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Abstract

Everything Old is New Again: Robust Predictive Frameworks for Shifting Host-Pathogen
Interactions in the Face of Global Change

by
Colin J Carlson
Doctor of Philosophy in Environmental Science, Policy, & Management
University of California, Berkeley
Professor Wayne Marcus Getz, Chair

Disease ecology urgently requires powerful predictive tools that anticipate the links between
global change and emerging infectious disease. However, the ecological context of emerg-
ing disease remains poorly understood, especially given that the majority of parasites in
any given ecosystem have no direct impact on human health. This dissertation explores
a global change biology approach to host-pathogen interactions, focused on understanding
both positive and negative impacts of climate change on parasites and pathogens. Chapter 1
reviews current theory surrounding extinction, including mathematical modeling approaches
at scales from population extirpation up through global extinction rates. Community-level
approaches to extinction risk estimation are applied in Chapter 2, which includes forecasts
for climate-driven range shifts based on the largest macroparasite occurrence dataset yet
assembled. Up to a third of parasites could face extinction in a changing climate, especially
accounting for co-extinction with hosts. However, we find no evidence that wildlife parasites
face better or worse odds of survival (or have different hotspots of diversity) based on their
potential to infect humans. The results of this study indicate the hundreds of thousands, or
potentially millions, of parasitic species on Earth are likely to be redistributed around the
globe in a hard to predict pattern, with unknown effects on wildlife and human health. The
same species distribution modeling methods from Chapter 2 are used in Chapter 3 to pre-
dict the global distribution of Zika virus, an emerging infection from 2016 with a still largely
unresolved eco-epidemiology. The conflict among different models and modeling approaches
surrounding Zika’s distribution is considered in Chapter 4, by interfacing these models with
simulations of potential epidemics in the United States. Overall, this dissertation addresses
the idea that in the face of global change, ecologists will play an increasingly important role
in predicting shifting landscapes of disease. However, the overwhelming focus on emergence
ignores the importance of extinction as a potentially complementary phenomenon within
ecosystems; and the varied approaches within ecology, and the short timescale on which
ecologists work during current outbreaks, pose a disciplinary problem with no clear answer.
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cai results are split for the highest bound with minimum temperatures, and the
lowest bound for maximum temperatures, to give the full range of predictions.
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Chapter 1

Preface: It’s the end of the world (as
we know it)

In the face of environmental change, all species have a fundamental set of possible responses:
acclimate and adapt, move, or face extinction. In the context of disease ecology, the in-
terplay between hosts’ and pathogens’ basic responses can produce incredibly complex and
unexpected patterns of change, with dramatic consequences for human health and the envi-
ronment. An emerging field of experimental, modeling, and theoretical work centers around
the challenge of predicting these patterns and processes, ideally with downstream benefits
for both biodiversity conservation and public health projects.

But, by and large, the majority of that work centers around emerging or immediate
threats to human health. In the context of climate change research, the majority of work
in predicted hotspots of parasitic biodiversity focuses on the responses of pathogens like
malaria, dengue fever, and leishmaniasis [1], and comparatively less is understood about
wildlife parasites with no human mortality or morbidity. The problem, of course, is one
of scale. A quick search of the London Natural History Museum’s Host-Parasite Database
2], the most comprehensive database of helminth parasites in existence, finds fewer than
700 human parasites among roughly 20,000 known species of vertebrate helminths. Those
are only a subset of the estimated 75,000-300,000 species of vertebrate helminth alone [3];
invertebrate parasites are several orders of magnitude more diverse, with a recently estimated
81 million nematode parasites of arthropods alone. [4] By most accounting methods, the
majority of species on Earth are parasites, and almost all of them are undiscovered or
undescribed, making them all but impossible to include in global change research.

Any framework for global change biology that excludes parasites is therefore, by defini-
tion, missing the majority of species in an ecosystem—and consequently, the ecosystem-level
dynamics that emerge from parasitism. For example, in many ecosystems, parasites are
responsible for the majority of food web links [3], though they are frequently omitted from
food web studies. Parasites can be the majority of biomass in an ecosystem, and their ability
to regulate host populations and host behavior have tremendous consequences for ecosys-



tem stability. [5] In some cases, parasites may be responsible for maintaining key species
interactions that ultimately benefit endangered species; in one particularly unusual example,
behavior-altered crickets parasitized by nematomorph worms jump into streams, and make
up the majority of the diet of endangered Japanese trout. [6, 7] The downstream effects of
climate change on host-parasite interactions can be expected to disrupt all of these ecosys-
tem roles and services; but almost nothing is known, especially proportional to the diversity
of parasites on Earth.

Many parasites are likely to adapt to changing climates, or already have plastic responses
to environmental change that will buffer them (and their host associations) from the impacts
of global change; some, even, will become more virulent or more prevalent within their cur-
rent ranges. But other species are likely to face extinction, and the scale of that phenomenon
is poorly understood (with even less attention to its potential adverse impact on ecosystems).
At the last major estimate, 3-5% of parasites could be estimated to face coextinction along-
side vulnerable hosts [3]; but nothing is known about parasite extinction risk from climate
change, despite a significant corresponding body of literature surrounding extinction risk of
free-living species. [8] Predicting the impacts of ecological change on parasite-inclusive net-
works proves challenging without this key information; and little theory has been developed
that explores the possible relationship between parasite extinction and disease emergence.

In this dissertation, I explore the predictive crisis of disease and global change from both
sides (parasite extinction and disease emergence). The first half reviews the extinction side
of the problem. Chapter 1, a book chapter prepared for The Mathematics of Planet Earth,
reviews the existing body of theoretical ecology considering extinction at all scales, from
populations up to the planetary level. Chapter 2 applies this body of theory, especially
extinction risk estimation using the species area relationship, to quantify the potential neg-
ative impacts of climate change on parasite biodiversity. To achieve this, I led a team of 17
researchers in 8 countries in an effort to compile what has become the largest operational
parasite occurrence datasets. That data was used with species distribution models [9] to
project the distribution of nearly 500 species in current and future climates, and predict
habitat loss. Overall, parasite extinction rates could reach levels as high as 30% if climate
change and host extinctions act synergistically. But perhaps more interestingly, species that
do not go extinct are also predicted to shift their distributions substantially in the next
half-century. The aggregation of parasites in new ecosystems, and the loss of native para-
site diversity, could create dramatic and unexpected opportunities for disease emergence in
wildlife and potentially humans—especially if parasite diversity can buffer against emergence
events. [10]

In the second half of this dissertation, I explore the problems associated with using
the same method (species distribution modeling, also termed ecological niche modeling) to
predict disease emergence. Chapters 3 and 4 focus on Zika virus, a pathogen first described
in 1947 that has only recently emerged as a global crisis. Chapter 3 presents what, when
first published, was the first ecological niche model for Zika virus. Using a set of basic
climatic predictors, models were generated not only for Zika, but for the closely-related
dengue fever and three of the Aedes mosquitoes that vector these viruses. Results indicated



Zlka virus could be expected to be more strictly tropical than dengue fever, even in the
face of climate change, which expands the range of both. However, in the time since that
study, two alternate models have been published, with substantial differences among them.
[11, 12] Chapter 4 addresses the disagreements between published models, and explores
the downstream impacts of those differences on epidemiological simulations, and shows the
unacceptable margin of uncertainty that emerges from a lack of post hoc consensus building in
the disease ecology literature. Chapter 4 concludes by presenting a global, seasonal consensus
model for areas of Zika virus transmission risk, a basic but important first step in advancing
disease ecologists’ capacity to contribute to public health.

The links between parasite ecology and disease emergence are still somewhat underex-
plored. The macroecology of infectious disease is still a comparatively new field, and com-
munity ecology-based approaches to predicting disease emergence are still comparatively
underdeveloped. [13, 14] However, as this body of work highlights, global change is a cohe-
sive process with many disparate aspects, and the interactions among them (e.g., feedbacks
between parasite and host extinctions and disease emergence) are hard to capture but may
be the majority of the changes that predictive approaches aim to anticipate. Given the
staggering diversity of parasitic life on Earth, I suggest that statistical and machine-learning
approaches are desperately needed that build on this work, and learn from existing patterns
to accurately forecast the process of disease emergence without a comprehensive understand-
ing of underlying patterns of biodiversity. Such tools will only become increasingly important
as climate change redistributes the parasites and pathogens that constitute most of life on
this planet.



Chapter 2

The mathematics of extinction across
scales: from populations to the
biosphere

Colin J. Carlson Kevin Burgio Tad Dallas Wayne Getz

2.1 Abstract

The sixth mass extinction poses an unparalleled quantitative challenge to conservation biol-
ogists. Mathematicians and ecologists alike face the problem of developing models that can
scale predictions of extinction rates from populations to the level of a species, or even to an
entire ecosystem. We review some of the most basic stochastic and analytical methods of
calculating extinction risk at different scales, including population viability analysis, stochas-
tic metapopulation occupancy models, and the species area relationship. We also consider
two major extensions of theory: the possibility of evolutionary rescue from extinction in a
changing environment, and the posthumous assignment of an extinction date from sighting
records. In the case of the latter, we provide a new example using data on Spix’s macaw
(Cyanopsitta spizxii), the “rarest bird in the world,” to demonstrate the challenges associated
with extinction date research.

It’s easy to think that as a result of the extinction of the dodo, we are now sadder
and wiser, but there’s a lot of evidence to suggest that we are merely sadder and
better informed.

— Douglas Adams, Last Chance to See



2.2 Introduction

Most species, like most living organisms on Earth, have a finite lifespan. From the origin of
a species onward, every species changes and adapts to its environment. Some species exist
longer than others, but all eventually face extinction (or, are replaced by their descendants
through evolution). Currently, there are approximately 8.7 million eukaryote species alone.
But in the history of Earth, it is estimated that there have been a daunting 4 billion species
altogether, and at least 99 percent of them are now gone. [15]

How long can a species exist? Of the species currently on Earth, some are deeply embed-
ded in the geological record and have changed very little over the span of million years, such
as coelacanths or ginkgo trees. Most species persist for a few millions of years or more, and
in periods of environmental stability, extinctions typically occur at a low and steady baseline
rate. But at various points in the history of the Earth, extinction rates have suddenly ac-
celerated for brief and eventful periods that biologists term mass extinction events. In 1982,
based on the marine fossil record, David Raup and Jack Sepkoski suggested that five of these
mass extinctions have occurred over the past half billion years. [16] In all five, more than
half of all contemporary species disappeared [17], each sufficiently drastic to be considered
the end of a geological era: the Ordovician 444 million years ago (mya), Devonian 375 mya,
Permian 251 mya, Triassic 200 mya and Cretaceous 66 mya.

But in recent years, ecologists have reached the consensus that the biosphere is currently
experiencing, or at the very least entering, the sixth mass extinction. [18] Unlike the pre-
vious five, which were caused by planetary catastrophes and other changes in the abiotic
environment, the sixth mass extinction is the undeniable product of human activities. While
anthropogenic climate change is one of the most significant contributors, a number of other
factors have recently exacerbated extinction rates, including habitat loss and fragmentation,
biological invasions, urbanization, over-harvesting, pollution, pests, and emerging diseases.

How does the sixth mass extinction scale up against the last five? The number of extinc-
tions alone is an unhelpful metric, as species richness changes over time. A more convenient
unit of measurement commonly used by scientists is the number of extinctions per millions
of species-years (E/MSY). From a landmark study by Gerardo Ceballos and colleagues, we
know that in the geological record, vertebrates normally go extinct at a rate of 2 E/MSY
in the periods in-between mass extinctions. But since 1900, that rate is an astounding 53
times higher. [19] One study has suggested that the sixth mass extinction is comparable
to other mass extinctions in E/MSY rates, meaning that with enough time, the geological
definition of a mass extinction (three quarters extinction) could be achieved in hundreds to
thousands of years. [20] Or, to consider another framing : a 1970 study estimated that at
a baseline, one species goes extinct per year [21], while just a decade later that estimate
was revised to one species per hour. [22] Plants, insects, and even micro-organisms all face
similarly catastrophic threats; and these across-the-board losses of biodiversity pose a threat
to human survival that some argue could even threaten our own species with extinction.

The crisis of extinction is, for scientists, a crisis of prediction. While extinction is a natural
part of ecosystem processes and of the history of the planet, the job of conservation biologists



is to protect species that would otherwise be brought to an untimely and avoidable end. To
do that, conservationists must sort and prioritize the 8.7 million eukaryotes (and, even, some
prokaryotes) to assess which species face the greatest threat—and which can, and cannot,
be saved by human intervention. Assessment is easiest at the finest scales: by marking
and tracking all the individuals in a region, a population ecologist can make a statistically-
informed estimate of the probability of imminent extinction. But above the population
level, assessment is much more challenging, requiring sophisticated (and complicated) meta-
population models that are typically data-intensive. If a species is rare enough and the data
are “noisy,” its extinction may seem uncertain even after the fact; but mathematical models
can help assign a probability to the rediscovery of a species once thought extinct, and resolve
when (and even why) a species has disappeared long after it is gone. Above the level of a
single species, measuring extinction is an altogether different problem, requiring a different
type of model to explain how biodiversity arises and is maintained over time.

Each of these modeling approaches represents a different aspect of a connected problem,
and we deal with each in turn in this chapter. The models we present are seminal and well-
known, but extinction risk modeling is a dynamic and rapidly-growing field. Consequently,
these models only present a handful of the many different approaches that link different
temporal and spatial scales of extinction together.

2.3 The Population Scale

Even though many make a terminological distinction between extinction (the loss of a
species) and eztirpation (the eradication of a population), extinction is still fundamentally
a process that begins at the population scale. With the exception of sudden, unexpected
catastrophes, extinction at the population scale is almost always the product of either a de-
clining population or of stochastic variations in an already-small population, both of which
follow mathematical rules that can be used to quantify extinction risk. Perhaps the most
significant body of theory about population extinction deals with the estimation of a popula-
tion’s mean time to extinction (MTE, typically Tk in mathematical notation), an important
quantity to both theoretical ecologists and conservation practitioners. For both theoretical
and applied approaches to extinction, understanding the uncertainty around 7T requires an
understanding of the shape of the extinction time distribution, including developing and
testing demographic theory that accurately captures both the central tendencies [23] and
the long tail [24] of empirical extinction times. We begin by reviewing some of the basic
population-scale approaches that scale up to ecosystem-level theory of extinction.

Stochasticity and the Timing of Extinction

In the most basic terms, a population declining at a steady rate will eventually become
extinct; the simplest deterministic equation governing the size of a population N, as it grows
over time t (generally measure in units of either years or generations) is given by
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where if r is positive the population is growing, while if r is negative, the population heads
rapidly towards extinction. A slightly more complex model that captures the phenomeno-
logical capping of the growth of a population at a population ceiling termed K is:

N N ifl<N<K
d _{r itl< < (2.2)

dt 0 ifN=K

While K is often called a carrying capacity, this is perhaps misleading, as in this context
it only introduces density dependence when N = K, and not before. Eqns. 2.1 and 2.2
both imply that if » < 0, In(/V) declines linearly with slope r. For shrinking populations
(i.e., 7 < 0) these equations imply that the mean time to extinction (Tg) can be derived
analytically as the amount of time before the population reaches one individual (i.e. N =1
at t = Tkg):

T5(No) = —In(No)/r (2.3)

Consequently, for a given population with a fixed r the maximum achievable extinction time
given a starting stable population size would be

max(Tg) = —In(K)/r (2.4)

However, in this model if » > 1, the population never reaches extinction and simply grows
forever.

Deterministic models only tell a part of the story. In the history of conservation biology,
two paradigms emerged that separately explain the process of population extinctions. The
declining population paradigm explains that populations shrink and vanish due to a combi-
nation of internal and external failures, and suggests that the key to conserving populations
is to identify and prevent those failures. In contrast, the small population paradigm is rooted
in ideas of stochasticity, suggesting that even without factors like environmental degradation
or disease, smaller, more fragmented populations simply face higher extinction risk due to
stochastic population processes. [25] For one thing, stochasticity produces populations with
log-normally distributed sizes (i.e. most populations are comparatively small relative to a
few larger ones). The underlying reason for this can be traced back to Jensen’s inequality,
which suggests the expected value of a convex function applied to a random variable z is
greater than, or equal to, that function applied to the expected value of the random variable
(below, E|-] is the expectation operator):

E[f(z)] = f(E[2])

Applied to stochastic population growth, if r is stochastic, the expectation of r will always
be greater than the expected real growth rate of the population [26]:



E[r] > E[(Ne/No)'"]

Iterating these lower growth rates over an infinite amount of time, populations that are
growing randomly with 7 < 1 (i.e. less than exponential growth) all tend eventually to
extinction.

In general, r can be decomposed into two component processes; births and deaths. In
their foundational work on the ecology of invasion and extinction—The Theory of Island
Biogeography—Robert MacArthur and E.O. Wilson proposed a simple model with discrete
per-capita birth and death rates, A and u respectively. With A 4+ p changes expected per
time step, the estimated time until a single change (birth or death) is given 1/(A+ ). Thus
the time to extinction for a population of z individuals, Tg(x) can be intuitively understood
(with a more detailed derivation in MacArthur and Wilson) as: i) the expected time for one
change to occur (birth or death); plus ii) the probability the change is a birth (i.e., +2-)

> A
multiplied by the time to extinction if the population is of size  — 1; plus iii) the probability
the change is a death (i.e., ﬁu) multiplied by the time to extinction if the population is of
size x + 1.

This reasoning produces the relationship:

1 A 1

T = T 1
r(7) )\+M+)\+M E(r+ )+)\+M

This simple but elegant relationship can be used to produce an expression for Tx(K') using
the method of induction; in particular, T(x) can be expressed as a function of Tg(1), noting
that Tr(0) = 0. To do this, MacArthur and Wilson add a population ceiling K as before,
and consider two cases of density dependence. If births are density dependent, then (using
the notation A(z) to distinguish between the function A and the constant A and similarly for

1)

- e if X < K
M) = .
0 fX>K

fi(x) = pa

and (through and inductive procedure not shown here) the time to extinction is

A A 1 1
Te(K) = Te(1) + — -
2(K) A—ulﬂ) p(K +1)(A = p) A—u;;@
where
1
Te(K)=—(K+1)
1
and
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In contrast, if and when deaths are density dependent,

Az) = Az
i) pr if X < K
aj o
a 0 fX>K
and the time to extinction is
K
A 1 1
Te(K) = Te(l) — —— -
B(K) = 2Tl — 5= -

i=1
In this scenario, Tr(K) = Tr(K + 1); with some induction (not shown here), T(1) can also
be expressed as

A\i 1
Tu(l) = ; (u) A
This provides an explicit method for calculating Tg(K), the maximum achievable time to
extinction with these rates. MacArthur and Wilson made a handful of key observations
about the behavior of these functions as they relate both to island biogeography and to the
population process of extinction. First, Tz (1) can be surprisingly large if A > 1, meaning that
a net tendency for growth has incredibly long times before extinction, even with stochasticity.
Second, if populations start with a single propagule (as their work is framed in the context of
island colonists), roughly p/A go extinct almost immediately while roughly (A — p)/A grow
to K and take Tr(K) years to go extinct. (This means that even though density dependence
is not introduced until N = K, the effects of the population ceiling are still emergent on the
dynamics of the whole system.) Third, “established populations” (N = K) have a readily
calculated extinction time:

A A
>\+MTE(1> = ;TE(l)

When A > p, the time to extinction scales exponentially with the population ceiling, and
does so at a hyperbolically accelerating rate with r. In short, bounded random birth-death
processes still approach extinction, but do so incredibly slowly if populations tend towards
growth.

To more explicitly determine time to extinction in an exponentially growing population,
consider a population subject to simple Weiner process type stochastic fluctuations W (t).




27, 28] Specifically, if dW represents the derivative of W (t) such that W (0) = 0, then W (t)
is normally distributed around 0 such that

W(t) ~ N(0,t) (2.5)
and the model is written as
dN—rth+/NdW

This stochastic differential equation implies that for moderate population sizes, where envi-
ronmental stochasticity prevails over demographic stochasticity (discussed more fully in the
next section), then for levels of infinitesimal environmental variance o2, the expected change
in log population size X = log(N) over a small interval [¢,t + h] is [27, 28]

E[X(t+h) — X(t)] ~ N (uh,0°h) where p=r—0°/2 (2.6)
Solving the stochastic differential equation provides a distribution for X at time ¢:

g(X) = — L (1 s (ﬂ)) oxp (_(X — X, —/LT)Q)

oV 27t o2t 202T

Consequently, the distribution of the time to extinction (a population size of X = 0, i.e.

N=1)is
XO (Xo + MT)Z
T) = Mo )
1) = e (-1

If 1 < 1, this integrates to zero; otherwise, it integrates to 1 — exp (—2uXo/0?). Combining
these expressions,

P(T < Tg) = /OO g(X)dX = /loo F(T)dT

0
gives the probability that the population persists to time 7" without going extinct.

In reality, populations show a combination of deterministic and stochastic behavior over
time, and their extinction is a product of both. In the late 1980s, the field of population
viability analysis (PVA) emerged from the need to find appropriate analytical and simulation
methods for predicting population persistence over time. According to one history of PVA,
Mark Shaffer’s work on grizzly bears in Yellowstone helped birth the field through two
important developments, which we break down in turn below. [29]

Demographic and Environmental Stochasticity

Shaffer’s first major contribution was the use of extinction risk simulations that account for—
and differentiate between—two major kinds of stochasticity. Demographic stochasticity is
defined at the scale of the individual and occurs through random variation in demography and
reproduction, while environmental stochasticity occurs at a synchronized scale for an entire
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population (e.g., a bad year may change vital rates uniformly for all individuals in a pop-
ulation). While the impact of environmental stochasticity is ultimately scale-independent,
larger populations become less sensitive to demographic stochasticity as they grow. This
is due to the integer-based nature of birth-death processes, where populations made up of
fewer individuals will suffer a disproportionate effect from a birth or death event.

Demographic and environmental stochasticity have measurably different effects on T% in
basic population models. A simple modeling framework distinguishing between them was
laid out in a 1993 paper by Russell Lande. [30] That framework begins again with Eq. 2,
except that we now regard r as an explicit function of time r(¢) with a mean 7. In the case
of demographic stochasticity, individual variations have no temporal autocorrelation and at
the population scale,

r(t) ~ N(7, a3/N)

where o3 is the variance of a single individual’s fitness per time. As above, the population
can be expressed as a diffusion process from the initial population size Ny:

1
502(1\70)

d*Tg dTg
- —r -1

The solution of that differential equation for T (where extinction happens at N = 1) is
given as a function of the initial population size:

No K eG(z)
Tr(Ny) = 2/ e_G(z)/ ———dydz
1 z

where

Gly) =2 /1 ’ :;(]jvv))dzv

For populations experiencing demographic stochasticity and starting at their carrying
capacity, this gives us an expression for extinction time that is perhaps slightly clearer:

1 K eQF(N—l)N/afl In K
Tg = |- - dN |- ——
G )

Thus Lande argues in [30] that when 7 is positive, MTE scales exponentially with carrying
capacity, while when 7 is negative it scales logarithmically with carrying capacity (i.e., T o
In(K)), much like in the deterministic decline given by Eqgs. 2.3 & 2.4). In contrast, in
the case of environmental stochasticity, the variance acts on the entire population at once
(cf. Eq. 2.6):

E[InN(t)] =In Ny + (7 — 02 /2)t

and the mean time to extinction is now given by [30]
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B 27
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In the case of environmental stochasticity, if the “long-run growth rate” (7 = r—o?/2) is zero
or negative, MTE again scales logarithmically with K. When long-run growth is positive,
the dynamic is a bit more complicated:

T ~2K¢/(0?c*) if clnK >>1

In this case, the scaling of MTE with K bends up if and only if 7/0? > 1 (i.e., if and only if
the intrinsic growth rate exceeds environmental variation).

Minimum Viable Populations and Effective Population Size

The second major contribution of Shaffer’s work was the introduction of the concept of
a minimum viable population (MVP). In Shaffer’s original work, MVP is defined as the
smallest possible population for which there is a 95% chance of persistence (a 5% or lower
chance of extinction) after 100 years. In their foundational treatment of the minimum viable
population concept, Gilpin and Soulé [31] identify four special cases—extinction vortices—in
which a population is likely to tend below the MVP and towards ultimate extinction.

The first, the R Vortez, is perhaps the most obvious: demographic stochasticity (vari-
ation in r) reduces populations and increases variation in 7, a positive feedback loop of
demographic stochasticity directly driving populations to extinction. The D Vortexr occurs
when the same processes—potentially in concert with external forces—produce increased
landscape fragmentation (see §3.1.1 for an explanation of D), which not only reduces local
population sizes (increasing local extinction rate) but also has subtle effects on population
genetic diversity. The final two vortices—the F' Vorter and A Vortex—both concern the
genetic and evolutionary trajectories of small stochastic populations. In the first, inbreeding
and demographic stochasticity form a feedback cycle, while in the latter, maladaptation is
the underlying mechanism of extinction. Both are especially relevant in research surround-
ing phenomena like climate change, but fully understanding them requires a mathematical
language for the genetic behavior of near-extinction populations.

In heavily subdivided populations with low dispersal, increased inbreeding can lead to de-
creased genetic diversity and the accumulation of deleterious or maladapted alleles that make
the total population less viable than its size might indicate. As a consequence, intermediate-
sized populations with low genetic diversity can behave, demographically, like small popula-
tions. FEffective population size, or N,, quantifies that phenomenon, expressing the genetically
or reproductively “effective” number of individuals in a population. In some cases, measur-
ing population size with N, may more readily allow the computation of a meaningful and
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predictive MVP, by removing some of the variability between different populations of the
same size, and by more accurately capturing the long-term reproductive potential of the
available genetic material. (Relatedly, it is worth noting that in one unusual study, it was
found that there is no statistical link between species MVP and global conservation status.
[32])

A number of different approaches exist for the estimation of N.. Sewall Wright, who
created the concept of effective population size, offered one interpretation based on neigh-
borhoods. In his model, offspring move a distance away from their parent based on a two-
dimensional spatial normal distribution with the standard deviation o. [33] If individuals
have a density D, then

N, = 4n0%D

Wright[34] also provides a more commonly invoked method of calculating NV, based on sex
structure, using N,,, and Ny to respectively denote the number of breeding females and males
in the population:

4N, N;
" N+ Ng

In such an approach, a population of all males or all females would have an NN, of 0 (because no
new offspring could be produced in the next generation, rendering the population functionally
extinct). That method of deriving N, is still frequently cited in population conservation work
to the present day, as small populations tend to stochastically deviate from a 50:50 sex ratio,
sometimes severely impacting long-term survival.

A more genetics-based method of calculating N, comes from the Wright-Fisher model of
a two-allele one-locus system, referred to as the wvariance effective population size. [35] In
that model, variance between generations o?(a), for allele A with frequency a, is given by
a(l —a)/2N, yielding an effective population size of

a(l —a)
202
Alternatively, for a locus with a greater degree of polymorphism, or multi-locus microsatellite
data, genetic diversity # and mutation rate p are related by
0

N, = @
A more commonly used metric in current literature is inbreeding effective population size.
To construct that metric, we start by defining population-level measures of heterozygosity.
In the simplest Hardy-Weinberg formulation for a two allele system with allele frequencies a
and 1—a, the expected fraction of heterozygote offspring E(H) = 2a(1—a). By counting the
real fraction of heterozygotes and comparing, we can measure the assortiveness of mating:

N, =
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That value f is called the inbreeding coefficient, ranging from 0 to 1; again according to
Wright[36], V. should be calculated such that it satisfies

b
OAf

where Af is the change per generation (in a declining or small population, genetic diversity
decreases at a rate determined by the population size and inbreeding).

Returning to the extinction vortex concept with N, in mind clarifies the genetic com-
ponent of those extinction processes. While the D Vortex reduces N, as a byproduct of
fragmentation (in fact, decreasing neighborhood size), the last two extinction vortices bring
N, below the MVP through specifically genetic modes of extinction. In the F' Vortez, a pos-
itive feedback loop between increased inbreeding (hence f, the inbreeding coefficient) and
decreases in effective population size drive a population to extinction over a few generations.
A notorious real-world example of such a process might be the near-extinction (or extinction,
depending on your species concept) of the Florida panther, a subspecies of Puma concolor
ultimately rescued through outbreeding with Texas panthers. All things considered, their
rescue was both fortuitous and improbable, as the species was assigned a 5% or less chance
of avoiding imminent extinction in 1995. [37] Finally, in the A wvortezr (i.e., adaptation),
decreased N, acts as a buffer to the strength of selection acting on phenotypes that are
closely paired with environmental variation or change, leading to mismatch between them
that reduces both r and N (and N,) until extinction (a process we cover in much greater
detail in §4.1) . Obviously, the four vortices are non-independent processes, and probably
often exist in combination in real-world cases.

N, =

Population Viability Analysis: Theory and Practice

Population viability analysis is conventionally implemented by modeling the dynamics of
different compartmental classes within a population, such as age and sex structure. The
foundations of that method date as far back as P. H. Leslie’s population analyses in the late
1940s in the framework of discrete matrix models and linear systems theory. Formulations of
the Leslie model and the theory behind such models can be found in several expository texts
(38, 39], with a brief outline provided here. In the Leslie model, the population is divided
into n age classes, where N;(t) is used to denote the number of individuals in age class i at
time ¢. In each age class, the parameter s; (0 < s; < 1) is used to represent the proportion of
individuals aged 7 that survive to age i + 1, in which case the variables N;(t) and N1 (t +1)
are linked by the equation

Nipa(t+1) = ;Ni(2) (2.7)
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At some point we either terminate this series of equations at age n by assuming that
s, = 0 (i.e. no individuals survive beyond age n) or we interpret NV, as the group of
individuals in the population aged n and older and use the equation

to imply that all individuals aged n and older are subject to the survival parameter s,
(i.e., individuals older than age n are indistinguishable from individuals aged n). If we now
interpret Ny(t) as all newborn individuals born just after individuals have progressed one
age class, then Ny(t) can calculated using the formula

Not) = YN0 29)

where b; is the average (expected) number of progeny produced by each individual aged 1.
In this model we have not differentiated between the sexes; so, for example, if each female
aged 1 is expected to produce 3 young and the population has a 1:1 sex ratio (same number
of males to females) then b; = 1.5 for this age class. If we now apply Equation 2.7 for the
case © = (0, we obtain the equation

Equations 2.7 to 2.10 can be written compactly in matrix notation (a Leslie matriz) as

N(t+1) = LN(t) (2.11)
N, Soby -+ Sobp—1 Sobn
s e 0 0
where N = : and L = ) ) ) ]
Nn 0 . e Sn—1 Sn

The matrix L is a nonnegative matrix since all its elements are non-negative, with at least
one positive element. Further, if there exists some integer p > 0 such that L? is positive
(i.e. all its elements are positive), then it is is known from the Perron-Frobenius Theorem
that the matrix L has a dominant positive eigenvalue A, (known as the Perron root) and
a corresponding eigenvector v, whose elements are all positive. These values )\, and v,
characterize the long term behavior of N such that

N(t) ~ (A)'vy

This equation implies that as ¢ gets very large N(t) grows like ()\,)" and the ratio of dif-
ferent age classes matches the ratio of elements of v,. Thus, if A\, > (<)1, N(¢) will grow
(decline) geometrically at the rate A, and approach the so-called stable age-distribution, as
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characterized by the ratio of consecutive elements of v,,. In other words, this model predicts
that the population will go extinct whenever the largest eigenvalue of L is less than one (i.e.,
0 < A, < 1). On the other hand, if A, > 1, then we expect density-dependent effects at some
point to rein in the unfettered growth by causing survival rates to decline. In particular, if
the survival rate sy of the youngest age class is the most sensitive of the survival rates to
increases in the total biomass density

B=> wh; (2.12)
1

of the population, where w; > 0 is the average weight of an individual in age class 7, then
we should replace sg in Eqn. 2.10 with an expression such as

S0

= T BET (2.13)

S0

where 5 is the density-independent survival rate, K is the density at which g is halved,
and v > 1 is termed the “abruptness” (as it controls the abruptness in the onset of density,
approaching a step down function as v gets large [40]). Similar modifications can be made
to the other survival parameters s;, depending on their sensitivity to changes in population
density.

Stochastic equivalents of these deterministic models typically treat the survival rates s;
as probabilities that each individual survives each time period, rather than as the proportion
of individuals surviving each time period; and b; itself is a random variable drawn from an
appropriately defined distribution (usually the binomial distribution). Stochastic models of
this sort can be made even more complex by adding more population structure (e.g. genetic
variability) or increased levels of complexity (e.g. modeling at the metapopulation scale,
discussed in §3, or adding underlying environmental variation or other landscape structure).
Though MVP or extinction rates might be difficult to calculate analytically for models of
this level of complexity, repeated simulation can easily allow empirical derivation of these
properties of a system [41], and is perhaps the most widespread practice in existence for esti-
mating population extinction risk in conservation research. An example using an interactive
web app [42] is show in Figure 1.1.

