Jiawen Yang 2010; D. 
Wang and Chai 2009). A study in Hangzhou also found that higher self-reported neighborhood 
esthetics and lower residential densities were associated with increased leisure-time physical 
activity in adults (M. Su et al. 2014) while in another study in Shanghai, residential density, 
street connectivity, and traffic safety were positively associated with physical activity (R. Zhou 
et al. 2013). To our knowledge, the associations between built environment and mental health-
related quality of life have yet to be explored. 



 

56 
 

 

4.2.3 Types of Chinese neighborhoods 

Because this was a cross-sectional study, we relied on being able to capture a diverse range of 
types of neighborhoods that represent different stages of China’s economic development, as 
proxy for change over time. Therefore, the type of residential neighborhood is important in 
grouping our sample population. The transition away from a centrally planned economy in the 
1980s created several distinct types of neighborhoods that co-exist today: (1) lane/courtyard 
urban neighborhoods, (2) work units, and (3) commodity housing. These neighborhoods have 
distinct socio-demographic characteristics, built environment features, and social network 
structures (S. Li, Zhu, and Li 2012).  

Lane and courtyard urban neighborhoods include both neighborhoods built pre-1949 prior to the 
reorganization of housing into work-unit communities, and neighborhoods that formed following 
the dissolution of the work units after the reforms. Both were designed before the advent of 
motor vehicles with mixed land use, and are organized and overseen by residential committees 
comprised of local citizens. These are usually the first areas to be developed for public squares, 
new housing, and commercial complexes because they often make up the oldest and most central 
parts of the city.  

While some work-unit communities were gradually dissolved, some still remain today. The 
work-unit compounds were built in the pre-reform period from the early 1950s to the late 1970s. 
These neighborhoods were organized by state owned enterprises (SOE) to house workers and 
their families. Usually gated, these neighborhoods are dense, mixed-use with diverse resources 
as these SOEs often had their own cafeterias, schools, health clinics, and post offices, markets, 
etc. and were where most of these workers lived and socialized, leading to strong social 
connections and neighborhood identities (S. Li, Zhu, and Li 2012). These neighborhoods were 
also built when residences were close to places of employment before motor vehicles were 
common (D. Wang and Chai 2009) so neighborhood design prioritized pedestrians with wide, 
tree-lined sidewalks and one-lane roads.  

After the economic reforms, employers were no longer required to provide housing for their 
workers; therefore, the commodity housing market grew as people had to rent or purchase 
housing (J. Yang et al. 2012). The commodity developments became heavily guarded gated  
housing (‘urban enclaves’) for the growing middle class (S. Li, Zhu, and Li 2012).  Because of 
the growing car ownership rates in China, these newer neighborhoods are built during a period 
when increased traffic flows necessitate the need for wider roads. While the older housing 
buildings in urban neighborhoods and work units are usually 8 stories or lower (before the use of 
elevators), commodity housing types are usually high-rises.  In this study, these commodity-
housing neighborhoods are divided further into two groups – high-density and low-density 
commodity housing. High-density developments are often built on demolished old city plots 
previously inhabited by residents of the old lane/courtyard neighborhoods. The areas around 
these developments are frequently still dense, mixed-use and are transitioning away from the old 
neighborhoods. Low-density commodity housing neighborhoods, developed from previously 
industrial or agricultural land, have lower population density and fewer amenities as surrounding 
areas have not fully urbanized. 

Photos for each neighborhood type are available in Appendix C. 
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4.2.4 Social Concerns in Chinese Cities 

As the “urban enclave” nature of the new urban gated neighborhoods grows and Chinese become 
more mobile, urban Chinese are increasingly distrustful of their neighbors (Wissink et al. 2012; S. 
Li, Zhu, and Li 2012; Hazelzet and Wissink 2012). In 2012, trust among people was a record low 
with only 30% saying strangers can be trusted (J. Wang and Yang 2013). Because studies have 
shown social capital and trust are associated with health and well-being in Chinese populations 
(Norstrand and Xu 2012; Yip et al. 2007), erosion of trust and social cohesion can weaken 
population health, undermine social stability, and subsequently limit economic growth.  

In addition, the continued existence of China’s household registration system (hukou) further 
divides city residents into two classes – rural or urban – which contributes to distrust as rural to 
urban migration continues. Originally created to restrict movement between the urban and rural 
areas starting in the 1950s, the hukou system determined where and what type of social services 
one was able to receive – grain rations, housing, education, healthcare, social welfare, etc. (Chan 
and Zhang 1999). As labor demands increased in the cities from industrialization and urban 
development, restrictions placed on rural residents were loosened to allow rural to urban 
migration. From 1978 to 2004, an estimated 300 million rural residents migrated to cities (S. Li, 
Zhu, and Li 2012). Migrant workers are relatively young, predominantly male, and poorly 
educated (L. Shi 2008b). Because of their low educational attainment, migrant workers often 
accept undesirable manual jobs permanent urban residents avoid. Migrant workers also face 
social stigmas, exploitation, and discrimination due to their hukou status (Human Rights Watch 
2008). A migrant worker’s wages can be a quarter of that of local urban workers; they often 
work seven days a week and work more hours per day than urban residents (L. Shi 2008b). Long 
hours, stressful work conditions, and low pay increase the vulnerability of this group to 
experiencing higher health risks. In addition, surveys have shown migrants are less aware of and 
have less access to social and health services in the cities (L. Shi 2008b). The migration of those 
with rural hukou into cities for employment in recent decades has led to marginalization, 
stigmatization, and exploitation of this group of urban residents (Human Rights Watch 2008).  

Within this context of rapid urban development and shift away from state control of private life 
for citizens, this study explores the general well-being of residents in Xi’an, China. 
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4.3  MATERIALS AND METHODS 

4.3.1 Study Site 

As the capital of Shaanxi province with over 8 million residents, Xi’an is a sub-provincial city in 
central China and a major city in the expansion and development of central and western China 
(Statistical Bureau of Shaanxi Province 2010). With an average gross domestic product (GDP) 
growth above 10% every year since 2000, Xi’an is experiencing a surge in economic 
development as the central government focuses on developing central and western China 
(Statistical Bureau of Shaanxi Province 2010; C. C. Fan 2010). Nearly half of the population in 
2010 is considered “agricultural residents” or those with a rural hukou (Statistical Bureau of 
Shaanxi Province 2013). Since 2000, the investment in real estate development has grown at an 
average annual rate of 30.4% and in 2013, $25 billion was invested in real estate with an 
additional $20 billion invested in residential real estate (Statistical Bureau of Shaanxi Province 
2013). The area of paved roads per capita has nearly doubled since 2006; the number of 
passengers taking public transit has quadrupled since 2000 while the number of public buses has 
only doubled, contributing to additional stress on a municipal transportation system trying to 
keep pace with motorization, population growth, and spatial expansion. 

4.3.2 Sampling Design 

Data for this study comes from a 2013 cross-sectional health and behaviors survey of adults (18 
years old and above) in Xi’an, China that collected socio-demographic information, perceived 
neighborhood characteristics, social capital, physical activity, diet, travel behaviors, health 
outcomes, and quality of life data (Appendix B). The study sample was drawn from the six urban 
districts which include 6.5 million people and cover an area of 833 km2. I used a multi-stage 
cluster sampling method to probabilistically select neighborhoods, defined as areas overseen by 
neighborhood committees. After stratifying on the six districts, I selected 20 neighborhoods 
using population proportional to size (PPS) where neighborhoods with large populations are 
more likely to be selected than those with smaller populations. An additional 10% of 
neighborhoods in each district were selected as backup per district if neighborhood committees 
declined to participate for a total of 38 neighborhoods.  

Within each of the 20 neighborhoods (Figure 4-2), 80 adults were selected using quota sampling 
matched to the 2010 Census data for Xi’an according to sex and age.5 Neighborhoods were 
visited in the morning and afternoons until the quotas for each age and sex category were met. 
Subjects were approached by an interviewer in the public areas of the neighborhood including 
parks, courtyards, and around residential buildings. Verbal consent and eligibility for the study 
(subject could communicate in Mandarin and was an adult resident of the neighborhood) was 
confirmed prior to starting the pen and paper survey. Surveys were completed within 
approximately 45 minutes and following the interview, subjects were compensated with a tray of 

                                                 
5 Before quota sampling in selecting individuals within neighborhoods, we attempted to use probabilistic methods 
(systematic sampling) but were unsuccessful in recruiting individuals even after repeated visits over several days. 
More than 80% of the households approached declined to be surveyed. Due to time and resource constraints, quota 
sampling matched on age and sex from the 2010 Census was eventually used. 
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eggs. All surveys were completed from July 2013 to August 2013. 6 Human subject research 
approval was obtained from the University of California, Berkeley.  

 

 
Figure 4-2 Surveyed neighborhoods by type within six urban districts of Xi'an, China 

                                                 
6 A team of 15 medical students from the Medical University of Xi’an Jiaotong University was recruited to help with 
the surveys. Because many spoke the local dialect, they could communicate with local residents more easily. 
Students attended two training sessions to review the surveys, consent forms, and the data collection procedures and 
practice with each other prior to starting the surveys in the field. Each student was compensated for each survey 
completed with a limit on the total number per day to guarantee quality. At the end of each survey day, all 
completed surveys were reviewed and any feedback was provided the following day to each student. Any unclear 
responses were also clarified. Students worked in teams of two for safety.  
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4.3.3 Self-reported Measures of Neighborhood Characteristics (NEWS-A) 

Studies have found that awareness of one’s neighborhood’s attributes plays a more relevant role 
influencing behaviors like physical activity than objective measures of neighborhood (Gebel et al. 
2011; Gebel, Bauman, and Owen 2009).  The abbreviated Chinese version of the Neighborhood 
Environmental Walkability Survey (NEWS-A) was used to assess an individual’s perceptions of 
his/her neighborhood that was determined to be valid and reliable in a Chinese population (Cerin 
et al. 2007; Cerin et al. 2006). Before use in this study, the survey was converted from traditional 
Chinese to simplified Chinese text as the original survey was developed and translated from 
English for a Cantonese-speaking population in Hong Kong. 

The 54-question survey assessed seven subscales of neighborhood characteristics: (1) diversity 
of resources,  (2) pedestrian infrastructure, (3) safety, (4) neighborhood esthetics, (5) ease of 
access to/from neighborhood, (6) street connectivity, and (7) and residential density. Diversity of 
resources refers to the availability of commercial stores and public spaces including markets, 
parks, schools, libraries, etc. that are within walking distance to the home. Pedestrian 
infrastructure refers to availability of walking and biking paths and separation from motor 
vehicle traffic. Safety includes questions about crime, lighting at night, feeling safe while 
crossing roads, and traffic speeds. Neighborhood esthetics includes questions about the presence 
of trees, views, and attractive buildings. Access refers to the ability to move within the 
neighborhood easily and options for transit to leave the neighborhood. Street connectivity 
assesses the distances between intersections and presence of dead end streets.  

Except for diversity of resources and residential density, responses to statements are rated using 
a 4-point Likert scale:  There are crosswalks and pedestrian signals to help walkers cross busy 
streets in my neighborhood. (1) Strongly Disagree (2) Somewhat Disagree (3) Somewhat Agree 
(4) Strong Agree. Subscale scores are calculated as the mean of the group of questions in each 
category. Diversity of resources is assessed by the walking time to a list of various stores and 
facilities ranging from under 5 minutes to over 30 minutes. Residential density questions were 
scored on a 5-point Likert Scale. The score in this category is determined from a weighted 
average of the various contributions of housing types to the neighborhood’s population density 
(Saelens et al. 2003).  Some reverse coding was necessary to ensure that higher scores in each 
category indicate a higher rating of the neighborhood on that scale. 

4.3.4 Self-reported Quality of Life (SF-12) 

Health-related quality of life (HRQOL) is a multi-dimensional concept that captures perceived 
physical, mental, psychological, and social functioning beyond clinical measures of disease 
outcomes and is considered a valid indicator of health status of the general population beyond 
objective, clinical morbidity and mortality metrics (Hennessy et al. 1994; DeSalvo et al. 2006). 
Previous studies have found that economic development has had detriment effects, widening the 
quality of life disparities in Chinese populations (H. Wang, Kindig, and Mullahy 2005). 

The simplified Mandarin version of Medical Outcomes Study Short Form 12 (SF-12 v2) Health 
Survey was used to capture mental and physical quality of life in twelve questions. This survey 
has been previously validated in Chinese populations and has been widely used to assess general 
population health (Lam et al. 2013). The SF-12 was scored using software, QualityMetric Health 
Outcomes TM Scoring Software 4.5, provided by QualityMetric Inc. to give each individual an 
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overall mental component score (MCS) and physical component score (PCS). The software also 
estimated missing data for individuals using Full Missing Score Estimation (MSE) which 
estimates the component scores (MCS and PCS) based on regression of available responses to 
questions (Maruish and DeRosa 2009). The two component scores are scaled to center around 50 
(SD = 10). Higher scores indicate better mental and physical health with scores ranging from 0 to 
100. 

4.3.5  Statistical Analysis 

Missing data for the NEWS-A and SF-12 were assessed.7 Imputation of the SF-12 was included 
as part of the scoring algorithm software. Because missing data from the NEWS-A survey were 
minimal, imputation methods were not applied. We examined bivariate associations between the 
outcomes of interest (MCS and PCS) and the seven neighborhood subscales and socio-
demographic variables to observe the unadjusted relationships. Because of the clustered nature of 
the data, we used general estimating equations (GEE) with survey weights for both the bivariate 
and multivariate analysis.  

Intraclass correlations (ICC) were 0.04 and 0.02 for mental and physical health outcomes (MCS 
and PCS), respectively, and ranged from 0.04 to 0.27 for the seven neighborhood perceptions, 
indicating samples were correlated within neighborhoods. When stratified by the four types of 
neighborhoods, the ICC was found to be very close to 0 for the two types of high-rise commodity 
housing neighborhoods (NH3 and NH4), indicating that the individuals of these neighborhoods 
types were less correlated in both perceptions variables and HRQOL outcomes. The ICC for 
MCS, PCS, and the seven neighborhood perceptions ranged from 0.01 to 0.37 for the work-unit 
and lane/courtyard neighborhoods. 

Population-averaged models using survey weights were used for both mental and physical health 
to examine the associations between the seven neighborhood perceptions and mental and 
physical aspects of quality of life. A separate model was built for each of the neighborhood 
characteristics to avoid issues of collinearity between the seven variables. A population-averaged 
model was selected due to the cross-sectional nature of the study (Hubbard et al. 2010). Age, sex, 
occupation, household income, education level, and hukou (rural or urban) status were included 
in the models as confounders.  Household income was categorized into quartiles. Types of 
neighborhood were also included as confounders because they are theorized to be associated 
with individual perceptions and are associated with quality of life.  

Multivariate analyses were first examined for the entire population. Then, because the 
associations between neighborhood perceptions and quality of life could vary across the types of 
neighborhoods, we examined each type of neighborhood separately – work units (NH1), 
lane/courtyard (NH2), high-density high-rise commodity (NH3), low-density high-rise 
commodity (NH4) housing neighborhoods – to investigate how the relationship between 
neighborhood perceptions and health related quality of life varied across types of neighborhoods. 
All analyses were conducted in STATA 12.1. 

                                                 
7 Data from the paper surveys were digitized using EpiData 3.1. All data were double-entered by two separate 
individuals and mismatched entries were reviewed and corrected.  
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4.4 RESULTS  

4.4.1 Descriptive Analysis 

A total of 1,608 adults in 20 neighborhoods were surveyed.8 The age and sex distribution within 
each neighborhood was matched to the 2010 Census (Table 4-1).  Approximately half of the 
sample population was female (50.3%), aged 30-55 (47.8%), and 13.7% had rural hukou status. 
The percentage of residents interviewed with college level education or higher was highest 
(58.3%) in the low-density high-rise neighborhoods and lowest (26.6%) in the lane/courtyard 
neighborhoods.  

The household income variable had the most missingness (27.7%) in the sample and missingness 
ranged from 22.5% to 34.0% across the four types of neighborhoods, with higher missingness in 
the high-rise commodity neighborhoods. Missing income was included in multivariate models as 
a separate income category. On the NEWS-A survey, 957 (59.5%) had no missing responses and 
on average, 1.6 questions (SD: 4.7) were missing from each survey. Of the 1,608 surveys, 44 
surveys (2.7%) had any missing responses on the SF-12.  After using the data recovery algorithm 
provided by the survey developer, 12 surveys (0.007%) still had missing physical and mental 
health scores. Because of the missing data from the outcomes of interest (physical and mental 
health scores) 1,596 and 1,597 adults were used in the physical and mental health models, 
respectively. 

