UCLA

Presentations

Title

The Ups and Downs of Knowledge Infrastructures in Science: Implications for Data Management (slides)

Permalink

https://escholarship.org/uc/item/53x6s93s

Authors

Borgman, Christine L. Darch, Peter T. Sands, Ashley E. et al.

Publication Date

2014-09-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-nc-nd/4.0/

The Ups and Downs of Knowledge Infrastructures in Science: Implications for Data Management

Christine L. Borgman, Peter T. Darch, Ashley E. Sands, Jillian C. Wallis, Sharon Traweek

Knowledge Infrastructures Project, UCLA

Digital Libraries 2014, JCDL/TPDL, London, September 2014

Open data policies

- Australian Research Council
 - Code for the Responsible Conduct of Research
 - Data management plans
- National Science Foundation
 - Data sharing requirements
 - Data management plans
- U.S. Federal policy
 - Open access to publications
 - Open access to data
- European Union
 - European Open Data Challenge
 - OpenAIRE
- Research Councils of the UK
 - Open access publishing
 - Provisions for access to data

Australian Government

National Health and Medical Research Council

Supported by

wellcome trust

Policy RECommendations for Open Access to Research Data in Europe

Knowledge Infrastructures

Image: Alyssa Goodman, Astronomy, Harvard

Knowledge Infrastructures: Intellectual Frameworks and Research Challenges

Report of a workshop sponsored by the National Science Foundation and the Sloan Foundation

University of Michigan School of Information, 25-28 May 2012

Knowledge Infrastructures Project Research Questions

- What new infrastructures, divisions of labor, knowledge, and expertise are required for data-intensive science?
- 2. How are the infrastructures of multidisciplinary, data-intensive scientific endeavors established and how are they dismantled?
- 3. How do data management, curation, sharing, and reuse practices vary among research areas?
- 4. What data are most important to curate, from whose perspective, and who decides?

knowledge

UCLA

infrastructures

Knowledge Infrastructures Project Research Design

	Big Data	Small Data
Ramping up data collection	Large Synoptic Survey Telescope (LSST) CONSTRUCTION START	Center for Dark Energy Biosphere Investigations (C-DEBI)
Ramping down data collection	Sloan Digital Sky Survey, Parts I & II (SDSS) SDSS	Center for Embedded Network Sensing (CENS)

Research Methods

Sites	Interviews	People	Institutions	KI Project
CENS	77	72	4	2002-2013
SDSS	118	103	21	2009-
C-DEBI	49	49	16	2012-
LSST	16	10	4	2014-
Total*	260	232	40	

Interviews conducted to date by Knowledge Infrastructures Team

^{*} The cells do not total because of overlapping participation in institutions and projects.

Research Sites and Data

	Big Data	Small Data
Ramping up data collection	Large Synoptic Survey Telescope (LSST) [4] CONSTRUCTION START	Center for Dark Energy Biosphere Investigations (C-DEBI) [3]
Ramping down data collection	Sloan Digital Sky Survey, Parts I & II (SDSS) [2] SDSS	Center for Embedded Network Sensing (CENS) [1]

Center for Embedded Networked Sensing (CENS)

CENTER FOR EMBEDDED NETWORKED SENSING

UCLA USC UCR CALTECH UCM

Sloan Digital Sky Survey

Mapping the Universe

- Planning: 1990s
- Data collection (I-II): 2000-2008
- 25 institutions
- 204 members
- Astronomy
- Astrophysics
- Computer science

http://skyserver.sdss3.org/dr10/en/sdss/telescope/telescope.aspx

Sloan Digital Sky Survey

Mapping the Universe

Data

M51 Galaxy

SkyServer spectroscopy results

http://www.galaxyzooforum.org/index.php?topic=280563.0

http://classic.sdss.org/includes/sideimages/m51.html

Center for Dark Energy Biosphere Investigations

International Ocean Discovery Program lodp.tamu.org

- NSF Science & Tech Ctr, 2010-2020
- 20 universities, plus partners (35 institutions)
- 90 scientists
- Biological sciences
- Physical sciences

Data: Subseafloor microbial life

LSST All Hands Meeting, August 2014, Arizona State University. Arrow to Peter Darch

Planning: 2000s

Construction: 2014-??

Data collection: 2022-2032

Over 100 members

Astronomy

Astrophysics

Computer science

Data

http://www.lsst.org/lsst/gallery/data/lsst-imsim-october-2010

Pairwise Comparisons of Sites

	Big Data	Small Data
Ramping up data collection	Large Synoptic Survey Telescope (LSST) [4] CONSTRUCTION START	Center for Dark Energy Biosphere Investigations (C-DEBI) [3]
Ramping down data collection	Sloan Digital Sky Survey, Parts I & II (SDSS) [2] SDSS	Center for Embedded Network Sensing (CENS) [1]

Ramping down: CENS and SDSS

Similarities

- Successful projects
- Research continues after funding ends
- Loose confederations of researchers
- Science-technology partners

- Scale of data
- Disposition of data
- Centrality of data to research
- Time frame of research
- Data sharing and reuse

Ramping up: C-DEBI and LSST

Similarities

- Infrastructure investments
- Mixture of big and small science
- Planned disposition of data
- Widely distributed partners

- Temporal scale
- Heterogeneity of expertise
- Heterogeneity of data practices
- Maturity of standards
- Community building

Small data: CENS and C-DEBI

Similarities

- NSF Science-Technology Centers
- Problem oriented
- Community building
- Mixture of big and small science
- Minimal data standards

- Technology vs. Science focus
- Disposition of data
- Knowledge infrastructure concerns

Big data: SDSS and LSST

Similarities

- Common personnel
- Temporal scale
- Data release

- Range of disciplines
- Scale of data collection
- Release raw vs. curated data

Discussion and Conclusions

- Knowledge infrastructure needs may vary by
 - Temporal scale of research
 - Degree of research coordination
 - Common or competing data standards
 - Release and reuse as goals
 - Communities and governance

Discussion and Conclusions

- Digital libraries for scientific data may vary by
 - Goals of research
 - Scale of data
 - Investments in data stewardship
 - Locus of digital library expertise

Fastlizard4: tapes from the Kleinrock Internet History Center at UCLA (flickr.com)

Acknowledgements

Research reported here is supported in part by grants from the National Science Foundation and the Alfred P. Sloan Foundation:

The Transformation of Knowledge, Culture, and Practice in Data-Driven Science: A Knowledge Infrastructures Perspective, Sloan Award # 20113194, CL Borgman, UCLA, PI; S Traweek, UCLA, Co-PI

The Data Conservancy, NSF Cooperative Agreement (DataNet) award OCI0830976, Sayeed Choudhury, Johns Hopkins University, PI

The Center for Embedded Networked Sensing (CENS) is funded by NSF Cooperative Agreement #CCR-0120778, Deborah L. Estrin, UCLA, PI

Towards a Virtual Organization for Data Cyberinfrastructure, NSF #OCI-0750529, C.L. Borgman, UCLA, PI; G. Bowker, Santa Clara University, Co-PI; Thomas Finholt, University of Michigan, Co-PI

Monitoring, Modeling & Memory: Dynamics of Data and Knowledge in Scientific Cyberinfrastructures: NSF #0827322, P.N. Edwards, UM, PI; Co-PIs C.L. Borgman, UCLA; G. Bowker, SCU and Pittsburgh; T. Finholt, UM; S. Jackson, UM; D. Ribes, Georgetown; S.L. Star, SCU and Pittsburgh