Is population viability analysis the perfect tool for studying extinction? PVA is cur-
rently the gold standard for most applied conservation research, both by virtue of being an
all-encompassing term for quantitative extinction risk modeling at the population scale, and
the absence of any suitable alternative. But PVA, like any quantitative tool, is tremendously
sensitive to assumptions, parameterization, and data availability. Imprecise parameteriza-
tion, from noisy data or tenuous assumptions, proportionally reduces the precision of PVA,
to a degree that may be hard to characterize; it is consequently important to report uncer-
tainty from PVA estimates [43]. Similarly, given the challenges of developing an accurate and
precise model, it has been widely agreed that PVA should be treated as more of a relative
or comparative tool (for instance, between different management or conservation scenarios),
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and authors should refrain from treating minimum viable population or extinction time esti-
mates as absolute, precise estimates. [44, 45, 46] Despite this, many managers still use PVA
as an absolute estimate of extinction risk, a pervasive problem with no clear solution.

Case Study: PVA, Disease, and Evolutionary Rescue

In 2015, an epidemic of unknown identity eliminated more than half of the population of the
critically endangered saiga antelope (Saiga tatarica), in the short span of three weeks. While
the causative agent was ultimately identified as a species of Pasteurella, the mechanism by
which a normally asymptomatic non-pathogenic bacterium killed at least 130,000 antelopes
is still in question. [47] Literature explaining the die-off, or predicting the consequences for
the species, remains comparatively limited; the fate of the species remains uncertain, and it
may yet face extinction in the coming years.

Disease is rarely responsible for the extinction of a cosmopolitan species; but for already-
threatened species like the saiga, it can be one of the most rapid, unpredictable and un-
preventable mechanisms of extinction. Disease has been implicated in a handful of notable
wildlife extinctions, like that of the thylacine ( Thylacinus cynocephalus) and Carolina para-
keet (Conuropsis carolinensis), and has been the definitive mechanism of extinction for
species like the eelgrass limpet (Lottia alveus). [48] While most diseases co-evolve with their
hosts to an optimal virulence that prevents the species from reaching extinction, diseases
that can persist in the environment may be released from such constraints and be more
likely to evolve “obligate killer” strategies (like that of anthrax [49]). Fungal pathogens in
particular tend to grow rapidly in hosts and spread rapidly between them, which can result
in population collapses before optimal virulence levels can be attained. [50]

Two notable fungal diseases have recently demonstrated the destructive potential of envi-
ronmentally transmitted pathogens. Perhaps the most significant example of disease-driven
extinctions is the trail of destruction caused by the chytrid fungus Batrachochytrium dendro-
batidis (Bd). Bd has been found in at least 516 species of amphibian [51] and has driven de-
cline or extinction in least 200 [52], including at least two thirds of the genus Atelopus alone.
[53] According to some estimates, current extinction rates that amphibians face (largely but
not entirely due to chytrid) are roughly 200 times the background rate; including declin-
ing species, that estimate is closer to an even more staggering 25-45,000. [54] White nose
syndrome (WNS; Geomyces destructans), a similar fungal epizootic, has similarly spread
through bat populations in the eastern United States, causing widespread population-level
dieoffs since the mid-2000s. While white-nose syndrome has yet to drive any entire species
to extinction, significant concern remains regarding its ongoing spread; one study in 2010
using population viability analysis suggested a 99% extinction risk for the little brown bat
(Myotis lucifugus) in under two decades. [55] Even in a best-case scenario where white-nose
mortality was reduced to one twentieth of its rate, substantially reducing extinction risk,
bats would still be reduced to one percent of their original population size.

White-nose syndrome has also become a potential case study for evolutionary rescue, one
of the most controversial phenomena in extinction research. The premise that rare genes for
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resistance or tolerance can bring a disease-ridden population back from the brink of extinc-
tion has theoretical support, and potentially indicated from the rapid evolutionary response
of certain hosts documented throughout the literature [56]. But WNS constitutes one of the
most interesting and controversial examples because, while populations show some sign of re-
covery from the disease, at the time of writing, no definitive genetic mechanism for resistance
has been isolated, a necessary component of demonstrating evolutionary rescue from disease-
induced extinction. [56] Consequently, speculation about evolutionary rescue is controversial
and so far has been conducted in primarily theoretical settings. In an age-structured matrix
population model proposed by Maslo and Fefferman, two scenarios for recovery from WNS
are considered. [57] In one, bats’ adaptive immunity leads to re-stabilization at much lower
levels overall, but a much faster recovery to a stable balance of juveniles (/) and adults (A),
with subscript ¢ denoting the number of individuals in these two age classes at time ¢. In
that model, in the absence of white-nose,
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In a second model they propose, recovery comes not from adaptive immunity but from
innate immunity through a genetic mechanism for resistance. In that scenario a robust type
(R) is present in the gene pool with frequency p; and protects from white nose infection; the
remainder of individuals are wild type (WT). In the evolutionary rescue model, all individuals
have lower survivorship, but wild type bats fare much worse and reproduce at slightly slower
rates (imposing strong selection against WT):
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In this model, an 11-year stabilization period ultimately leads to population recovery with a
positive net growth rate (calculated as the dominant eigenvalue A = 1.05), potentially saving
populations from extinction. Despite the lack of genetic evidence for evolutionary rescue,
Maslo and Fefferman propose that observed similarities between the dynamics they observe
and real data on white-nose outbreaks suggests that evolutionary rescue may be happening
in real time. Other work since has similarly supported the idea that bat populations may
be recovering. Validating these results requires that researchers identify genetic variation
between populations associated with differential outcomes, and develop models more directly
informed by those mechanisms.

2.4 The Metapopulation Scale

Populations rarely exist in isolation, but are often connected to other populations through
dispersal processes, creating a metapopulation. Metapopulations are considered to be in a
relatively constant state of flux, as local extinctions of species in habitat patches are buffered
by re-colonization from local dispersal. In this way, dispersal can be beneficial or detrimental
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to metapopulation persistence. Under high dispersal, patches become homogeneous and
population dynamics tend to become synchronous. This synchrony is destabilizing, in that
periods of low population sizes will be experienced by all patches, increasing the likelihood
of stochastic extinction of the entire metapopulation. On the other hand, too little dispersal
will result in spatial clustering of a species, as the species will be confined to the set of
patches that can be successfully reached and colonized and similarly potentially increasing
extinction risk. [58, 59

The importance of dispersal to patch-level colonization and metapopulation persistence
highlights that extinction processes occur at two scales: the local patch-level (i.e., a single
population in the network of habitat patches) or at the entire metapopulation level (i.e., ei-
ther through catastrophic events or cascading local extinctions). Extinctions of single patches
can occur as a result of demographic, environmental, or genetic stochasticity (addressed in
more detail in §2.3), or through extrinsic events related to habitat loss or natural enemies
[60]. Metapopulation level extinction can also result from environmental stochasticity at
the regional scale [61], provided this stochasticity is spatially autocorrelated, such that it is
expected to promote synchronous dynamics among habitat patches [62].

Basic Metapopulation Models and Extinction

In the classic metapopulation model described by Richard Levins, the balance between patch
colonization (c¢) and local extinction (e) determines patch occupancy dynamics. In this case,
local habitat patches are either occupied or unoccupied, and both patch number and the
spatial orientation of patches are undescribed. Dispersal among habitat patches can rescue
patches from extinction, or allow for the recolonization of extinct patches. All patches are
treated as equal, so that any patch is suitable for a species, and (as a simplifying assumption)
all habitat patches can be reached from all other patches. This simplified representation
treats space as implicit, and patch quality and size as constant; rather than an explicit
population size, patch occupancy is just a 0 or 1 state. The dynamics of the proportion
occupied patches, P, are given by a differential equation:

dP

o =C
In that equation, extinction is a random process for every occupied patch that is entirely
independent of the state of the system. In contrast, colonization rates depend both on
the fraction of occupied and unoccupied patches, as emigrants move from occupied patches
to re-colonize unoccupied ones. The balance between the two processes of extinction and
colonization determines long-term persistence of the metapopulation; [63] that is, a necessary
condition for metapopulation persistence in this model is

P(1—P)—eP (2.14)

e
-<1
c

At a non-trivial equilibrium, the patch occupancy is given as
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This suggests that the equilibrium fraction of occupied patches is a simple function of col-
onization (¢) and extinction (e). If extinction rates are greater than zero, this implies that
the equilibrium occupancy is less than one even if colonization exceeds extinction; that is
to say, not every patch will ever be stably filled if extinction is nontrivial. This shows that
even a metapopulation in equilibrium is still in a constant state of patch-level flux. In real
applications, this implies that just because a patch of habitat is empty, that may not imply
it is uninhabitable; and similarly, just because a population goes extinct, it may not be
indicative of broader declines or instability.

While admittedly a simple representation of a metapopulation, the Levins model can yield
important insights into spatial population dynamics [64]. For instance, the mean time to
extinction of any given population/patch is the inverse of the rate (i.e., Tg = 1/e), providing
a link to the models at the population scale discussed above. We can take the Levins model
a step further to explicate the relationship between patch occupancy and overall mean time
to extinction Ty, at the metapopulation scale. Starting with the assumption that the total
H patches each have their own average extinction time 7y, (which should be 1/e),

PH)?
Ty =T exp —( ) -
2H<1 _ P)

Consequently, using Eq. 2.15, we can also express T}, as

H 1
TM:TLexp <5 (CTL+F—2))
L

showing that metapopulation extinction time increases exponentially, not linearly, with the
MTE of individual habitat patches. [65]

The simplicity of the Levins model has resulted in a sizable body of literature surround-
ing and extending the model. For instance, in the original Levins’ model all patches are
equidistant from one another, identical in quality, and can only be in one of two potential
states (occupied or unoccupied), but each of these conditions is frequently adjusted in deriva-
tive stochastic patch occupancy models (SPOMs). Researchers have shown that despite the
simplicity, Levins-type dynamics can emerge from more complicated stochastic metapopu-
lation models [64], and extensions of the Levins model continue to provide insight into the
influence of habitat patch size and topography (i.e., spatial orientation of habitat patches)
on metapopulation persistence [66].

Island Biogeography and Metapopulation Capacity

A simple extension of the Levins model considers a set of spatially explicit patches of variable
size, where a distance matrix D describes the distance between all patches in the metapopula-
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tion. The model borrows elements of Macarthur and Wilson’s Theory of Island Biogeography
[67], such that distance between patches (D;;) and patch area (A4;) influence extinction and
colonization processes, where the patch extinction rate scales with patch area (e; = e/A;),
and colonization (¢;) becomes a property of distance (D;;), patch area (A;), and dispersal
rate (o) where

e = e A1)
J#i
This suggests that the mean time to extinction of a habitat patch (1/e;) is determined by the
area of the patch. This makes the occupancy probability of each patch in the metapopulation,
described in terms of matrix M

—aD;;
Ml] =€ JAZAJ

and the leading eigenvalue of this matrix M describes the persistence of the metapopula-
tion (also know as metapopulation capacity[68] or Ayr). The condition for metapopulation
persistence is that the dominant eigenvalue of M must be greater than the ratio between
extinction and colonization rates:

A > efc

While spatially explicit, this approach assumes that dispersal among habitat patches
is determined by patch area and distance to other patches, ignoring population dynam-
ics in each patch. However, since habitat patches vary in their size and connectedness to
other patches, it is possible to determine the relative importance of each habitat patch to
metapopulation persistence in this framework [68, 69], potentially informing conservation
and management decisions [70].

Incorporating Patch Dynamics

The above extension of the Levins’ model allows for patches to vary in size and connectedness.
Another extension is to consider the abundances of habitat patches within the metapopula-
tion, thus considering the dynamics of each patch, and the effects of dispersal among local
populations [71].

This expression assumes that the growth rate of each habitat patch is R;, and that the
carrying capacity is a constant K. If we assume that the population growth rates (r;)
are independent and identically-distributed Gaussian random variables, this causes R; val-
ues to be log-normally distributed, and allows us to define persistence thresholds for the
metapopulation based on the variance in the population growth rates r;. The threshold for
metapopulation persistence relies on exceeding a threshold value (opreshoia) in terms of the
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variance among local patch population growth rates (r;). If p is the mean local population
growth rate over time, this threshold is

Othreshold = 2|,u|

This model can be extended to yield many interesting conclusions. For instance, if popu-
lations have influence on where their offspring go, population growth rates may be maximized
by seeding offspring in less than suitable “sink” habitat if habitat quality fluctuates with
time, and when the “source” habitat occasionally experiences catastrophes [72]. The com-
plexity of metapopulation dynamics in the face of environmental stochasticity, variable patch
quality, dispersal, and competition has fueled expansive theoretical work [73, 74]. An obvious
next step is to scale from single species metapopulations to multi-species communities (i.e.,
metacommunities), which allows for the modeling of how species interactions, predator-prey
dynamics, and community assembly relate to persistence [75].

2.5 The Species Scale

Extinction is defined at the scale of the species, but it is also at this level of taxonomic
resolution that it is perhaps hardest to quantify—and, to summarize—due to considerable
diversity of approaches and applications. We explore in this chapter two applied extensions
of that body of theory, corresponding to two common quantitative frameworks for species-
level extinctions. In the first, the complete loss of suitable habitat leads to an inevitable—if
not immediate—extinction. Species can escape extinction through three primary channels:
acclimation, adaptation, and migration. Species distribution models are often used to cal-
culate extinction risk at the community scale in that framework (described in greater detail
below), but they can only at best include the last of those three rescue processes. Evolu-
tionary models, on the other hand, can link demography and genetics to the overall risk
of extinction in a changing environment; we explore that application here in the context of
both adaptation and phenotypic plasticity.

The second framework is based in the notion that population extinctions become species
extinctions; and so the framework for population (and metapopulation) viability analysis
described above acts as a sufficient method for estimating species extinction risk. In many
cases, that may be a safe assumption, as near-extinction species are reduced down to a single
persistent population or a handful in isolated refugia. But in real applications, persistence
in small isolated refugia may be difficult to study, or even observe with any regularity;
consequently, an entire body of literature has been developed to relate extinction risk to
the sightings of rare species. That body of theory allows two applications: the posthumous
assignment of extinction dates to extinct species, and sighting-based hypothesis testing for
a species of unknown extinction status. We explore both applications below.
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Adaptation and Plasticity in a Changing Environment

Bounding uncertainty is the seminal challenge in extinction research, and in the real world,
species’ potential to acclimate and adapt to changing environments confers an unknown
degree of robustness that may give species a chance at evading extinction. As discussed
above, evolutionary rescue has been a particularly tantalizing—and controversial—idea in
the context of disease research. But more broadly, evidence suggests that extinction risk is
heavily complicated by species’ variable ability to track changing environments.

Most models of evolutionary rescue approach the problem by explicitly modeling fitness
curves and the speed of natural selection. In a foundational paper by Gomulkiewicz & Holt
[76], population size N; changes over time in response to its mean fitness W; such that

t—1
N, = Wi Nioy = [[ Wil
i=1
If fitness is below one (i.e., populations are reproducing at a rate below replacement), then
the population will tend towards extinction. The model they present uses a pseudoextinction
threshold N, such that if the initial fitness W is held constant over the entire interval,

T _ InN, —1In N,
E T g,

Without adaptation (i.e. W, increase above Wy < 1), the population declines to extinction.
To model adaptation, Gomulkiewicz & Holt assume that environmental change begins at
time 0, adapting a system of equations for describing natural selection on a single phenotypic
trait originally proposed by Russell Lande. [77] In that notation, the trait z has an optimum
phenotype zo:. The population mean phenotype is expressed as d;, the distance of the
average z from z,, at each timestep, with an initial value dy. As for any quantitative trait,
individual phenotypic values z are normally distributed around the population mean with
some variance 2

Zr ™~ N(dt, 0'22)
The corresponding fitness function with width w, is expressed as a bell curve around the
optimum:
W(2) = Wnaxe ™ /2

where Wi, is the fitness of z,,.. The width of the fitness function (which can be interpreted
as the strength of selection), the existing variance in the trait, and the distance from the op-
timum, determine how quickly the population evolves; the changing fitness of the population
can be expressed as:

Wy = Winax Vw2 /(02 + w,) e~ %/ 20" +202) (2.16)
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Even a population with a mean at z,,; does not have perfectly maximized fitness, because
of the variance around the mean; the actual growth rate of the population when d; = 0 can
be expressed as

W - Wmax wz/(o-g + wz)
This provides a clear way to simplify Eq. 2.16:

W, = We—df/(zaz%rzwz)

In this expression, the changing fitness of the population is expressed only as a function of
the optimum and the strength of selection on the trait z.

How does the actual distribution of phenotypes change over time? In real systems,
evolution is seldom a direct progression towards the optimum, even under hard selection
with ample genetic variation. If the trait z has a heritability h? (where a heritability of 1
means the trait is perfectly heritable, and 0 would indicate perfect plasticity or no genetic
basis), Gomulkiewicz & Holt define a scaleless “evolutionary inertia”

w, + (1= h*o.?

k= . 0<k<1
w, + 0,2

which in turn simplifies how fast the population shifts towards its optimum phenotype:
d, = k'dy
Together, this set of equations produces the governing expression for the system:

dy? -k N
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If this equation has no roots when solving for ¢, then this indicates the population will
fall and rise without any real extinction risk; but when it does, the roots are estimates
of the time until the population falls below the critical threshold (7%) and the time until
recovery could be evolutionarily possible (Ts in their notation, where N, passes back above
N.). The interval between these two values is characterized by a small population that,
due to demographic stochasticity, would require much more intensive conservation efforts
(e.g., managed ez situ breeding) than normal to possibly survive that interval. The time to
recovery (growth switches from negative to positive even though N, < N,) is

T LI AN do’
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From this expression, Gomulkiewicz and Holt derive a useful finding: “tg increases logarith-
mically with the degree of initial maladaptation ... but is independent of the initial popula-
tion density.” Or, to rephrase: the possibility and speed of evolutionary rescue depends on
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the initial phenotypic distribution, the evolutionary inertia, and the speed of selection, but
is scale invariant across population sizes; even small populations with high enough genetic
diversity and low inertia can be rescued by evolutionary rescue.

The model developed by Gomulkiewicz and Holt sets useful theoretical bounds on the
genetically-coded evolution of a trait; but in the real world, phenotypic plasticity compli-
cates this pattern, and presents one of the hardest challenges for predicting how species
might escape extinction. In a similar model developed by Chevin et al. [78], the trait in
question z has a developmental trajectory with both a genetic component and the potential
for phenotypic plasticity in response to an environmental variable e. Their model uses a “re-
action norm” approach to plasticity (popularized by Schlichting, Pigliucci and others [79]),
breaking down that phenotypic trait into an adaptive genetic component a and a plastic
component b that responds to the environmental gradient. They express the distribution of
the phenotype p(z) at generation n in an environment changing at rate e(t) = nt as:

p(z) ~ N(z,0.%)

Here the population mean z, expressed in terms of the generation time 7 under the as-
sumptions that i) developmental plasticity takes effect at time 7 during ontogeny and ii) the
strength of plasticity b (the slope of a phenotypic reaction norm), takes the form

z=a+bmT(n—r1)

Assumption (ii) is of course a limiting one, given that plastic reaction norms are in fact evolv-
able; but extensions of quantitative theory that incorporate this idea are underdeveloped.
We also assume that the variance associated with z has both environmental and genetic
components: i.e.,

af = aa2 + 062

Assuming there is an optimum phenotype 6 = Be, where B is the optimal rate of change
to plastically track the changing environment, Gomulkiewicz and Holt define a changing
population size with a maximum growth rate Wi,.., such that

B (2 —0)> b
W(z) = Wiax €Xp ( o, oo

where both w’s represent the strength of stabilizing selection (the width of fitness curves,
comparable to above). From there they make the link to overall population dynamics, where
the intrinsic rate of growth of the population r can be scaled with generation time and
related to selection on z as

(W) In(Wiax) _ In(1+ Uz/WZ) + bQ/Wb _ (z — 9)2
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where 7, the strength of stabilizing selection, is given by
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The first two terms become the maximum possible growth rate r,,,, if z reaches the

optimum 6:
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From this expression for population dynamics, Chevin et al. derive a formula for the critical
rate of environmental change, above which ( > 7.), plasticity and adaptation combined still
fail to prevent extinction (recalling that B is the optimal rate of change to plastically track

the changing environment and b is the slope of the phenotypic reaction norm):

[ 2rmaxY h%c?
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From this expression, it is very easy to determine the long term tendency of the population to
extinction or survival as a function only of the degree of plasticity and the associated strength
of costs (wp). The greater the extent of plasticity, the more the costs of plasticity separate
out population trajectories; but when plasticity has a weak slope, the extinction isoclines
converge towards the same threshold. This conceptualization of adaptation to environmental
change as a single-trait system with readily measured costs of adaptive plasticity is obviously
an idealization, but also clearly illustrates a number of important points. While adaptive
genetic variation has a clear direct relationship to evolutionary rescue, plasticity also plays
an important role; and quantifying plasticity without quantifying its costs can provide a
misleading perspective on the feasibility of adaptation and acclimation.

Is Evolutionary Rescue Real?

Evolutionary rescue is not a “silver bullet,” and the application of evolutionary theory to real
populations and metapopulations is far from straightforward. For one thing, evolutionary
rescue requires a sufficiently large population that a species is buffered against demographic
and environmental stochasticity long enough for higher-fitness phenotypes to become pre-
dominant. [80] Additional complications include, but are not limited to:

e Initial environmental conditions. Bell and Gonzalez showed that populations that
begin at intermediate stress levels may react the slowest to environmental “deteriora-
tion,” producing a U-shaped curve in adaptive rescue. [81] They explain this as a
product of two competing processes driving evolutionary rescue: as baseline stress
increases, overall mutation rates decline, but the proportion of beneficial mutations
(or, perhaps more accurately, the associated fitness differential) increases. Populations
beginning in “mildly stressful conditions” may simply be at the low point of both
processes. Bell and Gonzalez similarly show that populations with a history of minor
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environmental deterioration have a much greater probability of evolutionary rescue in
a fast-changing environment.

e The velocity of environmental change. As Chevin et al.’s model highlights, en-
vironmental changes that are too rapid almost invariably drive species to extinction,
when selection simply cannot operate fast enough to keep pace; this finding is readily
confirmed in environmental settings. Rapid environmental changes can also function-
ally reduce mutation rates at a population scale. A study of E. coli by Lindsey et al.
showed that “The evolutionary trajectory of a population evolving under conditions
of strong selection and weak mutation can be envisioned as a series of steps between
genotypes differing by a single mutation,” and some “priming mutations” may be nec-
essary to arrive at further genotypic combinations with substantially higher fitness.
[82] Consequently, if environmental changes are too rapid, higher fitness genotypes
may be “evolutionary inaccessible.”

e Dispersal rates and metapopulation connectivity. Simulated metapopulation
models by Schiffers et al. showed that higher dispersal rates can severely limit the
propensity of populations to experience local adaptation, especially in a heteroge-
neous environment (a phenomenon they refer to as “genetic swamping”), and thereby
potentially limit evolutionary rescue. [83] However, for an entire species to persist,
intermediate (local) dispersal may be necessary to allow adaptive mutations to spread,
a finding shown experimentally by Bell and Gonzalez.

e Linkage disequilibrium. Schiffers et al.’s study, which simulated genomes in an
“allelic simulation model,” produced an unusual result suggesting that linkage between
adaptive loci may not actually increase the rate of adaptation. The interaction this
could have with the “priming mutation” process is complex and poorly explored in a
theoretical context.

A final important consideration should be made with regard to what Schiffers et al. dis-
tinguish as complete vs. partial evolutionary rescue. In their models, they find that when
adaptive traits originated but spread poorly (as a combination of linkage disequilibrium,
habitat heterogeneity, and dispersal limitations), it substantially reduced population sizes
and ultimately produced an “effective reduction in the suitable habitat niche.” This type of
partial evolutionary rescue could be most common in real-world scenarios, where adaptation
in larger populations experiencing the slowest rates of environmental change may allow per-
sistence, but not maintain a species throughout its entire range, and may still be followed
by a substantial reduction in overall habitat occupancy.

If current research on global climate change is any indication, this type of partial evolu-
tionary rescue may ultimately be a poor buffer against extinction. Climate change may set
the events of an extinction in motion, but research suggests that habitat loss from climate
change is rarely the direct and solitary causal mechanism of an extinction. [84] Instead,
climate change may reduce a population to small enough levels at which other mechanisms
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drive extinction. Small populations are especially susceptible to stochastic crashes in popu-
lation size, and may also be especially susceptible to stochastic collapse due to other factors
within-species (Allee effects in breeding, inbreeding) or from interactions with other species
(competition, invasion, disease). Ultimately, the synergy between these drivers may produce
a greater overall extinction risk that many modeling approaches might not directly quantify,
but that could be most likely to drive species to extinction, and drive ecosystems into novel
assemblages. [85]

After Extinction: Lazarus Species, Romeo Errors, and the Rarest
Birds in the World

The job of conservation biologists and extinction researchers is far from over after the ex-
tinction of a species. The autoecology of an extinct species (its basic biology, ecology, natural
history, distribution and other species-level characteristics) often becomes a permanent un-
known, assumed to be lost to the annals of history. But as statistical tools for ecological
reconstruction become more sophisticated, researchers have the chance to explore basic ques-
tions about extinction in retrospect. In particular, the same body of theory that governs
the timing of extinction in a declining population can be applied in a retrospective sense as
well, to estimate the likely extinction date of a species. (Or, more formally, the estimation
of the MTE from a given point can be used to pinpoint 7% , even with the same data, after
extinction has already occurred.) These methods have been used both for ancient species like
the megalodon [86], and for more recent extinctions like that of the dodo [87]. But perhaps
most interestingly that theory can be applied when the uncertainty bounds on T contain
the present date, meaning that the extinction of a species is not taken as a certain part of
history. Even ancient “Lazarus species” can be rediscovered, like the coelacanth, believed
to have gone extinct 66 million years ago but rediscovered in the last century. How can we
confidently say the coelacanth continues to exist, but the megalodon is likely to never be
rediscovered?

Statistical Methods for the Sighting Record

Once a species is suspected to be extinct, at what point do we stop looking for them? With
limited resources for conservation, trying to find and conserve a species that is no longer
around wastes resources better used elsewhere; but making a Type I error and assuming a
species is falsely extinct (and abandoning conservation efforts) can lead to a “Romeo Error,”
whereby giving up on the species can lead to actual extinction. [88] Since 1889, 351 species
thought to be extinct have been “rediscovered,”[89] highlighting just how big of a problem
this may be. In order to answer these questions, determining the probability that a species is
still extant, despite a lack of recent sightings, is an important step in making evidence-based
decisions conservation managers must make about allocating resources.

But how do we determine the likelihood that a species is extinct? How long does it have
to be since the last time an individual was seen before we can say, with some certainty,
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that the species is gone? The most obvious step is to assemble all available evidence from
when the species was around. The first place to look is in the specimen record, which
conventionally acts as the “gold-standard” of evidence. However, other data can be brought
to bear, including observations, photos, and audio recordings. All these forms of evidence
are collectively referred to as sightings. For a dataset of sightings t = (t1,....,t,), perhaps
the simplest approach is to wait at least as long as the last interval during which the species
was apparently absent before declaring a species extinct. One could formalize the estimate
of the extinction date, Tg, as:

@ = 2fn + (tn - tnfl)

This approach, formalized by Robson and Whitlock[90], is accompanied by a (1 — @)%
confidence interval with a lower bound at the last sighting ¢,, and the upper bound

l—«
Ty =t, + T(tn —tn-1)

and accompanying p-value for testing the hypothesis that the species is extinct at the current
time 1"

o tTL - tn—l
B T — tnfl

The reasoning behind this method is fairly sound: if a large gap exists between the last two
sightings, conservation biologists should wait at least that long before pronouncing a species
certain to be extinct. But this estimator is also severely conservative, and has very limited
theoretical grounding.

In 1993, Andrew Solow developed a more explicitly probabilistic approach [91], which
assumes sightings are generated by a random process with by a fixed sighting rate m that
becomes 0 at T, the true date of extinction. The probability of the data conditional on a
current time 7" and an extinction date T, is

p

P(T, < t,|T > T) = (t,/T)"

In that light, Solow says, hypothesis testing is easy: against the null hypothesis that extinc-
tion has yet to happen (i.e., Tg > T'), we can test the alternate hypothesis that the species
is extinct (Tx < T'). For a given last sighting at T, we can provide a p-value for the test
with desired significance level « equivalent to

P(Ty < aY"T\Ty < T) = a(T/Te)"

for values of a'/"T < Ty < T'; for values of Ti; lower than or equal to that critical value a*/"T,
the value of that P is equal to 1 and the null hypothesis is rejected with full certainty. Solow
explains, by way of example, that with 10 sightings and 95% confidence, the critical value
of Tg/T is 0.74, and so the null hypothesis is sure to be rejected (extinction is confidently
confirmed) if the true extinction date occurs within the first 74% of the (0,7) window.
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Based on this approach, the maximum likelihood estimate Y/E would be t,,, but this is clearly
biased, and performs poorly as an estimation method. Instead, he suggests an alternate
non-parametric estimator [92]:

And, in addition, a 1 — « upper confidence interval bound:

T =t,/a'/"

Solow also proposed a foundational Bayesian approach based on the likelihood a given
sighting rate m would generate an observed density of data. Hypothesis testing in the
Bayesian format where the likelihood of the sighting data given Hy (the species is extant at
time T) is

/ m"e”"TdP(m)
0

and given H4 (the species went extinct at Tg) is

(o]
/ m™e ™= dP(m)
0
From those and other assumptions, he derived the Bayes factor for the hypothesis test:

n—1
PO T

In Bayesian statistics, the Bayes factor is used to express the relative support between these
two hypotheses. It bypasses the problem of setting a prior on the data or, in fact, of the
two hypotheses; and instead, just expresses the posterior:prior odds of Hy. If Hy is small
(B << 1), that suggests there is strong evidence against the null hypothesis.

Do these approaches make sense? If an extinction happens abruptly on the scale of
sightings data (say, an epidemic wipes a species out within a year), then sighting rates
might remain relatively constant throughout the sighting record. Similarly, applying this
method to paleontological records may make sense, as prior information about variation
in specimen preservation might be limited (and so a constant rate parameter is the best
possible prior). But there are also a number of situations where the constant sighting rate
m simply does not suffice. Lessons from population ecology remind us that extinction is, at
its most fundamental scale, a process of declining abundance. If sightings are proportional
to abundance (which they generally are), replacing m with a non-constant function has the
potential to sharply refine the process of extinction date estimation.

Two additional methods have been suggested by Solow to account for the changing rate
of sightings. Both assume that sightings are a declining process, which will make at least
some of the above estimators prone to Type I errors. The first method assumes sighting
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rates decline exponentially at a rate 3, so that the sighting density for 0 < ¢t < Tg can be
expressed as:

—Bt

In this model, if we express

n

S:Ztl

i=1
and k is the integer part of s/t,, (which we can write as [s/t,]), then the estimated extinction
date can be given as:

Tp=t,+ Lo OV Q) — it
n(n—1) Z@;() (_1)1(71;1) (s —(i+1)t,)"2
The p-value is given as p = F(t,,)/F(T) where

=130 () (-5)

i=1

The confidence interval can be determined using this p-value. However, computationally,
that upper bound does not always exist—a major problem with this method.

In contrast, the second and far more complex method, implemented by Roberts and
Solow in their 2003 study of the dodo [87], accounts for the fact that the last few sightings
of the species should, in most circumstances, follow a Weibull distribution. The method,
optimal linear estimation (OLE), estimates T through linear algebra, with

k
Tk = E Wiln—it1
i1

w= (/A te) AT
1

e=|: (dimension k)

(

-2
~ _nk+1
0= Z

t - tz-i—l
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The OLE’s upper 95% confidence interval is given by:

T Tn - Tnkarl
T™=T,+ —
“ - cla) =1

o= (o)

The OLE method has been recorded as one of the most successful methods available for
predicting extinction [93], and has the added bonus of being adjustable through sensitivity
analysis to examine how different extent of sighting data changes the overall estimate.

Case Study: Spix’s Macaw

Perhaps the most fruitful body of research concerning extinction date estimation has been
within ornithology, where data on the last sightings of rare species is often more available
than for other groups, due to tremendous global interest in bird sightings and observation
by non-scientists. The most popular methods for sighting date research have often been
developed in association with data on notable extinct birds, including the dodo[87] and the
ivory-billed woodpecker[94]. In fact, one of the most expansive reviews of sighting date
estimators, conducted by Elphick and colleagues, estimated the extinction date of 38 extinct
or near-extinct birds from North America (including Hawaii, a hotspot of bird extinction).
[95] But for rarer birds around the world, basic data on their extinction may be somewhat
more lacking.