                                                 
8 Four neighborhoods selected either declined to be surveyed or we replaced them with a backup neighborhood if the 
selected neighborhood was a work unit for top-secret state owned enterprises. Because China’s space program and 
many high-tech industries are based in Xi’an, we avoided approaching these residential complexes although they 
can often house over 10,000 individuals and were selected based on our methods. Because our consent forms 
included UC Berkeley’s logo, we were concerned about approaching these complexes as foreigners.  
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Table 4-1 Descriptive statistics of sampled adults 

  By Type of Neighborhood 

Variable Full Dataset Work-Unit 
(NH1) 

Lane/Courtyard 
(NH2) 

High-density 
High-rise (NH3) 

Low-density  
High-rise (NH4) 

# of Neighborhoods 20 6 8 2 4 
# of Subjects (% of total sample 
population) 1608 481 (29.9) 643 (40.0) 160 (10.0) 324 (20.1) 

# Female (%) 809 (50.3) 250 (52.0) 322 (50.1) 80 (50.0) 157 (48.5) 
Age:                 # Under 30 (%) 447 (27.8) 130 (27.0) 180 (28.0) 47 (29.4) 90 (27.8) 

# 30-55 (%) 769 (47.8) 230 (47.8) 312 (48.5) 74 (46.3) 153 (47.2) 
# 55+ (%) 392 (24.4) 121 (25.2) 151 (23.5) 39 (24.4) 81 (25.0) 

Marital Status:      # Single (%) 260 (16.2) 82 (17.1) 106 (16.5) 19 (11.9) 53 (16.4) 
# Married (%) 1,270 (79.0) 371 (77.1) 507 (78.9) 135 (84.4) 257 (79.3) 

# Divorced or widowed (%) 73 (4.5) 26 (5.4) 29 (4.5) 6 (3.8) 12 (3.7) 
# Rural Hukou (%) 219 (13.7) 45 (9.4) 119 (18.6) 27 (16.9) 28 (8.8) 
Median Household Income 
(¥/month) 4,000 4,000 3,400 5,000 6,000 

% with College-level Education 
or Higher 588 (36.7) 169 (35.6) 171 (26.6) 61 (38.1) 187 (58.3) 

Self-reported Neighborhood Attributes (NEWS-A): mean (standard deviation) 
Land-use Diversity 2.66 (0.67) 2.67 (0.75) 2.48 (0.57) 3.15 (0.62) 2.74 (0.62) 
Ease of Access 2.86 (0.34) 2.84 (0.34) 2.86 (0.36) 2.97 (0.27) 2.83 (0.31) 
Street Connectivity 3.09 (0.61) 2.99 (0.59) 3.07 (0.65) 3.29 (0.51) 3.17 (0.56) 
Residential Density 657.14 (197.78) 627.59 (207.22) 615.99 (202.57) 734.56 (148.61) 741.72 (154.57) 
Esthetics 2.59 (0.60) 2.64 (0.58) 2.44 (0.59) 2.70 (0.64) 2.76 (0.59) 
Safety 2.74 (0.33) 2.71 (0.35) 2.67 (0.31) 2.90 (0.27) 2.83 (0.31) 
Pedestrian infrastructure 3.00 (0.59) 2.92 (0.57) 2.93 (0.62) 3.27 (0.51) 3.13 (0.51) 
Health-related Quality of Life (SF-12): mean (standard deviation) 
Mental Health (MCS) 52.74 (7.16) 51.85 (7.81) 53.53 (7.00) 52.32 (6.85) 52.72 (6.42) 
Physical Health  (PCS) 51.16 (7.34) 50.37 (7.45) 51.27 (7.31) 52.34 (6.89) 51.52 (7.36) 
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Comparing built environment attributes and quality of life outcomes (MCS and PCS) across 
neighborhood types (Figure 4-3 and Figure 4-4) 

When comparing across the four types of neighborhoods, the low-density high-rise (NH4) 
neighborhoods had the highest perceived residential density and perceived esthetics ratings 
(p=0.004), lane/courtyard housing (NH2) had the worst rated esthetics (p=0.018). The high-rise 
commodity neighborhoods (NH3 and NH4) also had statistically significantly better ratings in 
terms of diversity, access, street connectivity, safety, and walkability, as compared to the work 
units and lane/courtyards (p<0.05). Quality of life outcomes were comparable although higher 
MCS scores in lane/courtyard neighborhoods were observed, compared to work units; and higher 
PCS scores were observed in in high-density high-rise neighborhoods than in work units 
(p=0.047). 

 

 
Figure 4-3 Distributions of perceived neighborhood attributes variables by type of neighborhood 

Key: Work-unit (NH1), Lane/courtyard (NH2), High-density high-rise (NH3), Low-density high-
rise (NH4) neighborhoods 
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Figure 4-4 Distributions of quality of life outcome variables (MCS and PCS) by type of 
neighborhood 

Key: Work-unit (NH1), Lane/courtyard (NH2), High-density high-rise (NH3), Low-density high-
rise (NH4) neighborhoods 
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Comparing social capital across neighborhood types (Figure 4-5) 

Residents of lane/courtyard neighborhoods (NH2) have significantly lower (1.2 to 1.7 points, 
p<0.01) total social capital than the residents of the other three neighborhood types. These 
residents (NH2) also have the lowest bonding social capital. Work-unit residents (NH1) have 
significantly more bridging social capital (p<0.05) but lower bonding social capital (p<0.01) than 
those living in the new commodity housing neighborhoods (NH3 and NH4). 

In the social capital survey, responses to the following three questions were examined for 
differences across type of neighborhood: 

1. With how many of your neighbors do you keep a routine contact? 
2. Among your neighbors, how many can you trust? 
3. Among your neighbors, how many will definitely help you upon your request? 

 

When comparing responses in two groups (Most/All versus Some/A few/None), residents of 
work-unit (NH1) and lane/courtyard (NH2) neighborhoods had significantly higher odds of 
reporting they keep in routine contact with Most/All of their neighbors, than those in low-density 
high-rise neighborhoods (NH4). Work-unit residents also had higher odds of responding that 
they trusted most/all of their neighbors, as compared to the residents of the other three types of 
neighborhoods. No statistically significant differences in responses were found among the four 
neighborhoods types for getting help from their neighbors.  

 

Figure 4-5 Distributions of quality of life outcome variables (MCS and PCS) by type of 
neighborhood  

Key: Work-unit (NH1), Lane/courtyard (NH2), High-density high-rise (NH3), Low-density high-
rise (NH4) neighborhoods 
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Bivariate Analysis 
Bivariate analyses suggest significant positive associations (p≤0.05) of increased perceived land-
use diversity, ease of access, and esthetics, safety, and availability of pedestrian infrastructure 
with higher mental and physical health (Table 4-2). A college education or higher was found to 
be associated with lower mental health but improved physical health. Urban hukou holders were 
found to have lower physical health than their rural counterparts. Physical health also declined 
with increasing age. 

Table 4-2 Bivariate associations of socio-demographic and neighborhood variables with mental 
and physical health 

 Mental Health (MCS) Physical Health (PCS) 
Variable Beta (SE) p Beta (SE) p 
Femalea 0.08 (0.28) 0.781 -0.62 (0.71) 0.383 
Ageb 0.01 (0.01) 0.261 -0.22 (0.01) <0.001 
Urban Hukouc 0.08 (0.51) 0.879 -1.55 (0.54) 0.004 
Colleged -0.53 (0.57) 0.354 3.62 (0.48) <0.001 
Household Income (¥/month)e     
2000-3999 1.23 (0.62) 0.048 0.77 (0.64) 0.229 
4000-5999 0.75 (0.610 0.218 0.91 (0.63) 0.147 
6000+ 0.96 (0.58) 0.097 3.27 (0.59) <0.001 
Missing 3.08 (0.55) <0.001 1.61 (0.57) 0.005 
Neighborhood Type     
Lane/Courtyard (NH2) 1.73 (0.92) 0.059 1.11 (1.16) 0.335 
High-density high rise (NH3) -0.04 (0.66) 0.950 0.98 (0.52) 0.059 
Low-density high rise (NH4) -0.06 (0.68) 0.930 0.35 (0.61) 0.565 
Neighborhood Characteristics 
Land-use Diversity 1.03 (0.55) 0.060 2.26 (0.44) <0.001 
Ease of Access 3.14 (0.96) 0.001 0.93 (0.51) 0.068 
Street Connectivity 0.76 (0.34) 0.025 -0.10 (0.36) 0.772 
Residential Density 0.0003 (0.0016) 0.851 -0.0003 (0.0099) 0.728 
Esthetics 1.15 (0.58) 0.047 1.00 (0.35) 0.005 
Safety 1.69 (0.80) 0.035 0.64 (0.69) 0.351 
Pedestrian infrastructure 1.19 (0.46) 0.009 -0.11 (0.34) 0.739 
aReferent is male. 
bContinuous age variable. 
cReferent is an individual with rural hukou status (household registration). 
dCollege education or higher. 
eReferent is less than 2000 yuan per month group. 
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4.4.2 Multivariate Model Results  

Overall Model 
A population-averaged model without interactions was run for each of the seven neighborhood 
characteristic for mental (MCS) and physical (PCS) health, while controlling for confounders 
(age, sex, occupation, household income, education level, and hukou). Higher reported scores of 
pedestrian infrastructure, diversity of resources, ease of access, safety, esthetics, and street 
connectivity were found to be associated increased self-rated mental health (MCS) (Table 4-3). 
Higher reported scores of diversity of resources, ease of access, and esthetics were found to be 
associated with improved self-rated physical health (PCS) (Table 4-4).   

Neighborhood-specific Models 
While the full model found significant positive associations between perceived neighborhood 
characteristics and MCS and PCS, we observed through the neighborhood-specific models that 
these associations differed across the four types of neighborhoods. For example, a one point 
increase in perceived pedestrian infrastructure was significantly (p≤0.001) associated with a 2.01 
and 3.89 point increase in MCS in the lane/courtyard (NH2) and high-density high-rise (NH3) 
neighborhoods, while these associations were not statistically significant in other neighborhood 
types. The positive associations of pedestrian infrastructure, access, and safety with MCS were 
the highest in the high-density high-rise neighborhoods (NH3). Associations of neighborhood 
characteristics with PCS were smaller in magnitude and less significant than in the MCS models. 
The largest associations in the PCS models were seen in the newer high-rise (NH3 and NH4) 
neighborhoods.  

Regression model results for all covariates are available in Appendix D. 
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Table 4-3 Associations between perceived neighborhood characteristics and mental health-related quality of life (MCS) 

 No Interactionsa NH1 NH2 NH3 NH4 

 Betab  SE Beta SE Beta SE Beta SE Beta SE 

Walking 1.10* 0.49 0.21 0.60 2.01*** 0.23 3.89*** 0.88 1.30 0.92 

Diversity 1.22* 0.49 0.99 0.68 1.59* 0.71 2.36** 0.93 1.35 0.72 

Access 3.13*** 0.98 4.11** 1.46 0.97 0.83 7.00*** 0.80 2.87*** 0.53 

Safety 2.03** 0.69 2.78** 0.88 0.37 1.05 4.78** 1.58 0.64 0.85 

Esthetics 1.02* 0.49 0.26 0.80 2.29*** 0.44 -0.04 0.28 1.37* 0.64 

Streets 0.72* 0.36 1.03 0.59 0.29 0.50 0.32 0.59 0.76 0.68 

Density <0.001 0.003 -0.002 0.002 0.002 0.002 0.005* 0.002 <0.001 0.004 
*P≤0.05 ** P≤0.01 *** P≤0.001 
aUses data from all neighborhoods without considering interactions of neighborhood characteristics with type of neighborhood.  
bAll associations are adjusted for confounders  
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Table 4-4 Associations between perceived neighborhood characteristics and physical health-related quality of life (PCS) 

 Full Model NH1 NH2 NH3 NH4 

 Beta SE Beta SE Beta SE Beta SE Beta SE 

Walking 0.21 0.33 0.32 0.54 -0.13 0.26 1.80*** 0.45 <0.01 0.26 

Diversity 0.73* 0.30 0.46 0.50 1.08* 0.43 0.56* 0.23 1.62*** 0.31 

Access 2.06*** 0.63 3.24*** 0.39 -0.68 0.58 1.98*** 0.59 3.25*** 0.70 

Safety 0.61 0.43 0.37 0.19 1.18 1.08 3.80*** 0.92 -0.05 2.10 

Esthetics 1.02*** 0.27 1.12*** 0.31 0.69 0.57 1.46*** 0.19 1.18*** 0.12 

Streets 0.30 0.43 0.34 0.73 0.19 0.54 1.67*** 0.45 0.02 0.11 

Density -0.001 0.001 -0.002 0.002 <0.001 0.002 0.003*** 0.001 <-.001 0.002 
*P≤0.05 ** P≤0.01 *** P≤0.001 
aUses data from all neighborhoods without considering interactions of neighborhood characteristics with type of neighborhood.  
bAll associations are adjusted for confounders. 
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4.5 DISCUSSION 

4.5.1 Main Findings 

This cross-sectional study of Chinese adults in Xi’an, China found significant associations 
between an individual’s perceived neighborhood’s attributes and his/her mental- and physical-
health related quality of life. In particular, the positive associations of perceived neighborhood 
characteristics were the strongest in the new commodity housing neighborhoods.  

New Commodity Neighborhoods 

The overall model found that higher rated perceptions of a neighborhood’s pedestrian 
infrastructure, diversity of resources, ease of access, safety, esthetics, and street connectivity 
were significantly associated (p<0.05) with better mental health. However, these associations 
varied by type of neighborhood. The most surprising findings were the significance and the 
magnitude of associations in the high-density commodity neighborhoods (NH3) between 
neighborhood perceptions and mental-health related quality of life (MCS). For instance, on 
average an increase in a point in perceptions of access was found to be significantly associated 
(p<0.001) with 7.00 point increase in MCS. The magnitude of associations with perceptions of 
pedestrian infrastructure (3.89 points) and safety (4.78 points) in the high-density commodity 
neighborhoods (NH3) were also larger than significant associations seen in the other three types 
of neighborhoods.  

The stronger associations between each neighborhood perception variable and mental health 
could result from pride in home ownership, living in a newer neighborhood, and feelings of 
“gatedness” and exclusivity which has been documented in previous literature (S. Li, Zhu, and Li 
2012).  The lack of local social networks but a sense of pride in home ownership and in the 
neighborhood (S. Li, Zhu, and Li 2012) could boost quality of life, outweighing the lack of 
closer neighborly contacts found in the older neighborhoods. In contrast, lack of significant 
associations or smaller associations found in the older neighborhoods (NH1 and NH2) could 
result from other variables that more strongly influence mental health related quality of life, 
making neighborhood design less important. For instance, interactions and trust of neighbors 
were higher in the work-unit neighborhoods, indicating stronger local social networks in the 
older neighborhoods. Because of weaker social ties and trust with neighbors, these results 
indicate that built environmental perceptions could play a more significant role in determining 
mental health-related quality of life in these newer but still high-density neighborhoods.  

Work-unit Neighborhoods 

In the work units (NH1), increased access to and from the neighborhood was found to be 
significantly associated with both mental and physical health. As seen in Figure 4-2, many of the 
work-unit neighborhoods were built farther away from the city center within the old city walls 
because they required larger plots of land for the state-owned enterprise, housing, and other 
services. Because of the distance of these neighborhoods from the major commercial, 
entertainment, and cultural centers of the city, how accessible one’s neighborhood is to other 
parts of the city is associated with both mental and physical health. In the past, these 
neighborhoods were physically isolated but with growth in public bus systems, car ownership, 
and construction of the new Xi’an subway system, increased mobility around and connectedness 
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with the city could be viewed as desirable while limited accessibility could play a role in 
diminished mental health. Further, increased access could also be positively associated with 
better physical health if more trips are being taken using active transport such as walking to/from 
public transit or biking.   

Lane and Courtyard Neighborhoods 

Pedestrian infrastructure, diversity of neighborhood resources, and esthetics were found to be 
positively associated with mental health in lane/courtyard (NH2) neighborhoods. Because these 
neighborhoods are generally not as well-planned as the work units or the commodity housing, 
perceiving a more pleasant physical environment despite living in a dense and poorly planned 
neighborhood could indicate these individuals have a more positive affect which could influence 
them to respond more positively about their neighborhood, and therefore also have higher quality 
of life indicators. Because there is a wide geographical distribution of these neighborhoods 
across the city, we did not find significant associations of access to/from these neighborhoods 
with quality life, as we did in the work units which are further away from the city center.  

Comparison with other studies 

The few studies examining the relationships between built environment and HRQOL among the 
general population in residential settings have found mixed results. A study in Colombia found 
that land-use heterogeneity and increased park access were associated with improved HRQOL 
(Sarmiento et al. 2010). However, (Sallis et al. 2009) found that adults in higher-income 
neighborhoods in the United States had higher physical HRQOL but not mental HRQOL. They 
found no other significant associations with HRQOL by living in more walkable neighborhoods, 
although they did find walkability was associated with physical activity levels and lower BMI. 
Our study found that in the high-rise neighborhoods (NH3) that had higher median household 
incomes, walkability was associated with both higher mental and physical HRQOL, indicating a 
potentially stronger role of neighborhood in residents of the commodity housing neighborhoods.  

The differences in these results could be explained in part by the different population and social 
contexts studied, and the tools used to measure neighborhood attributes. In particular, the 
strength and magnitudes of associations of neighborhood attributes with HRQOL in the high-
income neighborhoods (NH3 and NH4) could indicate the stronger role of residential 
neighborhood on quality of life, while in the older neighborhoods (NH1 and NH2), other factors 
could be more important to quality of life than attributes of the built environment. It maybe that 
pride in home ownership and living in a desirable, higher status neighborhood contributes more 
to neighborhood satisfaction and general happiness in the newer commodity housing 
neighborhoods (S. Li, Zhu, and Li 2012). 

4.5.2 Limitations 

While significant associations between several neighborhood attributes and quality of life were 
found, this study was unable to explore the potential causal relationships between a 
neighborhood’s built environment and its residents’ quality of life. It is unclear if the 
neighborhood attributes have causal relationships with the residents’ quality of life or if healthier 
residents are self-selecting into neighborhoods with certain desirable characteristics. The median 
length of residence time within the sample population was 10 years with a mean of 14.8 years 
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(SD = 13.7 years). While the Chinese sample population may not as mobile as those studied in 
other countries, the issues of residential self-selection and whether or not the current 
neighborhood is causing the measured quality of life are still present in this study. Future studies 
could address this issue by using a longitudinal design. Although this study is cross-sectional, the 
ability to capture a range of types of neighborhoods (work units, lane/courtyard housing, 
commodity housing) provides a unique opportunity to observe urban development trends in a 
Chinese city across several decades of dramatic change. 

This study also relied on quota sampling to recruit subjects at the final stage of sampling due to 
logistical issues of access in the neighborhoods. While probability-based sampling methods such 
as systematic sampling would have been ideal, we matched on age and sex according to the 2010 
Census in an attempt to capture a population-representative sample for this study. 

In addition, this study relied on perceived rather than objective measures of built environment. 
Because a person with negative affect will tend to view their neighborhood and self-reported 
health more poorly, results from this study do not indicate potential impacts from changing built 
environments of these neighborhoods. While this study does not explore the reasons for why 
some individuals had negative perceptions and while some had more positive perceptions, it does 
point to the potential importance of improving negative perceptions of the environment for 
quality of life. 