One such bird, the Spix’s macaw (Cyanopsitta spixii) has been called “the world’s rarest
bird” [96] and has been the subject of two popular animated movies (Rio and Rio 2). Cur-
rently, Spix’s macaw is considered critically endangered (possibly extinct in the wild) by the
IUCN, with a small number of captive individuals (~130) found around the world. Not seen
in the wild since 2000, a video of a Spix’s macaw in Brazil made headlines in 2016. The
video was subsequently examined by ornithologists and the consensus that the bird was, in
fact, a Spix’s macaw, though many believe it was likely an escaped captive bird.

Sightings of the Spix’s macaw are sporadic, and after the first known specimen being
shot in 1819 by Johann Baptist Ritter von Spix (though he believed the bird to be a Hy-
acinth Macaw), it was not recorded again until a wild-caught individual was procured by the
Zoological Society of London in 1878. Collecting sighting records of the Spix’s macaw relies
mostly on data from trappers/poachers and inferring data from captive individuals. Given
the illicit nature of wildlife poaching, better data may exist in the husbandry records of the
wild-caught individuals currently in captivity, but those data are not freely available. Veri-
fiable observations are few and far between, as this species was not subject to any intensive
study or searches until the mid-1980s, when only a handful of individuals were found and,
of those remaining, most were caught by poachers.

For this case study, we collected sighting and specimen data from GBIF (Global Biodiver-
sity Information Facility; www.gbif.org) and Juniper’s authoritative book on Spix’s macaw.
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We found physical evidence (specimens / wild-caught captive birds) for sightings in the years:
1819, 1878, 1884, 1901, 1928, 1954, 1977, 1984, 1985, 1986, and 1987. Due to their rarity
and the demand for them, we assumed individuals were caught in the wild the same year
they were procured by the receiving institution / zoo. We considered all observations of the
Spix’s macaw reported in Juniper’s book to be as uncontroversial as physical specimens, as
there aren’t many and these few have been rigorously scrutinized: 1903, 1927, 1974, 1989,
1990, and 2000. Our only controversial sighting is the recent video taken in 2016, which we
omit from the model. By eliminating the controversial sighting (in analyses 1 and 2), we in-
herently test a methodological question: would extinction date estimators have pronounced
the apparently-extant species dead?

Our analysis was conducted using the beta version of R package sExtinct, which allows
a handful of different extinction analyses to be implemented (and we encourage prospective
users to test the demos available with the package). [97] Our analysis uses two of the most
common methods. First, we used the original Solow maximum likelihood approach, plotting
the probability of persistence in Figure 1.2. The maximum likelihood estimates are given in
that method as:

e Specimens only (1819-1987): T = 2040
e Uncontroversial sightings (1819-2000): 7% = 2035
o All sightings (1819-2016): T = 2052

That method suggests, even with the most limited dataset, that the species still appears to
exist. In contrast, the OLE method tells a different story:

e Specimens only: Tg = 1988 (95% CI: 1987 - 2006)
e Uncontroversial sightings:  Tr = 2002 (95% CI: 2000 - 2018)
e All sightings: Tg = 2021 (95% CI: 2016 - 2045)

All things considered, both analyses suggest at least a marginal chance the 2016 sighting
may have been legitimate, and there is a possibility that a wild population of Spix’s macaws
may be out there, yet undiscovered in the Amazon rainforest. But, the OLE method—for
all its documented strength as an approach—would likely have been far hastier to dismiss
the species as extinct before its 2016 “rediscovery.” Furthermore, with some researchers
hoping to use extinction date estimators as a method of Red Listing, we note that the OLE
currently only predicts another five years of persistence for the species, and the rarest bird
in the world clearly remains a severely threatened species.
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Hope Springs Eternal: Addressing False Sightings

Consider the plight of the ivory-billed woodpecker (Campephilus principalis), a charismatic
and iconic part of the North American fauna. The ivory-billed woodpecker’s decline was
gradual, and unlike its gregarious and easily-spotted compatriots (such as the passenger
pigeon, Ectopistes migratorius, or the Carolina parakeet, Conuropsis carolinensis, both ex-
tinct in a similar time period), sightings of the woodpecker were already rare previous to
its decline. So while the bird’s last “credible” sighting was in 1944, the precise date of its
extinction remains controversial, and some believe the bird still exists based on unverified
observations as recent as 2004 (with audiovisual evidence reviewed in a highly controversial
2005 paper in Science [98]). These controversial observations led to one of the most costly
surveys in history, yet yielded no new evidence. In some circles, the search continues; in
2016, two ornithologists—Martjan Lammertink and Tim Gallagher—traveled through Cuba
searching for remaining populations of the elusive woodpecker. Was Lammertink and Gal-
lagher’s search justified from a statistical standpoint? And perhaps, more importantly, how
can we address the problem of inaccurate sightings?

Not all sightings are created equal. Holding a dead body of an individual of the species
constitutes good evidence the species was present the year the specimen was collected; but if
some person claims they saw an extremely rare species with no corroborating evidence, they
may have misidentified the individual, or in some cases, even lied, meaning that this sighting
could be be invalid. Roberts et al. found that extinction date estimators are sensitive
to the data used, and can, unsurprisingly, lead to very different estimates of extinction
dates. [99] They partitioned sighting data into three categories: 1) physical evidence, 2)
independent expert opinion, and 3) controversial sightings in order of certainty. They found
that adding independently-verified observations to the analysis can sometimes lead to earlier
predicted extinction times, since the “gaps” within the sighting record are closed up, whereas,
by nature, later controversial sightings, if treated as legitimate (i.e., on par with physical
evidence), can greatly push the estimates of extinction to later years.

To account for this uncertainty, a few approaches have been proposed recently. These
approaches largely expand on Solow’s 1993 Bayesian equation above, modified to consider
multiple levels of uncertainty in the data. [94, 100, 101] In the most advanced of these
models, valid and invalid sightings are generated by separate Poisson processes. If valid
sightings occur at rate A and invalid sightings at O, the proportion of valid sightings is

A
A+©
The sightings data can be split into certain data (t., with n. certain records) and uncertain

data (t,, with n, uncertain sightings, and nu(TE) sightings before TE) The conditional
likelihood of the data is that of the two datasets multiplied:

Q

p(t|Tx) = plte|Te)p(t.Tx)
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where w is a dummy variable representing the certainty rate (). Bayes’ theorem gives the
probability the species went extinct in the observation interval (0,7], an event E with
probability

_ p(|E)p(E) p(t|E)p(E)
PED =200~ saBwE) + ptE) 1 — p(E)
The conditional likelihood of the data is

p(t|E) = p(t|Te)p(Tr)

and conversely p(t|E) is evaluated using the same function but replacing T with 7. The
prior probability of the extinction date p(TE) is a key part of successfully implementing
Bayesian analyses, and has a significant effect on the estimated extinction date [102]. Solow
& Beet (2014) suggest three possible priors: uniform, linear, or exponential decline after the
last certain sighting.

As previously noted, setting a prior probability for p(E) is even more challenging. In-
stead of explicitly calculating the probability the species is still in existence, one can simply
calculate the Bayes factor

B(t) - P E)

p(t|E)
This bypasses the problem of assigning a prior probability of extinction p(F). However,
instead, it can be set uninformatively as 0.5 (equal probability extant or extinct), allowing
explicit calculation of p(E|t).

Solow & Beet’s model is one of a handful of models that all use Bayesian approaches
to estimate the extinction date, and test whether a species is extant. For an overview of
the assumptions and relative strengths of these approaches, see Boakes et al.[103] We note
that while some more complex methods exist that, for instance, assign different intermediate
levels of certainty to different kinds of evidence [100], this may ultimately be superfluous. In
many cases, the expenditure and effort required to obtain expert opinions may only have a
marginal benefit, contributing little extra certainty to the models [104]. Consequently, the
choice of model should depend on the available data, the operational power of any given
study, and the degree of certainty needed for decision making.
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The Ivory-Billed Woodpecker, and the Hunt for More Lazarus Species

To briefly reconsider Lammertink and Gallagher’s continuing search for the ivory-billed
woodpecker: regardless of how the sighting record for the ivory-billed woodpecker is an-
alyzed, all indications point to an extremely low likelihood that the species is extant [95,
105, 94]. In the work of Elphick et al., estimates based on physical evidence suggested a
Tg of 1941 (upper 95% CI: 1945) and including expert opinion sightings only moves Tg
towards 1945 (upper 95% CI: 1948). Solow & Beet reanalyzed this problem with their
Bayesian models that differentiate between certain and uncertain sightings. With a uni-
form prior on T over 1897-2010, if valid and invalid sightings are treated as generated from
the same Poisson process, the calculated Bayes factor of 0.13 strongly suggests the species
persists; but in the model that treats the processes as separate, which they suggest is the
more accurate and appropriate one, the Bayes factor of 4210° indicates almost no chance the
species might be extant. In summation, the hard evidence available to modelers casts serious
doubts on the validity of the species’ “rediscovery” in 2004[106], and finds little justification
for the subsequent, costly search to find more conclusive evidence of the ivory-billed wood-
pecker’s existence. Some argue the search continues as long as hope does, but statistics has
a somewhat different answer in this case. And with other species like the Spix’s macaw still
potentially within the bounds of rescue, the resources of conservation organizations might
be better devoted to saving those species than to chasing the ghosts of woodpeckers past.

Once it is determined that there is an acceptable level of probability that a species is
extant, one possible way to further leverage the data collected would be use the data to
build species distribution models (SDMs) to aid in the search and rescue effort. In basic
terms, SDMs use information about the conditions where a species has occurred (and where
it has not occurred) to determine the realized ecological niche of the species. This niche can
be projected onto geographic space to help identify areas areas that appear highly suitable
for the species but perhaps have not been searched yet [107]. This approach has been
successful in identifying new populations of threatened species (e.g. [108]), with the author
identifying new populations of four of the eight rare plant species in the study. While SDMs
are commonly used in a variety of different ecological and conservation applications, there is
a deep literature on comparisons of SDM methods (see Qiao et al.[109] for an overview), so
caution must be exercised in selecting which methods are best for the available occurrence
and environmental data. This approach—of determining the probability a species is still
extant and using SDMs to identify the areas they are most likely to be—may provide a
way forward for conservation agencies for making cost-effective decisions of which species to
pursue and where to look for them.

2.6 The Community Scale and Beyond

Suppose that, in a twisted experiment motivated by an ecology-related childhood trauma,
a mad scientist was developing a scheme to reduce global biodiversity to one half of the
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Earth’s total species. Hunting, fishing and poaching could achieve that goal slowly, but
would be particularly inefficient for eradicating insects; and while a generalist disease might
help eradicate a handful of mammals or a sizeable fraction of amphibians, the majority of
species would still remain. But perhaps realizing that habitat loss might be the most efficient
tool to destruction, that scientist might cut the Gordian knot, by simply bisecting the Earth
and destroying half. Would his plan come to fruition?

Our mad scientist’s plan is riddled with flaws. If half of the species were endemic to
each half of the Earth with no overlap, his plan would succeed. But a handful of species in
any clade of life are globally-cosmopolitan; and no matter how his plan was executed, the
handful of species occurring on both halves of the Earth would leave him with far, far more
than half the species he started with.

With renewed vigor, the mad scientist sets out on a newly ambitious project: what
percentage scorched earth would be required to achieve his goal? He begins by counting
every species on his sidewalk block, then in his neighborhood, and up to bigger scales. With
enough grant funding and undergraduate assistants, he has eventually covered a measly
6.25% of the Earth when he realizes he has counted half of Earth’s species. To enact his
master plan, he’s tasked with destroying the remaining 93.75%. Going by land area alone
(his grudges, we suppose, do not extend to the ocean), he only needs preserve 3.6 million
square miles of land - roughly (conveniently?) the land area of the United States.

The process our nationalist, isolationist villain has enacted is the empirical construction
of the species-area relationship (SAR), one of the oldest and most powerful scaling laws in
macroecology. Because the synthesis of different factors at global scales is challenging, and
habitat loss is one of the easiest extinction drivers to measure, the SAR gives us a powerful
tool for approximating extinction rates - at the price of not knowing specifically which species
will go extinct.

The Species Area Relationship

The biogeographer Olof Arrhenius began the process of formalizing the SAR in a classic
1921 paper in the Journal of Ecology titled “Species and Area.” [110] In it he observed that,
by expanding the area of focus, the number of species continues to increase at a diminishing
rate (but, never reaching an asymptote [111] ). The canonical formula for the SAR has come
to be called the Arrhenius SAR, and is formulated as

S = cA?

where ¢ is a constant fit to the data, and z is a slope conventionally treated as 0.25. The
application of that formula to extinction rate estimation is relatively obvious: by changing
the amount of area, we can change the number of species:

S = (A

and calculate the number of extinctions
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In our mad scientist’s failed scheme, reducing the area of the Earth by half would leave us
with far more than half the species:

S (054
5 (T
In a 2004 Nature paper that has become perhaps the most cited study on extinction since
the millennium, a group of researchers led by Chris Thomas refined the global extinction
rate estimate by analyzing species’ habitat losses from climate change and applying the SAR.
Their extinction-area relationship took three forms applied to n species, with a given A; area
per species before change, and A} subsequent to habitat loss:
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Using those three methods in combination with species distribution models, the authors
estimated that 15-37% of species on Earth might face climate-driven extinction by 2050.
That result is by far one of the most important ones produced in any study of extinction,
and has supported a number of the most expansive conservation programs worldwide.

Refining and Reformulating the SAR

Like many “laws” of ecology, the conventional SAR has problems and pitfalls, and with the
tremendous array of approaches developed to study it, it has even been called ecology’s “most
protean pattern.”[112] Subsequent to the publication of Thomas et al.’s study, one of the
most seminal debates in extinction research has centered around its conclusion that climate
change is likely to act as the most consequential driver of the sixth mass extinction. Different
approaches to the species area relationship, and comparable or derivative macroecological
methods, have sprung up in the wake of Thomas’s work. Here, we review a few of the
different approaches that can be used to predict extinction rates at the community level.

38



z: a Dynamic Scaling Property

The most immediate problem with applying the species area relationship is that the slope
z, normally set to 0.25, is neither universal nor scale-independent. In part, this is because
of two different constructions of the SAR. The slope of 0.25 derives from the experimental
work of Macarthur and Wilson on island ecosystems, which applied the SAR to the richness
of species on islands of different sizes. For islands (and for application of the island SAR to
extinction), a slope of 0.25 is justified under a set of three (relatively common) circumstances
delineated by Harte and Kitzes: “(i) total abundance in the new area A is proportional to
area, (ii) individuals found in A are chosen by a random draw from all individuals in A
[the initial area], and (iii) the number of individuals of each species in Aq follows a canonical
lognormal abundance distribution.” [113]

However, the continental “nested” SAR (constructed from nested areas on a continental
scale) does not always follow the same property. This is in part because the conventionally-
used SAR assumes self-similarity (or in more tangible terms, picking two patches of different
area always yields a roughly-the-same-slope difference in species). As it turns out, self-
similarity works within some sites but not others, and within the Western Ghats mountains
of India alone, scaling up from vegetation sampling plots to broader scales brings z down
from values closer to 0.5, down to values approaching 0. [114] Selecting an appropriate
slope based on scale is an important part of appropriate use of the SAR to predict extinction
rates, and as analyses approach the continental scale, the appropriateness of the SAR method
decreases as z approaches zero.

An Alternate Approach Based on the Endemics Area Relationship

In the Thomas et al. study, the application of the species area relationship followed three
methods, and while some explicitly predicted extinction risk at the scale of a single species,
all rely on the prediction of reduced species richness based on habitat loss. In place of this
indirect calculation of decreased richness, a more direct approach uses what is called the
endemics area relationship, which calculates the number of endemic species restricted to a
given area (all of which should be committed to extinction when the area is destroyed). As
pointed out by He and Hubbell, the SAR and the EAR are not mirror curves except in a single
special case when species are completely randomly distributed in space; else, the “forwards”
and “backwards” methods of extinction calculation are not, they argue, comparable. [115]
Prediction of extinction based on the EAR may be more appropriate for measuring the
immediate effects of habitat loss, and is likely to better account for the “geometry of habitat
clearing.” [116] Storch et al. [117] developed an approach to the SAR and the EAR that
scales the area by the mean geographic range size in the focal clade/area and scales richness
by the average number of species in that mean geographic range. When plotted, the SAR
curves upwards while the EAR is roughly linear with a slope of 1 across most scales. Starting
from basic knowledge about the average geographic range size of a given species, this result
indicates that extinction from habitat loss can be predicted based on the EAR across scales
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fairly accurately.

An Alternate Approach Based on Maximum Entropy

Two “unifying” theories have dominated discussions about macroecology. The first is the
unified neutral theory (UNT) of biogeography and ecology (proposed by Stephen Hubbell),
which is beyond the scope of this chapter; the second is the maximum entropy theory of
ecology (METE) proposed by John Harte. The METE deserves special mention here, due
to a particular focus in the METE literature on improving the applicability of the SAR
to extinction rate prediction. What differentiates both the UNT and the METE from more
general conceptions of the SAR is the explicit treatment of species abundance as a component
of community assembly. The theory of the METE is far too complex to encapsulate in this
chapter (and an entire book by Harte exists for that purpose), but a few useful derivations
are worth mentioning. One is the derivation by Kitzes and Harte of an extinction probability
that is applicable at the species scale [113] based on proportional area loss (Agy/A, shortened
to ) and corresponding reduction in abundance (n from ng) with a general probability
distribution

P(n|ng, Ag, A) = ce™"
for which they provide rough approximations

1
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Drawing on similar concepts from the pseudoextinction thresholds we discuss above in §4.1,
they suggest the probability a remainder r. = n/ng will be left after habitat loss is equivalent
to
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Given a starting population and a critical population size, analogous results can be derived
for the Thomas et al. calculations; and higher level predictions can be made based on the
distribution of abundances and critical abundances within the community.

In a subsequent publication [118], this extinction area relationship is extended even fur-
ther to extrapolate a MaxEnt-based probability that a given number of species will remain
after habitat loss. It assumes a logseries distribution ¢ of abundance for species with a mean
1ty With a single shape parameter p
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They similarly propose an upper-truncated geometric species specific abundance distribution,

which provides the probability n individuals remain in a fractionally reduced area a (/5 in
their other notation) based on a shape parameter ¢:

(1-q)q"
1 _ qno+1
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where ¢ is solved implicitly based on a and ng from
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The probability a species is found in area A after habitat loss follows a distribution g
that takes the form
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which scales up to a community-level richness after area loss
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or if the pseudoextinction threshold is set to zero (i.e. no species has 0% survival odds until
all individuals are dead) and area loss is severe, that expression can be reduced to eliminate
the ¢ term:

a = pro
In(1 —p) = ang + 1

g(CL, Ne, lu(b) =

This METE approach thus provides a probabilistic species area relationship (PSAR) that can
be used to provide not only an expected extinction rate under habitat loss but also a range
of confidence. This becomes an especially important tool in a small community of only a
few dozen species or fewer (or in communities with pervasive low abundance across species),
where deviations from SAR-based predictions may be greater due to stochastic processes.
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How does the PSAR scale up against the Thomas-SAR? It has a clear advantage in the
prediction of individual species extinction risk (but correspondingly requires more data on
abundance/demography that may be absent for many poorly-known taxa). Kitzes and Harte
provide two illustrations; first, assuming the normal slope of 0.25, the PSAR predicts a 44%
chance of extinction for a species that loses 90% of its habitat. Second, if we assume a
pseudoextinction threshold of 50 individuals, by comparison to the predictions of the PSAR,
the Thomas-SAR approach underpredicts extinction risk if ng < 1000 but overpredicts if ng
is greater—supporting the notion that the 15-37% extinction rates that Thomas et al. study
predicted could be an overestimate.

Tying Up Loose Threads, Thinking Across Scales

The various different approaches to predicting extinction at the broadest scales have driven
substantial controversy among different interpretations of macroecological theory. But one
of the most important problems is that estimates of extinction from these methods are still
poorly connected, by and large, to the rest of the extinction literature, and to the other
types of models we discuss above. One of the most innovative and unusual approaches in
the literature was presented by Rybicki and Hanski [119], who simulated a stochastic patch
occupancy model (similar to those presented in §3.1) with spatially heterogeneous environ-
mental conditions across patches. While their model incorporates the standard mainstays
of an SPOM (colonization, extinction, a dispersal kernel), it also incorporates a phenotype
and niche breadth that produce a Gaussian fitness function (much like the models in §4.1)
Tying together a number of the important ideas discussed above, the work of Rybicki and
Hanksi made several advances into new territory. For one, they make a semantic distinction
between the endemics-area relationship (EAR, which they define as the S = c¢A? relationship
applied to the area lost A = a) and the “remaining species-area relationship” (RAR),

S — Sloss = C(Anew/A>z

The EAR and RAR, as two methods of calculating extinction risk, are not interchangeable
or symmetric counterparts. Rybicki and Hanskii highlight a discrepancy between Storch et
al.’s suggested EAR slope of roughly 1, and He and Hubbell’s values which were a tenth
smaller,[115] which they suggest can be resolved by the fact that Storch fit the EAR while
He and Hubbell were calculating the RAR; and their simulations agree with the results of
He and Hubbell that the slope of the RAR may be half or less that of the SAR.

Their empirical approach to simulation leads to a valuable conclusion that stands in
opposition to previous work. While Kinzig and Harte[116] and He and Hubbell [115] both
strongly suggest that the SAR overestimates extinction risk; the results of Rybicki and
Hanskii’s simulations suggest that in the short term, the RAR underestimates extinction
while the continental SAR (z ~ 0.1) is adequate. Their result ties the population scale
to the community scale, as they attribute it to species’ populations outside destroyed or
fragmented habitat falling below critical thresholds and facing extinction despite the lack of
total endemic extirpation. In the long term, they suggest, the island SAR (z = 0.25) may
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be the best predictor of total losses. Finally, they explore the difference between leaving
a single patch of habitat and fragmenting habitat, and conclude all models underestimate
extinction risk in scenarios of extreme fragmentation. To address that problem, they propose
a modified species area relationship

S = cAze b/ Au

where \j; is the metapopulation capacity (see §3.1) and b is another scaling parameter like
c and z. If n is the number of habitat fragments, they suggest, the metapopulation capacity
scales linearly with A3/n? meaning that the fragmented landscape species area relationship
(FL-SAR) can be expressed as:

Snew/s - (Anew/A)Qe_bn2/A3

While the data to fit such an expression might be challenging to collect (and so the FL-
SAR may not be an immediately useful conservation planning tool), the FL-SAR provides
an important and much needed link between the population and metapopulation processes
we discuss above, and our broader understanding of the rate of extinction at landscape and
community scales.

2.7 Last Chance to See

What don’t we know about extinction yet?

As predictive tools gain precision, our estimates of the extinction rates of well-known
groups like mammals and birds also become more precise. But the majority of the world’s
species are not yet known; most animal diversity is harbored by insects or parasites (es-
pecially nematodes), and the vast majority of species in those groups are undiscovered or
undescribed. Their extinction rates are just as poorly quantified as their diversity or the
hotspots of their biodiversity. But some basic estimates suggest that 7% of the planet’s in-
vertebrates may have already gone extinct—at which rate evidence would suggest that 98%
of extinctions on Earth are currently going undetected. [120] It’s also especially difficult
to compare these extinction rates to historical baselines, because the fossil record for most
invertebrates and other taxa are incomplete or nearly absent.

An especially poignant problem is the detection and estimation of coextinction rates—
the secondary extinction of species dependent on others for their ecological niche—which
Jared Diamond suggested in 1989 was one of the four horsemen of mass extinction (in his
words, “overhunting, effects of introduced species, habitat destruction, and secondary ripple
effects”). [121] Among the most obvious candidates for coextinction are two main groups:
pollinators (which can have a strict dependency on host plants) and endosymbionts (para-
sites and mutualists, which may exhibit strict specificity in their association with plant or
animal hosts). While both groups are believed to be severely at risk of secondary extinction,
quantifying their extinction rate can be challenging, as there is rarely a 1:1 correspondence
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between hosts and dependent species. An approach popularized by Koh simulates host ex-
tinctions in a random order and predicts the number of corresponding coextinctions from
the affiliation matriz; by fitting a function to real affiliation matrices, Koh et al. found that
if host specificity is 1:1 then the slope is linear, but when affiliates use a greater number of
hosts, the coextinction function is concave upward:

A= (035E—043)Elns + E

where F gives primary extinction risk, A gives secondary extinction risk, and s is host
specificity [122]. Subsequent work has shown that even though parasites and mutualists
may experience a reduced rate of extinction from host switching, the majority of threatened
species on Earth might still be mutualists and parasites (due to the tremendous diversity
of such species, e.g. the estimated 300,000 species of helminth alone). [3] One recent study
using the Thomas species-area relationship approach estimated that, from the synergistic
pressures of climate change and coextinction, up to one third of all helminth parasites might
be threatened with extinction by 2070. [123]

Most affiliate extinctions are poorly cataloged, if recorded at all [124], and only limited
conservation frameworks exist for their study. More data is needed on host-symbiont as-
sociation networks to better inform the role that non-random structure in those networks
might play in increasing or decreasing extinction rates; some work has suggested that species
preferentially favor more stable host species, the underlying cause of a “paradox of missing
coextinctions.” [125] Similarly, the potential for species to switch hosts and thereby avoid
extinction is unknown, but likely mitigates global extinction risk. In parasitology, the Stock-
holm Paradigm suggests that host-parasite associations diversify in changing climates and
environments as a function of (1) phenotypic plasticity, (2) trait integration and (3) phy-
logenetic conservatism of “latent potential,” which together produce a pattern of ecological
fitting that might benefit parasites (and thereby other symbionts) in the face of the sixth
mass extinction. [126] A more in-depth treatment of the theoretical ecology of ecological
fitting can be found in the recent work of Araujo et al. [127]

Is saving microbes and parasites from extinction a reasonable goal? Some argue that it
is [128], but others have recently suggested it’s “time to get real about conservation” and
focus on our failure to adequately prevent catastrophic population crashes in megafauna
like elephants [129]. Regardless of animal type or conservation status, the development of
demographic theory and predictive modeling are our best options to understand and mitigate
extinction risk in natural populations. One such advance deserving of special mention is the
development of early warning signals of population collapse. This is a developing body
of literature that is built around the fact that populations on the verge of collapse often
produce detectable statistical signals [130] that, detected far enough in advance, might allow
mitigation efforts and prevention of population collapse.

The majority of early warning signals for extinction currently rely on identifying critical
slowing down, a process by which as the dominant eigenvalue of the system tends towards
zero, populations return to equilibriums lower after perturbations, with increasing variance
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and temporal autocorrelation. Critical slowing down is often a sign of a dynamical system
approaching a bifurcation point, which may sometimes indicate a non-catastrophic shift to
an alternative stable state [131], but more usefully, may indicate an impending extinction
emerging from a shift into a sharp decline or into chaos. A foundational experiment by Drake
& Griffen showed that critical slowing down can readily be detected from time series data
for populations facing decreasing food availability up to eight generations before they reach
the bifurcation point [132]. Conventionally, this is done by taking a set of metrics such as
the autocorrelation, coefficient of variation, or skewness (termed leading indicators), scaling
and adding them into a single metric (composite indicators), and tracking them over time.
Given any indicator w, the standardized statistic is calculated as a function of the mean and
standard deviation of the time series to that point:

G — Wy — W
" o(wiy)

When the test statistic w passes a threshold level of deviation from the running average w .,
such as 20, this can be taken as an early warning signal. [133]

Early warning signals are far from a perfect tool. Most research has focused on detecting
critical slowing down, but not all types of dynamical systems exhibit critical slowing down
[134, 135]. Even if critical slowing down is expected, these types of early warning signals are
far from perfectly accurate. Ecological data, especially from population abundance estimates,
often has a high signal:noise ratio [134], to which early warning signals are still sensitive,
leading to an expected mix of both Type I and II errors, depending on the quality and
quantity of data. In some cases, this problem can be accommodated for by evaluating early
warning signals as an iterative process over the time series, rather than taking the first
warning as the only required evidence. [136]

Simulation work has shown early warning signals to be fairly robust to incomplete sam-
pling, but proportionally data intensive to a degree that may be impossible to reach with
available ecological time series data [137]. When population data is lacking or incomplete,
trait-based data can be used as a proxy or a supplement, if traits such as body size are
expected to correlate with fitness, and are responsive to ecological shifts. [133] One particu-
larly interesting demonstration by Clements et al. showed that body size data could be used
to predict the collapse of whale populations 10-40 years before the whaling industry depleted
stocks. [136] Other cutting-edge work is attempting to scale the detection of early warning
signals to the metapopulation level by developing spatial early warning signals [131], which
could be used to optimize reserve design and address the influence of dispersal, stochasticity,
and local population dynamics on metapopulation persistence. Some work has even sug-
gested critical slowing down could be used to identify tipping points of network collapse due
to serial coextinctions in symbiont networks. [138]

The pressure for more accurate, predictive tools will only grow in the next few decades
of research. A recent review by Mark Urban surveyed studies of climate change-driven
extinction risk and found that, despite the variation between different modeling methods
and scopes, projected extinction rates are not only rising but one in six species might be
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imminently threatened with extinction. [139] Similarly, in a study of roughly 1000 species
of plants and animals, about half had experienced population extinctions driven by climate
change. [140] As extinction rates accelerate due to global change and we fully enter the sixth
mass extinction, the need for better analytical and simulation tools—that produce precise
estimates from limited data—will only grow. In light of the constant need to test, revise
and re-test models of extinction, to a mathematically-trained ecologist or an ecologically-
minded mathematician, this field of research is a critical opportunity to apply the principles
of ecosystem science towards a high-impact and worthy goal.
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Figure 2.1: An example PVA without (A) and with (B) the influence of demographic stochas-
ticity, and with no (blue), medium (red) or high (purple) environmental stochasticity. Based
on many numerical simulations, an “extinction curve” can be plotted from the probability of
population survival over time (C). This analysis can be used to make decisions about man-
agement and conservation: here, illustrating that three populations with migration between
them survive for much longer in a poached population of rhinos than a single population. An
interactive tutorial of PVA, which can be adjusted to produce anything from the simplest
population dynamics to a stochastic, structured metapopulation experiencing harvesting,
can be found at http://www.numerusinc.com/webapps/pva.
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Figure 2.2: Estimates of likely extinction date of the Spix’s macaw based on extinction
estimating equations in [91]. The lines represent the estimated probability the species is
extant each year; the blue line is the results using physical evidence only (specimens / wild-
caught individuals), the orange line for uncontroversial sightings and physical evidence, and
the green line is the results for all sightings, including controversial. The dotted line is a
significance level of 0.05. Once the probability drops below this level, the species is considered
likely extinct.
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Parasite biodiversity faces extinction
and redistribution in a changing
climate
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3.1 Abstract

Climate change is a well-documented driver of both wildlife extinction and disease emer-
gence, but the negative impacts of climate change on parasite diversity are undocumented.
We compiled the most comprehensive spatially-explicit dataset available for parasites, pro-
jected range shifts in a changing climate, and estimated extinction rates for eight major
parasite clades. Based on 53,133 occurrences capturing the geographic ranges of 457 para-
site species, conservative model projections suggest 5-10% of these species are committed to
extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites
with zoonotic potential have a significantly higher potential to gain range in a changing cli-
mate, but we do find that ectoparasites (especially ticks) fare disproportionately worse than
endoparasites. Accounting for host-driven coextinctions, models predict that up to 30% of
parasitic worms are committed to extinction, driven by a combination of direct and indirect
pressures. Despite high local extinction rates, parasite richness could still increase by an
order of magnitude in some places, as species successfully tracking climate change invade
temperate ecosystems and replace native species with unpredictable ecological consequences.