Further, the pathways through which built environment could affect a person’s quality of life are 
numerous. This study does not investigate the indirect versus direct effects of the residential 
neighborhood’s design. Future analyses could include examining the role of social capital or how 
behaviors like physical activity or travel choices mediate the relationship between physical 
design and downstream quality of life.  

Finally, because this study relied on perceived neighborhood characteristics, despite the positive 
associations with perceived neighborhood characteristics and mental and physical–related quality 
of life, it is unclear how interventions to improve pedestrian infrastructure, for example, would 
increase one’s perception of walkability. We would need to better understand reasons why 
individuals rate the same neighborhood differently and if there are barriers to use. These 
differences could be a result of how different groups live in and use their neighborhoods.  
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4.6  CONCLUSIONS 

In general, higher walkability, easy access to/from a neighborhood, neighborhood esthetics, and 
diversity of resources within walking distance, as self-reported by residents, are associated with 
increased mental and physical-related quality of life in Xi’an, China. Around newer commodity 
housing complexes, creating walkable, esthetically pleasing neighborhoods with diverse 
resources has potential to improve mental and physical health. In work-unit complexes, ensuring 
these residents are connected to the other parts of the city through various transit options can be 
important for quality of life. Despite the limitations of a cross-sectional design, this study 
contributes to a body of literature with evidence that where we live plays a role in determining 
how well we live and provides urban planners with potential priorities for different types of 
neighborhoods in Chinese cities. 

This study improves upon the existing body of literature by assessing perceived characteristics of 
the built environment neighborhood, and by measuring both physical health as well as much less 
researched mental quality of life measures.  Although it relies on a cross-sectional design to 
studying associations between the built environment and health and is subject to self-selection 
issues, this study has employed systematic sampling of a representative urban population across 
varied types of neighborhoods that represent different stages of urban development.  Moreover, 
this study extends the built environment literature for China, which although has been 
experiencing rapid development, has been understudied.    
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Chapter 5 Multi-pollutant Exposures in Urban Neighborhoods and 
Associations with Physical Activity and Health 

 

5.1 OVERVIEW 

This chapter uses the predicted air pollution concentrations in Chapter 2 and applies them to 
epidemiological models examining the associations between physical activity and health 
outcomes across different multi-pollutant ambient air pollution environments. 

5.2 BACKGROUND 

5.2.1 Leisure-time physical activity (LTPA) and health 

Physical activity is associated with reduced risks of obesity, cardiovascular disease, hypertension, 
diabetes, and other chronic diseases (Fernhall, Borghi-Silva, and Babu 2015; US DHHS 2008). 
Physical activity has also been found to reduce stress, anxiety, and depression (Herring et al. 
2012; Penedo and Dahn 2005; US DHHS 2008). An individual’s total amount of physical 
activity is comprised of from his/her occupation related activities, active travel behaviors 
including walking or biking, and leisure-time activities. In particular, leisure-time physical 
activity (LTPA) is becoming more important in urbanized areas where physical activity 
contributions from occupations and active travel are decreasing as there is a shift away from 
labor-intensive occupations and reliance on motorized transportation increases (S. W. Ng et al. 
2014; Shu Wen Ng, Norton, and Popkin 2009). 

Despite the health benefits of physical activity, total physical activity levels are declining 
globally (S. W. Ng and Popkin 2012) and a third of adults do not attain recommended levels of 
physical activity for health benefits (Hallal et al. 2012). Between 1991 and 2006, total weekly 
physical activity levels in Chinese adults fell by 32%, with greatest reductions in work-related 
physical activities although the amount of LTPA has increased (Shu Wen Ng, Norton, and 
Popkin 2009). In a 2010 survey, nearly 84% of the surveyed population did not participate in any 
physical activities (Juan Zhang and Chaaban 2013). From 2012 to 2015 in an effort to prevent 
non-communicable diseases, the Chinese Center for Disease Control and Prevention aimed to 
increase the percent of population participating in regular exercise to 32%, although details of 
how to achieve this goal and what constitutes “regular” exercise were unclear (Lachat et al. 
2013). Physical inactivity has been estimated to contribute up to 19% of the risks associated with 
stoke, hypertension, cancer, type 2 diabetes, and coronary heart disease in China and be 
responsible for  $6.2 billion in associated medical costs (Juan Zhang and Chaaban 2013).  

With the decline in occupational physical activity and growing sedentary behaviors in the 
Chinese population, promoting LTPA, along with other dietary recommendations and active 
travel, is a key component of China’s public health program to improve health by preventing 
chronic diseases and their risk factors. 
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5.2.2 Multipollutant air pollution exposures as a potential effect modifier 

The trade-offs of promoting physical activity and potential risks from environmental exposures 
have yet to be explored in Chinese populations. In urban environments where air pollution levels 
are high, these health benefits could be significantly reduced and the efficacy of programs 
promoting LTPA would be overstated without simultaneously considering environmental 
exposures.  

As described in Chapter 2, poor air quality in China is a direct result of increased energy 
consumption from the industrial, real estate, and residential sectors. Participating in physical 
activities in these high pollution environments are concerning because physical activity increases 
minute ventilation (volumetric rate of air inhaled or exhaled) and uptake of pollutants into the 
lungs. Studies of subjects participating in physical activities and living near high pollution areas 
such as roadways have found that short-term exposures to these pollutants are associated with 
decreased lung function and heart rate variability (Weichenthal et al. 2011; Adar et al. 2007; H. 
Kan et al. 2007). Although a recent study from elderly residents in Denmark found long term 
traffic-related air pollution exposure does not moderate the effects of physical activity on 
mortality (Andersen et al. 2015), in China where the ambient urban air pollution levels are orders 
of magnitude higher than in European cities, exposure to ambient air quality could negate the 
benefits of physical activity or even lead to greater health risks, and thus should be explored. 

Further, because people are exposed to complex air pollution mixtures that vary by sources and 
atmospheric conditions, there has been a growing interest in assessing ambient air pollution as a 
more realistic mixture rather than single pollutants in air pollution management, regulation, and 
epidemiological studies. Several methods have been used in epidemiology studies to incorporate 
multi-pollutant exposures including interaction terms for pairs of pollutants in the same 
regression model or clustering pollutants based on biological mechanisms or sources (Billionnet, 
Sherrill, and Annesi-Maesano 2012; Dominici et al. 2010). However, these methods require large 
amounts of data and can be difficult to estimate when correlations between pollutants are high. 
Such studies have found associations of PM2.5 with total mortality were higher on days with 
increased contribution from traffic sources (Antonella Zanobetti et al. 2014) and associations of 
PM2.5 and cardiovascular hospital admission were significantly different when PM2.5 
composition varied (Antonella Zanobetti et al. 2009). 

This study considers the role of multi-pollutant (PM2.5, NO2, SO2, and O3) exposures at the 
neighborhood level. Because only cross-sectional data are available and PM2.5 composition data 
not yet available, we categorized neighborhoods according to types of air pollution mixtures 
based on these four criteria pollutants and then assessed the associations of LTPA with health 
outcomes. Results from this study could help direct how initiatives to promote active transit and 
LTPA can consider the modifying effects of ambient air pollution. 
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5.3 METHODS AND MATERIALS 

5.3.1 Physical Activity and Health Data 

Data collection methods from the 2013 survey of adults (n=1,608) in 20 neighborhoods of Xi’an, 
China have been described previously in Chapter 2. Briefly, data for this study came from a 
multi-stage cluster sample of adults (18 years old and older) in Xi’an, China that collected socio-
demographic information, perceived neighborhood characteristics, social capital, physical 
activity, diet, travel behaviors, health outcomes, and quality of life data. The study sample was 
drawn from the six urban districts, which include 6.5 million people and cover an area of 833 
km2. Human subject research approval was obtained from the University of California, Berkeley. 

Because of the decline in occupation-related physical activity in Chinese populations, this study 
focuses on leisure time physical activity (LTPA) as the exposure of interest. LTPA was 
determined from questions that asked about frequency and time spent by type of activity that 
were grouped as low, moderate, or vigorous, based on expected energy exertion. Low LTPA 
included walking and using exercise equipment in parks. Moderate LTPA included lifting 
weights, taichi, wushu, and ping-pong. High LTPA included soccer, running, tennis, basketball, 
volleyball, and badminton. 

The total time spent per activity type per week was calculated and used to rank activity levels for 
each subject in four categories (Table 5-1) (US DHHS 2008). Individuals with 150 or more 
minutes of moderate to vigorous physical activities (MVPA) per week were classified as having 
high LTPA. Individuals with less than 150 minutes of MVPA per week were classified as having 
a medium LTPA. And finally, individuals that had no MVPA but participated in other low 
exertion LTPA were classified as low LTPA. Individuals reporting no LTPA were classified as 
inactive.  

We examined the relationship between the LTPA levels and three outcomes of interest. The first 
outcome was based on the response to a survey question that asked the subject how frequently in 
the last 12 months, their lives had been impacted for a week or more due to health reasons. 
Responses were the following: 1) Frequently 2) Sometimes 3) Infrequently 4) Never 5) Don’t 
know. This variable (adverse health impact) was dichotomized by grouping “Frequently” and 
“Sometimes” respondents while grouping the others into a second group.  We also examined two 
other outcomes of interests: the mental health and physical health-related quality of life scores 
(MCS and PCS) from the SF-12 survey, as previously described in Chapter 4.  

Table 5-1 Leisure-time physical activity (LTPA) levels criteria 

LTPA Level Criteria (per week) a 

Inactive MVPA and LTPA = 0 minutes 

Low No MVPA but some LTPA > 0 minutes 

Medium  MVPA < 150 minutes  

High  150 ≤ MVPA  
aMVPA: moderate to vigorous physical activity 
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5.3.2 Neighborhood Air Pollution  

Short-term air pollution sampling across the six urban districts and land-use regression (LUR) 
modeling methods have been described previously (Chapter 2). Using the predicted air pollutant 
surfaces, the annual pollutant concentrations for NO2, SO2, O3, and PM2.5 were calculated at each 
of the 20 neighborhoods surveyed. Each neighborhood site was assigned an air pollutant 
concentration based on an average of the 30 m x 30 m resolution predictions from the LUR 
model that are within a 500 m buffer around each neighborhood.  

In addition to assigning to each neighborhood NO2, SO2, O3, and PM2.5 concentrations, we also 
considered the mixture of air pollutants for each neighborhood. We grouped neighborhoods 
based on similar exposures to levels of the four pollutants. First, using quartiles of the pollutant 
distributions across the 20 neighborhoods as cutoffs, pollutant concentrations for NO2, SO2, and 
O3 at each neighborhood were labeled as low (<25th percentile), medium low (25 to 50th 
percentile), medium high (50 to 75th percentile), or high (>75th percentile). Because of PM2.5 
concentrations were not as spatially variable, a 75th percentile cutoff was considered a “high” 
concentration.  

5.3.3 Statistical Analysis  

Population-averaged models using survey weights were used for all health outcomes to examine 
the associations between physical activity levels and each of the three outcomes of interest. A 
population-averaged model was selected due to the cross-sectional nature of the study (Hubbard 
et al. 2010). Confounders included age, sex, hukou, education, household income, current 
smoking status, occupations requiring physical labor, seasonal allergies, and type of 
neighborhood (work units, lane/courtyard, high-density high rise, or low-density high rise).   

We considered the associations between physical activity and the three health outcomes across 
different neighborhood-level air pollution. Neighborhood-level air pollution was assessed in the 
models in two ways: 1) single pollutant categories and 2) multi-pollutant mixtures. In the single 
pollutant categories, we ran the models stratifying by air pollutant category according to Table 
5-5. The medium low and medium high categories were combined into a single “medium” 
category for NO2, SO2, and O3.  In the multi-pollutant mixture models, the neighborhood was 
assigned a mixture category based on the combination of concentrations for the four pollutants. 
Neighborhoods were grouped into three categories of air pollution mixtures: 1) medium levels 
for all four pollutants, 2) High NO2 and SO2, Low O3, and 3) High PM2.5 and O3. 

All analyses were conducted in STATA 12.1. 
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5.4 RESULTS 

5.4.1 Descriptive statistics 

Survey Sample 
Most of the subjects (47.6%) had low LTPA levels with 14.9% (n=240) not reporting any LTPA 
(inactive). The high LTPA group comprised younger, more educated subjects, more men, and 
lower proportion of individuals who responded “Frequently” or “Sometimes” to having their 
lives affected by health problems lasting a week or longer (Table 5-2).  
 
Neighborhood Air Quality 
PM2.5, NO2, SO2, and O3 concentrations in the neighborhoods averaged 67.98 µg/m3 (SD: 10.44), 
30.65 ppb (SD: 2.99 ppb), 22.24 (SD: 2.43 ppb), and 32.21 ppb (SD: 5.18 ppb), respectively 
(Table 5-4). Pairwise correlations between the pollutants were moderately high with correlations 
coefficients (r) ranging from -0.65 to 0.58 (Figure 5-3). 

The cutoff points of categorizations for the mixtures analysis were the 25th, 50th, and 75th 
percentiles for NO2, SO2, and O3 (Table 5-5). Given the extreme right skewed nature of the 
distribution (Figure 5-2), PM2.5 was dichotomized into “high” (above 75th percentile) and “low” 
(below 75th percentile). Using this classification, three categories of air pollutant mixtures were 
created. Category A includes 9 neighborhoods and has pollutant levels that all fall within the 
medium low and medium high ranges. Category B includes 5 neighborhoods that were grouped 
together because of high NO2, low O3, and high SO2 concentrations.  Category C includes 6 
neighborhoods that have high PM2.5 and/or O3 concentrations (Figure 5-4). Spatially, Category C 
neighborhoods were the farthest from the city center while Category A neighborhoods were the 
most clustered around the city center (Figure 5-1). 
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Figure 5-1 Map of Xi’an neighborhoods by air pollution mixture category 
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Table 5-2 Descriptive statistics of sample by leisure-time physical activity level 

  By Leisure-time Physical Activity Level 

 Full Dataset Inactive Low LTPA Medium LTPA High LTPA 
# of Subjects (% ) 
 1608 240 (14.9) 766 (47.6) 221 (13.7) 381 (23.7) 

# Female (%) 
 809 (50.3) 105 (43.8)  448 (59.5) 111 (50.2) 145 (38.1) 

Age      
# Under 30 (%) 447 (27.8) 83 (34.6) 142 (18.5) 79 (35.8) 143 (37.5) 
# 30-55 (%) 769 (47.8) 120 (50.0) 357 (46.6) 123 (55.7) 169 (44.4) 
# 55+ (%) 
 392 (24.4) 37 (15.4) 267 (34.9) 19 (8.6) 69 (18.1) 

# Rural hukou (%) 
 219 (13.7) 47 (19.7) 86 (11.3) 29 (13.1) 57 (15.1) 

Median Household Income 
(¥/month) 
 

4,000 3,250 4,000 5,000 4,000 

College-level Education or Higher 588 (36.7) 79 (33.1) 224 (29.3) 123 (55.7) 162 (42.6) 
      
Outcomes of Interests      
Mean MCS (SD) 52.74 (7.16) 51.22 (8.18) 53.39 (6.82) 51.73 (6.89) 52.95 (7.15) 
      
Mean PCS (SD) 51.16 (7.34) 51.01 (8.26) 49.89 (7.70) 52.43 (5.97) 53.07 (6.09) 
      
Adverse health impacts (# reporting 
“Frequently” or “Sometimes” they 
have impact of week or more due to 
health reasons in last 12 months 
(%) 

159 (9.9) 24 (10.0) 95 (12.4) 17 (7.7) 23 (6.0) 
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Table 5-3 Descriptive statistics of sample by air pollution mixture category 

 Full Dataset Category A: Medium 
Levels for All Pollutants 

Category B:  
High NO2 SO2, Low O3 

Category C:  
High PM2.5 and O3 

# of Subjects (% ) 
 

1608 724 (45.0) 400 (24.9) 484 (30.1) 
# Female (%) 
 

809 (50.3) 468 (50.8) 201 (50.3) 240 (49.6) 
Age     
# Under 30 (%) 447 (27.8) 194 (26.8) 115 (28.8) 138 (28.5) 
# 30-55 (%) 769 (47.8) 247 (27.9) 190 (47.5) 232 (47.9) 
# 55+ (%) 
 

392 (24.4) 183 (25.3) 95 (23.8) 114 (23.6) 
# Rural hukou (%) 
 

219 (13.7) 67 (9.3) 63 (15.8) 89 (18.5) 
Median Household Income 
(¥/month) 
 

4,000 2,000 3,500 4,000 

College-level Education or Higher 
 

588 (36.7) 284 (39.4) 131 (32.8) 173 (35.8) 
Leisure-time Physical Activity     
Inactive 240 (14.9) 95 (13.1) 51 (12.8) 94 (19.4) 
Low LTPA 766 (47.6) 342 (47.2) 214 (53.5) 210 (43.4) 
Medium LTPA 221 (13.7) 107 (14.8) 53 (13.3) 61 (12.6) 
High LTPA 381 (23.7) 180 (24.9) 82 (20.5) 119 (24.6) 
     
Outcomes of Interests     
Mean MCS (SD) 52.74 (7.16) 52.66 (7.24) 52.57 (7.29) 53.00 (6.94) 
     
Mean PCS (SD) 51.16 (7.34) 50.48 (7.52) 51.24 (7.15) 52.10 (7.12) 
     
Adverse health impacts (# reporting 
“Frequently” or “Sometimes” they 
have impact of week or more due to 
health reasons in last 12 months (%) 

159 (9.9) 76 (10.5) 48 (12.0) 35 (7.23) 
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Table 5-4 Descriptive summary of predicted PM2.5, NO2, SO2, and O3 concentrations in 20 
neighborhoods in Xi'an 

 PM2.5 
(µg/m3) 

NO2 
(ppb) 

SO2 
(ppb) 

O3 
(ppb) 

Mean (SD) 67.98 (10.44) 30.65 (2.99) 22.24 (2.43) 32.21(5.18) 

Median 62.32 31.13 22.32 30.95 

Minimum 62.32 25.11 18.82 24.64 

Maximum 99.59 36.10 28.97 39.67 
 
 

 
 
Figure 5-2 Boxplots of predicted PM2.5, NO2, SO2, and O3 concentrations in 20 neighborhoods 
in Xi'an 

 

Figure 5-3 Pairwise correlations between PM2.5 (µg/m3), NO2, SO2, and O3 (ppb) concentrations 
in the 20 neighborhoods 
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Table 5-5 Pollutant concentration category cutoff points 

Concentration 
Category 

PM2.5
a 

(µg/m3) 
NO2 
(ppb) 

SO2 
(ppb) 

O3  
(ppb) 

Low N/A ≤ 29.03 ≤ 20.52 ≤ 27.57 

Medium Low N/A 29.02 – 31.13 20.52 – 22.32 27.57 – 30.95 

Medium High N/A 31.13 – 32.32 22.32 – 23.40 30.95 – 36.94 

High ≥66.52 ≥32.32 ≥23.40 ≥36.94 
aBecause of the extreme right skewed distribution PM2.5 was dichotomized into high and low using the 75th 
percentile as the cutoff.  
 

 

 

 

Figure 5-4 Pollutant concentrations by neighborhood for each of the mixture categories 
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Table 5-6 Types of neighborhoods by air pollution mixture categories 

  Air Pollution Mixture Category 

Neighborhood Type All 
Category A: 
Medium Levels 
for All Pollutants 

Category B:  
High NO2 and 
SO2, Low O3 

Category C:  
High PM2.5 and 
O3 

Work Unit (NH1) 6 3 0 3 

Lane/courtyard (NH2) 8 3 3 2 

High-density High Rise (NH3) 2 0 2 0 

Low-density High Rise (NH4) 4 3 0 1 

Total 20 9 5 6 
 

Table 5-7 Types of neighborhoods by single pollutant categories 

Pollutant 
Category 

Work Unit 
(NH1) 

Lane/courtyard 
(NH2) 

High-density 
High Rise (NH3) 

Low-density 
High Rise (NH4) Total 

PM2.5      
Low 3 6 2 4 15 
High 3 2 0 0 5 
      
NO2      
Low 5 2 1 2 10 
Medium 1 3 0 1 5 
High 0 3 1 1 5 
      
SO2      
Low 4 4 0 2 10 
Medium 2 1 0 2 5 
High 0 3 2 0 5 
      
O3      
Low 3 4 0 3 10 
Medium 0 3 2 0 5 
High 3 1 0 1 5 
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5.4.2 Associations of LTPA with week-long adverse health impacts, MCS, and PCS 

Adverse Health Impacts 
In the first analysis, we examined the association between different levels of leisure-time 
physical activity and the odds of the subject responding “frequently or sometimes” having 
adverse health impacts lasting a week or more in the last 12 months. Through stratification, the 
analysis allowed these associations to vary across types of neighborhoods and neighborhood 
pollution levels.  

For single pollutant models, we observed in the “low” PM2.5 category that increasing LTPA 
lowered the odds of reporting an adverse health impact. However, in the “high” PM2.5 category 
the odds were significantly increased with increasing LTPA (Table 5-8). In single pollutant 
models for NO2, SO2, and O3, the reduced odds of adverse health impact were the most 
significant in the commodity housing neighborhoods (NH3 and NH4), even in the medium and 
high pollutant categories.  

When stratifying by air pollution exposures across three categories (A, B, and C), we observed 
statistically significant (p<0.05) results in all four types of neighborhoods, which were not 
observed in the single-pollutant models (Table 5-12). In Category A (medium levels for PM2.5, 
NO2, SO2, and O3) areas, medium LTPA and high LTPA groups on average had lower odds of 
adverse impacts as compared to the odds of the inactive group, though no significant results were 
observed in the lane/courtyard neighborhoods (NH2). Medium LTPA groups had greater odds 
reductions than even the high LTPA group in the work-unit neighborhoods.  The lowered odds 
observed in the single-pollutant models in the low LTPA groups were not observed in Category 
A areas. Low-density high-rise neighborhoods in Category A (medium levels for PM2.5, NO2, 
SO2, and O3) had comparable reduction in odds of adverse health impacts on average as 
compared to the work units. In Category B (High NO2 and SO2, Low O3), low LTPA groups in 
the lane/courtyard neighborhoods had lowered odds than the inactive group. The greatest health 
benefits of physical activity were observed in the high-density high-rise neighborhoods (NH3) in 
Category B. In Category C (High PM2.5 and O3), while many of the results were not significant at 
the 0.05 level, we did observe the medium LTPA group in work-unit neighborhoods had 4.28 
times the odds of reporting adverse health impacts as compared to the inactive group.  

Health-related Quality of Life (MCS and PCS) 
In the PM2.5 only models, we observed statistically significant increases in MCS and PCS within 
increasing LTPA levels in the low PM2.5 category (Table 5-13 and Table 5-18). In the high PM2.5 
category, there was a statistically significant decrease (-1.03 points, p<0.05) in MCS in the high 
LTPA group as compared to the inactive group. We also observed decreases in PCS within 
increasing LTPA in the lane/courtyard neighborhoods in the high PM2.5 category. The increases 
in MCS were largest in magnitude in the commodity housing neighborhoods (NH3 and NH4) 
while the increases in PCS were greatest in the work-unit neighborhoods (NH1). 

In the NO2 only models, the increases in MCS and PCS with increasing LTPA were also 
statistically significant, in the low and high NO2 areas (Table 5-14 and Table 5-19). However in 
the medium NO2 area, there were statistically significant decreases in MCS and PCS with 
increasing LTPA in the work-unit (NH1) and the lane/courtyard (NH2) neighborhoods.  
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In the SO2 only models, increasing LTPA was significantly associated with increased MCS and 
PCS in the low and medium SO2 categories, but not in the high SO2 category (Table 5-15 and 
Table 5-20). In the O3 only models, there were significant increases in MCS and PCS even in the 
high O3 areas, where the greatest increases were in the low-density high-rise (NH4) 
neighborhoods (Table 5-16 and Table 5-21). 

In the categorical-mixture models, we observed statistically (p<0.05) significant increases in 
MCS with increased physical activity levels in Category A and B areas (Table 5-17). In Category 
C, increases in MCS were diminished or not statistically significant with increasing LTPA, 
except in the low-density high-rise (NH4) neighborhoods. We also observed that with increase 
LTPA, PCS increased in Category A areas while results were not statistically significant in 
Category B, except for increased PMCS for the high LTPA group in high-density high-rise 
neighborhoods (NH3) (Table 5-22).  In Category C areas, the increases in PCS associated with 
LTPA in the low-density high-rise neighborhoods were still significant though smaller in 
magnitude, as compared to those in Category A. In the lane/courtyard neighborhoods, there was 
also a significant decrease in PCS in the low LTPA as compared to the inactive group. 

Categorical air pollution mixture regression model results for all covariates are in Appendix E.
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Table 5-8 Associations of leisure-time physical activity (LTPA) and adverse health impact across categories of PM2.5 concentration 

  By Type of Neighborhood 

 Pooled Work Unit (NH1) Lane/Courtyard 
(NH2) 

High-Density High 
Rise (NH3) 

Low-Density High 
Rise (NH4) 

Physical Activitya  ORb SE OR SE OR SE OR SE OR SE 
Low PM2.5           

Low LTPA 0.69 0.21 0.70 0.20 0.76 0.25 0.48* 0.17 0.52 0.22 
Medium LTPA 0.58 0.16 0.70 0.25 0.76 0.38 0.48 0.20 0.52* 0.17 

High LTPA 0.32** 0.12 0.45* 0.16 0.49 0.25 0.31*** 0.11 0.34* 0.16 

High PM2.5           
Low LTPA 1.37 1.14 1.43 1.35 1.21 0.84 -- -- -- -- 

Medium LTPA 4.75*** 1.59 4.21*** 1.85 3.55 2.82 -- -- -- -- 
High LTPA 4.80** 2.62 3.61 3.09 3.04 3.74 -- -- -- -- 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-9 Associations of leisure-time physical activity (LTPA) and adverse health impact across categories of NO2 concentration 

   By Type of Neighborhood 
 Pooled Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  ORb SE OR SE OR SE OR SE OR SE 
Low NO2           

Low LTPA 0.80 0.22 0.88 0.21 0.64 0.28 0.33* 0.17 0.66 0.33 
Medium LTPA 0.80 0.42 0.72 0.33 0.52 0.26 0.27* 0.14 0.54 0.30 

High LTPA 1.24 0.74 0.90 0.19 0.65* 0.12 0.33*** 0.08 0.67 0.19 

Medium NO2           
Low LTPA 2.63 3.66 7.69 11.30 3.11 3.58 -- -- 1.51 2.55 

Medium LTPA 8.35*** 6.78 29.09*** 21.85 11.77*** 8.15 -- -- 5.71* 4.59 
High LTPA 0.37 0.79 1.58 1.71 0.64 0.85 -- -- 0.32 0.39 

High NO2           
Low LTPA 0.61*** 0.09 -- -- 0.62* 0.12 0.86 0.14 0.46*** 0.08 

Medium LTPA 1.06 0.26 -- -- 1.12 0.43 1.55 0.36 0.83 0.17 
High LTPA 0.22 0.22 -- -- 0.23 0.26 0.32 0.29 0.17* 0.15 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-10 Associations of leisure-time physical activity (LTPA) and adverse health impact across categories of SO2 concentration 

   By Type of Neighborhood 
 Pooled Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  ORb SE OR SE OR SE OR SE OR SE 
Low SO2           

Low LTPA 0.86 0.26 1.06 0.27 0.56 0.26 -- -- 0.73 0.38 
Medium LTPA 1.14 0.57 0.86 0.42 0.46 0.29 -- -- 0.59 0.33 

High LTPA 1.41 0.88 0.62 0.25 0.33* 0.18 -- -- 0.43 0.20 

Medium SO2           
Low LTPA 0.49* 0.17 0.61* 0.14 0.56** 0.12 -- -- 0.24*** 0.08 

Medium LTPA 0.78 0.55 1.41 1.73 1.30 1.42 -- -- 0.56 0.55 
High LTPA 0.25 0.27 0.68 0.23 0.63 0.27 -- -- 0.27* 0.27 

High SO2           
Low LTPA 1.63 0.90 -- -- 1.79 0.96 0.94 0.61 -- -- 

Medium LTPA 1.26 0.94 -- -- 1.78 1.02 0.93 0.45 -- -- 
High LTPA 0.96 0.59 -- -- 1.77 1.69 0.93 0.57 -- -- 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-11 Associations of leisure-time physical activity (LTPA) and adverse health impact across categories of O3 concentration 

   By Type of Neighborhood 
 Pooled Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  ORb SE OR SE OR SE OR SE OR SE 
Low O3           

Low LTPA 1.38 0.53 1.24 0.36 1.52 0.73 -- -- 1.35 0.66 
Medium LTPA 0.60 0.25 0.64 0.27 0.78 0.50 -- -- 0.69 0.35 

High LTPA 0.59 0.22 0.71 0.37 0.86 0.66 -- -- 0.77 0.46 

Medium O3           
Low LTPA 0.36* 0.17 -- -- 0.40 0.19 0.19*** 0.09 -- -- 

Medium LTPA 0.58 0.44 -- -- 0.84 0.56 0.40* 0.18 -- -- 
High LTPA 0.33 0.23 -- -- 0.60 0.46 0.28* 0.15 -- -- 

High O3           
Low LTPA 0.59 0.26 1.24 1.04 0.14*** 0.03 -- -- 0.29 0.29 

Medium LTPA 2.04 1.99 0.53*** 0.05 0.06** 0.06 -- -- 0.13*** 0.02 
High LTPA 1.14 1.19 0.05 0.10 0.01 0.02 -- -- 0.01* 0.02 

*P≤0.05    ** P≤0.01   ***P≤0.001 
a Reference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-12 Associations of leisure-time physical activity (LTPA) and adverse health impact: categorical mixture models 

  By Type of Neighborhood 

 Pooled Work Unit (NH1) Lane/Courtyard 
(NH2) 

High-Density High 
Rise (NH3) 

Low-Density High 
Rise (NH4) 

Physical Activitya  ORb SE OR SE OR SE OR SE OR SE 
 
Category A: Medium Levels 
Low LTPA 0.88 0.31 0.84 0.28 1.01 0.43 -- -- 0.84 0.42 
Medium LTPA 0.41*** 0.11 0.47** 0.14 0.56 0.22 -- -- 0.46* 0.18 
High LTPA 0.52*** 0.11 0.66** 0.09 0.79 0.15 -- -- 0.65 0.20 

 
Category B: High NO2 and SO2, Low O3 
Low LTPA 0.44*** 0.09 -- -- 0.47*** 0.09 0.28*** 0.06 -- -- 
Medium LTPA 0.51 0.27 -- -- 0.63 0.31 0.38*** 0.11 -- -- 
High LTPA 0.19* 0.13 -- -- 0.30 0.27 0.18** 0.12 -- -- 

 
Category C: High PM2.5 and O3 
Low LTPA 0.95 0.53 1.67 1.45 1.39 0.96 -- -- 0.42 0.43 
Medium LTPA 2.92 2.19 4.28* 2.87 3.56 2.35 -- -- 1.08 0.89 
High LTPA 1.73 1.46 3.06 1.93 2.54 2.27 -- -- 0.77 0.41 
*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-13 Associations of leisure-time physical activity (LTPA) and mental health (MCS) across categories of PM2.5 concentrations 

  By Type of Neighborhood 

 No Interaction Work Unit (NH1) Lane/Courtyard 
(NH2) 

High-Density High 
Rise (NH3) 

Low-Density High 
Rise (NH4) 

Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
Low PM2.5           

Low LTPA 3.06*** 0.75 3.08*** 0.75 2.95*** 0.76 2.98*** 0.82 3.38*** 0.84 
Medium LTPA 2.37*** 0.62 2.21*** 0.65 2.08** 0.76 2.11** 0.75 2.51*** 0.69 

High LTPA 3.17*** 0.54 2.82*** 0.54 2.69*** 0.67 2.72*** 0.57 3.12*** 0.60 

High PM2.5           
Low LTPA 0.41 0.80 0.32 1.00 0.45 0.79 -- -- -- -- 

Medium LTPA 0.59 1.53 0.60 1.55 0.73 1.45 -- -- -- -- 
High LTPA -1.03* 0.48 -0.91 0.51 -0.78 0.62 -- -- -- -- 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-14 Associations of leisure-time physical activity (LTPA) and mental health (MCS) across categories of NO2 concentration 

   By Type of Neighborhood 
 No Interaction Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
Low NO2           

Low LTPA 2.37*** 0.71 2.32** 0.75 2.48*** 0.57 3.16*** 0.64 3.05*** 0.67 
Medium LTPA 2.63** 1.05 2.58** 0.98 2.73** 0.89 3.42*** 0.99 3.31*** 0.94 

High LTPA 1.11 0.89 1.09 0.63 1.25* 0.58 1.93*** 0.54 1.82** 0.61 

Medium NO2           
Low LTPA -1.07 0.69 -1.80* 0.77 -0.95 0.75 -- -- -0.20 0.80 

Medium LTPA -1.95 1.00 -2.88** 1.05 -2.03 1.08 -- -- -1.28 1.01 
High LTPA 0.54 0.60 -0.75*** 0.15 0.10 0.29 -- -- 0.85*** 0.21 

High NO2           
Low LTPA 3.98*** 0.75 -- -- 3.95*** 0.71 3.73*** 1.17 4.21*** 0.98 

Medium LTPA 1.75* 0.86 -- -- 1.69 0.88 1.47 0.92 1.96* 0.86 
High LTPA 4.00*** 0.60 -- -- 3.88*** 0.94 3.66*** 0.35 4.15*** 0.54 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-15 Associations of leisure-time physical activity (LTPA) and mental health (MCS) across categories of SO2 concentration 

   By Type of Neighborhood 
 No Interaction Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
Low SO2           

Low LTPA 1.98*** 0.50 1.82*** 0.54 2.40*** 0.48 -- -- 2.53*** 0.43 
Medium LTPA 2.16* 1.09 2.41* 1.13 2.99** 1.13 -- -- 3.12** 1.03 

High LTPA 0.64 0.75 1.34 0.73 1.92* 0.92 -- -- 2.05** 0.78 

Medium SO2           
Low LTPA 3.37*** 0.91 3.30** 1.06 3.72*** 0.77 -- -- 3.93*** 0.99 

Medium LTPA 0.97 1.68 0.98 1.61 1.40 1.24 -- -- 1.61 1.47 
High LTPA 3.83*** 0.67 3.78*** 0.32 4.20*** 0.38 -- -- 4.41*** 0.37 

High SO2           
Low LTPA -0.26 1.43 -- -- -0.26 1.44 -0.18 1.70 -- -- 

Medium LTPA 0.06 0.50 -- -- 0.05 0.52 0.12 0.47 -- -- 
High LTPA 0.18 0.61 -- -- 0.14 0.59 0.21 0.68 -- -- 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-16 Associations of leisure-time physical activity (LTPA) and mental health (MCS) across categories of O3 concentration 

   By Type of Neighborhood 
 No Interaction Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
Low O3           

Low LTPA 1.05 1.48 1.69 1.31 0.89 1.27 -- -- 1.61 1.46 
Medium LTPA 0.98 0.98 1.09 0.63 0.30 0.64 -- -- 1.02 0.81 

High LTPA 1.14 1.02 0.80 0.65 <0.01 0.74 -- -- 0.72 0.71 

Medium O3           
Low LTPA 2.87 1.69 -- -- 2.88 1.65 2.83 1.84 -- -- 

Medium LTPA 2.26* 0.78 -- -- 2.29** 0.78 2.24** 0.79 -- -- 
High LTPA 2.00 1.15 -- -- 2.05 1.11 2.01 1.13 -- -- 

High O3           
Low LTPA 1.08** 0.41 0.98* 0.44 1.68*** 0.33 -- -- 2.82*** 0.46 