3.2 Introduction

The biotic footprint of global climate change, quantified in the shifting distributions and
extinctions of animal and plant taxa, has been a subject of intense research since the turn of
the century. [141, 142, 19] While some species can track shifting climates[143], many likely
face extinction at rates projected a decade ago to be as high as 15-37%. [144, 8] Despite
recent refinements of that estimate finding the overall rate of climate-change-driven extinc-
tion is likely closer to 8% [139], others suggest that if current extinction rates (from climate
change and other anthropogenic impacts) persist for hundreds to thousands of years, total
extinctions could cross the 75% threshold that defines a geological mass extinction event.
[20] However, previous work has focused nearly exclusively on free-living biodiversity (espe-
cially vertebrates), and many important functional or taxonomic groups remain undescribed
or are only now being included in extinction research. [145] Particularly poorly profiled are
commensalists, mutualists, and parasites [146, 147], which should exhibit an atypically high
extinction rate due to their dependence on other species for survival. [124]

Despite substantial research on parasite coextinction risk [124, 146] and an emerging
body of theoretical work predicting the potential adverse impacts of climate change on para-
sites, climate-change-driven extinction rates have never been estimated for parasitic groups,
perhaps because the long-term data needed to detect extinctions-in-progress had not been
previously collated. [148] A recent study predicts that one of the most reliable benchmarks of
parasite extinction risk should be their loss of suitable habitat, but notes that distributional
data are lacking for most parasites. [1] For species with available data, two frequently cited
studies contrastingly predict either local range loss [149] or global range increases for ixodid
ticks. [150] Even for zoonotic parasites, which are closely monitored compared to the ma-
jority of parasitic organisms on Earth (especially in the context of climate change research
[1]), the net relationship between climate change and disease emergence is uncertain.[151].
Early work argued that a warming climate facilitates range expansion [152] , though oth-
ers have predicted that range shifts will be accompanied by little expansion [153]. Further
evidence suggests that some zoonoses-like the nematode that causes angiostrongyliasis in
humans—could lose suitable habitat as a result of climatic changes. [154]

If parasites face severe extinction risk in a changing climate, the cascading impacts on
ecosystems are likely to be profound. Many parasites play an important immunoregulatory
role in host populations, and some studies have found that a higher diversity of parasites
can act as a partial buffer against the emergence of a virulent pathogen. [10] Previous work
has also pointed to the merits of parasites as regulators and connectors in resource-consumer
webs, in which they can sometimes constitute more than 75% of the total links, and in which
their occasional role in altering host behavior can be critical to the flow of biomass between
trophic levels. [5] Despite their many hidden benefits, parasites are a difficult subject for
conservation research, as parasites can come at an economic (e.g., crop pathogens) or health
(e.g., emerging infectious diseases) cost to wildlife and human populations. In the context of
climate change research, the balance between parasite extinction and emergence is uncertain,
and while some work has suggested these could be complementary processes [155], the net
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impact of climate change on parasite biodiversity is still unresolved.

Here we use an updated and improved set of climate envelope models, conceptually
based on those of Thomas et al. [8], and apply them to a dataset we have assembled that
contains the most comprehensive multi-species occurrence dataset available for clades con-
taining terrestrial macroparasites or groups historically treated as parasites, all of which
have often been overlooked in extinction risk estimation. We focus on eight major clades:
Acanthocephala (spiny-headed worms), Astigmata (two superfamilies of primarily ectosym-
biont feather mites), Cestoda (tapeworms), Ixodida (ticks), Nematoda (roundworms), Phthi-
raptera (lice), Siphonaptera (fleas), and Trematoda (flukes). Our data combine and refine
existing online repositories and newly digitized museum collections. Over 170,000 unique
candidate points were reduced through strict data cleaning, quality control, and sample size
limits to 53,133 georeferenced parasite occurrence records, cataloging the distributions of 457
species (Figure 3.1). From these data, we constructed maximum entropy species distribution
models, and projected each species’ distributional shift for the year 2070 under an ensemble
of climate change models and scenarios (Figure 3.2). As in the original Thomas et al. study,
we forecast loss of “native” range (i.e., loss of areas currently occupied: “0% dispersal”) and
compare it to overall changes in suitable range (including in areas not previously occupied:
“100% dispersal”, “global”). The resulting maps of current and projected ranges, forecasts
of extinction risk and habitat loss, measures of zoonotic potential, and model accuracy met-
rics are available through the Parasite Extinction Assessment & Red List (PEARL), an
atlas that is available online at pearl.berkeley.edu (Figure 3.3); and the data are available as
supplementary files on request.

3.3 DMaterials and Methods

Data collection and georeferencing.

Accurately describing the distribution of global parasite biodiversity is a nearly insurmount-
able task, and for a study of this nature, might be essentially impossible without taking
advantage of existing data infrastructure, especially from natural history collections [156].
Globally, we project extinction risk using a patchwork of regionally and taxonomically spe-
cialized datasets representing the best available distributional datasets in parasitology, in-
cluding: a published database on ixodid ticks in Africa [157, 158], a comprehensive database
of all published records of feather mite occurrences recently published as a data paper in
Ecology [159], data from the Global Biodiversity Informatics Facility (www.gbif.org), the
University of Michigan Museum of Zoology (UMMZ)’s database of bee mite occurrences,
flea data from the VectorMap project (vectormap.si.edu), and most significantly, the U.S.
National Parasite Collection (USNPC) (Figure 3.1). The datasets included in this study
represent some of the only true “big data” for wildlife parasites; a number of the largest
datasets do not include any spatially-explicit data, such as the London Natural History Mu-
seum database [160] and the FishPEST database. [161] Others, like the Global Mammal
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Parasite Database, have begun georeferencing but data are not public (P. Stephens, pers.
comm.); and some sources, like the University of Connecticut’s Global Cestode Database,
do not have spatially-explicit data that met the sample size requirements delineated below.
[162] Finally, a set of researchers noted in the acknowledgements of the main paper gen-
erously donated their data, but geographically-biased focus led to their exclusion from the
final dataset.

In cases within these databases where occurrences lacked coordinate data, we georef-
erenced all specimen locality data using established guidelines in the literature [163] and
the georeferencing software GEOLocate. [164] For the remaining databases with existing
georeferenced occurrences, we largely used the data in its original form (i.e., the Cumming
tick database [33,989 points] and UMMZ bee mite dataset [1,160 points]). The VectorMap
dataset includes mites, ticks, and fleas, but the mite data did not include any species with
20 or more occurrences, and the ticks were identical to GBIF and Cumming datasets, so
only fleas were included adding an additional 8,482 points to the dataset. GBIF data was
downloaded for eight clades (Acanthocephala, Astigmatina [= Astigmatal, Cestoda, Ixodida,
Nematoda, Phthiraptera, Siphonaptera, and Trematoda), and clipped to terrestrial points
only. A number of other parasitic clades were also considered in the process of data collection,
but GBIF data for the vast majority was limited and provided ten or fewer suitable species.
These required specific cleaning to remove country-level datasets that would have produced
biased niche models from data limited by administrative boundaries [165]—for example, the
Edaphobase dataset and Dieter Sturhan’s DNST dataset, both on nematodes in Germany.
Records without species identification were eliminated, as were records without any coor-
dinates. A total of 100,295 occurrences remained after the application of these guidelines
(Acanthocephala: 2,013; Astigmata: 4,826; Cestoda: 3,048; Ixodida: 17,695; Nematoda:
32,170; Phthiraptera: 3,675; Siphonaptera: 23,573; and Trematoda: 13,294).

The georeferencing web-based software GEOLocate [164] was used to assemble a spatially-
explicit database for the U.S. National Parasite Collection and for the feather mite database.
While the USNPC has over 70,000 records, only some have locality data digitized, and of
those, many have single or double records. To consolidate our efforts, we only georefer-
enced data for species with twenty or more records, a threshold chosen based both on the
distribution of sample sizes within the larger dataset, and from literature evidence about
the effect of sample size on model accuracy. While accuracy consistently stabilizes around
50 points for most commonly used methods [166, 167, 168], 20-or-more is often used as a
threshold in the literature especially for MaxEnt (which particularly excels with small sam-
ple sizes), and a recent publication shows that 15 points often suffices for narrow-ranged
species, and as few as 25 are sufficient for the most globally distributed species. [169] The
20-or-more rule reduced the dataset down to 31,212 specimens many of which had shared
locality information (i.e., multiple species were collected from the same locality, often by
the same collector). In the supplement, we present an additional analysis that only uses
species with 50 or more points (Appendix 3), reducing the dataset from 457 species down to
196. As mentioned in the Results section, the main analyses are essentially unaltered by the
reduction, with some extinction estimators producing slightly higher values (especially for
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clades with already limited sample sizes). Consequently, in the main text, we have elected
to present the most inclusive analysis, both maximizing the species coverage of our study,
and producing a slightly more conservative estimate of extinction rates.

Points attributed to townships and provinces were marked at the political center and the
uncertainty radius was the minimum to encompass the entire region. When political markers
were not available for countries in the developing world, we used satellite imagery to identify
the rough boundaries of cities and townships. In select cases, if the political marker was too
far from the actual center, our final point would be corrected to the center of the region of
uncertainty. Broad geographical regions like Siberia, entire stretches of river or continental
coasts, and points with too many candidate options of equal likelihood (e.g., “Red Mountain,
California, United States” which could be 17 localities, or “La Junta, Mexico”, which had
33 candidates) were all excluded from the final dataset.

A total of 5,507 specimens from the USNPC were skipped by virtue of incomplete in-
formation, or because the locality data was insufficiently detailed, leaving 25,705 specimens
georeferenced to 7,373 unique localities. Of those remaining entries, the data were reduced to
species with enough occurrence points for inclusion. A final verification against the Smith-
sonian’s collection management database revealed 21 inaccuracies that were subsequently
corrected, and one nematomorph and five botflies were removed from the dataset, as were
two monogeneans that had been formerly recorded as trematodes. The final dataset con-
tained 15,741 unique entries for species with at least 20 points.

Uncertainty greater than 10 km has been shown to potentially negatively impact the
accuracy of distribution models. [170] However, we used climate data with a resolution of 10
arc-minutes for our models, roughly an average of 20 km (variable due to the shape of the
earth), a coarser resolution than many niche modeling efforts, and one that absorbed much
of the error associated with the data. Consequently, we set a threshold of 40 km (two cells)
for acceptable maximum uncertainty in our georeferenced points, and subsequently reapplied
the 20-or-more-points threshold, eliminating some species in the process. Geolocation data
for the feather mites dataset was collected using the same methodology. From each dataset,
we removed all occurrence data that did not meet our criteria for a 40km uncertainty radius.
We then excluded all species that did not have at least 20 high quality occurrence points.

In the final dataset aggregated across every data source, we provide results for a total
of 457 species across the compiled datasets with a total of unique 53,133 points (an average
of 116 unique points per species, far above the 20-point minimum we set and on par with
some of the more comprehensive distribution modeling published for individual species in the
literature; Figure 3.3). Of those 457 species, these were broken down as: Acanthocephala:
14 species; Astigmata: 18 species; Cestoda: 25 species; Ixodida: 141 species; Nematoda: 147
species; Phthiraptera: 5 species; Siphonaptera: 67 species; Trematoda: 40 species. Models
are presented for all but one species in that set, as models ran unsuccessfully in that case,
but locality data are still made available (the nematode Teratocephalus terrestris).
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Climate data.

Distribution models were run using the WorldClim v1.0 climate dataset at 10 arc-minute
resolution, which includes 19 bioclimatic variables (Bioclim) that capture global trends and
variability in precipitation and temperature. [171] Based on models that have been previously
published that forecast species distributional shifts, we selected a set of five of the most
widely used global climate models (GCMs) at four representative concentration pathways
(RCPs) that account for different global responses to mitigate climate change. These are the
Beijing Climate Center Climate System Model (BCC-CSM1.1); Commonwealth Scientific
and Industrial Research Organization, Australia’s GCM (ACCESS-1.0); the Hadley GCM
(HadGEM2-CC and HadGEM2-ES); and the National Center for Atmospheric Research’s
Community Climate System Model (CCSM4). Each of these can be represented at RCP2.6,
RCP4.5, RCP6.0 and RCP8.5, capturing a range of scenarios species could experience (except
ACCESS-1.0 which only exists for 4.5 and 8.5). Covariance between predictors and the
definition of the accessible area are both significant problems with environmental predictors
used in niche modeling efforts. To address these issues, models were trained on data subset
to continents with known parasite occurrences, and regularization procedures in MaxEnt
accounted for collinearity in predictor variables (see below).

Distribution modeling.

Our study was designed to reproduce the approach underlying the seminal Thomas et al.
paper in Nature from 2004 [8], which projected that 15-37% of terrestrial species likely faced
imminent extinction from climate change. [8] The overall order of operations is conserved:
1) “climate envelope” models are constructed using current best practices in ecological niche
modeling; 2) species range shifts are forecasted in response to climate change; and 3) macroe-
cological inference is made with respect to the consequences of that habitat loss for species
extinction rates.

Since the publication of Thomas et al.’s study, the climate envelope method for estimating
extinction rates has drawn some criticism. While climate envelopes (now more commonly
termed ecological niche models, or species distribution models) are one of the most commonly
used statistical methods in ecology, and hundreds of papers and several books outline best
practices for their implementation [172, 173, 9], many researchers are still skeptical of the
methodology. Niche concepts (foundational to climate envelope models) are contentious in
ecology, and significant literature has been devoted over the years to basic assessment and
debate about the utility and validity of niche theory as an approach to ecology. [174, 175,
176] More practically, climate envelope models fail to account for the role biotic interactions,
source-sink dynamics, and dispersal play in determining range shifts. [177] Moreover, model
performance can be challenging to accurately and honestly assess, especially given the non-
independence inherent in the collection of many occurrence datasets. [127]

However, for species that are poorly documented in situ, the climate envelope approach
remains popular as a tool for inference regarding geographic distributions. Parasites es-
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pecially qualify for such an approach, given that mounting a field survey on the scale of
our study would be nearly impossible, compared to the efficiency with which existing data
sources can be used in the Thomas et al. framework. More broadly, in the absence of data
that could parameterize more detailed methods like integral projection models, climate enve-
lope models are still widely regarded as a powerful and popular method for studying climate
change impacts on species ranges. Empirical work has shown even that climate envelopes
validate well against real range shifts, especially as a “first-order approximation.” [178, 179]

Where the Thomas et al. study is outdated from 12 years of updated scientific literature,
we have correspondingly updated the methodology to improve accuracy and theoretical
validity. Foundational to that methodology is the assumption that most or all species have
a fundamental niche, measurable in multidimensional climate space, which constrains their
geography. For parasitic species the relationship between bioclimatic variables and geography
may be less intuitive than for plants or most animals, and in some cases, parasites with a high
RO and low environmental sensitivity may have ranges predominantly driven by their hosts.
However, numerous cases exist where parasites are directly sensitive to climate. Among the
many examples, humidity and aridity define geographic boundaries between feather lice on
a shared host [180]; exposure to salt spray [181], altitude, and extreme cold negatively affect
feather mites [182, 183]; precipitation and soil type can have a profound effect on free-living
stages of helminths [184]; and further diverse support for parasitic niches independent of
hosts comes from ticks [185], the plague bacterium ( Yersinia pestis) [186], and even parasitic
mistletoe. [187]

In response to Thuiller et al.’s [188] critique highlighting the significance of modeling
method on forecasting range loss in response to the Thomas et al. paper in 2004, we have
replaced the BIOCLIM algorithm (more commonly referred to in the literature now as “sur-
face range envelopes”) with maximum entropy regression, as developed by Phillips et al.
[189, 190] and refined over the past decade. Maximum entropy (MaxEnt) is widely consid-
ered to be one of the best performing non-ensemble approaches to ecological niche modeling
[191, 167], and is the most widely used method for the analysis of presence-only data in the
literature as of right now. [192] MaxEnt models are frequently used to forecast species range
shifts in response to climate change [193, 194], and have been found to often successfully
predict the realized shift in species distributions. [195] However, MaxEnt allows fitting with
up to five feature classes simultaneously (linear/L, quadratic/Q, hinge/H, product/P and
threshold/T), and without careful tuning, has the propensity to overfit models more severely
than many other comparable methods. [196] Consequently, using MaxEnt effectively relies
on an approach that is sensitive to some major methodological pitfalls.

Sampling bias is a key problem in MaxEnt studies and correction for it can vastly im-
prove predictive performance [197, 192], but some of the most direct solutions like spatial
bias filters rely on knowledge that would be inconsistent across 457 species aggregated
from different sources, with different relative biases. However, other approaches like cross-
validation within models, feature class and variable set reduction (to reduce unnecessary
complexity), and adjustment of the regularization parameter have all been shown to vastly
strengthen MaxEnt models. [198, 196, 199] These processes are all automated in ENMeval,
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an R package that performs cross-validation and model tuning [200]. We used ENMeval
to automate analyses for all 457 species, with selection of the regularization parameter and
feature classes based on an analysis using AICc, a version of the Akaike information criterion
that is optimized for smaller sample sizes. Models with AICc of two or lower are considered
to be “strongly supported” [201]; our automated process selected the model with the lowest
AICc (AICc = 0), though alternative selections minimally affect the net results (Figure 3.4).
This process substantially penalizes overfitting and overly-complex models, and as variable
set reduction is also automated within the MaxEnt process, similarly reduces problems aris-
ing from covariance between Bioclim variables. Cross-validation was performed using the
“checkerboard2” method which executes geographic cross-validation at a relatively broad
scale, helping to account for some degree of sampling bias within datasets. While the jack-
knifing approach is more strongly recommended for species with small sample sizes (under
20-25 points [202]), our dataset already excluded species with small sample sizes by this
definition, and having a single standardized model selection method across all species likely
reduced the amount of noise in the final results (that is to say, differences between species
are more likely to predict different outcomes under climate change, rather than inconsistency
in methods).

For every analysis at the species level, a PDF is available on request that plots AICc, mean
AUC (area under the receiver-operator characteristic curve), and training-minus-test AUC
difference against the regularization multiplier , for six considered feature class sets: L, Q,
H, LQH, LQHP, and LQHTP. These tuning aspects had no consistent effect on habitat loss
projections (Figure 3.4). In cases where two models had the same AICc because features
were included but not used, the more minimal-feature model (of the identical pair) was
selected. The AUC and true skill statistic (TSS) were calculated subsequently for each
species, and due to problems inherent in metric inflation with AUC that have been previously
discussed in the niche modeling literature [203, 204], especially for datasets with spatial bias
in their collection [205], we instead rely on T'SS to measure final model validity. In ensemble
approaches, modelers often exclude runs under a certain T'SS to maintain quality, with values
ranging from 0.3 to 0.85. [206, 207] According to Coetzee et al., interpretation of the T'SS
can be roughly conceived of as “values from 0.2 to 0.5 [are] poor, values from 0.6 to 0.8 [are]
useful, and values larger than 0.8 [are] good to excellent.” [208] Based on that and other
work using an 0.6 threshold [209], we present a comparison of habitat loss for all models
and for those with TSS > 0.6 (Figure 3.4, Figure 3.5), noting that the pattern is essentially
unchanged. However, all models of range shifts are made available on the PEARL server
with AUC and TSS information presented alongside the models, to improve transparency
and allow further work the option to be more selective.

Final models, selected based on lowest AICc, are projected onto our set of 18 GCM/RCP
combinations (Figure 3.4). Non-logistic outputs of current and future projections are cut off
by a threshold chosen to simultaneously maximize sensitivity and specificity (i.e., maximizing
the T'SS), turning outputs into binary geographic ranges. Differences in area between the
two are most easily analyzed in R by using the BIOMOD_RangeSize function from the
BIOMOD?2 package. Differences in suitable area are calculated with 0% and 100% dispersal
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(i.e., change in “native” and “global” habitat; Figure 3.5).

Likely outcomes between 0% and 100% dispersal will be a product of a species’ own
dispersal ability and the dispersal ability of their hosts. Hosts at the leading edge of range
shifts may escape some parasitic infection [210, 211], but in the case of some ectoparasites,
their ranges may be less constrained by host distributions. [185] Further analyses meant
to better optimize accuracy and discriminate extinction risk between species should likely
simulate the simultaneous shifts of host and parasite ranges, and thereby refine intermediate
forecast scenarios for habitat loss. These will likely produce less conservative estimates of
habitat loss, based on evidence that every life cycle stage can compound host-parasite spatial
mismatch when climate change drives range shifts [212], though for some generalist groups
like ticks, hosts may be a minimal constraint on geographic range size. [185]

Extinction rate estimation.

Distributional shifts modeled for parasites in each regional dataset were used as input to the
same three species-area curves given by Thomas et al. [8] to estimate regional extinction
risk:

Anew .
Ey=1- (—%r A, 02 (3.1)
o 1 Anew 0.25
E2 =1 (nspecies Aold ) (32)
. 1 Anew 0.25
E3 B Nspecies Z [1 a ( Aold ) ] (33)

The species area relationship with an exponent of 0.25 has come under methodological crit-
icism by authors like Harte [213] and Kitzes [118] among others [115] (see also Appendix 2),
but remains a widely used method in the literature from the last 1-2 years, often in combi-
nation with a similar RCP-structured approach to the one we use here. [214] We retain the
method with the disclaimer that it is, in the current literature, more an “index of extinction”
than a quantitatively strict prediction. We further suggest future studies investigate the ap-
plicability of dynamically-scaling SAR methods [114], which require data on population size
and aggregation that are unavailable for most, if not all, parasites in this study. Calculation
of compound risk was done using extinction estimates with and without dispersal, in com-
bination with the coextinction risks presented in Appendix 1. This was done by assuming
the two probabilities—direct extinction due directly to climate change and coextinction due
to extinction of hosts—to be independent thereby yielding:

Prob[extinction] =1- (1 - pdirect) * (1 - pcoemtinction) (34)

Numbers presented in the main text are calculated as the product of values from Table 3.1
and Appendix 3.1 for the four main worm clades in our study.
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Species richness mapping

A global map of species richness was constructed by stacking each distribution model included
in the study, and counting the total number of species predicted to be present in each cell.
We also present the turnover in each cell, like many previously published studies of climate
change impacts. [215, 216] However, the role of sampling bias in the spatial structure of
species richness cannot be overlooked; we devised an analysis based loosely on the quantile
subtraction method employed by Hopkins & Nunn for gap analysis ([217]) to correct for
sampling bias. Whereas Hopkins and Nunn’s analysis compared parasite occurrences to
known patterns of mammal richness, our analyses divided our parasite richness maps and
point density into ten quantiles and took the difference between them to find hot- and cold-
spots of parasite diversity based on a prediction from sampling point density (Figure 3.8).
We also present a breakdown of our observed hotspots between species with and without
human health relevance, showing the effect of sampling bias on parasite collections in Africa
(Figure 3.9).

We discourage the unqualified interpretation of our results as an estimate of the underly-
ing global patterns of parasite diversity. Compared to the 457 species of all parasites included
in our study, there are an estimated 300,000 helminths alone, many to most of which have
yet to be described by systematists. In future work, a reasonable assessment of parasite
biodiversity hotspots might not be impossible, but it requires two major shifts in parasite
open data. First, researchers must begin the process of georeferencing the major parasitol-
ogy collections, including the full 70,000+ records of the U.S. National Parasite Collection
(which we have georeferenced halfway in this study, and intend to complete by Fall 2017),
and, more significantly, the 200,000+ records of the London Museum of Natural History (a
more challenging task, as that analysis will require retrieving geospatial information from
each published paper in the database hence why that analysis was not conducted during
the timeframe of this study). Second, and just as importantly, targeted long-term work to
profile the entire parasitic diversity of small, regional ecosystems is critically needed, espe-
cially in high-biodiversity systems that are proportionally neglected in our dataset. Included
in that are highly-diverse regions like the Western Cape Province of South Africa, where
parasitology work has been limited but is likely to discover high levels of uncataloged diver-
sity ([218]); and conventional biodiversity hotspots like the Amazon basin that are hotspots
of parasitological work and also assumed to be hotspots of parasite biodiversity, but where
data is still too limited (see Figure 3.6). [219, 220] Finally, expanding all these analyses to
freshwater systems and more significantly to the tremendous diversity of oceanic parasites (in
particular for the speciose Cestoda, of elasmobranchs especially, and for unique specialists
like Ozobranchus turtle leeches and cyamid whale lice that may be of special conservation
interest) is a critical step forward.
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Open data, model presentation and PEARL.

We present the final and forecasted distribution models for every species on an online
server under the working title The Parasite Extinction Assessment and Red List version
0.1 (pearl.berkeley.edu; Figure 3.3). In the process of doing so, we set a new precedent for
data storage in studies that do mass modeling of species range shifts, by making available a
set of honest quantitative and qualitative metrics of data quality and model confidence:

e Data coverage: sample size by species is broken down into four quantiles and classified
as “weak” (0-25%: 0-28 points), “fair” (25-50%: 29-42 points), “good” (50-75%; 43-80
points) and “excellent” (75-100%; 81-3289 points).

e Data uncertainty: the uncertainty radius (in meters) attached to each manually geo-
referenced point is available in the published form of the dataset, but many species
include a combination of data from manually georeferenced sources (the USNPC and
FeatherMites) and non-georeferenced sources (primarily GBIF). We set the uncertainty
radius of non-georeferenced sources as zero, and then classified species’ average uncer-
tainty radius across zero and non-zero values into five categories: “perfect” (zero),
“excellent” (0-5.1 km), “good” (5.1-6.5 km), “fair” (6.5-7.9 km) and “weak” (7.9-21.3
km).

e Model predictive accuracy: the true skill statistic (TSS; ranges from -1 to +1, where
zero is a total lack of predictive power) and area under the receiver-operator charac-
teristic curve (AUC; ranges from 0 to 1, with predictions greater than 0.5 considered
better than random chance) for each final, weighted ensemble model.

While the last category is generally considered standard for publication-quality niche models,
very few studies publish as many niche models simultaneously as this one, and presentation
of results on online servers seldom includes these technical elements of model evaluation
alongside the actual mapping efforts. With the quality of parasitological collections’ geospa-
tial information, this could not be more important to an honest and open scientific method.
In niche modeling studies for poorly-documented clades like most parasitic groups, models
can only be as good as the underlying data; rather than letting incomplete data preclude
analysis (and thereby slow down parasite conservation and control efforts by at least 5-10
years), we instead recommend future work expanding our assessment’s focus on similarly
engaging in honest post-hoc evaluation of model accuracy and quality, and make such infor-
mation available to the public. Doing so further helps highlight which species require the
most thorough re-assessment in future incarnations of our tentative “Red List.”

We also use our models to forecast the conservation status of each parasite in our study;,
using [UCN criteria to classify species into categories ranging from “Least Concern” to “Crit-
ically Endangered” based on average habitat loss rates. We adopt the breakdowns used by
Thomas et al. [8] in terms of net habitat loss but drop the criteria involving absolute area, as
suitable area for a parasite likely operates on very different dimensions than for a free-living
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species, and their persistence via transmission is even more strongly linked to landscape con-
nectivity. All our IUCN categorizations are also available at pearl.berkeley.edu. Expansion
of PEARL beyond the 457 pilot species will follow the completion of the USNPC georef-
erencing project in late 2017, enabling higher-accuracy biodiversity mapping and parasite
conservation planning in collaboration with other parasitology labs.

3.4 Results

We found that most parasites, like most free-living species [8, 139], face an existential threat
from substantial habitat loss in a changing climate. Changes in habitat loss were affected
slightly by differences in global climate models, but more pronouncedly by different climate
scenarios, with a contrasting average native range loss of 20.2% in the most optimistic
Representative Concentration Pathway scenario for greenhouse gases (RCP2.6) and 37.4%
in the pessimistic (RCP8.5) scenario (see Figure 3.4). While no species lost its entire suitable
range across every climate scenario, species lost an average of 29.0% of total habitat without
dispersal, 86 species lost more than 50%, and eight lost more than 80% of their range. Even
allowing for dispersal, 202 species still lost range by 2070, and 32 species lost more than
half of their global suitable range; despite those losses, species gained an average of 16.2%
suitable habitat, 29 species at least doubled the extent of their range, and seven at least
tripled it (none of those seven having any evidence of zoonotic potential or human infection
records).

Results highlight divergent outcomes of native range loss and range expansion for differ-
ent species within the same clade (Figure 3.5). While previous literature has suggested that
climate change may increase disease emergence through range expansion [152], we found
that strictly-wildlife parasites experienced 17% more range gain, on average, than human
infectious or biting species. This result could likely be explained by life history differences:
in a two-way analysis of variance accounting for endoparasites vs. ectoparasites, the sig-
nal of human infection was insignificant, while endoparasites gained 39% more range than
ectoparasites with dispersal (p < 0.001), and lost 10% less native range (p < 0.001). One
potential explanation may be that the range limits of endoparasites are more commonly at
disequilibrium due to dispersal limitations, while ectoparasites may already fill the major-
ity of suitable habitat, relatively stabilizing their range size over time; similar assortative
processes have proven important for shifting non-native plant species. [221]

Clade projections of total suitable range expansion with dispersal were significantly differ-
ent (F = 15.441, p < 0.001), but no universal trends were visible across taxa. Lice had both
the highest average native range loss and the highest average global range gain, although
this conflicting result was likely a product of small sample size. Fleas and ticks consistently
fared the worst, with both having average net loss even allowing for dispersal. The Thomas
et al. [8] method for extinction rate estimation followed a similar pattern, with extinction
rates for all species projected at 5.7%-9.2% without dispersal and 1.7-4.0% with it (see Table
2.1). A recent meta-analysis refined the global extinction risk estimate to 7.9% of free-living
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species, placing our estimate of parasites’ extinction rates in a comparable place to any
other group. [139] Using a simplified version of the Thomas et al. habitat loss categories for
TUCN red listing (which are, themselves, far reduced from actual IUCN listing criteria), 6.3%
of species in our study are “endangered” and 0.7% “critically endangered” with dispersal,
and 17% of species are endangered and 1.8% critically endangered without dispersal (Figure
3.10). Clade differences should be interpreted cautiously; our 457 species, while expansive
for current data, is a meager subset of likely 300,000+ species of helminths alone [3]. An even
more conservative analysis that only includes species with 50 or more points (rather than 20
or more) is available in the supplement (see Appendix 3). That analysis reduces the sample
size from 457 species down to 196; the key results discussed above are essentially unaltered,
although some specific extinction rates are predicted to be slightly higher (likely because
extinction rate estimators converge on more conservative values as sample size increases).

In a 2008 study, Dobson et al. projected a coextinction rate of 3-5% for helminths in the
next 50-100 years based only on host IUCN status [3], a far lower estimate than comparable
projections for free-living vertebrates [8, 139]. A rough calculation using the same data shows
that, if 15-37% of hosts were threatened (as Thomas et al. predicted), coextinction alone
would be responsible for the loss of 8-24% of parasite species (Appendix 1) a far higher
rate than has ever been observed empirically. The “paradox of missing coextinctions” is a
significant problem on its own [125] , but compounded with the baseline extinction rates from
habitat loss that we estimate here (see equation 1 in Appendix 1), we suggest a much higher
fraction of species might be committed to primary and/or secondary extinction without
dispersal by 2070: 5.6%15.4% of acanthocephalans, 11.9%29.0% of trematodes, 12.8%29.1%
of cestodes, and 12.5%29.5% of nematodes (Figure 3.11). Therefore, the loss of parasite
biodiversity could make a significant contribution to the sixth mass extinction, especially
compared to the 7.9% baseline extinction rate suggested by Urban’s recent meta-analysis
[139].

3.5 Discussion

We adopt a more conservative methodology than Thomas et al. [8], likely producing lower
estimated extinction rates. Our study used only species with 20 or more occurrences (thereby
selecting disproportionately for cosmopolitan, generalist, and human-hosted parasite species
with the largest ranges), ran maximum entropy models rather than using the BIOCLIM
algorithm (the latter representing a method known to predict higher extinction rates com-
pared to other niche modeling methods [188]), and the selected particular global climate
models. Species with smaller ranges, which are disproportionately poorly sampled in our
dataset, are likely subject to greater than average extinction risk. In addition, dispersal ca-
pacity will have a profound effect in determining which parasite ranges expand or contract,
as some ectoparasites are likely to shift independent of host distributions [185] (leading
to novel evolutionary opportunitiessee the Stockholm paradigm in evolutionary parasitol-
ogy [222, 223]), but in other cases, hosts’ shifting ranges may “escape” their parasites. [210,

61



211] Endoparasites with aquatic stages—like tapeworm coracidia, trematode cercariae or the
drifting planktonic stages of copepods—or of long-distance dispersing hosts-like birds-may
have greater dispersal capacity and ultimately fare better than average.

Range loss is also only one aspect of how parasites will experience climate change, and
estimates of their vulnerability based only on range loss are likely to be fairly conservative.
Even within a climatically suitable range, any given site may be missing hosts necessary
for parasites to complete multi-stage life cycles; some parasites may be capable of plastic
switching to truncated life cycles, but many will likely fail to persist in environments that
ecological niche models would likely classify as “suitable habitat.” [1] Even when host ranges
shift in concert, phenological mismatch could prevent transmission from one host species to
another, even for parasites that otherwise might appear to experience an overall gain in
suitable range. [212] Finally, the transmission of parasites—and the interplay of virulence
and host immunity—is often temperature-sensitive, and while it will have a critical role
determining parasite vulnerability to extinction, it is also essentially impossible to predict
using the types of models we present here. [1] In that way, parasite transmission ecology
at a site-specific level could potentially produce even greater range losses than our models
predict, once again making our models relatively conservative.

Even accounting for differences in sampling intensity between different continents, para-
site species richness is far from evenly distributed at a global scale, potentially representing
real underlying patterns or merely illustrating the sampling bias of parasite collections (e.g.,
substantially greater data completeness in North America). [224] Independent of potential
biases, our results strongly support the hypothesis that climate change will drive a major
redistribution of parasite biodiversity through habitat gains, losses, and shifts. Following a
similar approach to previous work by Cumming et al.[150], we find that, in some cases, ex-
tinction is concentrated in the regions where our maps of parasite richness indicate diversity
is the highest, as in the Gulf Coast of the United States, and in most of Western Europe
(Figure 3.2). But at latitudes closer to the poles, where measured richness is lower, our sim-
ulations project species richness will double, triple, or increase even more. Many previous
studies on Arctic parasite diversity have predicted and documented this developing ecological
cascade [225, 226, 227, 228|, but that phenomenon had yet to be predicted by broad-scale
biogeographic models prior to this study. This result poses an alarming question: what will
the consequences of a shifting wave of new parasite species, augmenting and possibly re-
placing native diversity, be for ecosystem stability, wildlife communities, and human health?
Most parasites are not agents of emerging disease, but destabilized host-parasite networks
might nevertheless create opportunities for new patterns of emergence. The redistribution of
species ranges on a global scale is likely to create opportunities for the origin and evolution
of new host-parasite pairings, as well as to change the regional balance of parasite diver-
sity in different ecosystems; thereby allowing different parasitic taxa to become ecologically
dominant, and potentially changing eco-evolutionary dynamics in the long term. [222]

While our study is the first to bring together this volume of data across parasite clades
at the global scale, it is also a first step in a methodological progression that is ten years
behind the cutting-edge of extinction analyses in nonparasitic animals. [229, 230] Current
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best-practice research on climate change impacts on biodiversity depends on a cycle of data
acquisition and model improvement that has progressed from basic biogeographic estimation
methods to sophisticated biophysical mechanistic modeling that can encompass genetics,
physiology, and dispersal. In the last decade, species-area relationship (SAR) models have
been criticized as a method of assessing extinction risk, with strong evidence pointing to
overestimation of extinction rates. [115, 118] Future analyses are critically needed to verify
the stability of the species-area curve at continental scales for helminths and ectoparasites.

The possibility for parasites to experience compounded range loss with shifting host
ranges, and their increased vulnerability relative to their hosts, is robustly independent of
the species-area relationship. But parasite ecology desperately requires updated methods
that can distinguish between likely winners and losers. The vast majority of climate-driven
species extinctions may only proximally be a result of range loss, while population size,
species interactions, presence of free-living life cycle stages, number of intermediate host
species, and plastic and genetic components of climate tolerance and adaptation may be
better predictors. [17, 231] Our study unambiguously deepens the need for experimental
work, local long-term ecological experiments, and physiological mechanistic modeling to more
accurately describe the threats parasites face than can be achieved with global distributional
data.

Parasite conservation, as an applied discipline at the intersection of wildlife research
and human health concerns, is in its infancy. Although parasite conservation is a topic of
significant interest [5, 147] and has been for at least two decades [232, 233], the majority
of parasitic biodiversity is unrecorded in ecological databases. Our study, together with the
release of PEARL and the associated datasets, offers a foundational framework for including
parasites in conservation ecoinformatics and biogeography. Threatened parasites require a
specialized conservation approach, tailored to their unique life history, tremendous diversity,
and the complex ecosystem services they provide. Some species in the most threatened
clades may not even be parasites per se, such as the vane-dwelling feather mites in our study,
for which the line between parasitism, commensalism, and mutualism is unresolved [234];
parasitic groups of nematodes are polyphyletic, and some of the nematodes in our dataset
are similarly non-parasitic and free-living. [235] We include these species in our assessment
nonetheless, because “parasitic clades” are dramatically understudied across the board, and
their vulnerability was equally unassessed compared to their parasitic counterparts. [236]
Similarly, protelean organisms, in which juvenile life stages are parasitic but adults are free-
living (e.g., mites in the Parasitengona, or twisted-wing insects in the family Myrmecolacidae,
in which the sexes are juvenile specialists separately on ants and orthopterans), are also likely
to require extra conservation focus in a similar framework to ours.

Specialized, complex life cycles like these may face the most significant hidden vulnera-
bility to habitat fragmentation or phenological mismatch [212], and may even experience a
more severe extinction threat than our study predicts. While clade-level assessments may
help identify some of these highly vulnerable groups, a finer-grained study of parasite ex-
tinction risk will require a more integrated perspective. Recent research has highlighted how
parasites’ range loss is likely to have a synergistic interaction with host specificity and host
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functional traits (like thermal ecology and body size [1]). Combining the models presented
here with Red List efforts for hosts, existing trait data, and network-based models of host
parasite associations could substantially increase the resolution of parasite vulnerability as-
sessments (including potential future iterations of PEARL). However, collecting the same big
data that is revolutionizing wildlife and plant conservation will undoubtedly be a challenging
next step for parasite conservationists.

3.6 Author Contributions

CJC, VMB, and KRB conceived the idea for the study; CJC, KRB, and CFC designed the
study methods, and CJC, KRB, and AJP designed the data collection protocols. CJC, KRB,
ERD, CFC, CAC, NCH, AJP, and VMB led data collection. TAD led collaboration with
the London Natural History Museum; AJP led collaboration with the National Museum of
Natural History, Smithsonian Institution. CJC and AJP led georeferencing and KRB, ERD,
CFC, NCH, VMB, TD, and GC contributed to georeferenced data. JD, RJ, SM, and HP
collected data for the feather mite project and GSC collected African tick data. CJC, KRB,
CFC, ERD and OM contributed to model design; CJC ran all models and led data analysis.
VMB compiled human infection data for parasites included in the final dataset. OM and
CJC conceived the PEARL database, and OM and GC created the web infrastructure. All
authors contributed to the writing of the manuscript and approved the final submission draft.

3.7 Acknowledgements

Our paper has benefited from mentorship, feedback and guidance concerning data collection,
methods and analysis from a number of people, including (but not limited to) Sonia Altizer,
Allison Barner, Jason Blackburn, Mike Boots, Robert K. Colwell, Andy Dobson, John Drake,
John Harte, Kyrre Kausrud, Justin Kitzes, Britt Koskella, John Marshall, Timothe Poisot,
Bree Rosenblum, Carl Schlichting, Dana Seidel, Patrick Stephens, Perry De Valpine, and
an anonymous reviewer. We thank especially collaborators who offered to share data that
were not presented in the final paper, in particular Kevin Lafferty and Giovanni Strona
(FishPEST); Tim Littlewood and David Gibson (London Natural History Museum); Jean
Mariaux (Musum D’histoire Naturelle, Geneva, Switzerland); Alejandro Francisco Oceguera
Figueroa (Coleccin Nacional de Helmintos, Universidad Nacional Autnamo de Mxico); Se-
bastian Kvist (Royal Ontario Museum); Robert Poulin (unpublished data); Kevin John-
son (unpublished data); Jessica Light (unpublished data); Barry O’Connor (unpublished
data); Agustin Jimenez-Ruiz (unpublished data); Mark Hafner (unpublished data); Kurt
Galbreath (unpublished data) and Kayce Bell (unpublished data). Special thanks goes out
to Kathryn Ahlfeld and William E. Moser at the National Museum of Natural History for
assistance in systematics work on the USNPC. We also thank the undergraduates at UC
Berkeley and the University of Connecticut who have contributed to this project over the

64



past two years, including Faith De Amaral, Humza Siddiqui, Fred Heath, Savannah Miller,
and Nicole Kula; and Smithsonian intern Sarah Fourby. We finally thank every researcher
who contributed specimens to the museum collections that made this analysis possible. This
project was funded in part by the UC Berkeley Department of Environmental Science, Pol-
icy and Management and by the A. Starker Leopold Chair held by WMG, and by project
CGL2015-69650-P and Ramon y Cajal research contract (RYC-2009-03967) to RJ.

3.8 Appendix 1. Primary, Secondary and
Compounded Extinction Rates

Dobson et al. [3] provide the following values for mean host specificity (top) and parasite
species richness (bottom):

Chondrichthyes Osteichthyes Amphibia Reptilia ~ Aves  Mammalia

Trematoda 2 6.35 5.4 1.77 2.97 2.01
(51) (5,831) (1,170) (3,773)  (9,862) (3,714)

Cestoda 1.69 6.38 4.75 2.21 2.36 1.89
(1,352) (4,466) (283) (1,112)  (14,058) (4,637)

Acanthocephala — 14.95 6.74 12.5 8.35 4.32

— (1,226) (140) (212) (779) (301)

Nematoda 2.67 10.28 5.27 2.12 3.28 6.07
(152) (2,631) (2,662) (6,389)  (9,150) (2,979)

Using a formula for coextinction rates, some simple math allows an updated estimation from
different levels of host extinction risk, based on other estimates than IUCN data. Koh et al.’s
[122] method for affiliate extinction probability from host risk £ and specificity s estimates:

A= (0.35E — 043)ElnS + E (3.5)

Plugging in a 15-37% extinction risk for hosts (an extreme scenario) and the values for host
specificity gives a best case scenario:

Chondrichthyes Osteichthyes Amphibia Reptilia  Aves  Mammalia

Trematoda 11.08% 4.53% 5.45% 11.77%  8.84% 11.05%
Cestoda 12.03% 4.51% 6.18% 10.51% 10.14% 11.40%
Acanthocephala — 0% 4.20% 0.70%  2.98% 6.71%
Nematoda 9.44% 1.81% 5.59% 10.75%  8.27% 4.79%

And a worst case scenario:
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Chondrichthyes Osteichthyes Amphibia Reptilia ~ Aves  Mammalia

Trematoda 29.29% 16.45% 18.25% 30.65%  24.90% 29.24%
Cestoda 31.17% 16.40% 19.68% 28.18%  27.45% 29.92%
Acanthocephala — 6.93% 15.79% 8.92%  13.40%  20.73%
Nematoda 26.08% 11.09% 18.52% 28.65%  23.79% 16.95%

Weighting these each by the relative richness of different host groups gives the final assess-
ment:

Clade Richness CI based on Thomas et al.
Trematoda 24,401 8.4% to 24.1%
Cestoda 25,098 9.5% to 26.1%
Acanthocephala 2,658 1.9% to 11.0%
Nematoda 23,963 7.5% to 22.3%

And a total: 76,930 species of helminths with a weighed estimate of 8.3% to 23.8% extinction
rate. If specialist parasites are disproportionally hosted by low-risk species, this may explain
some of the reason parasite extinction is less prevalent than predicted. [3] But a more
parsimonious explanation is that the low projected rate comes from the use of incomplete
IUCN red list data that underestimates host vulnerability.

We focus in the above analysis on providing a less conservative estimate of how extinc-
tion rates might compound with host vulnerability, and maintaining a consistent estimate
based on the Thomas et al. SAR for both hosts and parasites. However, we could just as
easily implement the same analysis using the conservative meta-analysis based figure Urban
recently published [139]. Estimates based on the SAR suggest a 22% extinction rate and
estimates based on expert opinion are similarly high. But Urban suggests an overall extinc-
tion baseline across plants and animals of approximately 7.9%. Using that metric, we can
once again calculate by-group estimates, but we can refine it even further by using Urbans
by-group estimates for amphibians (12.9%), reptiles (9.0%), mammals (8.6%), fish (7.6%,
using the same value for chondrichthyes and osteichthyes) and birds (6.3%). We can even
use the 95% credible interval, once again, to generate a best-case scenario table:

Chondrichthyes Osteichthyes Amphibia Reptilia Aves Mammalia

Trematoda 2.41% 0.77% 2.61% 4.21%  2.47% 4.21%
Cestoda 2.65% 0.77% 3.03% 3.71%  2.90% 4.36%
Acanthocephala — 0% 1.89% 0% 0.54% 2.37%
Nematoda 2.00% 0.09% 2.69% 3.80%  2.29% 1.54%

And, a worst-case scenario:
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Chondrichthyes
Trematoda 11.93%
Cestoda 12.94%
Acanthocephala —
Nematoda 10.19%

And, aggregated by group:

Clade Richness
Trematoda 24,401
Cestoda 25,098
Acanthocephala 2,658
Nematoda 23,963

Osteichthyes Amphibia Reptilia Aves Mammalia
4.98% 7.76% 10.71%  5.16% 9.59%
4.95% 8.67% 9.55%  5.99% 9.90%

0% 6.17% 0.48%  1.41% 5.74%
2.08% 7.93% 9.77%  4.80% 4.02%

CI based on Urban et al.

2.61% to 6.79%
2.82% to 7.05%
0.31% to 1.35%
2.40% to 6.11%

These numbers may represent a more literature-based estimation of helminth co-extinction
rates, but we present the Thomas et al. based numbers in the main text to maintain con-
sistency of methods across hosts and parasites, and to present a true worst-case scenario for
how severe the threats parasites face might become.

To determine how these different projections affect total extinction rate projections, we
implement a combinatorics formula that assumes (with no prior knowledge) zero covariance
between host and parasite extinction from climate change (or, more accurately, no covariance
between primary and secondary extinctions):

P(extinction) = 100% — (100% - pdirectea:tinctionfromclimatechange)(100% - pcoemtinction) (36>

Giving us the estimates presented in the main text with dispersal (in percentages):

1° Extinction

Trematoda (0.11, 1.2)

Cestoda (0.07, 0.07)

Acanthocephala  (0.21, 0.60)
Nematoda (1.3, 3.3)

And, without dispersal:

1° Extinction

Trematoda (3.8, 6.0)
Cestoda (3.6, 4.0)
Acanthocephala (3.8, 4.9)
Nematoda (5.4, 9.3)

2° (Urban) 1° 4 2° (U) 2° (Thomas)
(2.61, 6.79) (2.72,7.91) (8.4, 24.1)
(2.82, 7.05) (2.89,7.12) (9.5, 26.1)
(0.31,1.35) (0.52,1.94) (1.9, 11.0)
(2.40, 6.11)  (3.67,9.21) (7.5, 22.3)
2° (Urban) 1° + 2° (U) 2° (Thomas)
(2.61, 6.79) (6.31, 12.38) (8.4, 24.1)
(2.82, 7.05) (6.32, 10.77) (9.5, 26.1)
(0.31,1.35) (4.10, 6.18) (1.9, 11.0)
(2.40, 6.11) (7.67, 14.84) (7.5, 22.3)

1° + 2° (T)
(8.50, 25.0)
(9.56, 26.15)
(2.11, 11.53)
(8.70, 24.86)

1° + 2° (T)
(11.88, 28.65)
(12.76, 29.06)
(5.63, 15.36)
(12.50, 29.53)

We note one particular difference of interest to researchers by incorporating the covari-
ance between different host group extinction rates and their specificity, the gap between
acanthocephalans and other more threatened helminths emerges very clearly.
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Future work relating coextinction to parasite primary extinction rates will require an
approach that links host and parasite distributions and accounts for the missing covariance.
While a few odd winners in any group will have the pre-existing niche breadth to benefit
from climate change, theory predicts that the majority of species should suffer at least par-
tial range loss both hosts and parasites included and at its most extreme this means that
vulnerability should compound across parasites and obligate hosts. In our study, fragmented
host information and the heavy bias towards agricultural and human-infectious species makes
such an approach impractical or uninformative; however, we outline a targeted approach for
subsequent studies that focus on smaller specialist clades. Key to that approach is simulat-
ing the simultaneous shift of hosts and parasites and searching for potential discrepancies
between their ranges, an approach notably used by Pickles et al. [212] Host information is
readily available for mammals and many reptiles and amphibians from the IUCN, and for
birds by BirdLife International range maps. Projecting the joint shift of hosts and para-
sites can be used to calculate a host-constrained projection of parasite future ranges, which
accounts for potential independence in shifting habitat suitability.

This approach also allows another, more conceptual approach to exploring parasite vul-
nerability; in this approach, the Thomas et al. method can be implemented for hosts alone
(following an identical procedure for projecting range shifts) and converted into parasite
vulnerability using Koh et al.’s method for affiliate extinction probability from host risk
E and specificity s (which can be calculated from host-parasite association network data).
This host-as-proxy regional estimation can then be compared against a reimplementation
of the Thomas et al. method using parasite areal changes (with or without host ranges as
constraints, corresponding to total and intrinsic vulnerability to extinction). We term the
relative fraction of vulnerability driven by hosts (the Koh-converted extinction risk divided
by the constrained parasite-based extinction risk) the compounded risk factor and suggest
that future analyses using our global parasite database could explore how much greater than
1.0 those values are for parasites with different levels of specificity in different ecosystems.
For highly specialized species with a single host, the extinction rates should have a rough
1:1 correspondence; however, generalist and parasitic species with several free-living stages
should be more severely affected by their intrinsic vulnerability to extinction and have a
smaller proportional compounded risk factor.

3.9 Appendix 2. Canonical and Maximum Entropy
Approaches to the Species Area Relationship

In the canonical Arrhenius species area relationship (SAR), S = c¢A?,a slope z of 0.25 provides
a convenient solution to extinction rate estimation in the Thomas et al. method. Despite
the substantial criticism the method has faced, especially in a seminal series of papers by
Harte and Kitzes [118, 114, 113], the canonical SAR is still valid under a very specific set
of circumstances. Harte and Kitzes suggest that for an island SAR in particular, the slope
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can be predicted as 0.25 if “(i) total abundance in the new area A is proportional to area,
(ii), individuals found in A are chosen by a random draw of all individuals in Ay, and (iii)
the number of individuals of each species in Ay follows a canonical lognormal abundance
distribution.” [113] Moreover, they draw a parallel to predicting extinction from climate
change, recommending the nested SAR is more applicable to loss of native range (shrinking
suitable habitat of an entire region) while the island SAR may be more applicable to ranges
shifting into novel habitat.

There is, in the Harte & Kitzes method (the Maximum Entropy Theory of Ecology, or
METE), a method for deriving a nested SAR that accurately predicts its curvature towards
z = 0 at continental scales. They define a probability of survival P (compared to the original
probability of survival P0) that, in the original canonical SAR, is

P = Py(AJ Aoy (3.7)

The METE formulation of P accounts for initial abundance n0 and suggests species face
certain extinction when the ratio of abundance n and n0 drops below a threshold r. (i.e.,
the pseudo-extinction threshold or minimum viable population). For a single species,

n [1%65]“% - [1%56}”0
P(—= < L) = 1 — +no +no
(no <) (14 n08) In(1 + 25)

(3.8)

where they substitute  for A/Ay. This approach allows direct calculation of an extinction
area relationship by evaluating each species fate (or, by making top-level assumptions about
abundance distributions in the community). We observe that analyses with uncertainty
about abundance distributions and viable population sizes could easily be implemented in a
Bayesian framework, with basic priors assumed for the demographic free parameters.

To do that, or to use the METE approach in general, requires assumptions about the pop-
ulation trajectory and aggregation of parasites, the distribution of their abundances within
a community (log-normal or not), and the critical population size below which extinction is
certain. For endoparasite helminths, critical population sizes might be easily solved through
conventional epidemiological methods. The host density threshold is a frequently used metric
in epidemiology, and basic assumptions about parasite aggregation within a single infected
individual might make relating the HDT to r. readily possible. But the data to inform such
assumptions is absent at broad scales in parasite ecology; only a couple or a few species in
our study have such data.

In summary, implementing the SAR to predict extinction for parasites is unprecedented,
and so poses a number of problems. The applicability of the SAR with a slope of 0.25 or
higher to parasites is assumed (given its applicability to their hosts), and is supported for
use in our study by the limited literature applying SARs to parasites. [237, 238] We make
the explicit choice to adhere to the Thomas et al. implementation of the SAR approach
with z = 0.25 to avoid further entangling our estimates in unsubstantiated assumptions
about parasite demography, or about how parasite aggregation among hosts (which can
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follow a negative binomial distribution, and in the context of climate change, will be non-
independent from host area and abundance declines) would affect the validity of the METE.
The derivation and empirical validity of the METE has already been the subject of one book
and numerous articles, and exploring its applicability to parasites could require similar multi-
year efforts, using data that is by-and-large missing from current parasitology databases.
Harte and Kitzes suggest three major tasks to refine their methods:

1. “Develop better projection methods for the number of species shared among sets of
disjointed habitat patches.”

2. “Enrich understanding of the shapes and slopes of SARs at large spatial scales.”

3. “Enrich understanding of secondary species losses due to trophic web-induced and
other interaction-induced cascades.”

and we concur that these are critical tasks before the SAR and extinction area relationship
for parasites can be better refined beyond the Thomas et al. methodology.

3.10 Appendix 3. A More Restrictive Analysis,
Based on 50+ Point-per-Species Models

Sample size is an important limiting factor in all ecological niche modeling (ENM), and
detailed attention to the role sample size plays in model accuracy is a key part of due
diligence for researchers building and applying ENMs. In our analyses in the main text, we
present results for species that have a minimum of 20 unique occurrences. However, in other
work, 50 or more occurrences is a more stringent threshold that some might use. Here, we
present the key analyses from our main text, re-analyzed for the subset of species with 50
unique occurrences. That reduces the sample size from 457 species down to 196; at the clade
scale, the effects of that reduction are most apparent.

In the restrictive analysis (versus the 20 point analysis in the main text), climate scenarios
have essentially the same effect on habitat loss, with an average native range loss of 21.4%
(vs. 20.2%) in the optimistic RCP 2.6 scenario, and of 41.2% (vs. 37.4%) in the pessimistic
RCP 8.5 scenario. Across scenarios, species lose an average of 31.5% (vs. 29%) of total
habitat without dispersal. Of 196 species, 36 lost more than 50% of their range, and one
lost more than 80% of its range. Even allowing for dispersal, 106 of 196 (versus 202 of 457)
species lost range by 2070, and 14 species lost more than half of their global suitable range;
despite those losses, species gained an average of 0.3% suitable habitat (vs. 16.2%; the
only noticeable difference from the main analysis); four species doubled the extent of their
range, and none tripled. Strictly-wildlife parasites experienced an average of 10% more range
gain (vs. 17%) than zoonoses. That effect still originates in endoparasite vs. ectoparasite
differences, with endoparasites gaining 31% (vs. 36%) more range than ectoparasites with
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dispersal (p < 0.001), and losing 12% less native range (vs. 10%; p < 0001). Clade differences
are still significant (one-way ANOVA: F' = 8.287, p < 0.001 vs. F' = 15.441, p < 0.001).

Recreating Table 2.1 for this analysis yields roughly comparable results (Table 2.2). The
most significant difference between these analyses comes for mites and lice, which experience
substantially less gain, and for which the sign of average habitat loss is flipped from positive
to negative (and the upper bounds of potential habitat gain are substantially reduced).
This is likely due to the reduction of sample size to 2 species each for both clades, on
which grounds, we note that the results marked with an asterisk should likely be entirely
disregarded (especially as the extinction estimators are unlikely to be at all meaningful).
More generally, restricting sample size even further produces a minor increase in habitat
loss, and therefore extinction rates; overall, the patterns of extinction risk are comparable,
with 7.2-9.8% of species committed to extinction without dispersal (vs. 5.7%-9.2%), and
2.3%-4.6% with dispersal (vs. 1.7%-4.0%). For our “IUCN classification” analysis, with
dispersal, none would be critically endangered (vs. 0.7%), 7.1% (vs. 6.3%) of species would
be endangered, 26.5% (vs. 18.8%) vulnerable, and 66.3% (vs. 74%) least concern; without
dispersal, 0.5% (vs. 1.8%) would be critically endangered, 17.8% (vs. 17.1%) endangered,
42.8% (vs. 49.5%) vulnerable, and 38.8% (vs. 31.7%) least concern, continuing to reflect an
overall subtle increase in risk associated with the restricted sample size.

For poorer-sampled clades (Astigmata and Phthiraptera, and to a lesser extent, Acan-
thocephala and Cestoda), reducing the sample size is likely to have substantially reduced
the validity of the analyses we present in the main text. More generally, it may be the case
that models with more occurrence data better capture the equilibrium realized niche of the
species, and therefore find less novel habitat for species to expand into. Alternatively, it may
be that other subtle biases in data collection (such as spatial autocorrelation between sample
sites) have produced more detailed data for species with overall more restricted niches or
ranges. Speculation as to the mechanisms of the pattern is likely to be unsuccessful given
the combination of data sources assembled in the study, each contributing their own intrinsic
pattern of sampling bias. However, the more restricted analysis only further confirms that
every group in our study is likely to have a handful of species experiencing devastating range
loss, leading to significant extinction risk.

As a final precaution, we compared accuracy metrics for models under and above 50
points, to examine whether models might be failing using the 20-or-more criterion. A very
small effect is detectable in the AUC (mean under 50: 0.945; mean over 50; 0.948; t = —3.235,
df = 8221.5, p = 0.00122, 95%C'I = (—0.0051, —0.0013)), but AUC is also a comparatively
unreliable metric of model performance, and the overall effect is minimal as both groups
appear to perform extremely well on average. (Moreover, the lowest AUC recorded in the
entire study is 0.728, which is still within the range of well-performing, published models,
and certainly gives no indication of objective model failure.) An opposite effect is detectable
for the true skill statistic (means 0.815 vs. 0.797; t = 6.6715; df = 08053.5; p < 0.0001;
95%C1T = (0.0127,0.0232)), for which models under 50 points appear to perform slightly
better, but again, with minimal effect. Based on both of these simple tests, we find no
strong evidence to suggest models with between 20 and 50 points perform noticeably poorly

71



and might introduce non-trivial error into our main results (again, noting that 20 or more
points is a common threshold in the literature; see also [169)]).

Given that extinction estimates for at least two clades (Astigmata and Phthiraptera)
would become invalid with a more restricted analysis, and others would likely have been
noticeably weakened, we elected to present results drawn from all 457 species in the main text.
Our study highlights the challenges of data availability in parasitology research; the fact that
two clades extinction rates would be essentially unmeasurable with a more restrictive sample
size rule only highlights those challenges. However, we note that researchers interested in
using the results of the more restricted analysis can find them here, and can also obtain
individual sample sizes and accuracy metrics for every species and model in the supplemental
datasets.
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DATA SOURCE

TAXONOMY

Figure 3.1: Final dataset breakdown by source and clade.

SPECIES

Feathemites 0 9%

Cumming 159%

GBIF 53%

BeeMites 1.5%
Vectormap 2.2%

IXODIDA 30 9%

CESTODA 55%

ASTIGMATA 3.9%

TREMATODA 8.8%

NEMATODA 322%

SIPHONAPTERA 14.7%

PHTHIRAPTERA 1.1%
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Figure 3.2: Gradients of species richness and predicted turnover through extinction and
redistribution. a. Current distribution of parasite species richness (S) in our dataset is
calculated by stacking binary outputs of species distribution models (see point distributions
in Figure 3.6). b. Turnover (in species units) is measured by following the same procedure
from 18 combinations of GCMs and RCPs for year 2070, and taking the average difference
(AS) from 2016. c. Proportional change (AS/S) is most severe in low-diversity arcas where
parasite richness is predicted to increase as a consequence of latitudinal shifts.
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Figure 3.3: Example presentation of species distribution and conservation status on the
Parasite Extinction Assessment & Red List. Real results are shown for Abbreviata bancrofti
(Nematoda), a representative species in our study and the first available on the website
alphabetically.
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Figure 3.4: Loss of native habitat broken down by RCP and GCM. Results are broken down
into all models and the subset of models that “perform well” (with a true skill statistic over

0.6).
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Figure 3.5: Tradeoffs between biodiversity loss and emergence across parasite clades. Dis-
crepancies between current and future range size are projected as averages across all GCMs
and RCPs at the species level, with (y-axis) and without (x-axis) dispersal, and broken down
by our eight clades. Most clades are likely to be subject to moderate-to-extreme range loss;

but the species with projected extreme expansions are mostly helminth endoparasites (in
particular, nematodes and trematodes).
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Figure 3.6: Sources and distribution of occurrence data. a. Data from the US National
Parasite Collection (grey: not included in final dataset; black: included in the study based
on minimum sample size, taxonomic cleaning, etc.). b. Data from VectorMap (blue) and
the Global Biodiversity Informatics Facility (orange). c¢. Data from the Bee Mites database

(blue), the Cumming tick database (red), and georeferenced data of the feather mite database
(black).
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Figure 3.7: Loss of native habitat broken down by feature classes and regularization multi-
plier. Results are broken down into all models and the subset of models that “perform well”
(with a true skill statistic over 0.6). Models are built from a combination of five feature

classes: linear (L), quadratic (Q), hinge (H), product (P), and threshold (T).
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Figure 3.8: Visualizing spatial bias in species richness gradients. a-c, From the distribution
of points included in our global parasite database, we constructed a global compiled map
of species richness (a) calculated by layering every species distribution model. But with
biased sampling that map may reflect false patterns; so we also present the density of points
smoothed with a Gaussian filter with ¢ = 1 (b), and subtract the latter from the former to
show richness relative to sampling intensity (c).
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Figure 3.9: Parasite richness gradients by human health concern. a, Species richness gra-
dients for species in our study with human health relevance (zoonotic endoparasites and
ectoparasites with records of feeding on humans) compared to b, richness gradients for
strictly-wildlife or free-living species.
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Figure 3.10: Comparative [IUCN “Red List” breakdowns by clade. a. Breakdowns are given
by habitat loss categories from now to 2070: 0-25%: least concern; 25-50%: vulnerable; 50-
80%: endangered; 80-100%: critically endangered. b-i. Conservation classifiers are broken
down for eight major clades: b. Acanthocephala (n = 14 spp.); c¢. Astigmata (n = 18); d.
Cestoda (n = 25); e. Ixodida (n = 141); f. Nematoda (n = 147); g. Phthiraptera (n = 5);

h. Siphonaptera (n = 67); i. Trematoda (n = 40).
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Figure 3.11: Primary, secondary and compounded extinction rates (%) for major helminth
clades. Error bars represent lower and upper bounds to estimation based on the Thomas
et al. method and errors in the Dobson method, and means between the two interval ends
are shown in bars, for (left to right) acanthocephalans, cestodes, nematodes and trematodes.
Cause of extinction is broken down by primary extinction (direct impacts of climate change,
no dispersal), secondary extinction (coextinction with hosts, calculated in Appendix 1), and
a combined risk (total). Scenarios are presented for (a) no dispersal and (b) full dispersal
capacity for parasites. Most helminths face high risk when accounting for coextinction,
though acanthocephalans consistently appear much less threatened.
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Clade | N [HL (Mean) | HL (5-95% CI) | % Comm. to Ext.
0% Dispersal
Acanthocephala | 14 -16.6% (-50.6%, -0.2%) 3.8% / 4.4% | 4.9%
Astigmata | 18 | -19.0% (43.6%, -4.0%) | 4.4% /51% ] 5.3%
Cestoda 25 -13.6% (-29.1%, -2.9%,) 4.0% / 3.6% / 3.7%
Ixodida 141 -31.9% (-57.0%, -1.9% 81% / 9.2% / 9.8%
Nematoda 147 -28.0% (-74.4%, -2.6%) 5.4% / 7.9% / 9.3%
Phthiraptera | 5 55.8% (71.5%, -34.4%) | 10.5% / 18.5% / 19.3%
Siphonaptera | 67 | -40.6% (69.5%, -11.0%) | 10.0% / 12.2% / 12.9%
Trematoda 40 -17.8% (-47.4%, -0.4%) 3.8% / 4.8% / 6.0%
100% Dispersal
Acanthocephala | 14 +48.8% (-10.4%, +129.0%) | 0.21% / 0.54% / 0.60%
Astigmata 18 +13.8% (-41.2%, +64.4%) 1.3% / 2.0% / 2.3%
Cestoda 25 +57.1% (+3.7%, +131.1%) | 0.07% / 0.07% / 0.07%
Txodida 41| 8.6% (B41%, 167.7%) | 4.9% / 5.7% / 6.4%
Nematoda 147 +18.7% (-53.6%, +87.6%) 1.3% / 2.5% / 3.3%
Phthiraptera | 5 | +1105% | (-57.7%, 514.8%) | 4.6% / 6.2% ] 7.4%
Siphon aptera | 67 -5.0% (-50.0%, +43.8%) 1.9% / 41% / 4.6%
Trematoda | 40 | +822% | (-30.4%, 1242.4%) | 0.11% / 1.0% / 1.2%

Table 3.1: Habitat loss and projected extinction risk by dispersal scenario and clade. Values
are averaged across all General Circulation Models (GCMs) and Representative Concentra-
tion Pathway Scenarios (RCPs; 45), and the percent of species committed to extinction is
calculated using the three Thomas et al. [8] SAR methods. Percentiles are calculated from

species-level averages of GCMs and RCPs (i.e. all variance is interspecific).
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Clade | N | HL (Mean) | HL (5-95% CI) | % Comm. to Ext.
0% Dispersal
Acanthocephala | 5 -19.8% (-52.3%,0.0%) 5.2% / 5.4% / 6.2%
Astigmata (%) | 2 | -37.0% (44.1%-03%) | 9.2% / 10.9% / 11.0%
Cestoda 8| 204% (29.6%-10.3%) | 6.1% / 5.6% ] 5.7%
Txodida 08 | 345% (55.3%, -2.6%) | 8.5% / 10.0% / 10.7%
Nematoda | 37| -24.2% (55.5%, 51%) | 5.5% / 6.7% ] 7.3%
Phthiraptera (¥) | 2 | -57.9% (-62.1%, -53.7%) | 19.9% / 19.4% / 19.5%
Siphonaptera | 30 -37.1% (-51.7%, -16.7%) | 9.4% / 10.9% / 11.3%
Trematoda 14 -23.8% (-63.4%, -2.2%) 6.0% / 6.8% / 8.8%
100% Dispersal
Acanthocephala | 5 +38.2% (-17.0%, +78.2%) 0.7% / 1.5% / 1.7%
Astigmata | 2 | -32.3% (431%, 21.5%) | 6.8% / 9.3% / 9.6%
Cestoda S| 130.6% | (2.0% +70.8%) | 0.2% /02% /0.2%
Ixodida 98 -12.6% (-53.3%, +47.6%) 4.9% / 6.0% / 6.6%
Nematoda | 37| +13.6% | (-37.1%, 147.0%) | 0.7% / 1.5% / 1.8%
Phthiraptera | 2 | -0.53% (60.1%, -45.9%) | 17.9% / 17.2% ] 17.4%
Siphonaptera | 30 -0.03% (-41.2%, +43.1%) 1.6% / 3.5% / 3.8%
Trematoda | 14 | +143.3% | (-24.9%, +1384%) | 02% / 1.2% ] 1.7%

Table 3.2: Habitat loss and projected extinction risk by dispersal scenario and clade; analysis

recreated from Table 3.1, but for 50+ point species.
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Chapter 4

An ecological assessment of the
pandemic threat of Zika virus.