Medium LTPA 0.93 1.64 1.21 1.75 1.91 1.67 -- -- 3.05 1.90 
High LTPA -0.21 0.89 0.38 0.57 1.08 0.62 -- -- 2.21*** 0.44 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-17 Associations of leisure-time physical activity (LTPA) and mental health (MCS): categorical mixture models 

  By Type of Neighborhood 

 No Interaction Work Unit (NH1) Lane/Courtyard 
(NH2) 

High-Density High 
Rise (NH3) 

Low-Density High 
Rise (NH4) 

Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
 
Category A: Medium Levels 
Low LTPA 3.22*** 0.93 3.30*** 0.86 2.92*** 0.89 -- -- 3.43*** 1.01 
Medium LTPA 2.81*** 0.78 2.54*** 0.70 2.15** 0.81 -- -- 2.66** 0.84 
High LTPA 2.69*** 0.74 2.10*** 0.56 1.72** 0.64 -- -- 2.23*** 0.68 

 
Category B: High NO2 and SO2,Low O3 
Low LTPA 3.08* 1.37 -- -- 3.17** 1.22 2.69 1.71 -- -- 
Medium LTPA 2.11** 0.82 -- -- 2.41** 0.87 1.93* 0.89 -- -- 
High LTPA 3.15*** 0.97 -- -- 3.68*** 0.90 3.21*** 0.64 -- -- 

 
Category C: High PM2.5 and O3 
Low LTPA 0.40 0.71 0.27 0.87 0.50 0.69 -- -- 1.97* 0.99 
Medium LTPA 0.32 1.50 0.13 1.58 0.36 1.45 -- -- 1.83 1.72 
High LTPA -0.50 0.71 -0.78 0.49 -0.55 0.62 -- -- 0.92* 0.39 
*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-18 Associations of leisure-time physical activity (LTPA) and physical health (PCS) across categories of PM2.5 concentrations 

  By Type of Neighborhood 

 No Interaction Work Unit (NH1) Lane/Courtyard 
(NH2) 

High-Density High 
Rise (NH3) 

Low-Density High 
Rise (NH4) 

Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
Low PM2.5           

Low LTPA 2.14*** 0.48 2.60*** 0.49 1.61* 0.63 1.54* 0.64 2.44 0.62 
Medium LTPA 2.20*** 0.52 2.10*** 0.44 1.11* 0.48 1.04* 0.47 1.94 0.47 

High LTPA 3.36*** 0.69 2.71*** 0.64 1.71** 0.64 1.65** 0.52 2.55 0.51 

High PM2.5           
Low LTPA -0.62 0.44 -0.16 0.34 -0.86** 0.28 -- -- -- -- 

Medium LTPA 0.86 0.91 0.76 0.77 0.06 0.74 -- -- -- -- 
High LTPA 1.13*** 0.31 0.39 0.23 -0.30* 0.14 -- -- -- -- 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-19 Associations of leisure-time physical activity (LTPA) and physical health (PCS) across categories of NO2 concentration 

   By Type of Neighborhood 
 No Interaction Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
Low NO2           

Low LTPA 1.28* 0.57 1.41* 0.61 0.55 0.52 0.88 0.54 1.00 0.67 
Medium LTPA 2.74*** 0.64 2.16*** 0.59 1.29 0.67 1.63** 0.59 1.74* 0.81 

High LTPA 3.09*** 0.55 1.80*** 0.51 0.93 0.56 1.27** 0.43 1.38* 0.55 

Medium NO2           
Low LTPA -1.10*** 0.14 -1.61*** 0.19 -0.93*** 0.15 -- -- 0.28* 0.13 

Medium LTPA -0.62 0.34 -1.50*** 0.31 -0.82 0.45 -- -- 0.39 0.37 
High LTPA 0.41 0.62 -1.09*** 0.21 -0.41 0.30 -- -- 0.80** 0.28 

High NO2           
Low LTPA 2.14*** 0.66 -- -- 2.01** 0.67 1.69*** 0.41 2.89*** 0.57 

Medium LTPA 0.74 0.62 -- -- 0.49 0.52 0.17 0.52 1.36* 0.57 
High LTPA 2.68*** 0.76 -- -- 2.21** 0.70 1.90*** 0.38 3.09*** 0.49 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-20 Associations of leisure-time physical activity (LTPA) and physical health (PCS) across categories of SO2 concentration 

   By Type of Neighborhood 
 No Interaction Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
Low SO2           

Low LTPA 1.06* 0.50 1.29* 0.56 0.42 0.49 -- -- 0.85 0.53 
Medium LTPA 2.17* 0.90 1.68* 0.85 0.81 0.88 -- -- 1.24 0.86 

High LTPA 2.69*** 0.34 1.51*** 0.32 0.64** 0.25 -- -- 1.07*** 0.31 

Medium SO2           
Low LTPA 1.33 0.71 1.39 0.72 -0.06 1.17 -- -- 1.53 0.88 

Medium LTPA 2.78* 1.25 1.43 0.90 -0.02 0.84 -- -- 1.57* 0.75 
High LTPA 4.55*** 1.12 1.69** 0.54 0.24 0.88 -- -- 1.83*** 0.55 

High SO2           
Low LTPA -0.26 0.63 -- -- -0.27 0.63 -0.32 0.61 -- -- 

Medium LTPA 0.47 0.59 -- -- 0.48 0.56 0.43 0.74 -- -- 
High LTPA 0.04 0.59 -- -- 0.07 0.69 0.02 0.52 -- -- 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-21 Associations of leisure-time physical activity (LTPA) and physical health (PCS) across categories of O3 concentration 

   By Type of Neighborhood 
 No Interaction Work Unit (NH1) Lane/Courtyard 

(NH2) 
High-Density High 

Rise (NH3) 
Low-Density High 

Rise (NH4) 
Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
Low O3           

Low LTPA 0.43 0.85 1.59** 0.56 0.12 0.61 -- -- 1.08 0.77 
Medium LTPA 0.91 0.95 1.20* 0.54 -0.27 0.34 -- -- 0.69 0.50 

High LTPA 1.96 1.19 1.49* 0.58 0.02 0.34 -- -- 0.97* 0.41 

Medium O3           
Low LTPA 1.56* 0.76 -- -- 1.55 0.80 1.62* 0.70 -- -- 

Medium LTPA 1.22 1.03 -- -- 1.17 1.01 1.25 1.05 -- -- 
High LTPA 1.38* 0.64 -- -- 1.29 0.94 1.37* 0.68 -- -- 

High O3           
Low LTPA 0.27 0.62 0.22 0.59 0.42 0.58 -- -- 1.28* 0.62 

Medium LTPA 2.40** 0.87 2.37** 0.84 2.57** 0.86 -- -- 3.43*** 1.00 
High LTPA 2.51*** 0.77 2.45*** 0.32 2.65*** 0.32 -- -- 3.51*** 0.34 

*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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Table 5-22 Associations of leisure-time physical activity (LTPA) and physical health (PCS): categorical mixture models 

  By Type of Neighborhood 

 Full Model Work Unit (NH1) Lane/Courtyard 
(NH2) 

High-Density High 
Rise (NH3) 

Low-Density High 
Rise (NH4) 

Physical Activitya  Betab SE Beta SE Beta SE Beta SE Beta SE 
 
Category A: Medium Levels 
Low LTPA 2.31*** 0.62 2.65*** 0.64 1.52 0.80 -- -- 2.22** 0.92 
Medium LTPA 2.36*** 0.73 1.90*** 0.46 0.77* 0.37 -- -- 1.47** 0.51 
High LTPA 3.87*** 0.81 2.71*** 0.49 1.58*** 0.39 -- -- 2.27*** 0.41 
 
Category B: High NO2 and SO2,Low O3 
Low LTPA 1.45 0.80 -- -- 1.49 0.79 1.30 0.73 -- -- 
Medium LTPA 1.34 0.97 -- -- 1.45 0.92 1.26 1.08 -- -- 
High LTPA 1.35 0.75 -- -- 1.57 0.85 1.38* 0.67 -- -- 
 
Category C: High PM2.5 and O3 
Low LTPA -0.44 0.44 0.12 0.39 -0.71** 0.27 -- -- 1.12** 0.35 
Medium LTPA 0.92 0.99 0.63 0.82 -0.20 0.85 -- -- 1.63 0.95 
High LTPA 1.58** 0.53 0.35 0.33 -0.47 0.34 -- -- 1.36*** 0.26 
*P≤0.05    ** P≤0.01   ***P≤0.001 
aReference is inactive group. 
bAll associations have been adjusted for confounders. 
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5.5 DISCUSSION 

5.5.1 Main Findings 

This study examined the association among physical activity levels, adverse health, and quality 
of life across differential residential air pollution exposures. We included neighborhood air 
quality in the models three ways to determine which pollutants were associated with variations in 
health benefits of physical activity. We were primarily interested in the results from the 
categorized air pollution mixture models but we also included the single-pollutant models for 
comparison because in some studies often data from only one pollutant are available. Although 
the pollutants were correlated, we also included the four pollutants in one model to see if the 
results were consistent.  

Impacts on life due to poor health 

We found evidence that on average, physical activity was associated with decreased odds of 
adverse health impact, but this trend could be reversed in high PM2.5 and high O3 environments. 
In Category A areas where ambient PM2.5, NO2, SO2, and O3 concentrations were classified as 
“medium”, individuals participating in more leisure-time physical activity (LTPA) in the 
medium to high LTPA groups on average had lower odds of reporting adverse health impacts, as 
compared to those who were inactive. The low LTPA groups did not have reduced odds of 
reporting adverse impacts. These results are consistent with the literature citing health benefits of 
LTPA on general health and wellness. The results are also consistent with general public health 
guidelines that recommend at least 150 minutes of moderate-level (or 75 minutes of vigorous-
level) of physical activity weekly to benefit health. This guideline corresponds to the medium 
and high LTPA groups in this study, in which we observed significant health benefits. Across the 
type of neighborhoods in Category A, only significant differences in the odds of reporting 
adverse health impacts were seen in the work unit (NH1) and low-density high-rise (NH4) 
neighborhoods where the health benefit was primarily in the medium LTPA group.  

In Category B (high NO2 and SO2, low O3), the reduction in odds of adverse health effects, 
especially in the high LTPA group (OR =0.19), was slightly larger than in Category A, as 
compared to the inactive group. In addition, some physical activity (low LTPA) is health 
beneficial (OR = 0.44) in the pooled model. However, despite the reduced odds of adverse health 
impacts in Category B neighborhoods, we do not believe the elevated NO2 and SO2 levels are 
health protective. Because the PM2.5 levels are similar in Categories A and B, the increased 
health benefit could result from lowered O3 levels in Category B, despite elevated levels of NO2 
and SO2. In both Categories A and B, the PM2.5 levels for neighborhoods were approximately 
around 62 µg/m3. We hypothesize in Category B, the health benefits are actually obtained from 
decreased concentrations of PM2.5 rather than O3, which our exposure assessment from our land-
use regression models was unable to capture. This limitation of our land-use regression models 
gives right-skewed PM2.5 predictions for Xi’an and limited variability in concentrations at the 
lower end  and made it impossible to differentiate the PM2.5 levels between neighborhoods in 
these two categories. The greatest benefit from physical activity was observed in the high-density 
high-rise (NH3) neighborhoods where the OR ranged from 0.18 to 0.28. This difference as 
compared to the results from the work-unit and lane/courtyard neighborhoods could be explained 
by other forms of physical activity that were not included in this analysis. Our study focused on 
self-reported LTPA and did not compare travel behaviors in each type of neighborhood. If 
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individuals in the work units and lane/courtyard neighborhoods participated in more active 
transportation modes (e.g., walking, biking, and public transit) as compared to less active ones 
such as driving which could be more prevalent in the high-density high-rise neighborhoods, the 
benefits from LTPA would be less apparent. 

In addition, while most of the results were not significant at the 0.05 level, in the high PM2.5 and 
high O3 group (Category C), the direction of the results suggested that increasing levels of 
physicals activity may be associated with adverse health impacts, indicating the need to further 
explore the role of both PM2.5 and O3 in health outcomes. We did observe that the medium LTPA 
group in the work-unit neighborhoods had 4.28 the odds of reporting adverse health impacts. In 
this category, there was greater variability of PM2.5 concentrations, which were correlated with 
O3 levels (r = 0.58). Therefore, it is conceivable in Category B areas, the lower O3 levels could 
correlate with lower PM2.5 levels, which could be a potential reason why the health benefits of 
physical activity are even greater in Category B. The lack of significant results in Category C 
could result from lack of power to detect significant differences, with only 23 adults (6%) 
reporting “frequently” or “sometimes” having impacts due to health.  

Health-related quality of life  

We also examined the relationship between physical activity levels and quality of life. In general, 
we saw that increasing physical activity was associated with higher quality of life scores for both 
mental and physical health. These results are coherent with the literature that has found quality of 
life and health benefits of physical activity. However, we also found evidence that high PM2.5 
and high O3 environments could reduce the quality of life benefits obtained from physical 
activity. 

In both mental and physical models, Category C results were less significant or smaller in 
magnitude than those observed in Category A and B, especially in the low-density high-rise 
neighborhoods. The lack of significant results and reduction in health benefits of physical 
activity could result from the increased PM2.5 and O3 levels in Category C areas. The presence of 
statistically significant results in low-density high-rise neighborhoods in Category C 
demonstrates that despite the elevated PM2.5 and O3, the quality of life benefits of physical 
activity could outweigh the potential health risks of poor ambient air pollution. However, health 
risks from elevated PM2.5 and O3 are potentially more significant in the lane/courtyard 
neighborhoods where physical activity actually may do more harm than benefit, as seem from 
the 0.71 point decrease in PCS in the low LTPA group.  

In the mental health model, the quality of life benefits of physical activity were only statistically 
significant in the low-density high-rise neighborhoods in Category C. As described in Chapter 4, 
these neighborhoods are newer neighborhoods with lower levels of trust among neighbors. As a 
result of the weaker social ties in the neighborhood, residents may derive less social and mental 
support from these networks as residents of the other neighborhood do. Therefore, residents with 
higher mental health in the low-density high-rise neighborhoods would have to obtain this 
support from other sources, such as physical activity. The mental health benefits of physical 
activity for residents of these neighborhoods seem to outweigh the potential health risks of 
elevated PM2.5 and O3 in the neighborhood. However, as with the other two health outcomes, the 
benefits are smaller than in Category A where PM2.5 and O3 levels are lower.  
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Categorical mixture versus single pollutant models 

We found the single pollution models had inconsistent results in terms of significant tests and 
magnitude across the neighborhoods though there is evidence that generally, increasing physical 
activity is associated with improved health outcomes. The inconsistent results among the two 
types of models – single-pollutant and categorical-mixtures –further highlight the issues of only 
using single pollutants as proxies of air pollution mixtures. In this study, single pollutants were 
determined to be poor proxies of mixtures of pollutants. While we found significant results 
across our three air pollution mixture categories, based on our results across the three categories 
of mixtures, PM2.5 could be the main pollutant that contributes most to the reductions in the 
health benefits associated with increasing levels of leisure-time physical activity.  

5.5.2 Limitations 

Exposure misclassification was possible at the individual and neighborhood levels. We could 
improve our measures of physical activity where we relied solely on self-reported measures 
because some individuals may over report physical activity levels. But in a large study with over 
1,600 adults, personal monitoring of physical activity would have been cost-prohibitive. In 
addition, we focused on leisure-time physical activity rather than total physical activity which 
includes occupational, travel, and domestic activities. Although labor-intensive occupations were 
included as a confounder in the models, inclusion of active transit and domestic activities could 
be areas of future work. In addition, the cross-sectional design of the study may misclassify some 
individuals into an incorrect neighborhood air pollution category if they have recently moved.  

Improved exposure assessment methods could also provide us with more conclusive results 
regarding the role of PM2.5 in modifying the health benefits of physical activity. First, the data 
were collected at the residential neighborhood level which does not take into account time spent 
in other environments and other exposures. However, our models attempt to remedy this 
limitation by including occupational exposures as a confounder. Also, the PM2.5 land-use 
regression models could be improved to provide more variability across the 20 neighborhoods. 
While the models are limited by the available data available – typically included data such as 
traffic volumes and land use were unavailable for Xi’an – LUR models for PM2.5 could 
potentially be improved by including better measures of land use rather than just including 
measures of greenness, wetness, and brightness. Because many sources of PM2.5 exist, improved 
urban land-use classification would benefit especially in a city like Xi’an where development has 
led to very different types of neighborhoods with different source profiles. While our air 
pollution sampling attempted to capture this variability, having only 19 sites, due to limitations 
of equipment availability and human resources, was most likely insufficient for a large diverse 
city like Xi’an.  

In addition, future studies could increase sample sizes within neighborhoods and number of 
neighborhoods to capture each of the four types within the three air pollution categories. In this 
study, we were unable to assess across the four types of neighborhoods within the same air 
pollution category.  
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5.6 CONCLUSIONS 

We found that increasingly levels of weekly leisure-time physical activity were associated with 
reduced odds of adverse health impacts and higher mental and physical-related quality of life. 
However, the health and quality of life benefits of physical activity were reduced in areas where 
ambient concentrations of PM2.5 and O3 were elevated. In addition, the physical health benefits 
of physical activity are potentially greatest in the new high-rise neighborhoods while the mental 
health benefits of physical activity are greatest in the poorer and older lane/courtyard 
neighborhoods. 
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Chapter 6 Conclusions 
 

6.1 SUMMARY OF MAJOR FINDINGS 

This dissertation explored potential linkages between urban development and health in Chinese 
cities. In particular, the associations between the “natural” and built environments and health 
were explored. Also explored was how the natural environment may modify the associations of 
the built environment with health. 

Poor air quality is a public health concern in Xi’an but land-use regression modeling methods 
and new sensor technologies could assist with environmental management in rapidly 
changing and resource-limited areas 
In Chapter 2, air pollution models were built to explore the spatial variations in PM2.5, SO2, NO2, 
and O3 concentrations in Xi’an. Intra-urban models for these pollutants were previously 
unavailable, but this chapter demonstrated the feasibility of using short-term sampling campaigns 
in land-use regression (LUR) methods to rapidly estimate criteria pollutant concentrations within 
a large city of over 800 km2. Especially when data sources are limited for complex atmospheric 
transport models or existing monitoring stations are sparsely distributed over large areas, using 
alternative methods such as LUR to assess environmental and health risks are necessary and 
feasible.  

In addition, new low cost and low profile environmental sensors like the PUWP can be used to 
assist with rapid assessments and reporting of real-time data over large areas at high resolutions. 
While the LUR models in Chapter 2 described using passive samplers and gravimetric methods, 
Chapter 3 demonstrates the validity and feasibility of using the PUWP to provide PM2.5 data 
comparable to that of mature PM2.5 measurement technologies while being several orders of 
magnitude lower in cost. In areas with limited resources and few personnel with the technical 
knowledge to operate and maintain air pollution monitoring stations, these low cost sensors 
provide an opportunity to increase spatiotemporal knowledge in air pollution datasets to inform 
where and when to focus mitigation efforts. 

Interventions to improve quality of life for urban residents should be neighborhood-specific 
In Chapter 4, the relationships between perceptions of built environment and quality of life were 
different in the work-unit, lane/courtyard, and commodity-housing neighborhoods. Higher 
perceptions of walkability, esthetics, and diversity of resources in the newer commodity-housing 
neighborhoods were significantly associated with larger increases in higher physical and mental 
health, as compared to those in other types of neighborhoods. In the work units, accessibility of 
their neighborhoods to/from other parts of the city was significantly associated with improved 
mental and physical health-related quality of life.  

While the study is cross-sectional in nature, these results indicate quality of life in the 
neighborhoods could be influenced by different aspects of the built environment. Urban planners 
could consider improving transportation options to connect more peripherally-located work-unit 
neighborhoods to the city center or other commercial areas. In the commodity high-rise 
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neighborhoods, design of the neighborhoods seems to be more important to quality of life. 
Therefore, urban planners should be conscious of including more pedestrian-friendly elements 
such as sidewalks, crosswalks, lights, trees and landscaping, not just in the gated residential 
complexes but throughout the surrounding neighborhood. Local governments could also help 
promote diversity in resources in the neighborhood by creating zoning regulations, financial 
incentives, and commercial real estate areas that appeal to smaller local businesses.  

These differences between the older work-unit and newer commodity neighborhoods could result 
from differences in social capital present. While these differences need to be explored further, 
the strength of the social networks within a community could be crucial to supporting quality of 
life of its residents. As seen in Chapter 4, in the older work-unit neighborhoods where there is 
stronger trust between neighbors, the associations between the built environment and quality of 
life are smaller or less significant while these associations were larger and more significant in the 
newer commodity neighborhoods where residents were less likely to trust their neighbors. 
Improving social networks and trust within neighborhoods could be a potential target as Chinese 
cities develop new commodity-housing neighborhoods. For example, local community centers or 
the housing management could create more community engagement by organizing community 
events to build trust among residents. These approaches can be combined with upstream health-
conscious urban planning efforts to maximize health within new Chinese neighborhoods. 

Public health promotion and interventions will not be optimally effective until the urban air 
quality problems are mitigated 
In Chapter 5, we found increasing physical activity levels generally were associated with lower 
odds of adverse health impacts and higher reported quality of life. However, the health benefits 
of physical activity were reduced in areas where ambient PM2.5 and O3 were elevated. Only in 
the low-density high-rise neighborhoods were there significant physical health benefits from 
LTPA in the high PM2.5 and O3 areas. In the lane/courtyard and work-unit neighborhoods, we 
also observed physical activity may actually be detrimental to one’s health due to elevated PM2.5 
and O3. These results demonstrate that public health programs promoting healthy behaviors 
should also consider the effects of ambient air pollution on effectiveness. 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

This dissertation only explored a few of the associations among the built, social, and natural 
environments, behaviors, and health. A few areas could be of interest for future work: 

Longitudinal study design: The cross-sectional design of this study limits the ability to make 
causal inferences about the associations among built environment, human behaviors, and health. 
This study could be extended into a longitudinal or panel study with follow-up visits to the 20 
surveyed neighborhoods. Because changes in the built environment are occurring rapidly in 
Chinese cities, results generated from these longitudinal neighborhood health studies would be 
available within shorter time frames than in developed countries and potentially have more 
impact as cities are still in transition in China. Moreover, evaluations of neighborhood 
improvements proposed by this dissertation’s findings would certainly strengthen our 
understanding of causal relationships and our ability to modify aspects of the environment, 
behavior, and health. 
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Objective measures of the built environment:  Including objective measures of the built 
environment using GIS along with self-reported perceptions by residents could also provide 
more information about how these two measures correlate. For example, significant 
discrepancies between self-reported walkability and objectively measured walkability could help 
urban planners identify how residents use or behave within their neighborhoods and target 
potential areas to improve the built environment. 

Continued intra-urban air pollution monitoring: This dissertation collected data during two-
week campaigns in the summer and winter seasons in 2013. As the results demonstrated, the 
pollutants have moderate spatial variability but the temporal trends are still unclear. More 
sustained monitoring efforts with increased number of sites throughout Xi’an, potentially using 
low cost sensors, could provide information about the smaller scale differences among 
neighborhoods over time as the city develops and human behaviors associated with emissions 
(e.g., motorized transportation) evolve.  

Mediating Associations: While the results of the dissertation point at neighborhood specific 
interventions, we have yet to fully understand why the differences we observed in associations 
between physical activity levels and health, or between various perceptions of built environment 
and health, were found. Because there are various pathways from the built environment to health, 
isolating the mediators of the associations between built environment and health (e.g., leisure-
time physical activity, travel behaviors, social capital) could improve understanding of the 
potential contribution of each mediating pathway to downstream health outcomes.   

Replicating this research in other cities and developing areas: Because we found that that the 
associations of human behaviors, environmental exposures, and health and quality of life are 
neighborhood-specific, this type of study should be replicated in other Chinese cities. The types 
of neighborhoods that co-exist in Xi’an developed at different periods of China’s economic 
development, and development in other cities in China followed a similar pattern. However, 
because Xi’an is a considered a 2nd tier city, results may differ in the more economically 
developed cities and towns along the eastern coast and in the less developed towns in the west. 
While, the linkages among social, physical, and environmental factors found in this dissertation 
can help guide urban health research in other developing areas around the world such as parts of 
Africa and India, results may also be different in these regions.  

6.3 CONCLUDING REMARKS 

The built, natural, and social environments should be considered simultaneously as potential 
targets of intervention to improve quality of life and health in Chinese cities. Promoting public 
health should start from the design stage as urban planners consider walkability, accessibility 
to/from other parts of the city, and resource diversity in new neighborhoods. Even in areas where 
urban planning is poor and not health-conscious, we have shown that community groups or 
public health practitioners could potentially overcome poor built environmental design by 
increasing trust among neighbors through various community-building activities. Finally, 
targeting reductions in ambient air pollution is especially important because poor air quality 
could limit the health benefits from healthy behaviors like physical activities. This dissertation 
provides support for the concept that creating a healthy city requires collaborations across urban 
planning, transportation, public health, and environmental protection at all stages of development.  
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Appendix A: Description of Air Pollution Sampling Sites 
 
Site Type Environment Sampling 

Height (m) 
Distance to 
Road (m)a 

Traffic 
Type 

 
PM2.5, NO2, SO2, O3 Sites 
A01 Urban 

Residential 
Lane/courtyard neighborhood 
within old city walls 
 

2 427 Medium 

A02 Urban 
Residential 

Lane/courtyard housing within 
old city walls, tree-lined roads 
 

10 255 Medium 

A03 Public Library Heavily trafficked area with 
street vendors and retail; Near 
intersection of 2nd ring road 
and major corridor 
 

10 72 Heavily 
congested 

A04 University Balcony of office building on 
campus 
 

10 116 Congested 

A05 Urban 
Residential 

High-rise residential complex, 
construction in area 

3 57 Medium 

A06 Train Station Near city wall, high volumes 
of traffic 

13 15 Congested 

A07 University Quiet, tree-lined campus near 
2nd ring road 

3 476 Congested 

A08 Urban 
Residential 

Lane/courtyard housing near 
tree-lined busy streets 

10 113 Congested 

A09 University Quiet, tree-lined campus 3 242 Congested 

A10 Urban 
Residential 

High-rise complex 13 35 Medium 

A11 Urban 
Residential 

Work-unit complex  3 188 Congested 

A12 Village Urban village surrounded by 
demolition and construction 

13 201 Congested 

A13 Village Quiet residential, near 3rd ring 
road 

3 828 Light 
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Site Type Environment Sampling 
Height (m) 

Distance to 
Road (m)a 

Traffic 
Type 

A14 Urban 
Residential 

High-rise complex (low-
density) surrounded by 
villages, open spaces, and 
construction 
 

18 125 Light 

A15 Urban 
Residential 

Gated medium-rise housing 
near subway construction 

3 105 Heavily 
congested 

A16 Roadside Roof of office near high-rise 
complex, near road 

13 29 Medium 

A17 University On balcony of office building 
in new university campus 
under construction 
 

10 217 Light 

A18 Urban 
Residential 

Work-unit complex  10 164 Light 

A19 Village Quiet residential complex near 
new high-rise developments 
under construction 

13 1,150 Light 

 
NO2, SO2, and O3 Sites 

B01 Urban 
Residential 

High-rise complex near 
commercial area within city 
walls 
 

13 14 Medium 

B02 Urban 
Residential 
 

Lane/courtyard complex near 
demolition and construction 
 

10 139 Congested 

B03 Office 
Building 

Gated complex 3 45 Light 

B04 Urban 
Residential 

High-rise complex 6   

B05 Roadside Near rotary next to office 
buildings 

3 30 Congested 

B06 Roadside High-rise complex near 
roadway 

3 5 Medium 

B07 Office 
Building 

Mix of office buildings, 
residential high rises, and parks 

10 66 Congested 
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Site Type Environment Sampling 
Height (m) 

Distance to 
Road (m)a 

Traffic 
Type 

B08 University Residential area of campus 6 298 Heavily 
Congested 

B09 Urban 
Residential 

High-rise complex 3 72 Medium 

B10 Urban 
Residential 

Work-unit complex 1 85 Light 

B11 Village Residential  3 90 Light 

B12 Urban 
Residential 

High-rise complex 3 90 Light 

B13 Urban 
Residential 

High-rise complex (low-
density) 

3 625 Light 

B14 Urban 
Residential 

High-rise complex surrounded 
by older neighborhoods 

1 92 Congested 

B15 Hospital Surrounded by highways, near 
power plant 

13 210 Light 

aRoads include highways, axis, and major roads. 
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Appendix B: Xi’an Health Survey 
Subject ID: □□   □□□□   □□ 

Start Time: ________ 
 
A. BACKGROUND INFORMATION  

A1. Sex:  (0) Male  (1) Female 

A2. Age: _________ years 

A3. Marital status:  

(0) Single 

(1) Married 

(2) Divorced 

(3) Widowed 

A4. Highest Education Level Obtained: 

(0) Never attended school 

(1) Elementary school 

(2) Middle school 

(3) Vocational Secondary 

(4) High school 

(5) College 

(6) Vocational college 

(7) Graduate School 

(8) Other:_____________ 

A5. Household Size (including you):  

_____people 

A6. Number of adults (age 18 or over):  

_____people 

A7. Number of people with steady income (including you): _____people 

A8. Household income: _____ yuan/month 

A9. Individual income: _____ yuan/month 

A10. Hukou:   

(0) Rural  (1) Urban 

A11. Community Party Membership:   

(0) Yes   

  A12. Joined in which year? ______ 

(1) No 

 

 



 

128 
 

 

A13. Occupation:  

(0) Unemployed 

(1) Student 

(2) Retired 

(3) Blue collar worker 

(4) Farmer 

(5) White collar worker (private enterprise) 

(6) White collar worker (state-owned enterprise) 

(7) Self employed 

(8) Government employee 

(9) Other: _____________ 

A14. Employment Benefits (select all that apply): 

(0) Health insurance 

(1) Retirement funds 

(2) Unemployment 

(3) Maternity healthcare 

(4) Workplace injury insurance 

(5) Real estate funds 

(6) All of the above 

(7) None 

(8) Other:_____________ 

A15. How many years have you lived in the neighborhood? _____ years 

A16. Do you rent or own? 

(0) Rent   

  A18. What is your monthly rent? 

_____ yuan/month 

(1) Own  

(2) Provided by my employer 

(3) Replaced old home during redevelopment 

A19. Apartment size: _____ m2 
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B. ENVIRONMENTS 

{Please  the answer} 

B1. What type of fuel do you use at home for cooking? Select all that apply: 

(0) Natural gas 

(1) Coal 

(2) Gas 

(3) Electricity 

(4) Other: ___________ 

(5) Don’t cook 

(6) Don’t know 

 

B2.  What type of fuel do you use at home for heating? Select all that apply: 

(0) Natural Gas (Provided by city) 

(1) Natural gas (individual) 

(2) Coal (local community) 

(3) Coal (individual) 

(4) Central heating or A/C units 

(5) Electric heaters 

(6) Don’t have/use heat 

(7) Other: ___________ 

(8) Don’t know 

 

B3. Do you or do you have family members who smoke at home? 

(0) Yes  (1) No 

B4. Which of the following best described the smoking habits inside your home? 

(0) Smoking is not allowed in any indoor area. 

(1) Smoking is only allowed in some indoor areas. 

(2) No rules or restrictions. 

B5. Do you have pets at home? 

(0) Yes  (1) No 

B6. Do you use pesticides within your home? 

(0) Yes  (1) No          (2) Don’t know 
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B7. Are you exposed to fumes, vapors, or dust on your job? 

(0) Yes  (1) No          (2) Don’t know 

B8. From birth until age 3, what kind of environment did you grow up in?  

(0) Urban          (1) Rural  (2) Both 

B9. From age 3 until age 12, what kind of environment did you grow up in?  

(0) Urban          (1) Rural  (2) Both 

B10. From age 12 until age17, what kind of environment did you grow up in?  

(0) Urban          (1) Rural  (2) Both 
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C. HEALTH 

This first question is about your health now. 

Please try to answer as accurately as you can.  

 

C1.  In general, would you say your health is…     [READ RESPONSE CHOICES] 
 (Circle one number) 

 Excellent .......................................................................................................................................................... 1 

 Very good ........................................................................................................................................................ 2 

 Good ................................................................................................................................................................ 3  

 Fair .................................................................................................................................................................. 4 

 or Poor ............................................................................................................................................................. 5 

Now I'm going to read a list of activities that you might do during a typical day.  
As I read each item, please tell me if your health now limits you a lot, limits you a little, or does not limit 
you at all in these activities. 

C2. . . . moderate activities, such as moving a table, pushing a vacuum cleaner, bowling, or playing golf.  
Does your health now limit you a lot, limit you a little, or not limit you at all? [READ RESPONSE 
CHOICES ONLY IF NECESSARY] 

[IF RESPONDENT SAYS S/HE DOES NOT DO ACTIVITY, PROBE:  Is that because of your health?] 

                  (Circle one number) 

 Yes, limited a lot ............................................................................................................................................. 1 

 Yes, limited a little .......................................................................................................................................... 2 

 No, not limited at all ........................................................................................................................................ 3 

C3. . . . climbing several flights of stairs.  Does your health now limit you a lot, limit you a little, or not 
limit you at all?  [READ RESPONSE CHOICES ONLY IF NECESSARY] 

[IF RESPONDENT SAYS S/HE DOES NOT DO ACTIVITY, PROBE:  Is that because of your health?] 

 (Circle one number) 

 Yes, limited a lot ............................................................................................................................................. 1 

 Yes, limited a little .......................................................................................................................................... 2 

 No, not limited at all ........................................................................................................................................ 3 

 
 
 
 
SF-12v2® Health Survey  1995, 2004, 2012 Medical Outcomes Trust and QualityMetric Incorporated.  All rights reserved. SF-12® is a 
registered trademark of Medical Outcomes Trust. (SF-12v2® Health Survey Standard, China (Simplified Chinese)) 
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The following two questions ask you about your physical health and your daily activities. 

C4. During the past four weeks, how much of the time have you accomplished less than you would like as 
a result of your physical health?  [READ RESPONSE CHOICES] 

 (Circle one number)  

 All of the time ................................................................................................................................................. 1 

 Most of the time .............................................................................................................................................. 2 

 Some of the time ............................................................................................................................................. 3 

 A little of the time ........................................................................................................................................... 4 

 or None of the time ......................................................................................................................................... 5 

C5. During the past four weeks, how much of the time were you limited in the kind of work or other 
regular daily activities you do as a result of your physical health?   

[READ RESPONSE CHOICES] 
 (Circle one number) 

 All of the time ................................................................................................................................................. 1 

 Most of the time 2 

 Some of the time 3 

 A little of the time ........................................................................................................................................... 4 

 or None of the time ......................................................................................................................................... 5 

The following two questions ask about your emotions and your daily activities. 

C6. During the past four weeks, how much of the time have you accomplished less than you would like as 
a result of any emotional problems, such as feeling depressed or anxious?  [READ RESPONSE 
CHOICES] 

 (Circle one number)  

 All of the time ................................................................................................................................................. 1 

 Most of the time 2 

 Some of the time 3 

 A little of the time ........................................................................................................................................... 4 

 or None of the time ......................................................................................................................................... 5 

 
 
 
SF-12v2® Health Survey  1995, 2004, 2012 Medical Outcomes Trust and QualityMetric Incorporated.  All rights reserved. SF-12® is a 
registered trademark of Medical Outcomes Trust. (SF-12v2® Health Survey Standard, China (Simplified Chinese)) 
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C7. During the past four weeks, how much of the time did you do work or other regular daily activities 
less carefully than usual as a result of any emotional problems, such as feeling depressed or anxious?  [READ 
RESPONSE CHOICES] 

 (Circle one number)  

 All of the time ................................................................................................................................................. 1 

 Most of the time 2 

 Some of the time 3 

 A little of the time ........................................................................................................................................... 4 

 or None of the time ......................................................................................................................................... 5 

C8. During the past four weeks, how much did pain interfere with your normal work, including both 
work outside the home and housework?  Did it interfere . . .  [READ RESPONSE CHOICES] 

 (Circle one number) 

Not at all .......................................................................................................................................................... 1 

A little bit ........................................................................................................................................................ 2 

Moderately ...................................................................................................................................................... 3 

Quite a bit ........................................................................................................................................................ 4 

or Extremely .................................................................................................................................................... 5 

The next questions are about how you feel and how things have been with you during the past four weeks. 
As I read each statement, please give me the one answer that comes closest to the way you have been 
feeling; is it all of the time, most of the time, some of the time, a little of the time, or none of the time? 