Colin J. Carlson Eric Dougherty Wayne Getz

4.1 Abstract

The current outbreak of Zika virus poses a severe threat to human health. While the range
of the virus has been cataloged growing slowly over the last 50 years, the recent explosive
expansion in the Americas indicates that the full potential distribution of Zika remains un-
certain. Moreover, many studies rely on its similarity to dengue fever, a phylogenetically
closely related disease of unknown ecological comparability. Here we compile a comprehen-
sive spatially-explicit occurrence dataset from Zika viral surveillance and serological surveys
based in its native range, and construct ecological niche models to test basic hypotheses
about its spread and potential establishment. The hypothesis that the outbreak of cases
in Mexico and North America are anomalous and outside the native ecological niche of the
disease, and may be linked to either genetic shifts between strains, or El Nino or similar
climatic events, remains plausible at this time. Comparison of the Zika niche against the
known distribution of dengue fever suggests that Zika is more constrained by the season-
ality of precipitation and diurnal temperature fluctuations, likely confining autochthonous
non-sexual transmission to the tropics without significant evolutionary change. Projecting
the range of the diseases in conjunction with three major vector species (Aedes africanus,
Ae. aegypti, and Ae. albopictus) that transmit the pathogens, under climate change, sug-
gests that Zika has potential for northward expansion; but, based on current knowledge, our
models indicate Zika is unlikely to fill the full range its vectors occupy, and public fear of a
vector-borne Zika epidemic in the mainland United States is potentially informed by biased
or limited scientific knowledge. With recent sexual transmission of the virus globally, we
caution that our results only apply to the vector-borne transmission route of the pathogen,
and while the threat of a mosquito-carried Zika pandemic may be overstated in the media,



other transmission modes of the virus may emerge and facilitate naturalization worldwide.

4.2 Introduction

Following a twenty-fold upsurge in microcephalic newborns in Brazil linked to Zika virus
(ZIKV), the World Health Organization has declared an international health emergency.
[239] Despite being profiled for the first time in 1947. [240] Zika remained poorly charac-
terized at a global scale until the last six months. Thus, the present pandemic expansion
in the Americas poses a threat of currently unknown magnitude. Closely related to dengue
fever, Zika conventionally presents as a mild infection, with 80% of cases estimated to be
asymptomatic. [241] The cryptic nature of infection has resulted in sporadic documentation
of the disease and rarely includes spatially explicit information beyond the regional scale.
239, 242, 243, 244] This greatly limits the confidence with which statistical inferences can
be made about the expansion of the virus. With an estimated 440,000-1,300,000 cases in
Brazil in 2015, [241] and continuing emergence of new cases in Central America and, most
recently, the United States, assessing the full pandemic potential of the virus is an urgent
task with major ramifications for global health policy.

Current evidence portrays the global spread of ZIKV as a basic diffusion process facili-
tated by human and mosquito movement, a hypothesis supported by the frequency of infected
traveler case studies in the Zika literature. [245, 246, 247, 248] Tracing phylogenetic and
epidemiological data has revealed the expansion of ZIKV has occurred in a stepwise process
through the South Pacific, moving the disease from Southeast Asia into French Polynesia
and the Philippines, and subsequently to Easter Island. [239, 242, 243, 244] Based on phy-
logenetic reconstruction, ZIKV is assumed to have dispersed into South America as recently
as three years ago from the last of those locations, [249] and the virus is presumed to be
at a biogeographic disequilibrium in the Americas. With cases in the ongoing outbreak in
Colombia, El Salvador, Guatemala, Paraguay, and Venezuela, and by November of last year,
as far north as Mexico and Puerto Rico, the full potential distribution of the disease remains
unknown. Significant fear exists regarding the potential naturalization of Zika across the
United States, given a handful of sexually-transmitted examples, but as of now the disease
has not been carried into the United States by vectors. Moreover, several alternative ex-
planations for the diseases expansion remain overlooked; most notably, the role of climate
change in Zikas expansion has not yet been thoroughly investigated. [250]

We present three competing hypotheses that describe the path of expansion that Zika
could take, based on evaluations of the ecological niche of the virus within and outside of its
vectors. First, if Zika has no additional climatic constraints relative to those of its vectors,
future range expansions should match mosquito ranges. Second, if Zika has a transmission
niche that is constrained by climatic factors within the ranges of its mosquito vectors, its
range may be much more limitedwith, as we show below, possible confinement to the tropic-
sand cases in North America could be driven by human dispersal or extreme episodic weather
events. Finally, it is possible that the expansion of Zika into North America may be a steady
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range expansion beyond the known niche in its native range, facilitated by climatic shifts
or by genetic shifts in the virus or vectors. To test these hypotheses, we present a spatially
explicit database of Zika occurrences from the literature and an ensemble of ecological niche
models [251] using that data to map the potential distribution of the virus.

4.3 Methods

Occurrence Data

Occurrence data for Zika virus was compiled from the literature from studies dating as
far back as the original discovery of the virus in Zika Forest, Uganda in 1947. While the
asymptomatic nature of the virus limits the total availability of data, lack of evidence for
spatial patterns in symptoms in the native range suggest this is an unlikely cause of spatial
bias (and instead, merely limits total dataset size). Special attention was paid to correctly
attributing cases of travelers to the true source of infection. Locality data was extracted from
a combination of clinical cases and seropositivity surveys in humans and mosquitoes, and
georeferenced using a combination of Google Maps for hospitals and the Tulane University
GEOLocate web platform for the remainder, [164] which allows for the attribution of an
uncertainty radius to points only identified to a regional level. To our knowledge, this
spatially explicit database is the most inclusive dataset currently in the literature. Four
points were georeferenced in the New World but excluded from niche models because a
limited sample as small as four points was likely to significantly bias predictions (compared
to the necessary number of pseudoabsences in the same region). Thus, sixty points from the
Old World were used in the final models presented in our paper after eliminating data from
the current outbreak in the Americas. All points included in our dataset had an outer-bound
of at most 65 km of uncertainty, with most substantially less.

Constraining datasets based on an uncertainty threshold will become more statistically
feasible in future studies once more survey data become available. In the present study,
we deemed that the additional information gained from each point outweighed the poten-
tial impact of the uncertainty on model performance (The dataset is available at https: //
figshare.com/articles/An_FEcological_Assessment_of_the_Pandemic_Threat_
of_Zika_Virus/3790698). We note that for similar reasons, we did not subsample our
dataset for spatial thinning in our main models, as software packages like spThin allow, [252]
due to information-accuracy tradeoffs; and the strong final performance of models (and the
correspondence of our predictions for dengue and Aedes species to published gold standard
niche models) speaks to the appropriateness of the underlying data and variables. Sensitivity
analyses in the literature unequivocally suggest that accuracy of the modeling methods we
employ plateaus at or near 50 points, justifying the use of a dataset of this size. [166, 167,
168]

Occurrence data for the other species included in our study were compiled from the
literature. For Aedes africanus, we used a dataset of 99 points downloaded from the Global
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Biodiversity Informatics Facility (www.gbif.org). GBIFs coverage of Aedes aegypti and Aedes
albopictus was deemed to be lacking, so occurrences for those species were taken from the
previously published work of Kraemer et al. [253, 254] Finally, Messina et al.s database was
used for dengue, [255] as it has been previously published used with great success to generate
a global distribution model. [256] Both of these datasets were reduced down to point-only
data (i.e., polygons of occurrence were excluded), leaving 5,216 points for dengue and 13,992
and 17,280 points for Ae. aegypti and Ae. albopictus respectively.

A number of other Zika vectors are known from previous reports, including at least a
dozen Aedes species, as well as Anopheles coustani, Culex perfuscus, and Mansonia uni-
formis. [257, 258] While we do not include these vectors in this study in order to keep focus
on the most likely globally-cosmopolitan Aedes vectors, we note these species could be im-
portant in regional patterns of establishment. These species lack the globally comprehensive
datasets that dominant arbovirus-vectoring Aedes species have, and require future attention
by similarly-dedicated researchers.

Ecological Niche Modeling

Due to the potentially transient nature of the New World distribution of Zika virus, our
model uses presence and 1000 randomly selected pseudo-absence points from the Eurasian,
African, and Australian regions where the virus is established. We used the WorldClim data
set BIOCLIM at 2.5 arcminute resolution, an aggregated dataset across values from 1950 to
2000, to provide all but one of our climate variables. [259] The BIOCLIM features 19 vari-
ables (BIO1-BIO19) that summarize trends and extremes in temperature and precipitation
at a global scale. Given the relevance of the normalized difference vegetation index (NDVI)
in previous studies of dengue and as a predictor of vector mosquito distributions, [260] we
downloaded monthly average NDVI layers for each month in 2014 from the NASA Earth
Observations TERRA/MODIS data portal, [261] at a resolution of 0.25 degrees to main-
tain compatibility with the BIOCLIM layers (0.25 degrees is equivalent to 15 arcminutes).
The twelve monthly layers were averaged to provide a single mean NDVT layer. Due to the
absence of NDVI data at the necessary resolution associated with many of the historical
records (especially prior to 1992), the use of a recent mean NDVI layer was deemed the
most pragmatic method of including vegetation in our models. We also make the simplifying
assumption that areas of prior presence correspond to areas of current presence, an assump-
tion that allows the use of current NDVI and is relatively standard for the niche modeling
literature.

Species distribution models were executed using the BIOMOD2 package in R 3.1.1, which
produces ensemble species distribution models using ten different methods: general linear
models (GLM), general boosted models or boosted regression trees (GBM), general addi-
tive models (GAM), classification tree analysis (CTA), artificial neural networks (ANN),
surface range envelope (SRE), flexible discriminant analysis (FDA), multiple adaptive re-
gression splines (MARS), random forests (RF), and maximum entropy (MAXENT). [262]
The BIOMOD algorithm runs a series of distribution models using training data, each of
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which is subsequently weighted and stacked across methods based on relative predictive per-
formance with test data. As Thuiller et al. note, if a single modeling method is consistently
most accurate, use of that method should be favored over ensemble approaches, [262] but
in our study model performance varied, making ensemble approaches informed by degree-
of-belief in a given model the most powerful option available. With recent publication of
two Zika niche modeling papers using MAXENT and boosted regression trees, respectively,
[12, 11] differences between these two modeling methods may be responsible for differences
in predictions an issue that makes ensemble models particularly robust to idiosyncrasies of
any individual methods.

Models were run individually for Zika (ZIKV), dengue (DENV), Ae. aegypti, Ae. al-
bopictus, and Ae. africanus. For Zika, models trained on Old World environmental data
(from Europe, Africa, Asia and Australia) were used to establish the potential distribution
of the virus in the Americas under climatic conditions captured by WorldClim data, which
are an aggregate of data between 1950 and 2000 (appropriately matching the date range of
historical Zika occurrence data), and represent an expected range of variability that does
not incorporate anomalous events like 2015 El Nio Southern Oscillation. Extrapolation be-
tween continents is a procedure with the potential for error: if novel environments exist in
the New World with incomparable covariance structure between climate variables, predictive
accuracy is likely to decline. While using only Old World data could potentially bias our
models towards a subset of the niche, this can be readily tested for, by comparing models
that include or exclude South American occurrence data.

To address colinearity in the environmental variable set, we produced a correlation ma-
trix for our 20 variables, and identified each pair with a correlation coefficient ; 0.8. For
each species, we ran a single ensemble model with all ten methods and averaged the variable
importance for our 20 predictors across the methods (Table 4.1-4.5). In each pair we iden-
tified the variable with the greater contribution, and we produced species-specific reduced
variable sets used in the final published models by eliminating any covariates that univer-
sally performed more poorly than their pair-mate. Based on this criterion, we excluded the
following variables for each species to reduce colinearity:

e ZIKV: BIOS, BIOY, BIO14, BIO18

DENV: BIO3, BIO5, BIO12, BIO17

Ae. aegypti: BIO6, BIOS, BIO12, BIO17
o Ae. africanus: BIO5, BIO6, BIO12, BIO17

o Ae. albopictus: BIOS, BIO9, BIO16, BIO17
The AUC of every model run with reduced variable sets is presented in Table 4.6. We

found no significant correlation between NDVI and any individual BIOCLIM variable, so
NDVI was included in every model of current distributions. We ran five iterations of each
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reduced variable set model and eliminated any prediction methods from the ensemble with
an AUC of lower than 0.95, so that the final model had only included the best predicting
models. This greatly limited the models available for ZIKV and DENV| so a cutoff of 0.9 was
applied in those cases, to keep the ensemble approach constant across datasets. The final
models were run with the following methods with ten iterations using an 80/20 training-test
split in the final presentation:

e ZIKV: GLM, GBM, GAM, CTA, FDA, MARS, RF
e DENV: GLM, GBM, GAM, FDA, MARS, RF, MAXENT

Ae. aegypti: GLM, GBM, GAM, CTA, ANN, FDA, MARS, RF
e Ae. africanus: GLM, GBM, GAM, CTA, ANN, FDA, MARS, RF
o Ae. albopictus: GLM, GBM, GAM, CTA, FDA, MARS, MAXENT, RF

The importance of variables of the reduced model set for each are presented in Table
4.7-4.12, and the final ensemble models are projected from the BIOMOD output in Figure
4.6-4.11.

Model Validation

To assess the transferability of our Zika model across environmental space, we conducted
a geographic cross validation (GCV) between African and Asian datasets (an analysis we
did not repeat for Aedes species or dengue, given the far greater sample size and geographic
coverage of those species, and the publication of more intensive niche modeling efforts by
experts for those systems). While under normal circumstances, a model would be trained
on New World data and projected onto the Old World to cross-validate results, the lack
of data prior to the current outbreak makes such a direct comparison infeasible. However,
given the evidence for separate Asian and African strains, a cross-validation between the
two was supported, and models trained on those two continents were projected globally to
test the performance of the model across geographic regions, and evaluate how sensitive our
projections in the Americas are to the environmental covariates sampled. The clustering of
points in western India narrows the environmental range sampled by presences, potentially
limiting the apparent transferability of the Asian sub-model. In contrast, the African sub-
model performs well in new regions, and corresponds well to the global model.

Climate Change Projections

The potential contribution of climate change to Zikas current expansion, and the outer
bounds of transmission under future expansion, are largely unaddressed. While these have
not been the subject of any concerted speculation, Shapshak et al. [263] point out that the
majority of arboviruses are potentially implicated in the climate change-driven expansion of
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global disease burden, with a shared set of drivers that quite probably extends to Zika as
well. Consequently this analysis serves two purposes; to address the potential expansion and
thereby assist public health planning, and to test whether even a liberal post-climate-change
interpretation of range margins matches the predictions of Messina et al. [12] and Samy et
al. [11] that we consider limited in specificity and potentially over-predictive. To project
the distribution of the species under a worst-case scenario for climate change, we reran each
model with the previously chosen method and variable sets but excluded NDVI, as future
values could not be simulated effectively. BioClim forecasts were taken from WorldClim
using the Hadley Centre Global Environmental Model v. 2 Earth System climate forecast
(HadGEM2-ES) predictions for representative climate pathway 8.5 (RCP85), which, within
that model, represents a worst-case scenario for carbon emissions and climate warming. [264]
All five species models were retrained on current climate data and projected onto forecasts
for the year 2050. While we could have also included milder climate change forecasts and
scenarios in our analysis, public concern over the future spread of Zika make the worst case
scenario the most relevant question of interest for public health research (and intermediate
scenarios would fall between current ranges and the worst case scenario we project).

Niche Comparison

To compare the niche of dengue and Zika and thereby address whether dengue models can
be appropriately used to forecast the Zika pandemic, we used the R package ecospat, which
uses principal component analysis to define the position of species ecological niche relative to
background environmental variation. [265, 266] The ecospat analysis was run using the full
64 point database and the full extent of global environmental data, because, while the niche
of Zika in the Americas is uncertain, dengue is well established, and the analysis was most
appropriately done with global coverage. Niche similarity tests were run with 500 iterations
and using the entire set of 20 environmental variables (Bioclim + NDVI).

Model Comparison with Global Data Coverage

Our study is centered on the assumption that incorrect predictions at the country level
can have drastic consequences for the misinterpretation of science. As a final precautionary
analysis, we supplemented the data published in the Messina et al. study [11] to our own for
a final re-analysis. Broennimann & Guisan [267] recommend the pooling of data from native
and invasive ranges for ecological niche modeling during the course of a biological invasion,
an approach we adopt in this final analysis. The Messina data is heavily clustered in Brazil,
with a high degree of aggregation, and especially compared against our less-aggregated,
smaller dataset this made the combination of datasets potentially inaccurate. To address
this problem, the 390 pooled points were reduced down to 242 points using the package
spThin, [252] with a 40km buffer between points (the width of an average grid cell for
our environmental data). Models were rerun using the same variable and model set as for
the primary Zika model and the results of the analysis are included in the supplementary
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information as Figure 4.11 and, with a threshold applied based on the true skill statistic,
Figure 4.12. The final model performs poorer than our main ensemble (weighted model:
AUC = 0.970), and while it more appropriately predicts presences in southern Brazil, it
does a far poorer job in the rest of the world, once again most likely due to the relative
balance of points even after thinning the dataset.

4.4 Results

Our final Zika model combines seven methods with a variable set chosen from bioclimatic
variables and a vegetation index to minimize predictor covariance. The ensemble model
performs very well (AUC = 0.993; Figure 4.1), to a degree that resembles overfitting but
is in fact driven by the strength of the ensemble modeling approach (which preferentially
weights the best models across iterations, minimizing the error associated with any given
high-performing iteration). The model strongly matches most occurrences including the
hotspots of Brazilian microcephaly. It also predicts additional regions where Zika is so far
unrecorded, but where further inquiry may be desired (in particular, Southern Sudan and
the northern coast of Australia). Our model indicates that certain occurrences, like the
1954 report from Egypt and almost all North American cases, are likely outside the stable
transmission niche (i.e., persistent over time) of the virus (sensu [268]). Moreover, we note
that visual presentation of cases or, of ecological niche models at the country level may
make the range of the virus appear far larger than our models suggest (see Figure 4.1).

Given the public health crisis posed by Zika, and the potential costs associated with
underpredicting the extent of the current outbreak, we pay special attention to evaluating
the sensitivity of our models to variations in our preliminary dataset. Historical geographical
data on cases in the Americas are lacking, given the recent introduction of the virus, and
the routes and drivers of transmission involved in that outbreak are uncertain, preventing
meaningful cross-validation of models of the current outbreak with our Old World model.
However, it is worth noting that recent phylogenetic work suggests a deep phylogenetic
division between African and Asian strains, the latter of which as a monophyletic group
include the entire radiation through French Polynesia into current outbreak areas; [249,
269] to address the potential evidence that African and Asian strains of the virus may be
ecologically distinct, we present models trained on each continent and projected globally as
a basic sensitivity analysis (Figure 4.2).

The two models cross-validate weakly compared to the performance of the global model;
driven by both the 50% reduction in sample size and the higher degree of aggregation of
Asian occurrences, the two projected distributions are dramatically different. Despite the
over-prediction of the Asian model in Africa and the possible overfitting of the African
model, we emphasize that neither extreme scenario predicts any substantially greater range
in North America than our main ensemble model. Moreover, as projected in North Amer-
ica, our Asian model underpredicts but does predict two major hotspots of occurrence in
Brazil, the Ceara/Rio Grade do Norte region and Roraima, both of which spatially corre-
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spond to hotspots of Zika according to the recent Faria et al. publication in Science, [249]
adding further support to the model. Finally, despite low transferability between continents,
both sub-models are well matched by our aggregated model in their native range, further
supporting the accuracy and predictive power of our global projection.

Recently published work by Bogoch et al. [270] uses an ecological niche model for dengue
as a proxy for the potential full distribution of ZIKV in the Americas, presenting findings in
terms of potential seasonal vs. full-year transmission zones. While that approach has been
effectively validated for dengue transmission in mosquitoes, using a model of one disease to
represent the potential distribution of another emerging pathogen is only a placeholder, and
is particularly concerning given the lack of evidence in our models that ZIKV and dengue
have a similar niche breadth. [271] Comparing our niche models for dengue and ZIKV reveals
that the two niches are significantly different (Schoener’s D = 0.176; p j 0.01; Figure 4.3).
While the two occupy a similar region of global climate space, Zika is more strictly tropical
than dengue, occupying regions with higher diurnal temperature fluctuations and seasonality
of precipitation (Figure 4.3a).

Projecting niche models to the year 2050 suggests that expansion of Zikas niche outside
the tropics is an unlikely scenario, independent of vector availability (Figure 4.4). However,
significant westward expansion in South America and eastward expansion in Africa implies
that Zika may continue to emerge in the tropics. Moreover, our future projections for
dengue (which strongly agree with previously published ones [272]) show an expansion out
of the tropics that is not shared with Zika (Figure 4.4). These results call into question the
applicability of dengue niche models used to project a significant future range for Zika in
North America. [270]

Finally, we add a last layer of validation in the form of an analysis aggregating our and
Messina et al.s data, and include the results of an updated ensemble model in Figure 4.5 (as
well as 4.6 and 4.7). Even with spatial thinning, that updated model is still heavily biased
in favor of the South American occurrence data, which it predicts excellently, compared to a
weaker fit in Africa and Asia. That accompanying loss of specificity is partly responsible for
a lower AUC than our main model (AUC = 0.970) and the low TSS-based threshold (271,
from 0 to 1000) that produces the substantially-greater predicted range shown in Figure 4.12.
The model does predict the current outbreak more effectively than ours, in particular better
encompassing the southern half of Brazil where a surprising number of cases are clustered.
But those southward expansions are accompanied by far less expansion above the equator in
the Americas, and once again with the exception of the southernmost tip of Florida, there
is no substantial predicted range in the United States, even along the Gulf Coast. If model
discrepancies are attributed to evolutionary change and not to differences in model methods
and specificity, those evolutionary changes seem to have done little to expand the North
American niche of the virus.
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4.5 Discussion

Ecological niche modeling has become one of the most generalized and useful parts of the
streamlined response process for emerging infections. Recently published ecological niche
models for Zika using MAXENT [11] and boosted regression trees [255] have resulted in
somewhat conflicting results. Samy et al., using data exclusively from the range of the
current outbreak, project autochthonous transmission in the southeastern United States, and
potentially throughout the U.S. following regional outbreaks introduced by travelers. Their
analysis incorporates socioeconomic factors into prediction, a valuable extra dimension we
did not incorporate into our analysis; but the prediction of regions throughout the United
States and most of the European continent as suitable based on only these criteria (i.e.
despite lacking available vectors) seems uninformative except for the prediction of sexual
outbreaks. Samy et al., however, conclude: In Western Europe, ZIKV transmission risk is
enhanced by travel times and connectivity to known transmission areas; as such, isolated
autochthonous cases may occur at least seasonally when competent vector species are present.
[11] Messina et al. have a similar finding, based on a primarily ecological approach applied
to 323 occurrences mostly from the New World; they map out most countries in the world
as highly suitable, including the United States, with the conclusion that 2.17 billion people
live in countries within Zikas potential expanse. [12] These studies, being contemporaneous,
do not refer to each other, and their conflicting results could render Zika forecasts unclear
to the media and policymakers.

Interpreting conflicts between these models and those published here requires acknowl-
edging three fundamental problems. First, differences in virulence between American and
Asian strains of the virus may have changed the range limits. The niche of the vector-borne
disease is manifest in its transmission and prevalence in mosquitoes (as well as humans and
reservoirs), and increases in virulence could change the threshold of habitat suitability man-
ifest in range limits. Without comparative work using updated data in Samy et al. and
Messina et al.s papers, equal support exists for our differences being attributable to method-
ological discrepancies or to a difference between Asian and American strains. But in the
preliminary analysis we present in the supplementary information, incorporating data from
the New World does not substantially expand projections in the United States (though a
greater region of Brazil is predicted); and we believe a combination of evolutionary shifts and
methodological differences is likely the most parsimonious explanation for differing results.

Second, we acknowledge the untested possibility that Zika has been expanding in its range
since discovery in the 1940s (though, the virus was soon recorded in Borneo and Vietnam
in the 1950s [257]), which would also decrease both the accuracy of our models in that
region, and their power in the New World compared to the models published in the other
two studies. Testing that possibility using our data broken down by time periods would
be strongly statistically biased by the non-random element of viral discovery in different
tropical countries, a factor for which it would be nearly impossible to control. Phylogenetic
evidence has placed the introduction in the Americas within the last decade [249], but the
age of divergence between Zika and closely related viruses like Japanese and St. Louis
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Encephalitis Viruses is less certain. Improving phylogenetic evidence based on updated
Old World genomes in the coming years is a far more appropriate methodology for testing
different biogeographic theories within that region.

Third and finally, we acknowledge the possibility that dispersal limitations have changed
between the Old and New World, in such a way that the present expansion of Zika is not the
emergence of novel niche space but the manifestation of hidden plasticity. This possibility
is troubling from a public health perspective: if Zikas niche is simply more expansive than
current data/models capture, its geographic expansion could progress much further than we
predict. This problem is fundamental to all predictive models applied to biological invasions,
but Broenniman & Guisan [267] suggest that combining data from the native and invasive
range maximizes the utility of ENMs in these scenarios. In our combined model we find
evidence for subtle differences, especially in South America, but our findings remain sound
with respect to the boundaries of transmission in North America. In any niche modeling
study, there is always the possibility for error by omission; but we find no evidence that this
has occurred in our study.

The dynamics of arboviruses at the range margins of their vectors are complex. In the
case of dengue, the distribution of the virus in the United States (and elsewhere in temperate
regions) remains more constrained than the range of its vectors. Our paper tests and rejects
the hypothesis that predictions of Zika will occupy the entire niche of Aedes populations
in North America, disagreeing with the two recently published niche model studies. Our
models imply a similar constraint on Zika transmission to that of dengue if not a more
pronounced one, and owing to the complexities surrounding transmission dynamics at the
edges of suitable ranges, [273] the potential existence of Zika in even the southernmost parts
of Florida [274] may not sustain autochthonous Zika transmission indefinitely. Making more
specific predictions within Florida can be done through ecological niche models, but is likely
more appropriately achieved through conventional epidemiological models that explicitly
model vector abundance, biting rates and phenology.

Our models find an ecological nonequivalence of Zika and dengue, and suggest that
the niche of the virus in both Africa and Asia is far narrower than what other models
project based on current outbreak data or based on knowledge of dengues spread. We
reject our first hypothesis, but based on the occurrence of Zika cases outside our predicted
suitable range for the virus, we cannot eliminate our second hypothesis that the 2016 Zika
outbreak may be in ephemeral, rather than stable, parts of the Zika transmission niche due
to episodic climatic conditions. Specifically, El Nio Southern Oscillation (ENSO) events
drive outbreaks of dengue in the Americas and in Southeast Asia, [275] and Paz et al. [250]
have conjectured that the 2015 ENSO event could have contributed to the severity of the
ZIKV outbreak in North and Central America (in response to Bogoch et al. [270]). While
wind-dispersed mosquitoes carrying infections can be responsible for the introduction of
diseases to new regions, [276] reported cases in the United States have all been contracted
sexually or while traveling abroad to regions with endemic outbreaks, further supporting
the tropical constraint hypothesis. However, in the second hypothesis scenario, the rapid
expansion during the current outbreak beyond the boundaries of the stable transmission
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niche is unlikely to be followed by naturalization of the pathogen in the United States in the
future, except perhaps in the southernmost tip of Florida. While ecological niche models
relate occurrence to climate, drivers of disease may operate at the temporal scale of weather,
and we suggest further analyses of a different methodology are necessary to confirm or reject
the potential contribution of El Nino or anomalous storms to Zikas expansion.

In the case of our third hypothesis, if alternative modeling efforts based on data from the
Americas are evidence that the niche of the American strain of the virus has broadened, it
is possible that mutations allowing increased virulence or changing transmission dynamics
have occurred (and that weather events have not driven the severity of the current outbreak).
From the results of our supplementary analysis using aggregated global data, we continue
to treat the third hypothesis as a hypothesis for which there may be weak evidence. But
we suggest it cannot be rejected or accepted confidently unless alternative hypotheses are
eliminated and more evidence is collected in particular, empirical data demonstrating or
failing to find differences in transmission dynamics or virulence between the native Asian
virus and its invasive descendant (rather than global comparisons and cross-validations of
different ecological niche models).

Our models nevertheless suggest it could be premature to expect Zika naturalization as
a widespread eventuality in North America, as other models have forecasted. Without more
definitive information on the basic biology of Zika, however, the confidence with which niche
models can forecast pandemics is limited. In particular, we also draw attention to recent
evidence suggesting Zika persistence may depend on wildlife reservoirs in addition to human
hosts and mosquitoes. Primates have been suggested as the primary candidate clade because
the Zika flavivirus was first isolated in a rhesus macaque in the Zika Forest in Uganda. But
as rhesus macaques do not occur on the African continent, and were captive there for in-
oculation experiments, the primate reservoir hypothesis remains unsupported. A 2015 case
of an Australian presumed to have contracted Zika from a monkey bite while traveling in
Indonesia, however, indicates that primates may transmit the virus directly. [247] Addition-
ally, antibodies against Zika have been observed in several rodent and livestock species in
Pakistan, [277] as well as several large mammal species, including orangutans, zebras, and
elephants. [278] The potential for any North American wildlife species to play host to Zika
is, at the present time, entirely unknown, and the emergence of novel amplification hosts
(which may allow the virus to proliferate above the host density threshold in vectors in re-
gions otherwise unsuitable for sustained transmission) could potentially expand the suitable
range margins of Zika infection on a global scale.

From the results of our model we find strong evidence for the hypothesis that the global
threat of a specifically vector-borne Zika pandemic, though devastating, may be most acute
in the tropics; and we find that the evidence of future North American transmission in the
literature is not unequivocal. However, we concur with the scientific majority that sexual
transmission of Zika infections may still facilitate a significant outbreak in the United States
and other previously unsuitable regions, particularly under evolutionary processes that select
for the most directly transmissible strains of pathogens. [279] A case of sexual transmission
in Texas has been suspected in the 2016 outbreak, and two previous reports of likely sexual
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transmission of ZIKV occurred in 2011 and 2015. [243, 280] Even if the Zika cases in the
United States represent a rare spillover outside of the mosquito-borne viral niche, sexual
transmission could create a new, unbounded niche in which the virus could spread. We
draw attention to the potential parallels with simian and human immunodeficiency virus
(SIV/HIV), for which a sexually transmitted pandemic has overshadowed the zoonotic ori-
gin of the disease. [281] With Zikas asymptomatic presentation and the overall confusion
surrounding its basic biology and transmission modes, we caution that its potential for severe
sexually-transmitted outbreaks cannot be overlooked in the coming months.

To address the broader community of modelers and ecologists involved in the Zika in-
tervention, we conclude with a final cautionary note. The consequences of under-predicting
an outbreaks potential distribution are obvious and our results are phrased cautiously as a
result. But there are also economic and social consequences to over-predicting the potential
distribution, especially in the United States. The response to Zika is necessarily political and
consequently involves the division of resources between domestic preparedness and interna-
tional relief; while new tools are being developed to help allocate funds efficiently based on
epidemiological principles (we particularly highlight the work of Alfaro-Murillo et al. [282]),
global overestimation of the viruss trajectory could vastly reduce the power of those methods.