C9. How much of the time during the past four weeks . . . have you felt calm and peaceful?  [READ 
RESPONSE CHOICES ONLY IF NECESSARY] 

 (Circle one number) 

 All of the time ................................................................................................................................................. 1 

 Most of the time .............................................................................................................................................. 2 

 Some of the time ............................................................................................................................................. 3 

 A little of the time ........................................................................................................................................... 4 

 or None of the time ......................................................................................................................................... 5 

 
 
 
SF-12v2® Health Survey  1995, 2004, 2012 Medical Outcomes Trust and QualityMetric Incorporated.  All rights reserved. SF-12® is a 
registered trademark of Medical Outcomes Trust. (SF-12v2® Health Survey Standard, China (Simplified Chinese)) 
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C10. How much of the time during the past four weeks . . . did you have a lot of energy?  [READ 
RESPONSE CHOICES ONLY IF NECESSARY] 

 (Circle one number) 

 All of the time ................................................................................................................................................. 1 

 Most of the time .............................................................................................................................................. 2 

 Some of the time ............................................................................................................................................. 3 

 A little of the time ........................................................................................................................................... 4 

 or None of the time ......................................................................................................................................... 5 

C1. How much of the time during the past four weeks . . . have you felt downhearted and depressed?  
[READ RESPONSE CHOICES ONLY IF NECESSARY] 

 (Circle one number) 

 All of the time ................................................................................................................................................. 1 

 Most of the time .............................................................................................................................................. 2 

 Some of the time ............................................................................................................................................. 3 

 A little of the time ........................................................................................................................................... 4 

 or None of the time ......................................................................................................................................... 5 

C12. During the past four weeks, how much of the time has your physical health or emotional problems 
interfered with your social activities like visiting with friends or relatives?  Has it interfered . . .  
[READ RESPONSE CHOICES] 

 (Circle one number) 

 All of the time ................................................................................................................................................. 1 

 Most of the time .............................................................................................................................................. 2 

 Some of the time ............................................................................................................................................. 3 

 A little of the time ........................................................................................................................................... 4 

 or None of the time ......................................................................................................................................... 5 

 

 

 

 
 
 
SF-12v2® Health Survey  1995, 2004, 2012 Medical Outcomes Trust and QualityMetric Incorporated.  All rights reserved. SF-12® is a 
registered trademark of Medical Outcomes Trust. (SF-12v2® Health Survey Standard, China (Simplified Chinese)) 
  



 

135 
 

 

C13. Height: __________ cm 

C14. Weight: __________ kg 

C15. When you don’t have a cold, do you sneeze, have a runny nose, or have a stuffy nose?  

(0) Yes (1) No    (2) Don’t know 

 
C16. In the last 12 months, how have nose problems affected your daily life?  

(0) Not at all 
(1) A little 
(2) A lot 
(3) Extremely affected 

C17. In the last 12 months, have you had problems breathing when at rest? 

(0) Yes (1) No          (2) Don’t know 

 
C18. In the last 12 months, have you have problems breathing after exercising? 

(0) Yes (1) No          (2) Don’t know 

 
C19. In the last 12 months, have you woken up at night due to breathing problems? 

(0) Yes (1) No          (2) Don’t know 

C20. Have you ever been diagnosed with asthma by a doctor? 

(0) Yes            

(1) No, skip to question C24 

(2) Don’t know 

C21. Do you still have asthma?  

(0) Yes (1) No          (2) Don’t know 

C22. In the last 3 months, how many asthma incidents have you experienced? 

__________ incidents 

(00) Don’t know 

C23. Do you take medication for your asthma? 

(0) Yes (1) No          (2) Don’t know 
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Are you allergic to the following? 

C24. Cats  
(0) Yes (1) No          (2) Don’t know 

C25. Dogs 

(0) Yes (1) No          (2) Don’t know 

 
C26. Pollen 

(0) Yes (1) No          (2) Don’t know 

C27. In the last 12 months, how many times have you visited the hospital for respiratory related issues? 

           __________times 

(00) Don’t know 

C28. In the last 12 months, how many days of school or work have you missed for health reasons?  

__________ days  

(00) Don’t know 

E31. In the last 12 months, how often do health issues affect your daily life for ONE week or more? 

(0) Frequently 

(1) Sometimes 

(2) Very infrequently 

(3) Never 

(4) Don’t know 

C30. Have you ever smoked? 

(0) Yes       (1) No, skip to Question C36 

C31. What age did you start smoking? 

______ years        (00) Don’t know 

C32. Do you currently smoke? 

(0) Yes       (1) No, skip to Question C34 
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C33. On average, how many cigarettes per day do you smoke?  

__________ cigarettes/day 

C34. If you quit smoking, how many years did you smoke?  

______ years        (00) Don’t know 

C35. If you’ve already quit, on average how many cigarettes per day did you used to smoke?  

__________ cigarettes/day 

C36. Have you ever been diagnosed with hypertension by a doctor? 

(0) Yes (1) No          (2) Don’t know 

 

C37. If yes, are you using drugs to lower your blood pressure? 

(0) Yes (1) No          (2) Don’t know 

 

C38. Have you ever been diagnosed with diabetes by a doctor? 

(0) Yes (1) No          (2) Don’t know 

C39. Have you ever been diagnosed with myocardial infarction by a doctor? 

(0) Yes (1) No          (2) Don’t know 

 

 



 

138 
 

 

C40. Including naps during the day, how many hours a day of sleep do you get? ____ hours 

C41. How many hours during the day are you sedentary (e.g., watching TV, sedentary at work/school, playing video 

games, etc). _____ hours 

Activity 
How many times per week do you participate 

in the following activities? (Please  ) 

Each time you participate, how 
much time do you spend on each 

activity (minutes)? 
（0）<15    （2）31-60 
（1）15-30  （3）60+  

Never 1 2 3 4 5 6 Daily Mon-Fri Sat, Sun 
C42.Walking           
C43. Biking           
C44. Soccer, basketball, 
tennis 

          

C45. Gymnastics, dance, 
acrobatics 

          

C46. Running, swimming           
C47. Badminton, 
Volleyball, Ping-pong 

          

C48. Exercise equipment in 
parks or neighborhoods 

          

C49. Weight training           

C50. Yoga, pilates           

C51.Wushu（gongfu、
taiji） 

          

C52.Other：__________           
 

Food Type 

In the last 7 days, how frequently did you have the 
following foods?( Please ) 

Was this frequency 
normal? 

Never 1-3 
Times 

4-6 
Times 

Once 
every  
day 

Twice 
every 
day 

4+ 
times a 

day 
（0）Yes （1） 

No 

C53. Fruits         
C54. Vegetables         
C55. Meat (Pork, beef, 
seafood, eggs) 

        

C56. Daily (milk, yogurt, 
cheese) 

        

C57. Starches (rice, congee, 
noodles, dumplings, breads) 

        

C58. Desserts (cakes, ice 
cream) 

        

C59. Snacks (cookies, 
crackers, chips)  

        

C60.Alcohol (beer, wine, 
liquor) 

        

C61. Soft drinks and sodas         
C62. Fast food (KFC, 
McDonalds, Pizza Hut) 
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D. TRAVEL BEHAVIOR    

How many of the following do you own? 

D1. Bicycle: _____ 

D2. Car: _____ 

D3. E-bike: _____ 

D4. Motorcycle: ____ 

 
In the SUMMER, how often do you take the following modes of transportation?  

 Never 
Rarely 

(1-2 
times/week) 

Sometimes  
(3-4 

times/week) 

Often 
(5-6 

times/week) 
Daily 

D5. Walking 1 2 3 4 5 
D6. Biking 1 2 3 4 5 
D7. E-bike Bus 1 2 3 4 5 
D8. Public bus 1 2 3 4 5 
D9. Subway 1 2 3 4 5 
D10. Private Car 1 2 3 4 5 
D11. Taxi  1 2 3 4 5 
D12. Company shuttle or 
school bus 1 2 3 4 5 

D13. 3-wheeled vehicles 1 2 3 4 5 
 
In the WINTER, how often do you take the following modes of transportation?  

 Never 
Rarely 

(1-2 
times/week) 

Sometimes  
(3-4 

times/week) 

Often 
(5-6 

times/week) 
Daily 

D14. Walking 1 2 3 4 5 
D15. Biking 1 2 3 4 5 
D16. E-bike Bus 1 2 3 4 5 
D17. Public bus 1 2 3 4 5 
D18. Subway 1 2 3 4 5 
D19. Private Car 1 2 3 4 5 
D20. Taxi  1 2 3 4 5 
D21. Company shuttle or 
school bus 1 2 3 4 5 

D22. 3-wheeled vehicles 1 2 3 4 5 
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{If subject doesn’t work or attend school, please skip to Question C25.} 

D23. In the SUMMER, what mode do you most commonly use to travel to work (or school) from home? 
Select all that apply and include time required to travel from starting point (e.g., home) to destination (e.g., 
work or school).  

(1) Walk ____ minutes 
(2) Bike____ minutes 
(3) Bus____ minutes 
(4) Private car____ minutes 
(5) Taxi____ minutes 
(6) E-bike____ minutes 
(7) Company/school bus____ minutes 
(8) 3-wheeled vehicles__ minutes 
(9) I don’t work or attend school 

 
 

 D24. In the WINTER, what mode do you most commonly use to travel to work (or school) from home? Select 
all that apply and include time required to travel from starting point (e.g., home) to destination (e.g., work or 
school). 

(1) Walk ____ minutes 
(2) Bike____ minutes 
(3) Bus____ minutes 
(4) Private car____ minutes 
(5) Taxi____ minutes 
(6) E-bike____ minutes 
(7) Company/school bus____ minutes 
(8) 3-wheeled vehicles__ minutes 
(9) I don’t work or attend school 

 
 

D25. How many trips do you take that are within 500m?  ______ trips  
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E. NEIGHBORHOOD PERCEPTIONS 

{Please use the answer placard provided for Questions C1-C31. Please circle answers.}  
How long does it take to get from your home to the nearest business or facilities if you WALKED?  

  <5 min 5-10 min 11-20 min 20-30 min >30 min Don't 
Know 

E1 Convenience store 1 2 3 4 5 6 

E2 Supermarket 1 2 3 4 5 6 

E3 Street market 1 2 3 4 5 6 

E4 Hardware store 1 2 3 4 5 6 

E5 Clothing/shoe retail stores 1 2 3 4 5 6 

E6 Pharmacy 1 2 3 4 5 6 

E7 Bookstore 1 2 3 4 5 6 

E8 Movie theater 1 2 3 4 5 6 

E9 Library 1 2 3 4 5 6 

E10 Laundromat/Dry cleaners 1 2 3 4 5 6 

E11 Hair salon 1 2 3 4 5 6 

E12 Bank 1 2 3 4 5 6 

E13 Post Office 1 2 3 4 5 6 

E14 Community Clinic 1 2 3 4 5 6 

E15 Hospital 1 2 3 4 5 6 

E16 Kindergarten  1 2 3 4 5 6 

E17 Elementary school  1 2 3 4 5 6 

E18  Other schools 1 2 3 4 5 6 

E19 Fast food restaurant 1 2 3 4 5 6 

E20 Chinese restaurant 1 2 3 4 5 6 

E21 Non-Chinese restaurant 1 2 3 4 5 6 
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E22 Coffee shop 1 2 3 4 5 6 

E23 Park 1 2 3 4 5 6 

E24 Community Center 1 2 3 4 5 6 

E25 Gym 1 2 3 4 5 6 

E26 Swimming Pool 1 2 3 4 5 6 

E27 Places of worship 1 2 3 4 5 6 

E28 Public restroom 1 2 3 4 5 6 

E29 Bakery 1 2 3 4 5 6 

E30 Bus stop 1 2 3 4 5 6 

E31 Subway stop 1 2 3 4 5 6 
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{Please use the answer placard provided for Questions C32-C65. Please circle answers.}  
I will read statements describing your neighborhood to you. Please select the response that best reflects your 
view of the statement. 
 

Access to Services: 
Strongly 
Disagree 

Somewhat 
Disagree 

Somewhat 
Agree 

Strongly 
Agree 

E32 Stores are within easy walking distance from 
my home. 

1 2 3 4 

E33 Shopping and commercial areas are easy to 
access using public transit. 

1 2 3 4 

E34 Parking is difficult in shopping and 
commercials areas. 

1 2 3 4 

E35 There are many places to go within easy 
walking distance from my home. 

1 2 3 4 

E36 It is easy to walk to a transit stop (bus, train) 
from my home. 

1 2 3 4 

E37 The streets in my neighborhood are hilly, 
making my  neighborhood difficult to walk in. 

1 2 3 4 

E38 There are too many pedestrians making it 
difficult to walk on the sidewalks. 

1 2 3 4 

E39 There are major barriers to walking in my 
local area that make it hard to get from place 
to place (e.g., highways, railway lines, rivers) 

1 2 3 4 

 
 

Street Design: 
Strongly 
Disagree 

Somewhat 
Disagree 

Somewha
t Agree 

Strongly 
Agree 

E40 The streets in my neighborhood DO NOT 
have many dead end streets. 

1 2 3 4 

E41 The distance between intersections in my 
neighborhood is usually short. 

1 2 3 4 

E42 There are many alternative routes for getting 
from place to place in my neighborhood. I 
don't have to go the same way every time. 

1 2 3 4 
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Pedestrian and Biking Facilities: 

Strongly 
Disagree 

Somewhat 
Disagree 

Somewhat 
Agree 

Strongly 
Agree 

E43 There are sidewalks on most of the 
streets in my neighborhood. 

1 2 3 4 

E44 There are parked cars on the sidewalks 
in my neighborhood that make 
walking difficult. 

1 2 3 4 

E45 There is a barrier (grass, dirt strip, 
bannister) that separates the streets 
from the sidewalks in my 
neighborhood. 

1 2 3 4 

E46 There is adequate lighting at night to 
walk in my neighborhood. 

1 2 3 4 

E47 There are street peddlers and stands 
that make walking on the sidewalks 
difficult in my neighborhood. 

1 2 3 4 

E48 There are crosswalks and traffic lights 
to help me cross the streets in my 
neighborhood. 

1 2 3 4 
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Neighborhood Surroundings: 

Strongly 
Disagree 

Somewhat 
Disagree 

Somewhat 
Agree 

Strongly 
Agree 

E49 There are trees along the streets in my 
neighborhood. 

1 2 3 4 

E50 There are many interesting things to 
look at while walking in my 
neighborhood. 

1 2 3 4 

E51 There are many attractive natural sights 
in my neighborhood (such as 
landscaping, views). 

1 2 3 4 

E52 There are attractive buildings or homes 
in my neighborhood. 

1 2 3 4 

E53 The air pollution level is high in my 
neighborhood. 

1 2 3 4 

E54 The noise levels in my neighborhood 
are frequently loud. 

1 2 3 4 

E55 There is frequently ongoing 
construction in my neighborhood. 

1 2 3 4 
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Safety 

Strongly 
Disagree 

Somewhat 
Disagree 

Somewhat 
Agree 

Strongly 
Agree 

E56 There is so much traffic along nearby 
streets that it makes it difficult or 
unpleasant to walk in my 
neighborhood. 

1 2 3 4 

E57 The speed of traffic on most nearby 
streets  is usually slow due to 
congestion. 

1 2 3 4 

E58 Most drivers exceed the posted speed 
limit while driving in my 
neighborhood. 

1 2 3 4 

E59 There are parked vehicles that block 
my line of sight that makes crossing 
streets difficult.  

1 2 3 4 

E60 The traffic flows in my neighborhood 
make me feel unsafe to cross the 
streets. 

1 2 3 4 

E61 Walkers and bikers on the streets in 
my neighborhood can be easily seen 
by people in their homes. 

1 2 3 4 

E62 There is a high crime rate in my 
neighborhood. 

1 2 3 4 

E63 The crime rate in my neighborhood 
makes it unsafe to go on walks during 
the day. 

1 2 3 4 

E64 The crime rate in my neighborhood 
makes it unsafe to go on walks at 
night. 

1 2 3 4 

E65 There are few pedestrians in my 
neighborhood so it would be difficult 
to get help or assistance if necessary. 

1 2 3 4 
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How common are the following: None 

Very 
Few 

Some A Lot 
All 

E66 Detached single-family residences 1 2 3 4 5 

E67 Apartments/condos of 1-3 stories 1 2 3 4 5 

E68 Apartments/condos of 4-7 stories 1 2 3 4 5 

E69 Apartments/condos of 8-12 stories 1 2 3 4 5 

E70 Apartments/condos of 13-20 stories 1 2 3 4 5 

E71 Apartments/condos of more than 20 
stories 

1 2 3 4 5 
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F. SOCIAL NETWORKS 

F1. In an average day, how many people do you come in contact with? Include people you talk to (in person 
or phone), write to, or connect with over the internet. 
 

(0) 0-4 people 

(1) 5-9 people 

(2) 10-19 people 

(3) 20-40 people 

(4) 50-99 people 

(5) 100+ people 

 
F2. Within the people you interact with on a daily basis, are most from work? Circle one: 

(0) Almost all are from work 

(1) Most are from work 

(2) About half are from work 

(3) Most of them are NOT from work 

(4) Almost all are NOT from work 

(5) Not relevant 

{Please use the answer placard provided for Questions F3-F44. Please circle answers.} 
How do you rate the number of people in 
each of the following six (6) categories? 
Please circle one for each: 

A few 
Less than 
average 

Average 
More than 

average 
A lot 

F3 Your family members 1 2 3 4 5 

F4 Your relatives 1 2 3 4 5 

F5 People in your neighborhood 1 2 3 4 5 

F6 Your friends 1 2 3 4 5 

F7 Your coworkers/fellows 1 2 3 4 5 

F8 Your country fellows/old classmates 1 2 3 4 5 
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With how many people in each of the 
following categories do you keep routine 
contact?  