Models like those of Messina et al. and Samy et al. that predict substantial Zika expan-
sion in the United States, and in the case of the former suggest Zika could threaten up to 2.17
billion people, contribute (independent of accuracy) to fear of an American pandemic. This
prediction necessarily diverts funding away from relief efforts in Brazil and other affected
countries in Latin America, increasing the probability of traveler infections feeding sexual
outbreaks in the U.S.; and further reduces the credibility and impact of the American foreign
response to Zika by mobilizing potentially-unnecessary domestic responses. At the time of
writing, the Zika Vector Control Act passed by the U.S. House of Representatives weakens
permit requirements for spraying pesticides near bodies of water without reallocating any
funding for Zika interventions; and preventative efforts in New York City alone will cost
$21 million to trap mosquitoes and hire epidemiological experts, with other cities outside
our predicted range investing in preparation and vector control to similar degrees. Voices
of scientific authority contributing to fear in the United States can substantially impact the
political response to Zika, and it serves future modeling efforts to be as accurate, cautious,
and objective as possible in the information and statistics that underpin media and policy
conversations. But even more importantly, scientific teams with different approaches and
data must work collaboratively to interpret the discrepancies between their results and to
build an unbiased scientific consensus that is accessible to the public.
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bio2
bio3
bio4
biob
bio6
bio7
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bio9
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biol9
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Table 4.1: Zika full variable set preliminary model variable importance

GLM
0.573
0.896
0.841

GBM
0.009
0.006
0.015
0

0.003
0.205
0.031
0

0.009
0.002
0.019
0.019
0.092
0.003
0.047
0.009
0.003
0.002
0.008
0.073

GAM
0.727
0.491
0.46
0.552
0.659
0
0.444
0.439
0.625
0.698
1
0.191
0.204
0.377
0.201
0.18
0.501
0.044
0
0.272

CTA ANN
0.089
0.072
0.14

0.527
0.421
0.218
0.62

0.211
0.012
0.036
0.155
0.453
0.759
0.303
0.001
0.537
0.345
0.331
0.173
0.025
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SRE

0.385
0.361
0.286
0.372
0.231
0.463
0.296
0.412
0.302
0.336
0.378
0.106
0.211
0.013
0.068
0.155
0.018
0.145
0.059
0.27

FDA
0.001
0

0.056

MARS RF

0 0.022
0 0.013
0 0.025
0 0.014
0 0.014
0.708  0.064
0.343  0.04

0 0.007
0 0.014
0.266  0.012
0 0.059
0.348  0.029
0.738  0.066
0.065  0.003
0.125  0.017
0.786  0.028
0 0.008
0.184  0.006
0.286  0.007
0.204  0.048

MAXENT
0.294
0.546
0.215
0.06
0.487
0.177
0.263
0

0

0
0.076
0.126
0.534
0.302
0.533
0.031
0.464
0.178
0.307
0.624



biol
bio2
bio3
bio4
biob
bio6
bio7
bio8
bio9
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biol2
biol3
biol4
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biol6
biol7
biol8
biol9
NDVI

Table 4.2: Dengue full variable set preliminary model variable importance.

GLM
0.295
0
0.062
0.21
0.146
0.172
0.427
0.203
0.242
0.477
0.94
0.033
0.324
0.111
0.003
0.118
0.033
0.013
0.012
0.073

GBM
0.001
0.035
0
0.013
0
0.013
0.031
0.01
0

0
0.068
0
0.007
0.004
0.001

0.004
0.002
0.018
0.032

GAM
0.366
0.136
0.054
0.59

0.293
0.286
0.724
0.152
0.149
0.521
0.639
0.095
0.083
0.31

0.075
0.113
0.102
0.007
0.035
0.075

CTA
0.052
0.202
0.065
0.024
0.011
0.41

0.161
0.041
0.005
0.002
0.005
0.024
0.017
0.047
0.016
0.015
0.102
0.005
0.048
0.105

ANN
0.04

0.016
0.002
0.262
0.024
0.08

0.134
0.017
0.084
0.006
0.002
0.059
0.052
0.008
0.018
0.208
0.13

0.031
0.052
0.016
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SRE
0.242
0.1
0.216
0.241
0.196
0.271
0.232
0.262
0.257
0.209
0.274
0.124
0.207
0.017
0.079
0.16
0.074
0.117
0.079
0.198

FDA
0
0.078
0.018
0
0
0.348
0.057
0.004

0.036
0.797
0.141
0.714
0.048
0.017

0.004
0.056
0.067

MARS RF

0 0.015
0.004  0.044
0 0.016
0 0.03

0.029  0.008
0.5 0.035
0.298  0.045
0.315  0.015
0 0.007
0.078  0.007
0.352  0.043
0 0.016
0472  0.013
0.348  0.025
0 0.007
0.1056  0.01

0.172  0.022
0 0.017
0.029  0.024
0.039  0.035

MAXENT
0.007
0.048
0.05
0.013
0.008
0.011
0.038
0.023
0.024
0.003
0.212
0.009
0.003
0.078
0.022
0.025
0.006
0.015
0.073
0.099



Table 4.3: Aedes aegypti full variable set preliminary model variable importance

biol
bio2
bio3
bio4
biob
bio6
bio7
bio8
bio9
biol0
bioll
biol2
biol3
biol4
biolb
biol6
biol7
biol8
biol9
NDVI

GLM
0.288
0.111
0.319
0.931
0.249
0

0.644
0.027
0.106
0.953
0.221
0.008
0.364
0.045
0.009
0.064
0.033
0.076
0.006
0.044

GBM
0.003
0.011
0.004
0.002
0
0.001
0.011
0.034
0

0

0
0.001
0.01
0.002

0.099
0.003
0.019

GAM
0.416
0.029
0.136
0.227
0.235
0.056
0.123
0.027
0.028
0.617
0.605
0.004
0.093
0.056
0.012
0.05

0.031
0.054
0.009
0.029

CTA
0.003
0.242
0.004
0.015
0

0.026
0.052
0.081
0.033
0.006
0.016
0.049
0.072
0.013
0

0.007
0.009
0.141
0.039
0.029

ANN
0.032
0.023
0.01

0.131
0.066
0.017
0.155
0.041
0.073
0.029
0.029
0.173
0.031
0.016
0.073
0.099
0.048
0.431
0.03

0.059
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SRE

0.258
0.165
0.235
0.254
0.251
0.256
0.249
0.272
0.249
0.262
0.245
0.248
0.252
0.032
0.106
0.251
0.117
0.176
0.145
0.245

FDA
0.209
0.023
0.301
0.486
0.298
0

0.048
0.077
0.021
0.785
0

0

0.416
0.094

0.057
0.065

0.015
0.042

MARS RF

0 0.009
0.003  0.054
0.218  0.013
0 0.014
0 0.011
0 0.017
0.078  0.036
0.21 0.028
0 0.007
0 0.01

0 0.011
0.009  0.011
0.338  0.016
0.034  0.013
0 0.009
0.035  0.016
0 0.008
0.006  0.04

0.012  0.014
0.042  0.016

MAXENT
0.013
0.017
0.096
0.052
0.015
0.05
0.026
0.034
0.027
0.016
0.05
0.028
0.006
0.026
0.077
0.006
0.009
0.23
0.016
0.021



Table 4.4: Aedes africanus full variable set preliminary model variable importance

biol
bio2
bio3
bio4
biob
bio6
bio7
bio8
bio9
biol0
bioll
biol2
biol3
biol4
biolb
biol6
biol7
biol8
biol9
NDVI

GLM
0.437

GBM
0.003
0.006
0.009
0.372
0
0.003
0.012
0.008
0.003
0.001
0.025
0.007
0.002
0.001
0.001
0.004
0.002
0.011
0.124
0.04

GAM
0.56
0.54
0.628
0.751
0.564
0.477
0.73
0.603
0.617
0.709
0.605
0.484
0.381
0.3
0.349
0.478
0.074
0.307
0.446
0.468

CTA
0.245
0.217
0

0.845

ANN
0.141
0.051
0.049
0.726
0.089
0.137
0.165
0.186
0.108
0.133
0.365
0.185
0.344
0.112
0.035
0.513
0.103
0.186
0.861
0.066

103

SRE

0.305
0.055
0.465
0.486
0.235
0.317
0.367
0.336
0.311
0.252
0.457
0.386
0.399
0.035
0.148
0.323
0.04

0.23

0.035
0.175

FDA
0.231

MARS RF

0.085  0.005
0 0.005
0 0.029
0.56 0.04

0 0.002
0.368  0.015
0.406  0.012
0.402  0.01

0.388  0.006
0.419  0.003
0.629  0.019
0.266  0.007
0.43 0.007
0 0.004
0 0.003
0.431  0.008
0 0.005
0.099  0.007
0.248  0.052
0.073  0.02

MAXENT
0
0.251
0.489
0.42
0.065
0.132
0.253
0

0
0.183
0.248
0.043
0.118
0.35
0.128
0.267
0.117
0.397
0.44
0.201



Table 4.5: Aedes albopictus full variable set preliminary model variable importance.

biol
bio2
bio3
bio4
bioh
bio6
bio7
bio8
bio9
biol0
bioll
biol2
biol3
biol4
biolb
biol6
biol7
biol8
biol9
NDVI

GLM
0.289
0.06
0.279
0.528
0.131
0.262
0.742
0.001
0.007
0.835
0.164
0.041
0.207
0.029
0.007
0
0.019
0.147
0.003
0.027

GBM
0
0.017
0.003
0
0
0
0.004
0.001

0.01

0.001
0.001
0.001

0.002
0.474
0.005
0.009

GAM
0.216
0.048
0.277
0.352
0.875
1
0.607
0.047
0.1
0.581
0.292
0.009
0.274
0.04
0.02
0.051
0.027
0.075
0.011
0.021

CTA
0.011
0.031
0.13
0.016
0.015
0
0.104

ANN
0.09
0.031
0
0.197
0.007
0.334
0.511
0.03
0.049
0.004
0.012
0.482
0.295
0.016
0.004
0.013
0.037
0.315
0.012
0.008

SRE

0.248
0.249
0.193
0.242
0.305
0.237
0.256
0.275
0.249
0.281
0.236
0.299
0.276
0.229
0.138
0.278
0.243
0.287
0.213
0.26

FDA
0.173
0.025
0.185
0

0.363
0.626
0.071

MARS
0.006
0.018
0.261

0

0.202
0.136
0.417

RF
0.01
0.082
0.016
0.015
0.012
0.017
0.05
0.008
0.008
0.007
0.011
0.011
0.01
0.012
0.015
0.015
0.006
0.114
0.013
0.008

MAXENT
0.017
0.012
0.018
0.008
0.014
0.019
0.009
0.038
0.038
0.017
0.023
0.015
0
0.01
0.203
0.002
0.022
0.066
0.019
0.006

Table 4.6: AUC of ten models for five species (with reduced variable sets). Bolded models
were shown in the final models. Updated Zika model incorporating New World outbreak
data included as "ZIKV+".

A Aeg
A Afr
A.Alb*
ZIKV
ZIKV+
DENG*

GLM
0.975
0.983
0.919
0.934
0.920
0.919

GBM
0.980
0.999
0.942
0.975
0.975
0.942

GAM
0.981
1.000
0.938
0.968
0.946
0.938

CTA
0.977
0.985
0.945
0.920
0.921
0.945

ANN
0.957
0.967
0.882
0.773

0.882
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SRE

0.855
0.837
0.760
0.741

0.760

FDA
0.974
0.959
0.923
0.934
0.927
0.923

MARS RF

0.976  1.000
0.979  1.000
0.930  1.000
0.938  1.000
0.936  1.000
0.930  1.000

MAXENT
0.930
0.739
0.940
0.807

0.940
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Table 4.7: Zika final model variable importances.

biol
bio2
bio3
bio4
biob
bio6
bio7
biol0
bioll
biol2
biol3
biol5
biol6
biol7
biol9
NDVI

GLM
0.608
0.919
0.774
1

0

0.626

GBM
0.014
0.006
0.02
0
0.006
0.211
0.033
0.003
0.018
0.022
0.109
0.046
0.01
0.008
0.01
0.082

GAM
0.654
0.738
0.481
0.329
0.708
0
0.563
0.792
1
0.104
0.075
0.207
0
0.183
0.02
0.266

CTA
0

0.068
0.178

FDA MARS

0 0
0 0
0.1 0
0 0

0 0.279
0.46 0.803
0.268 0.354

0.227 0

0.462 0.873
0.071 0.295
0.153 0.506
0.208 0.211
0.062 0.326
0.095 0.027

RF
0.026
0.019
0.029
0.017
0.015
0.125
0.051
0.014
0.047
0.028
0.116
0.026
0.043
0.013
0.008
0.06

Table 4.8: Dengue final model variable importances

GLM
0.388
0.004
0.159
0.236
0.702
0.225
0.272
0.427
1

0.012
0.032
0

0

0.005
0.032
0.095

GBM
0.001
0.029
0.012
0.008
0.036
0.009
0

0

0.109
0.008
0.009
0.001

0.002
0.026
0.042

GAM
0.363
0.054
0.241
0.213
0.571
0.083
0.063
0.502
0.818
0.138
0.082
0.031
0.075
0.004
0.055
0.085

CTA
0.004
0.097
0.076
0
0.328
0.055
0.008
0.033
0.527
0.098
0.147
0.028
0.005
0.011
0.064
0.17

FDA
0.248
0

0

0.266
0.639
0.006

0.508
0.85

0.072
0.022

0.069
0.081
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MARS
0

0
0.233

0.406
0.235
0.186
0.051
0.158
0.104
0.028

0.052
0.113

RF
0.017
0.053
0.06
0.045
0.073
0.021
0.012
0.015
0.062
0.02
0.034
0.011
0.016
0.025
0.048
0.05

MAXENT
0
0.021
0.031
0.017
0.043
0.084
0.029
0.071
0.487
0.001
0.03
0.03
0.007
0.001
0.074
0.052



Table 4.9: Aedes aegypti final model variable importances

GLM GBM GAM CTA ANN FDA MARS RF
biol 0.276 0.01 0462 0.012 0.019 0.212 0.024  0.02

bio2  0.13 0.011 0.05 0.234 0.023 0 0 0.083
bio3  0.372 0.005 0.148 0.048 0.008 0.102 0.078  0.018
bio4  0.82 0.001 0.198 0.026 0.048 O 0 0.02
bio5  0.273 0 0.178 0.012 0.064 0.215 O 0.016
bio7  0.755 0.019 0.328 0.056 0.057 0.071 0.23 0.048
bio9  0.068 0 0.016 0.039 0.051 0 0.008  0.01

biol0 094 0.018 0.611 0.061 0.017 0.716 0.306  0.029
bioll 0472 0.001 0.621 0.092 0.169 0.752 0.015  0.022
biol3 0.345 0.012 0.06 0.076 0.077 0.753 0.108  0.031
biol4 0.013 0.004 0.023 0.007 0.02 0.019 0.008 0.018
biol5 0.005 0 0.014 0.003 0.032 0 0 0.013
biol6 0.081 0 0.033 0.009 0.088 0.11 0.051  0.024
biol8 0.086 0.14 0.085 0.159 0.661 0.039 0.352  0.065
biol9 0.009 0.004 0.011 0.043 0.026 0.025 0.015  0.018
NDVI 0.051 0.02 0.031 0.034 0.029 0.052 0.042  0.021

Table 4.10: Aedes africanus final model variable importances

GLM GBM GAM CTA ANN FDA MARS RF

biol 0.562 0 0.696 0 0.112 0.518 0.062  0.004
bio2  0.184 0.005 0.1 0.078 0.165 O 0 0.007
bio3  0.418 0.005 0.511 0.138 0.01 0.041 O 0.027
bio4  0.999 0.423 0.324 0.717 0.884 0.269 0.548  0.041
bio7  0.41 0.005 0.311 0.101 0.349 0 0.018  0.017
bio8 0 0.013 0.564 0.229 0.451 0.014 0.361  0.012
bio9  0.545 0.002 0.582 0 0.392 0 0.396  0.007
biol0 0.69 0.003 0.584 0.141 0.132 0 0.219  0.009
bioll 0 0.01  0.571 0.276 0.355 0.972 0 0.01

biol3 0.688 0.025 0.747 0.18 0912 0871 0.445 0.024
biol4 0.301 0.002 0.265 0.013 0.216 0.071 0 0.004
biol5 0.391 0.001 0.396 0.038 0.293 0 0 0.005

biol6 0.136 0.006 0.398 0.033 0.433 0.356 0.189  0.017
biol8 0.162 0.01 0331 0.021 0.226 0.069 0.069  0.009
biol9 0.11  0.127 0.517 0.246 0.541 0.733 0.421  0.047
NDVI 0.239 0.065 0.297 0 0.291 0.176 0.21 0.028
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biol
bio2
bio3
bio4
biob
bio6
bio7
biol0
bioll
biol2
biol3
biol4
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biol8
biol9
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Table 4.11: Aedes albopictus final model variable importances.

GLM
0.35
0.058
0.297
0.416
0.569
1
0.29
0.761
0.5
0.046
0.226
0.017
0.003
0.105
0.002
0.026

GBM
0
0.032
0.003
0
0
0
0.006
0.011

0.002
0.001
0.002
0.001
0.462
0.005
0.007

GAM
0.357
0.001
0.069
0.312
0.41

0.45

0.181
0.61

0.243
0.017
0.055
0.012
0.001
0.07

0.009
0.079

CTA
0

0.233
0.055

FDA
0.196
0.003
0.103
0.025
0.286
0.041
0

0.646
0.313
0

0

0.008
0

0.357
0.009
0.022

MARS RF

0.198  0.01

0.018  0.105
0.189  0.027
0.141  0.023
0.311  0.026
0.355  0.023
0 0.083
0.36 0.012
0.281  0.013
0 0.014
0 0.022
0.023  0.021
0.009  0.016
0.113  0.154
0 0.021
0.015  0.009

MAXENT
0.143
0.094
0.066
0.005
0.019
0.001
0.003
0.122
0
0.007
0.16
0.028
0.004
0.057
0.021
0.058

Table 4.12: Variable importance in supplementary ZIKV+ model.

biol
bio2
bio3
bio4
biob
bio7
bio8
biol0
bioll
biol3
biolb
biol6
biol7
biol8
biol9
NDVI

GLM
0.34
0
0.223
0.456
0
0.276
0.822
0.636
0

o O OO

0.071
0
0.184

GBM
0.001
0.006
0.003
0.094
0.004
0.025
0.123
0.007
0.003
0.009
0.011
0.011
0.003
0.008
0.032
0.058

GAM
0.431
0.098
0.027
0.819
0.344
0
0.231
0.549
0.994
0.04
0.167
0.048
0.107
0.1
0.14
0.061

CTA
0
0.143
0.231
0
0
0
0.604
0.198

0.272
0.017
0.061

0.034
0.173
0.082
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FDA
0.125
0
0.307
0.16
0
0.104
0.91
0
0.036
0.082
0.124
0.013
0
0.023
0.129
0.109

MARS
0.046
0
0.039
0.684
0

0

0.501
0.59
0.406

0.328
0.033
0.133
0.163
0.111
0.156

RF
0.008
0.015
0.024
0.07
0.011
0.034
0.058
0.007
0.017
0.018
0.017
0.012
0.012
0.016
0.026
0.04



Figure 4.1: The global distribution of case reports of Zika virus (1947 to February 2016)
broken down by country (yellow shading) and an ensemble niche model built from occur-
rence data (red shading). Our model correspond well to shaded countries, with only minor
discrepancies (Paraguay, the Central African Republic; a single case in Egypt in the 1950s),
We emphasize that displaying cases at country resolution overstates the distribution of the
virus, especially in the Americas (for example, Alaska, a point of significant concern given
Messina et al.’s presentation of their niche model in terms of “highly suitable” countries with
broad geographic expanse like the United States, China, and Argentina.
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Figure 4.2: Geographical cross validation of (a) the sub-model built from occurrences on the
African continent (n = 27) as projected upon the global climate space and (b) the sub-model
built from occurrences on the Asian continent (n = 33) projected at the global scale.
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Figure 4.3: The ecological niche of Zika and dengue in principal component space (a). Solid
and dashed lines are 100% and 50% boundaries for all environmental data, respectively.
Despite apparent overlap in environmental niche space, the dissimilarity between the black
shading in each principal component graph indicates statistically significant differences be-
tween the niches, evident in the projections of our niche models for dengue (b) and Zika

(c).
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Figure 4.4: The estimated global distribution of Zika (red) and dengue (blue) based on
current (a, b) and 2050 climate projections (c, d), compared against the current (light grey)
and future distribution (dark grey) of all three mosquito vectors Aedes aegypti, Ae. africanus,
and Ae. albopictus (a-d).
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Figure 4.5: An updated ecological niche model incorporating aggregated global data, with
Messina et al.’s full dataset (red) and ours (blue) against the updated weighted ensemble
model.
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Figure 4.6: Final ensemble model for Zika virus.
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Dengue Ensemble Model under Current Climate Conditions
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Figure 4.7: Final ensemble model for dengue fever.
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Figure 4.8: Final ensemble model for Aedes aegypti.
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Figure 4.9: Final ensemble model for Aedes africanus.
A. albopictus Ensemble Model under Current Climate Conditions
1000
50°N 750
e g gk "‘f’"'"i
= L o ol
B T R EEE N P O ' 500
8 07 o b b
5y J.r " I}II )
: .. 250
50°S
I I I
100°W 0° 100°E
Longitude ’

Figure 4.10: Final ensemble model for Aedes albopictus.
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Figure 4.11: Expanded niche model with global data coverage.

Figure 4.12: Expanded niche model with threshold.
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Figure 4.13: Niche overlap analysis between dengue and global Zika database. In the equiv-
alency test, we find significant evidence for differences (Schoener’s D = 0.295; p = 0.004).
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Chapter 5

Consensus and conflict among

ecological forecasts of Zika virus
outbreaks in the United States

Colin J. Carlson Eric Dougherty Mike Boots Wayne Getz Sadie J. Ryan

5.1 Abstract

Ecologists are increasingly involved in the pandemic prediction process. In the course of
the Zika outbreak in the Americas, several ecological models were developed to forecast
the potential global distribution of the disease. Conflicting results produced by alternative
methods are unresolved, hindering the development of appropriate public health forecasts.
We compare ecological niche models and experimentally-driven mechanistic forecasts for
Zika transmission in the continental United States, a region of high model conflict. We use
generic and uninformed stochastic county-level simulations to demonstrate the downstream
epidemiological consequences of conflict among ecological models, and show how assumptions
and parameterization in the ecological and epidemiological models propagate uncertainty and
produce downstream model conflict. We conclude by proposing a basic consensus method
that could resolve conflicting models of potential outbreak geography and seasonality. Our
results illustrate the unacceptable and often undocumented margin of uncertainty that could
emerge from using any one of these predictions without reservation or qualification. In the
short term, ecologists face the task of developing better post hoc consensus that accurately
forecasts spatial patterns of Zika virus outbreaks. Ultimately, methods are needed that
bridge the gap between ecological and epidemiological approaches to predicting transmission
and realistically capture both outbreak size and geography.



5.2 Introduction

In the urgent setting of pandemic response, ecologists have begun to play an increasingly
important role. [283] Ecological variables like temperature and precipitation often play just
as important a role as socioeconomic risk factors in the vector-borne transmission cycle, gov-
erning key parameters including transmission rates, vector lifespan, and extrinsic incubation
period [284]; the statistical relationships among these variables can be exploited to develop
predictive frameworks for vector-borne disease outbreaks. These models are often developed
for mechanistic prediction at local scales, but ecologists have recently begun to play a more
important role in predicting the overall possible distribution of emerging infections. Eco-
logical niche modeling is a typically phenomenological method that correlates occurrence
data with environmental variables to make inferences about the geographic boundaries of
potential transmission. [285] Within niche modeling approaches, there are conflicting views
regarding which algorithms are appropriate to use in the context of particular applications
[167, 286, 109], and consensus methods have hardly advanced beyond basic model averag-
ing. [287] As an increasingly popular alternative, mechanistic ecological models have been
developed that extrapolate geographic projections from experimental results [288], but these
can be data-intensive and highly sensitive to parameterization. [289, 290, 288] In theory, the
two approaches—phenomenological and top-down, or mechanistic and bottom-up—should
be roughly congruent when implemented with sufficient data and predictors, as they ap-
proximate the same pattern. [291] Yet discrepancies between the two approaches in practice
highlight a tension in species distribution modeling, between deductive approaches that infer
ecology from observed broad-scale patterns, and inductive approaches that scale ecological
experiments to predict real patterns. In the context of pandemic response, the trade-off has
acute stakes: early access to ecological predictions can help pandemic efforts, but inaccurate
information based on limited data could drive misallocation of public health resources. [292].
Thus, there is a clear need to develop better consensus methods, but even before that, a
need to understand the epidemiological implications of the differences among model-building
approaches.

The Zika virus (henceforth Zika) pandemic that was first detected in Brazil in 2015 high-
lights the unusual and sensitive challenges of pandemic response. A number of characteristics
make Zika unique from a public health standpoint, including its rapid spread through the
Americas after a slow, multi-decade spread from Africa through Asia; the appearance of a
sexual route of transmission, a rare feature for a vector-borne pathogen; and perhaps most
importantly, the appearance of high rates of microcephaly, and more broadly the emergence
of Zika congenital syndrome. At least 11,000 confirmed cases of Zika have affected pregnant
women, leading to roughly 10,000 cases of birth defects, including microcephaly. [293] As
of April 6, 2017, a total of 207,557 confirmed cases of autochthonous transmission (out of
762,036 including suspected cases) have been recorded in the Americas. [294] Moreover,
Zika is exceptional among vector-borne diseases in that it has developed a sexual pathway of
transmission in humans (comparable examples, such as canine leishmaniasis, are incredibly
rare [295]). The rapid spread of Zika virus from Brazil throughout the Americas has posed
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a particular problem for ecologists involved in pandemic response, as several different eco-
logical niche models (ENMs) [292, 12, 296] and a handful of mechanistic forecasts [290] have
been developed to project the potential full spread of the pathogen. So far, autochthonous
transmission has been recorded throughout most of Central America and the Caribbean,
with cases as far north as the southern tips of Texas and Florida.

In this study, we focus on the United States as a test system for exploring conflict
between different model predictions. A Brazil-scale outbreak of Zika in the United States
could be devastating; one model for only six states (AL, FL, GA, LA, MS, TX) found that
even with the lowest simulated attack rate, Zika outbreaks could be expected to cost the
United States over $180 million, and estimates under worse scenarios exceed $1 billion. [297]
Consequently, a high priority has been placed on developing accurate models that capture
socioecological suitability for Zika outbreaks in the United States. [298, 299] However, we
suggest that the lack of a consensus among different models of spatial risk renders the
literature less credible or navigable to policymakers, as predictions under certain conditions
span a range from 13 counties at risk [292] to the entire United States (Figure 5.1). [290,
300] At the time of writing, the majority of public health agencies in the United States
were preparing for the apparent eventuality of Zika, based either on no prior geographic
information, or basic data on the range of Aedes mosquitoes. [301, 302] Millions of dollars
have already been invested in state- and city-level Zika preparation, even in areas without
recently-recorded Aedes presence, and pesticide spraying for vector control has already had
unanticipated consequences, including killing millions of honeybees. [303] Domestic efforts
to prepare for Zika are not unreasonable in the absence of a consensus prediction about
Zika’s likely final range; the continued importation of new cases into every state in the
U.S. likely amplifies the perceived threat of local outbreaks, especially given the pathway
of sexual transmission (which could conceivably start stuttering chains [304] outside regions
of vector-borne transmission). However, an informed response to Zika in the United States
requires both a greater consensus about at-risk areas, and a more precise understanding of
the uncertainty contained in different ecological forecasts.

Ecological niche models for vectors and pathogens are commonly used as an underlying
foundation in epidemiological models, or more broadly, spatial studies in public health and
policy work (including in the Zika literature [305, 306, 307, 298]) In this study, we highlight
the unavoidable — but usually, unacknowledged — downstream consequences of model selec-
tion in those cases, and illustrate the lack of any one clear way to resolve conflict among
published, peer-reviewed ecological studies. To expose this problem more clearly, we com-
pare four published ecological predictions for the extent and duration of possible Zika virus
transmission in the United States, and overlay generic epidemiological forecasts to mea-
sure the impacts of model differences. In doing so, we examine the scale of epidemiological
uncertainty introduced at five scales:

1. Different environmental variable selections for a given niche modeling approach [296]

2. Differences among published ecological niche models
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3. Differences between phenomenological [292, 12, 296] and mechanistic [290] approaches
4. Differences driven by parameterization of Bayesian mechanistic models [290]

5. Differences in how population-at-risk is aggregated from the niche models for epidemi-
ological simulations

In the process, our exercise shows that relying on any one ecological model adds a hidden layer
of uncertainty to epidemiological forecasts, indicating the need to develop better consensus
methods—and to develop ecological and epidemiological tools in a more integrated approach
that better approximates observed outbreak patterns.

5.3 Methods

Ecological Models

Three studies have been published using ecological niche models (ENMs) to map the possible
distribution of Zika virus, using a different combination of occurrence data, environmental
predictors, and statistical approaches [292, 12, 296]. Their models suggest varying degrees
of severity, especially as measured within the United States (Table 5.1). Other models have
also been widely used in epidemiological work as a proxy for the distribution of Zika, such as
an ecological niche model of Aedes aegypti and Ae. albopictus[253] (fairly commonly used,
e.g., [308, 309]; or see [310], which presents its own Aedes ENM that becomes a risk map of
Zika transmission ), or dengue-specific niche models (recently used by Bogoch et al. in two
separate publications [270, 305]). Most ecological niche models indicate the range of Zika
virus should be more restricted than that of its vectors, and published evidence suggests there
may be significant differences between the known and potential distributions of dengue and
Zika [292], so we exclude these proxy methods from our study and focus instead on modeling
studies that explicitly use Zika occurrence data.

Carlson et al.

Carlson et al.[292] developed an ensemble niche model constructed using the R package
BIOMOD2. The resulting model uses seven of ten possible methods (general linear models,
general additive models, classification tree analysis, flexible discriminant analysis, multiple
adaptive regression splines, random forests, and boosted regression trees), notably omitting
maximum entropy (MaxEnt). Their primary model uses only occurrence data from outside
the Americas, but here we adapt their secondary model which incorporates data from Messina
et al. (below) to show the lack of the sensitivity of the method to that additional data,
especially in the United States. The only environmental predictors used are the BIOCLIM
dataset [171] and a vegetation index (NDVI). The final model threshold was selected to
maximize the true skill statistic, with a selected value of 0.271 used in the original study to
produce a binary suitability map. In the Carlson et al. model, suitable range for Zika virus

120



is predicted to be limited to the southern tip of Florida and small patches of Los Angeles
and the San Francisco Bay area. Only a total of 13 counties have any suitable area in this
model; at the county scale, this model has the greatest concordance with observed outbreak
patterns of autochthonous transmission in the United States during 2016.

Messina et al.

Messina et al.[12] use an ensemble boosted regression trees approach with a global dataset
of occurrence points primarily from South American outbreak data. The model incorporates
prior information about Aedes distributions. For example, pseudoabsences are preferentially
generated in areas of lower Aedes suitability. Their model uses six environmental predictors:
two direct climate variables, two indices of dengue transmission based on temperature (one
for Ae. albopictus and one for Ae. aegypti), a vegetation index (EVI), and a binary land
cover classifier (urban or rural). Messina et al. select a threshold of 0.397 that marks 90% of
occurrence data as suitable (10% omission). Their model predicts that suitable range for Zika
virus encompasses a substantial portion of the Gulf Coast, including the entirety of Florida
and as far west as eastern Texas. Their study is also the first to estimate population-at-risk,
placing the global figure at 2.17 billion people.

Samy et al.

Samy et al.[296] use MaxEnt to build four sub-models with different combinations of environ-
mental predictors. The first is a conventional ENM approach using environmental predictors
(precipitation, temperature, EVI, soil water stress, “aridity,” and elevation). The second, a
more unconventional approach in the niche modeling literature, separates out socioeconomic
predictors (among them population density, night light from satellite imagery, and a function
of expected travel time called “accessibility”). The third uses all the same as the first model
but with three added layers (land cover and suitability for Ae. aegypti and Ae. albopictus);
finally, in model 4, all variables are included and we use that here as the representative case
of the alternative Samy formulations. (In an additional sub-analysis, we compare these four
models and show the impacts of these variable selection choices on downstream epidemio-
logical forecasts.) For all, the model threshold is selected based on a maximum 5% omission
rate for presence data, and also projects high environmental suitability in the Gulf region,
very similar to that of Messina et al.. This model also produced isolated suitable patches
based on social factors, which predominantly occur at urban centers.