None Few Some Most All 

F9 Your family members 1 2 3 4 5 

F10 Your relatives 1 2 3 4 5 

F11 People in your neighborhood 1 2 3 4 5 

F12 Your friends 1 2 3 4 5 

F13 Your coworkers/fellows 1 2 3 4 5 

F14 Your country fellows/old 
classmates 

1 2 3 4 5 

 
Among the people in the each of following 
six (6) categories, how many can you 
trust? 

None Few Some Most All 

F15 Your family members 1 2 3 4 5 

F16 Your relatives 1 2 3 4 5 

F17 People in your neighborhood 1 2 3 4 5 

F18 Your friends 1 2 3 4 5 

F19 Your coworkers/fellows 1 2 3 4 5 

F20 Your country fellows/old classmates 1 2 3 4 5 
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Among people in each of the following six 
(6) categories, how many will definitely 
help you upon your request? 

None Few Some Most All 

F21 Your family members 1 2 3 4 5 

F22 Your relatives 1 2 3 4 5 

F23 People in your neighborhood 1 2 3 4 5 

F24 Your friends 1 2 3 4 5 

F25 Your coworkers/fellows 1 2 3 4 5 

F26 Your country fellows/old 
classmates 

1 2 3 4 5 

 

When people in all the six categories are 
considered, how many possess the 
following assets/resources? 

None Few Some Most All 

F27 Certain political power 1 2 3 4 5 

F28 Wealth or own a company 1 2 3 4 5 

F29 Influential 1 2 3 4 5 

F30  Good reputation 1 2 3 4 5 

F31 Has high school or higher education 1 2 3 4 5 

F32 Has a professional job 1 2 3 4 5 
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How do you rate the number of the 
following two types of groups/organization 
in your community? 

A few 
Less than 
average 

Average 
More 
than 

average 
A lot 

F33 Government, political, economic and 
social groups/organization (e.g., 

political parties, women's groups, 
village committees, trade unions, 
cooperate associations, volunteer 

groups, etc).  

1 2 3 4 5 

F34 Cultural, recreational and leisure 
groups and organizations (e.g., 

religious country fellows alumni, 
sport, music, dances, crafts, games, 

etc.) 

1 2 3 4 5 

 
Do you participate in activities for how 
many of each of these two types of 
groups/organization in your community? 

None Few Some Most All 

F35 Government, political, economic and 
social groups/organization (e.g., 

political parties, women's groups, 
village committees, trade unions, 
cooperate associations, volunteer 

groups, etc). 

 

1 2 3 4 5 

F36 Cultural, recreational and leisure 
groups and organizations (e.g., 

religious country fellows alumni, 
sport, music, dances, crafts, games, 

etc.) 

1 2 3 4 5 
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Among each of the two types of groups and 
organizations, how many represent your 
rights and interests? 

None Few Some Most All 

F37 Government, political, economic and 
social groups/organization (e.g., 

political parties, women's groups, 
village committees, trade unions, 
cooperate associations, volunteer 

groups, etc). 

1 2 3 4 5 

F38 Cultural, recreational and leisure 
groups and organizations (e.g., 

religious country fellows alumni, 
sport, music, dances, crafts, games, 

etc.) 

1 2 3 4 5 

 

Among each of the two types of groups and 
organizations, how many will help you upon 
your request? 

None Few Some Most All 

F39 Government, political, economic and 
social groups/organization (e.g., 

political parties, women's groups, 
village committees, trade unions, 
cooperate associations, volunteer 

groups, etc). 

1 2 3 4 5 

F40 Cultural, recreational and leisure 
groups and organizations (e.g., 

religious country fellows alumni, 
sport, music, dances, crafts, games, 

etc.) 

1 2 3 4 5 
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When all groups and organizations in the 
two categories are considered, how many 
possess the following assets and resources? 

None Few Some Most All 

F41 Significant power for decision making 1 2 3 4 5 

F42 Solid financial basis 1 2 3 4 5 

F43 Broad social connections 1 2 3 4 5 

F44 Great social influence 1 2 3 4 5 

 
This is the end of the survey. Thank you for your participation and cooperation! 
NOTE TO INTERVIEWER: Please ask the participant if he/she would like to be contacting regarding future studies. 
Please record response on the cover sheet.} 
End time: __________ 



 

154 
 

 

Appendix C: Photos of types of Chinese neighborhoods 
 

 

  

  

Figure C-1 Work-unit neighborhoods (NH1) 
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Figure C-2 Lane and courtyard neighborhoods (NH2) 



 

156 
 

 

 

  

  

 

Figure C-3 Commodity neighborhoods: High-density high-rise neighborhoods (NH3) 
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Figure C-4 Commodity neighborhoods: Low-density high-rise neighborhoods (NH4) 
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Appendix D: Chapter 4 Model Results 
This appendix supplements Chapter 5 regression results for the categorical air pollution mixture models. Tables include regression 
coefficients for the covariates included as confounders. The reference categories for physical activity level, household income, and 
neighborhood type are inactive, less than 2000 yuan per month, and work-unit neighborhoods, respectively.  
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Table D-1 Full regression results for associations of neighborhood variables and MCS 

MCS Walking Diversity Access Safety Esthetics Streets 
Covariates  Beta SE Beta SE Beta SE Beta SE Beta SE Beta SE 
NH Variable 0.21 0.60 0.99 0.68 4.11** 1.46 2.78** 0.88 0.26 0.80 1.03 0.59 
             
Age 0.01 0.02 0.02 0.02 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.02 
Female 0.01 0.25 0.29 0.32 -0.10 0.27 0.04 0.23 0.04 0.27 0.12 0.26 
College -0.64 0.63 -0.62 0.65 -0.45 0.71 -0.67 0.65 -0.62 0.54 -0.63 0.69 
Hukou 0.30 0.70 0.11 0.84 0.43 0.69 0.34 0.69 0.00 0.64 0.28 0.72 
 
Household Income (¥/month) 
2000-3999 0.96 0.71 0.78 0.65 .0.29 0.61 0.73 0.66 0.83 0.71 0.50 0.58 
4000-5999 0.30 0.60 0.67 0.58 -0.07 0.65 0.09 0.69 0.34 0.59 0.16 0.60 
6000+ 1.58* 0.66 1.63* 0.65 1.25* 0.57 1.41* 0.59 1.43* 0.65 1.49* 0.60 
Missing 2.58*** 0.76 2.69*** 0.70 2.63** 0.84 2.44** 0.95 2.44*** 0.75 2.51*** 0.78 
 
Type of Neighborhood 
Lane/courtyard 
(NH2) 0.30 0.70 0.83 2.65 11.34* 5.05 8.75* 4.35 -2.50 2.44 4.55 2.75 

High-density 
high rise (NH3) 0.30*** 0.70 -4.78 3.28 -8.54 5.53 -6.16 5.46 1.32 2.00 2.53 2.49 

Low-density high 
rise (NH4) 0.30 0.70 -0.56 2.68 3.86 5.11 6.04 3.61 -2.68 2.84 1.04 2.42 

             
Interactions             
Variable x NH2 1.80** 0.69 0.60 0.99 -3.14 1.65 -2.40 1.45 2.02* 0.97 -0.74 0.75 
Variable x NH3 3.68*** 1.10 1.47 1.20 2.88 1.72 2.00 1.85 -0.30 0.90 -0.70 0.75 
Variable x NH4 1.09 1.11 0.36 1.00 -1.24 1.56 -2.13 1.27 1.11 1.09 -0.26 0.84 
             
Constant 52.20*** 1.80 49.60*** 1.39 41.55*** 5.22 45.20*** 3.50 52.17*** 1.23 49.89*** 1.38 
*P≤0.05    ** P≤0.01   ***P≤0.001 
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Table D-2 Full regression results for associations of neighborhood variables and PCS 

PCS Walking Diversity Access Safety Esthetics Streets 
Covariates  Beta SE Beta SE Beta SE Beta SE Beta SE Beta SE 
NH Variable 0.32 0.54 0.46 0.50 3.24*** 0.39 0.37 0.19 1.12*** 0.31 0.34 0.73 
             
Age -0.20*** 0.01 -0.20*** 0.01 -0.20*** 0.01 -0.20*** 0.01 -0.21*** 0.01 -0.20*** 0.01 
Female -0.49 0.59 -0.35 0.70 -0.57 0.58 -0.49 0.58 -0.47 0.62 -0.43 0.64 
College 0.71* 0.35 0.44 0.48 0.73* 0.33 0.68 0.37 0.49 0.52 0.67 0.36 
Hukou -0.18 0.50 -0.44 0.43 -0.12 0.53 -0.25 0.51 -0.37 0.52 -0.24 0.47 
 
Household Income (¥/month) 
2000-3999 1.14* 0.46 1.39*** 0.42 0.78 0.56 1.20** 0.43 1.54** 0.50 1.04* 0.50 
4000-5999 1.58* 0.62 2.29*** 0.56 1.46* 0.60 1.77*** 0.53 2.18*** 0.53 1.69** 0.55 
6000+ 2.79*** 0.49 3.39*** 0.82 2.66*** 0.45 2.94*** 0.47 3.35*** 0.76 2.84*** 0.53 
Missing -0.18* 0.40 1.48*** 0.37 1.08** 0.37 1.19*** 0.33 1.44*** 0.33 1.11** 0.37 
 
Type of Neighborhood 
Lane/courtyard 
(NH2) 2.77 2.17 -0.17 1.92 12.62*** 2.55 -0.83 3.58 2.78 2.27 1.92 3.14 

High-density 
high rise (NH3) -3.67 1.93 0.78 1.14 4.65 2.51 -8.96** 2.89 0.26 0.99 -3.13 2.44 

Low-density high 
rise (NH4) 1.57 2.06 -2.62 1.47 0.55 2.55 1.56 6.08 0.30 1.09 1.60 2.58 

             
Interactions             
Variable x NH2 -0.45 0.58 0.62 0.62 -3.92*** 0.70 0.82 1.08 -0.43 0.64 -0.15 0.83 
Variable x NH3 1.49* 0.64 0.10 0.49 -1.26 0.76 3.43*** 0.93 0.34 0.35 1.34 0.77 
Variable x NH4 -0.32 0.62 1.16 0.61 0.02 0.85 -0.42 2.09 0.06 0.32 -0.32 0.72 
             
Constant 58.36*** 2.35 58.54*** 1.75 50.51*** 1.66 58.56*** 1.33 56.98*** 1.11 58.40*** 2.01 
*P≤0.05    ** P≤0.01   ***P≤0.001 
 



 

161 
 

 

Appendix E: Chapter 5 Model Results 
The reference categories for physical activity level, household income, and neighborhood type 
are inactive, less than 2000 yuan per month, and lane/courtyard neighborhoods, respectively.  
 
Table E-1 Full regression results for associations of leisure-time physical activity (LTPA) and 
adverse health impact: categorical mixture models 

 

Category A: 
Medium Levels 

Category B: 
High NO2 and SO2, 

Low O3 

Category C: 
High PM2.5 and O3 

Covariates  OR SE OR SE OR SE 
LTPA Levels       
Low LTPA 1.01 0.43 0.47*** 0.09 1.39 0.96 
Medium LTPA 0.56 0.22 0.63 0.31 3.56 2.35 
High LTPA 0.79 0.15 0.30 0.27 2.54 2.27 
       
Interactions       
LPTA x Work Unit (NH1) 0.83 0.09 -- -- 1.20 0.36 
LTPA x High-density high rise 
(NH3) -- -- 0.60 0.18 -- -- 
LTPA x Low-density high rise 
(NH4) 0.82 0.09 -- -- 0.30** 0.13 

       
Age 1.04** 0.01 1.06*** 0.01 1.02 0.01 
Female 0.55*** 0.10 2.28 1.16 1.95* 0.64 
College 1.52 0.45 0.39*** 0.11 0.12*** 0.03 
Urban Hukou 2.07 0.86 0.97 0.31 6.82 9.37 
       
Household Income (¥/month)       
2000-3999 0.79 0.22 0.71 0.35 0.99 0.41 
4000-5999 0.54 0.26 0.45 0.22 0.03** 0.05 
6000+ 0.33* 0.17 0.62 0.24 0.47 0.22 
Missing 0.43** 0.12 0.38 0.36 0.58 0.32 
       
Manual Labor Occupation 0.47* 0.14 1.72 1.10 0.17** 0.11 
Current Smoker 1.05 0.39 0.67 0.14 2.62 1.30 
Seasonal Allergies 1.08 0.18 2.15 1.54 4.47*** 1.88 
Occupational Exposure 1.59 0.44 1.04 0.56 1.55 0.89 
       
Type of Neighborhood       
Work Unit (NH1) 1.63 0.56 -- -- 1.95* 0.54 
High-density high rise (NH3) -- -- 1.51 0.61 -- -- 
Low-density high rise (NH4) 0.73 0.37 -- -- 27.26*** 8.66 
Constant 0.02*** 0.02 0.02*** 0.01 0.001*** 0.002 
*P≤0.05    ** P≤0.01   ***P≤0.001 
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Table E-2 Full regression results for associations of leisure-time physical activity (LTPA) and 
mental health (MCS): categorical mixture models 

 

Category A: 
Medium Levels 

Category B: 
High NO2 and SO2, 

Low O3 

Category C: 
High PM2.5 and O3 

Covariates  Beta SE Beta SE Beta SE 
LTPA Levels       
Low LTPA 2.92*** 0.89 3.17** 1.22 0.50 0.69 
Medium LTPA 2.15** 0.81 2.41** 0.87 0.36 1.45 
High LTPA 1.72** 0.64 3.68*** 0.90 -0.55 0.62 
       
Interactions       
LPTA x Work Unit (NH1) 0.39 0.24 -- -- -0.23 0.23 
LTPA x High-density high 
rise (NH3) -- -- 0.01 0.54 -- -- 

LTPA x Low-density high 
rise (NH4) 0.51* 0.23 -- -- 1.47 0.38 

       
Age -0.01 0.03 0.01 0.03 0.01 0.02 
Female -0.02 0.65 -0.95 0.53 0.28 0.69 
College -0.01 0.75 -0.93 0.57 -1.00 0.88 
Urban Hukou -0.22 -/49 1.79 1.45 0.22 1.57 
       
Household Income (¥/month)       
2000-3999 1.48 1.24 1.60 1.33 -0.49 0.71 
4000-5999 1.02 1.25 0.63 0.94 0.14 0.73 
6000+ 1.28 1.23 -0.17 1.55 2.07** 0.74 
Missing 3.85*** 0.70*** 4.79*** 0.90 2.25** 0.83 
       
Manual Labor Occupation 1.06 0.88 0.47 0.90 0.54 0.66 
Current Smoker 0.58 0.50 0.49 0.40 -0.18 1.08 
Seasonal Allergies -2.05 1.32 -0.34 2.75 -1.25 0.91 
Occupational Exposure -2.30*** 0.70 -2.77 1.51 -2.24* 1.14 
       
Type of Neighborhood       
Work Unit (NH1) -3.14*** 0.95 -- -- -2.43* 1.17 
High-density high rise (NH3) -- -- 0.01 0.54 -- -- 
Low-density high rise (NH4) -2.09** 0.79 -- -- -5.70*** 0.39 
       
Constant 54.73*** 1.10 52.68*** 2.54 56.59*** 0.50 
*P≤0.05    ** P≤0.01   ***P≤0.001 
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Table E-3 Full regression results for associations of leisure-time physical activity (LTPA) and 
physical health (PCS): categorical mixture models 

 

Category A: 
Medium Levels 

Category B: 
High NO2 and SO2, 

Low O3 

Category C: 
High PM2.5 and O3 

Covariates  Beta SE Beta SE Beta SE 
LTPA Levels       
Low LTPA 1.52 0.80 1.49 0.79 -0.71** 0.27 
Medium LTPA 0.77* 0.37 1.45 0.92 -0.20 0.85 
High LTPA 1.58*** 0.39 1.57 0.85 -0.47 0.34 
       
Interactions       
LPTA x Work Unit (NH1) 1.13** 0.41 -- -- 0.83*** 0.18 
LTPA x High-density high rise 
(NH3) -- -- -0.19 0.25 -- -- 

LTPA x Low-density high rise 
(NH4) 0.69** 0.26 -- -- 1.83*** 0.21 

       
Age -0.19*** 0.03 -0.24*** 0.03 -0.21*** 0.02 
Female 0.20 0.43 -0.21 0.42 0.33 0.79 
College 0.95 0.99 0.46 0.73 -0.17 0.41 
Urban Hukou 0.30 0.66 1.51 1.45 -0.52 0.43 
       
Household Income (¥/month)       
2000-3999 1.68 1.07 1.51 0.77 1.36 0.99 
4000-5999 1.60 1.52 1.04 0.89 3.03*** 0.17 
6000+ 2.52* 1.19 2.85*** 0.22 3.34*** 0.80 
Missing 2.13* 0.91 1.19* 0.52 2.20*** 0.25 
       
Manual Labor Occupation 1.22* 0.48 -2.45* 1.07 2.67*** 0.71 
Current Smoker 2.67*** 0.65 1.61** 0.56 0.62 0.85 
Seasonal Allergies -0.98** 0.66 -1.76* 0.88 -2.64*** 0.80 
Occupational Exposure -1.76*** 0.62 0.18 0.63 -1.57*** 0.34 
       
Type of Neighborhood       
Work Unit (NH1) -2.60* 1.07 -- -- -2.99*** 0.50 
High-density high rise (NH3) -- -- 1.42*** 0.37 -- -- 
Low-density high rise (NH4) -0.46 0.82 -- -- -4.10*** 0.57 
       
Constant 57.32*** 1.94 58.80*** 2.13 63.07*** 1.26 
*P≤0.05    ** P≤0.01   ***P≤0.001 
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