Mordecai et al.

Mordecai et al.[290] produced a Bayesian model of transmission of Aedes-borne viruses
(dengue, chikungunya, and Zika) in the Americas that we adapt as a mechanistic geographic
forecast for subsequent analyses. In their main model, an Ry modeling framework is con-
structed based on models for vector borne diseases, building upon the Kermack-McKendrick
Ry model for malaria [311]. In this model, the majority of parameters describing the life
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cycle of mosquitoes and parasite development within the mosquitoes are sensitive to tem-
perature. Mordecai et al. used data derived from the literature to parameterize the shape
of the temperature response for each temperature sensitive parameter. These are based on
laboratory observations of Aedes aegypti and Aedes albopictus, and infections with dengue,
chikungunya, and Zika at constant temperatures through the range of possible values. Be-
cause these are bioenergetic functions, curve fitting exercises to derive appropriate models of
the non-linear relationships underlie the parameterization of the overall transmission model.
A non-linear overall relationship between transmission (Ry) and temperature is fitted in a
Bayesian inference framework, and from it two endpoints of a “suitable range” can be extrap-
olated within which Ry > 0. Those ranges can be adjusted for different levels of posterior
probability, and can be used as a suitability threshold that can be projected onto gridded
temperature data, producing binary monthly maps of suitability (which can be aggregated
to year-round possible presence). In the Mordecai et al. publication, the most conservative
probability level (> 97.5%) was then mapped onto long-term mean monthly average tem-
peratures in the Americas, derived from Worldclim data [171], to estimate the number of
months transmission was possible for Ae. aegypti and Ae. albopictus[290]. Additional maps
were also constructed of the number of months of possible transmission for Ry > 0 at pos-
terior probabilities of 50% and 2.5%, and are found in the supplemental material. Here, we
use all three probability levels from the Ae. aegypti model, to project the terms of the num-
ber of months of predicted transmission potential by mapping the model onto WorldClim
temperature gridded data for long-term monthly minimum and maximum temperatures (six
possible combinations).

Consensus Mapping Methods

In a preliminary effort to present a consensus forecast based on current ecological under-
standing, we use two alternative methods to develop county-scale predictions from the mod-
els included in our analysis. The first (“majority rule”) excludes the Mordecai model, and
simply applies a majority rule to the binary thresholded Carlson, Messina, and Samy county
shapefiles (i.e., any county with agreement between a majority of the niche models for either
presence or absence). In the second model (“seasonal majority rule”), we take the counties
predicted by the majority rule method and restrict their suitability to the months predicted
in the strictest Mordecai model (97.5% confidence) for minimum temperatures. That process
excludes 13 of the counties deemed suitable according to the simple majority rule, but which
are predicted to be unsuitable year-round in the Mordecai model.

Epidemiological Model

To simulate potential Zika outbreaks in the United States, we adopt the modeling framework
used by Gao et al., which incorporates both sexual and vector-borne transmission [312]. We
selected Gao et al.’s framework because, while fairly simple, it includes a number of important
features of the epidemiology of Zika, including the high rate of asymptomatic cases, and
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lingering (primarily sexual) transmission by post-symptom “convalescent” cases. Because
the transmission term is normalized by dividing by total population size, the model itself
is scale-free. Thus, the values associated with each compartment could be represented as
proportions rather than the number of individuals. The model divides the human population
into six compartments with levels: susceptible (S), exposed (F), symptomatically (/) or
asymptomatically (A) infected, convalescent (I2), and recovered (R), where he h and v refer
to the human host and mosquito vector populations, respectively:

dSh . Iv I{Eh—f-]hl—l—TIhQ
% = athSh B N, Sh (5-1>
dE 1, kEy, 4+ Iy + 71,2
d—th — e(abmsh + ]@L "25) — vnEn (5.2)
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d_}tll = viEn — Yniln (5.3)
dl
d—m = Ynidnt — Ynoln2 (5.4)
t
dAh [v /iEh + Ihl + T[h2
— = (1-60)(ab—S5 Sy) — A 5.5
7t ( )(a N, nt B N, n) = YnAn (5.5)
dR
o " = Yo lna + 1 An (5.6)
t
Ny =Sy + Ep+ Ing + Ino + Ap + Ry, (5.7)

Vectors are governed by a complimentary set of equations but only divided into susceptible,
exposed, and infected classes:
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- v — Mo v Ev .
o= ac N, Sy — (Vo + 11y) (5.9)
dl,
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Rather than use the fitted parameters from any given country’s outbreak, parameters for the
above models were randomly generated from a set of uniform prior distributions specified by
Gao et al. as reasonable priors based on the literature (Table 5.5). Evidently, these models
are significantly discrepant with outbreaks in the continental U.S. so far, with fewer than
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300 cases of local transmission recorded in 2016 (and in fact, our simulations are far more
severe in terms of final case burden than estimates for Brazil or Colombia). However, the
purpose of applying this epidemiological model across the spatial extent predicted by each
niche model is both to illustrate the uncertainty that goes unstated in presenting such ENMs
and to intimate the necessity of developing and parameterizing these models in concert.

County-Level Simulations

In our main models, every spatial projection of Zika risk was summarized at the U.S. county
scale, such that if a single pixel within a county polygon was projected to be suitable under
a given model, the county was marked suitable for outbreaks. This assumption clearly
overestimates population at risk, but environmental suitability is often aggregated to the
county scale in order to develop Zika models for the U.S. [309, 298] For the Mordecai models,
the maximum value (months suitable per year) of all pixels within a county was assigned as
the value. For example, if a single 25 km? cell in a particular county was suitable for a single
month, simulations were run for one month with mosquitoes present and the remaining 11
with a mosquito population of zero. While this approach has the potential to overestimate
populations vulnerable to mosquito-borne transmission, it adds a number of key strengths.
Aggregating information at the county scale absorbs some of the relative spatial uncertainty
of predictions at the pixel scale, and may account for source-sink dynamics for vector-borne
outbreaks driven by heterogeneity in vector density and competence. Moreover, the county
level is one of the finest scales at which public health infrastructure is likely to decide whether
interventions like vector control are necessary. Finally, sexual transmission can spread from
cells with suitable vectors to vector-free areas, and as a function of both sexual transmission
and underlying mobility, outbreaks are therefore unlikely to be contained to a given pixel.
Previous work has similarly used the county scale to study risk factors and model outbreak
risk for Zika [309, 298], and we follow their precedent.

Population data for each county was taken from projections to the year 2016 based on the
2010 United States Census, and were set as the total susceptible human population at the
start of a year. The mosquito population was set at five times the baseline human population,
the middle of the range selected by Gao et al.. [312] While other studies have used a lower
ratio [299], we set mosquito populations (the only parameter we explicitly fixed from the
Gao model) as high as we did because many simulations with lower mosquito populations
faded out immediately, and setting a higher ratio made the impacts of model differences more
immediately apparent. Outbreaks were simulated stochastically at the county level using the
Gao et al. model, initiated with a single infected person per county. We randomly selected
a value for each of the parameters in the Gao et al. model for which a range was provided,
using a uniform distribution (Table 5.5). For each modeling model, 100 simulations were
run in each county designated as suitable. For the three ENMs, county models were run for
a “model year” (twelve months of thirty days each), and had no interactive effect on each
other. For the Mordecai models, the full vector- and sexually-transmitted epidemic models
were run for the number of months (thirty days each) that were predicted suitable. After
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that period, the total vector population N, was set to 0, effectively ending vector-borne
transmission, but models continued so that sexual transmission was ongoing up to 360 days.
All simulations were run in R 3.3.2, and all scripts and county simulation data are available
as supplementary files.

Within-County Heterogeneity

In a final set of analyses, we examine the impact of how risk is aggregated at the county
scale. Fine-scale population data does exist for the world from multiple sources[313], but at
the resolution niche models are often generated, clear problems exist. Running models on a
pixel-by-pixel basis would likely be computationally prohibitive in many cases (including this
one); moreover, in the context of sexual transmission, models that do not explicitly include
human movement between nearby pixels might produce results that make little sense. While
vector movement may be fairly minimal, human movement likely produces mixing at broader
geographic scales for both vector-borne and sexual transmission. Aggregating niche models
to a county-level suitability is one solution to the problem, and has the added benefit of
plausibly absorbing some of the uncertainty among different ENMs. However, this also
has the clear tendency to overestimate population at risk; to examine how strongly this
affects models, we include an additional set for Carlson, Messina, and Samy (model 4) where
susceptible population is scaled down linearly by the proportion of the county marked suitable
in each model. This, in itself, adds another layer of neutral assumptions (populations are
treated as having a uniform distribution within counties) but might also produce less drastic
differences between outbreak trajectories. The results of that analysis are given in Table 5.2
and Figures 5.2-5.4.

5.4 Results

Ecological forecasts for Zika suitability span the range of thirteen counties to all 3108 counties
in the continental United States (Table 5.1), and this uncertainty (unsurprisingly) produces
tremendous downstream variation in outbreak size. For ENM-based projections, the margin
of error among mean trajectories spans an order of magnitude, with a total difference of 168
million cases between Carlson and Samy (Figure 5.1). Areas predicted by other methods to be
at the greatest risk from Zika virus are roughly agreed upon among the models, with southern
California and the Gulf Coast represented most significantly as outbreak hotspots among
the three models. Agreement among all three models is limited, but is most significantly
clustered in these areas, especially in the southern tip of Florida and Los Angeles County.
While we assumed that aggregating risk at the county level could potentially absorb some
of the spatial uncertainty of models and decrease differences between them, we found that
it actually substantially exacerbated the observed differences among them (Table 5.2). This
was perhaps most notable in the most populous counties, such as Los Angeles county (see
supplementary Figures 5.2-5.4).
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Model parameterization has a considerable impact on downstream epidemiological re-
sults. The four models proposed by Samy, each with slightly different environmental vari-
able selection (see the Methods), produced correspondingly different results (Table 5.3, Fig-
ure 5.5). Perhaps counter to our a priori expectations, adding more predictors produced
broader projections and larger epidemics (not tighter-fit models); the model with all predic-
tors (model 4) produced the largest epidemic, while the one with only climatic covariates
(model 1) was in fact somewhat smaller than the Messina outbreak simulation. Model 2
(only social predictors) was only slightly more severe than model 4 (all predictors, which we
use as the “Samy model” in all other cases). Adding more predictors increased the projected
impacts most noticeably in Arizona and New Mexico; the projections in model 1, the most
conservative, were very similar geographically to the Messina model, but with much more
substantial range in the Pacific northwest.

A roughly comparable range of predictions to the span of the Carlson, Messina, and
Samy models is contained within the entire span of possible implementations of Mordecai’s
Bayesian model (Figure 5.6). Whereas ENM approaches indicate a somewhat restricted
geographic range for possible outbreaks, the Mordecai model suggests that even in a con-
servative scenario (using minimum temperatures, and 97.5% posterior probability), the ma-
jority of Aedes aegypti’s range is at least seasonally suitable for Zika transmission. A far
greater range of variation is contained within the minimum-temperature-based model sce-
nario, which encompasses roughly half of the land area of the continental U.S. In contrast,
the three scenarios based on maximum temperatures are geographically indistinguishable,
though worsening projections do extend the seasonality of transmission and thereby produce
somewhat longer-tailed epidemics (Figure 5.6a).

Among nine ecological scenarios considered (three niche models and six mechanistic sce-
narios), an overwhelming spread of possible epidemics could be predicted for the United
States (Figure 5.7). The accompanying spatial pattern of case burden also varies between
interpretations; while the spatial patterns are roughly identical for Carlson, Messina, and
Samy, the temporal dimension introduced by mapping the Mordecai model onto monthly
temperature grids dramatically affects how cases are ultimately distributed—and produces
a reduction in epidemic size in some scenarios (Figure 5.8). In fact, the most conservative
Mordecai scenario (97.5% confidence with minimum temperature) falls between Carlson and
Messina in terms of case burden, despite predicting more than four times as many counties
with transmission suitability as the Messina model. Across all models, forecasts predict that
the majority of the case burden will still be seen along the Gulf Coast and in southern Cali-
fornia. The advantage of interfacing ecology and epidemiology is especially evident here; for
example, while the original Carlson et al. study noted the most significant suitable area was
in southern Florida and failed to comment on the potential importance of southern Califor-
nia, the most significant epidemic predicted by most models is in Los Angeles county. The
exception is the most conservative Mordecai scenario (Figure 5.6b), the only parameteriza-
tion of that model in which Los Angeles is designated unsuitable for transmission—a fairly
important discrepancy, given that the county is the most populous in the United States, and
correspondingly contributes substantially to epidemic size in every other scenario (Figure
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5.8a-c).

In an effort to illustrate a method of resolving these conflicting predictions, we present a
final “consensus model” that incorporates all four modeling studies. Consensus methods are
limited for ecological niche models [287], so we adopt one possible approach: a majority rule
at the county scale across Carlson, Messina, and Samy (i.e., in Figure 5.1b, any county value
at or above 2 is “suitable,” and any below is “unsuitable”). Building on this “majority rule
model,” for counties that are marked suitable by the ecological niche models, we superimpose
the monthly transmission values from Mordecai’s most conservative scenario, which most
closely matches the geographic extent predicted by the ecological niche models (Figure 5.6a
versus Figure 5.8a-c). This filtered “seasonal majority rule” algorithm incorporates the
temporal dimension of transmission that is added by our implementation of the Mordecai
model while maintaining consensus among the niche models.

The seasonal majority rule model produces a somewhat unsurprising pattern where year-
round transmission is most common in the tropics, with seasonal transmission most impor-
tant in the southeast United States, southeast Brazil, southeast China, and the Himalayas.
Unsurprisingly, this produces a comparatively conservative outbreak prediction (Figure 5.10).
The inclusion of the temporal component from the mechanistic model reduces case burden
by almost two-thirds (Table 5.2), and excludes a handful of counties in the process (which
were suitable in the ENM approach but not suitable for a single month in the mechanistic
model). Most notably, Los Angeles county (which is suitable for no months of the year in the
conservative Mordecai model) is excluded despite being suitable in all three ENMs, which
contributes substantially to the overall reduction of projected case totals in the seasonal
majority rule approach.

5.5 Discussion

Clear Problems, No Easy Answers

By constructing epidemiological simulations on top of ecological niche models, we found
that subtle differences among—and within—rigorous modeling frameworks can introduce
substantial downstream variability in outbreak sizes and durations. Conflict among different
published studies is the most immediately apparent problem, especially given the lack of a
more sophisticated method of resolving these differences beyond the majority rule approach
we use. However, for any given study, we show that internal model assumptions carry
a level of uncertainty that is hard to understand just from looking at a “final model,” a
fact that is readily apparent by comparing the different Samy models and Mordecai model
parameterizations. (This can be a problem even in cases where no conflict exists among
different published models; for example, one model of Aedes aegypti and Ae. albopictus
is most commonly used across purposes [253], including frequently as an outer bound in
epidemiological models.) Subjective model design issues like occurrence data collection and
thinning, environmental variable selection, pseudoabsence generation, model algorithms, and

127



threshold selection all introduce subjectivity into niche modeling that goes beyond basic
issues of accuracy and exposes deeper strategic tensions in modeling (e.g., Levins’ proposed
tradeoff in modeling among realism, precision, and generality [314]). Mechanistic models are
often designed as a response to that subjectivity but, as we highlight here, they also produce
another conflicting result or set of results; moreover, Bayesian model parameterization still
introduces downstream variability, possibly even more so than niche modeling.

We also found that the mechanistic models we examined produced much more inclusive
predictions than any other model we considered (in accordance with work in parallel fields
similarly suggesting mechanistic models favor generality and realism over precision [315]). To
some degree, this conflict may expose an underlying tension between two different intentions
of disease mapping. One paradigm focuses on accuracy (especially specificity), and follows
a similar paradigm to mainstream invasion biology research in that it attempts to most
accurately project the final boundaries of incipient range expansion. Overprediction and
underprediction are weighted as equal problems in this approach; the task of appropriate
allocation of clinical resources is equally impeded by both margins of error. An alternative
paradigm assumes that a Type II error (excluding regions at risk of outbreaks) is of far
greater significance than a Type I error (predicting risk for areas that remain unaffected),
from a preparedness standpoint; and reacts especially to the stakes of under-prediction by
targeting predictions at any area that could, theoretically, sustain outbreaks. In reality, all
disease distribution models fall somewhere on a continuum between the two paradigms, and
modelers following best practices are likely to produce primarily objective results. But to the
degree that no forecasting effort is fully unsupervised, and basic decisions (like including or
excluding current outbreak data) introduce opportunities for subjectivity, conflict between
these two approaches is likely to be an ongoing disciplinary problem beyond Zika.

We note also that deliberate choices we made in the epidemiological models we included
similarly produced a specific, and extreme, result. By setting mosquito populations high and
using wide stochastic priors rather than tailored Zika outbreak parameters, we simulated
unrealistic outbreaks on a scale even greater than seen in Brazil. (However, we note that a
landmark study just published estimates that 12.3 million cases of Zika are expected every
year in Latin America and the Caribbean; and while the United States was unassessed,
northern Mexico was identified as a region of high variability and therefore high epidemic
potential. [316]) Our methods here are meant to illustrate the full potential of hidden
uncertainty that epidemiological models might inherit from ecological assumptions. The
range of projected epidemics varies among the ENM approaches by more than an order of
magnitude, but even the smallest outbreak prediction is still five orders of magnitude higher
than the case totals observed during the last outbreak season (223 real cases versus roughly 12
million simulated cases). In practice, epidemiological models fitted to data may absorb some
of the uncertainty between different ecological forecasts if outbreaks are constrained in areas
of disagreement by additional socioecological factors. The scale of the problem is difficult
to evaluate except on a case by case basis; at a minimum, we conclude that understanding
the epidemiological implications of ecological uncertainty is a key step towards improving
ecologists’ performance in pandemic preparedness.
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Ecological niche modeling is a comparatively new statistical method in ecology, and
it has only recently been applied to emerging infectious diseases. In under two decades,
the statistical power of ENMs has grown exponentially, especially as increasingly complex
methods for machine learning have been applied to the problem. The dozen or so methods
currently employed offer a wide palette of options for potential modelers to choose from, and
compounded with the wide range of potential environmental and social covariates, seemingly
limitless combinations of possible models can be produced from a single dataset, each of
which is statistically rigorous enough to be published. Although guidelines exist for method
selection and model tuning (e.g., variable selection), tremendous user-end creativity is still
possible. High-profile targets, such as vector-borne and other zoonotic diseases, frequently
inspire conflicting models, but in mainstream species distribution modeling research, the
impacts of those conflicts are often treated in as an academic problem. For infectious disease
mapping, such conflict has conspicuous stakes that produce downstream uncertainty for
stakeholders, clinicians, and policymakers.

Future Directions for the United States

Despite the disagreement between different modeling approaches and results, southern Florida
and southern Texas clearly emerge across studies as the most at-risk regions of the conti-
nental United States for Zika virus outbreaks. This appears concordant with the broader
consensus in public health research, especially given that these are already the only regions
with a recent history of dengue outbreaks in the continental U.S. [317] We also note that,
in many of the models we considered, Los Angeles county emerged as a potential area of
significant concern, especially given its dense population. But for the rest of the country,
model disagreement is high and unresolved.

Given the wide suitable area suggested by the majority of models, the low totals of
autochthonous cases in the continental United States still seems surprising. Epidemiological
work supports the idea that the 2016 outbreak was not anomalously small; recent work
estimated the Ry of the Miami-Dade outbreak in the low range of 0.5 to 0.8, and found that
multiple introductions (an estimated 4 to 40) were a necessary precursor for an outbreak on
the scale of the 256 cases in 2016. [317] Continued or larger outbreaks could be possible in
the future if the high force of infection from traveler cases—which have so far been an order
of magnitude more common in the U.S.—drives more significant outbreaks than the 2016
outbreak in Florida. More realistically, a number of factors likely prevent the United States
from experiencing an outbreak on the scale that Brazil or Colombia experienced. Some
are ecological; vector populations may be more strongly seasonal at higher latitudes, or the
sylvatic cycle of Zika may be different in different parts of the Americas. The role non-
human primates play in the transmission of Zika is still poorly understood [318, 319], but
the absence of monkey hosts could plausibly limit transmission in the United States. Lessons
from chikungunya suggest that attention may need to be paid to potential alternate, sylvatic
vectors and associated hosts [320, 321], especially given the significant number of vectors
that may be competent for Zika transmission in the United States. [300]
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Other potential explanations for the limited spread of Zika through the United States are
more social or socioecological in nature. In developed countries, household exposure is often
secondary to outdoor exposure for Aedes, and in Miami-Dade county, it has been suggested
that heterogeneity in outdoor exposure could have produced a much smaller, faster epidemic.
[322] Other plausible explanations include better access to health care, preemptive vector
control as part of Zika preparedness efforts, and significant fine-scale heterogeneity limiting
mosquito populations in well populated areas (a factor that some models can accommodate
[323], but niche models at the global scale do not). The last of these is most easily addressed
through ecological tools, and finer-scale validation of downscaled ecological models is an
important next step for ongoing forecasting. At the county scale, more detailed GIS data
are needed to identify probable areas of suitable vector density; identifying those areas can
reduce the population at risk (used to parameterize models) from the population of an entire
county down to just those living in high-risk (or non-zero risk) areas.

Future Directions for Model Development

At the present time, the most common practice to address the ecology-epidemiology interface
in the niche modeling literature is the use of population-at-risk (PAR) methods. Basic area-
under-the-model population estimates are perhaps the simplest and most readily comparable
possible epidemiological metric; only Messina et al. present a global PAR (2.17 billion
people) based on their Zika virus niche model. Bogoch et al. revised that figure in a more
regional assessment for Africa, Asia, and the Pacific that included traveler populations and
a seasonal component to transmission, but to do so, substituted existing dengue models
in place of actual Zika models. [305] If implemented more frequently, population-at-risk
methods could be a simple post hoc way of comparing different ecological forecasts. However,
these methods might accidentally introduce more alarm than they communicate risk (just
as using susceptible populations, without any associated model of transmission, is a fairly
uninformative proxy for an epidemic projection in mainstream epidemiology). The exercise
carried out here illuminates one of the primary weaknesses of ecological niche modeling
methods; namely, though ENMs have great value for defining the plausible outer bounds of
transmission, they are largely unable to clarify the distribution of risk within these suitable
areas (except in rare cases where extremely specific populations at risk can be measured,
e.g., rural poor livestock keepers at risk of anthrax[324]). Modeling approaches that more
directly interface ecological and epidemiological concepts of risk and hazard are perhaps the
“Holy Grail” of work at this interface, and approaches along these lines have recently been
tested for hemorrhagic viruses in Africa. [325, 326] But we show here that uncertainty and
subjectivity on the ecological side are propagated through approaches like these, with no
clear solution.

The uncertainty at this interface represents a major deficiency in our ability to forecast
disease spread. However, there are a number of potential of avenues of exploration that may
help improve efforts to directly link epidemiological forecasts and ecological projections. On
the epidemiological side of the problem, travel-based models have shown promise for other
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diseases [327], and have been applied in a limited capacity with dengue models to predict
Zika risk. [305] These types of models can be applied with Zika-specific niche models for more
detailed forecasts of traveler-driven outbreaks at the edges of suitability. But a more detailed
epidemiological link is needed between traveler force of infection and the scale of subsequent
local outbreaks; so far, that causation has only been investigated in reverse. [328] The
role of sexual transmission also requires deeper investigation. Early work suggested sexual
transmission might be a substantial factor explaining the explosive South American outbreak
(329, 330], but recent work has suggested sexually-transmitted outbreaks are unlikely [331],
even if sexual transmission increases the severity of vector-borne outbreaks [332]; others still
argue these risks are “understated.”[333, 334] Some work at the county level has already
begun predicting Zika risk based on other sexually transmitted diseases [309], but for this to
be useful to policymakers, a basic and accurate model of importance of sexual transmission
is still needed. [335]

On the ecological side, consensus models (like the simple majority-rule model presented
here) may be the first step towards decomposing suitability into something more epidemiologically-
relevant. Development of alternative consensus models should aim to further clarify the level
of suitability beyond the simple binomial categorization offered by ENM methods alone. The
inclusion of a temporal component (i.e., the use of the conservative Mordecai projections of
suitability for mosquitoes) enables some decomposition of the ENM results. The Mordecai et
al. model illustrates that transmission is unlikely to be a year-round property of most areas,
especially in temperate zones, and our exercise shows that reducing the months of possi-
ble transmission does significantly reduce total outbreak size. Time-specific ecological niche
models have been used with great success to predict the dynamics of dengue [260], another
Aedes-borne disease, and have been applied as a proxy for Zika risk. [305] However, these
models will need to be developed specifically for Zika as more data become available, and
time-specific ecological niche models will pose an additional challenge for consensus building
with mechanistic time-sensitive models like Mordecai et al.’s. Finally, we suggest the frame-
works underlying consensus models should be adaptable as additional occurrence data is
made available. ENMs are typically presented as static instantiations of dynamic processes,
whether they describe species ranges of the transmission niches of emerging infectious dis-
eases. The ability of these models to contribute to our understanding of pathogens entering
novel regions or hosts will hinge upon their flexibility in incorporating near-real-time data.
[298] The computational frameworks for dynamic, updating niche models exist [336], but are
an unexplored frontier in eco-epidemiology.
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Table 5.1: A comparison of the different ecological forecasts. Four different methods, each
performing well based on sufficient data and predictors, produce highly contrasting results.
Out of a total of 3108 counties in the continental U.S.; only five have experienced outbreaks
(Cameron County, TX with 6 cases of local transmission in 2016; Miami-Dade, FL with 241,
Palm Beach, FL with 8; Broward County, FL with 5; and Pinellas County, FL with 1)[337,
317]. Accuracy values were calculated from the confusion matrix of observed outbreaks
against predicted suitability. The Carlson model comes closest to predicting the geography
of those outbreaks most accurately; but all epidemiological models “overpredict” the number
of suitable counties based on the current extent of outbreaks. (Mordecai results are split
for the highest bound with minimum temperatures, and the lowest bound for maximum
temperatures, to give the full range of predictions. Self reported AUC values are shown
not as a comparative measure of accuracy, but simply as the self-reported accuracy of the
studies. Samy et al. used the Partial ROC in place of the AUC but did not report values.
NA = Not Applicable; NR = Not Reported)

Carlson Messina Samy
Nopoints 242 323 168
Nypredictors 15 6 15
AUC 0.970 0.829 NA
Counties Predicted 13 465 1616
Accuracy 99.6% 85.2% 48.2%

County Population at Risk 19,653,445 95,359,408 270,249,781
Mean Outbreak Size 12,871,005 63,622,367 181,290,371
Median Outbreak Size 14,552,250 64,038,273 181,732,629

Mordecai (97.5% min) Mordecai (2.5% max)

Npoints NA NA

Npredictors NA NA

AUC NA NA

Counties Predicted 1937 3108

Accuracy 37.8% 0.2%
County Population at Risk 218,444,263 320,957,062
Mean Outbreak Size 37,598,099 198,910,979
Median Outbreak Size 37,312,233 197,731,918
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Table 5.2: Aggregating risk to the county scale can absorb some of the inherent spatial
uncertainty of ecological niche modeling, but is itself an assumption that changes downstream
impacts on the scale of outbreaks, as well as the scale of disagreement between models.

Carlson Partial Messina Partial
Counties Predicted 13 13 465 465
County Population at Risk 19,653,445 6,264,516 95,359,408 38,085,602
Mean Outbreak Size 12,871,005 4,195,326 63,622,367 25,897,671
Median Outbreak Size 14,552,250 4,262,636 64,038,273 26,307,445

Samy Partial
Counties Predicted 1616 1616
County Population at Risk 270,249,781 99,324,226
Mean Outbreak Size 181,290,371 66,345,567
Median Outbreak Size 181,732,629 66,850,610

Table 5.3: Outbreak simulations exhibit greater than threefold variation in predictions among
the four models presented in Samy:.

Model 1 Model 2 Model 3 Model 4
Counties Predicted 338 2197 670 1616
County Population at Risk 91,174,791 296,007,551 148,700,587 270,249,781
Mean Outbreak Size 59,561,603 197,553,462 98,314,605 181,290,371
Median Outbreak Size 59,561,222 197,759,983 98,770,516 181,732,629

Table 5.4: Majority rule based consensus models, meant to resolve uncertainty between the
forecasts and provide a middle scenario. The main majority rule model combines the Carlson,
Messina, and Samy forecasts; the seasonal majority rule model assigns monthly suitability
values to that forecast, based on the minimum temperature 97.5% Mordecai model.

Majority Rule Seasonal Majority Rule

Counties Predicted 383 370
County Population at Risk 93,195,970 87,632,865
Mean Outbreak Size 60,259,904 24,267,441
Median Outbreak Size 60,940,111 24,407,885
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Table 5.5: Epidemiological parameters for the SEITAR & SEI models presented in the main
text; values taken directly from from Table 1 of Gao et al.’s study [312].

Parameter Description Range
a Mosquito biting rate (mosquito'day™!) (0.3,1)
b Mosquito to human transmission rate (bite™!) (0.1,0.75)
c Human to mosquito transmission rate (bite™!) (0.3,0.75)
64 Human to human (sexual) transmission rate (0.001,0.1)
1/vm Infectious period (acute) (3,7)
1/ Yo Infectious period (convalescent) (14, 30)
1/ Infectious period (asymptomatic) (5,10)
n Exposed human to mosquito transmission proportion (5,10)
0 Proportion symptomatic infections (0.1,0.27)
K Exposed human to human transmission proportion (0,1)
1/p Mosquito lifespan (day) (4,35)
/vy, Intrinsic incubation period (day) (2,7)
1/v, Extrinsic incubation period (day) (8,12)
T Convalescent human to human transmission proportion (0,1)
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Figure 5.1: The margin of error in ecological niche models for Zika virus. (a) Average
epidemiological forecasts associated with county data for Carlson (blue), Messina (red), and
Samy (black), against a backdrop of overlapping individual simulations for each (grey). (b)
The individual predictions of each model are given as presence or absence values; a maximum
score of 3 indicates all models agree on presence, while a score of 0 indicates all models agree
on absence. (c) Has consensus been achieved? At the county scale, dark blue indicates
consensus among niche models; white indicates controversy. Maps were made in R 3.3.2
[338], using U.S. Census shapefiles.
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Figure 5.2: Full county versus partial population simulations with the Carlson model. Out-
break simulations (a) are given in black for the full county, and red for the partial county.
Mean county case totals are mapped for the full county (b) and partial county (c).
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Figure 5.3: Full county versus partial population simulations with the Messina model. Out-
break simulations (a) are given in black for the full county, and red for the partial county.
Mean county case totals are mapped for the full county (b) and partial county (c).
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Figure 5.4: Full county versus partial population simulations with the Samy model. Outbreak
simulations (a) are given in black for the full county, and red for the partial county. Mean
county case totals are mapped for the full county (b) and partial county (c).
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Figure 5.5: Variation within the Samy models. Outbreak trajectories are shown in (a) for
models 1 (red), 2 (blue), 3 (green), and 4 (black). Bolded lines are mean trajectories. Final
average case totals are then mapped for model 4 (b), the main model we discuss in the text
and use in other comparisons, as well as models 1 (c), 2 (d), and 3 (e).
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Figure 5.6: The margin of error within a single Bayesian mechanistic model for Zika virus,
applied to minimum (left) and maximum (right) monthly temperatures. (a) 100 outbreak
simulations for 97.5% (blue), 50% (red), and 2.5% (black) confidence intervals. (b-f) The
number of months each county is predicted to be suitable for Zika virus transmission (Ry > 0)
for 97.5% (b,c), 50% (d,e), and 2.5% (f,g) scenarios. Maps were made in R 3.3.2 [338], using

U.S. Census shapefiles.
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Figure 5.7: Nine possible trajectories for outbreaks in the United States: three based on
ecological niche models, and six based on Bayesian mechanistic forecasts. (y-azis on log
scale)
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Figure 5.8: Case totals by county for (a) Carlson, (b) Messina, (¢) Samy, (d), Mordecai 97.5%
confidence (minimum temperatures), and (e) Mordecai 2.5% confidence (max temperatures),
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Florida, one in Texas). Maps were made in R 3.3.2 [338], using U.S. Census shapefiles.
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Figure 5.9: A global, consensus-based, seasonal (monthly) majority rule map of suitability
for Zika virus transmission.
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Figure 5.10: The seasonal majority rule method for consensus building across ecological
forecasts. (a) Mean (black) and median (dashed) trajectories for 100 epidemic simulations.
(b) The majority rule map: shading represents the number of months each county is marked
suitable for outbreaks. (c) Final average case totals in the seasonal majority rule method.
Maps were made in R 3.3.2 [338], using U.S. Census shapefiles.
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