
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Human behavior in contextual multi-armed bandit problems

Permalink
https://escholarship.org/uc/item/53x415cj

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
Stojic, Hrvoje
Analytis, Pantelis P
Speekenbrink, Maarten

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53x415cj
https://escholarship.org
http://www.cdlib.org/


Human behavior in contextual multi-armed bandit problems
Hrvoje Stojic1 (hrvoje.stojic@upf.edu),

Pantelis P. Analytis2 (analytis@mpib-berlin.mpg.de), Maarten Speekenbrink3 (m.speekenbrink@ucl.ac.uk)
1Department of Economics and Business, Universitat Pompeu Fabra
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Abstract
In real-life decision environments people learn from their di-
rect experience with alternative courses of action. Yet they
can accelerate their learning by using functional knowledge
about the features characterizing the alternatives. We designed
a novel contextual multi-armed bandit task where decision
makers chose repeatedly between multiple alternatives char-
acterized by two informative features. We compared human
behavior in this contextual task with a classic multi-armed
bandit task without feature information. Behavioral analysis
showed that participants in the contextual bandit task used the
feature information to direct their exploration of promising
alternatives. Ex post, we tested participants’ acquired func-
tional knowledge in one-shot multi-feature choice trilemmas.
We compared a novel function-learning-based reinforcement
learning model to a classic reinforcement learning. Although
reinforcement learning models predicted behavior better in the
learning phase, the new models did better in predicting the
trilemma choices.
Keywords: decision making; reinforcement learning;
exploration–exploitation trade-off; contextual multi-armed
bandits; function learning

Introduction
George, an early-career American academic, has just ac-
cepted a new position at a European university. Somewhat
of a culinary fanatic, he is determined to enjoy the local cui-
sine as much as possible. As there are over 1,000 restaurants
in the area, he is spoiled for choice. George soon starts to
try out different restaurants, sometimes leaving ecstatic and
sometimes close to nauseous. Keen to avoid the latter, he no-
tices that the quality of the food on offer is related to various
pieces of information, such as the facade of the restaurant,
the number of patrons, and the distance to the local market.
Using this knowledge, George manages to eat out every day,
never leaving disappointed.

George’s story captures the essential characteristics of
numerous widely encountered decision-making problems,
where (a) individuals repeatedly face a choice between a
large number of uncertain options, the value of which can
be learned through experience, and (b) there are various cues
such that they can form an expectation about the value of an
option without having tried it previously. These two charac-
teristics are related to two learning problems that have been
explored extensively in psychology and cognitive science, yet
mostly in isolation. These are how people learn to make deci-
sions from experience (Barron & Erev, 2003; Hertwig et al.,
2004) and how they learn to make predictions from multiple
noisy cues (Nosofsky, 1984; Speekenbrink & Shanks, 2010).
The structure of “decisions from experience” problems can be
formally represented in a multi-armed bandit (MAB) frame-
work (Sutton & Barto, 1998). MAB problems involve a fine

balance between taking the action that is currently believed to
be the most rewarding (“exploitation”) and taking potentially
less rewarding actions to gain knowledge about the expected
rewards of other alternatives (“exploration”). MAB problems
have proven to be a useful framework to study how people
tackle this exploration–exploitation trade-off (e.g. Barron &
Erev, 2003; Cohen et al., 2007; Speekenbrink & Konstantini-
dis, 2015; Steyvers et al., 2009).

Decision situations in real life typically contain more in-
formation than classic MAB problems, as alternatives usu-
ally have many features that are potentially related to their
value. In other words, there is a function relating features
of the alternatives to their value, and we assume people can
learn this function. In our example, after enough visits to
various restaurants, George has learned the function and with
one look at the restaurant’s features can estimate the qual-
ity of the food. Strictly speaking, feature information is not
needed to make good decisions. People who try an alterna-
tive many, many times have no need to engage in function
learning to estimate its value. However, function learning can
be very useful. There might not be time to try out alterna-
tives many times, especially when the number of alternatives
is large or the choice sets change frequently. Also, choosing
a previously untried alternative might cost the decision maker
dearly. In such situations it becomes important to be able to
appraise an alternative’s worth without actually trying it.

More subtle questions arise in a MAB problem with func-
tion learning. For example, exploration choices can now be
made with the goal to learn more about the function, not
just to estimate the value of a particular alternative. Indeed,
choosing an alternative that is believed to be particularly bad
may improve one’s knowledge of the function to such an ex-
tent that the future benefit of being able to better predict the
value of alternatives outweighs the current loss.

Decision-making problems that include both function
learning and direct experiential learning can be captured for-
mally in the theoretical framework of contextual multi-armed
bandits (CMABs). This paradigm has received a lot of at-
tention recently in the domain of machine learning due to
the numerous applications in autonomous machine decision
making (e.g. Li et al., 2010; Agrawal & Goyal, 2012). Al-
though the optimal decision policy for CMAB problems is
generally intractable, several heuristic strategies, such as up-
per confidence bounding (Auer, 2003), have been developed
to tackle the problem in a reasonable manner, balancing the
search for new high-quality alternatives (exploration) and the
use of the most promising alternative discovered so far (ex-
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ploitation). While these algorithms give reasonable results
in practice, they rely on extensive memory and processing
capacity, and their performance is often evaluated under the
assumption of an infinite or very distant time horizon, which
makes their applicability to human decision making in these
problems unclear.

In the present study we aimed to shed light on how hu-
man decision makers allocate decisions among alternatives in
contexts involving both function learning and direct experi-
ential learning. Although theoretically not necessary to make
decisions in a given situation, because of its usefulness for
generalizing to new situations we expect that people never-
theless engage in function learning. Moreover, we developed
a new function-based reinforcement learning model that of-
fers novel predictions on how people tackle the exploration–
exploitation trade-off in CMAB problems. We tested these
predictions in an experiment where people made choices be-
tween a relatively large number of alternatives. By showing
only some participants informative cues to the value of the al-
ternatives, we were able to assess the relative benefit of con-
textual information in decision making in MAB problems. In
a later test phase, we also assessed how people generalize
their contextual knowledge to decisions between new alter-
natives.

Methods
We investigated the influence of function learning on decision
making in a stationary MAB task. There were three versions
of the task: (1) a classic MAB task where feature values were
not visually displayed (we refer to this as the classic con-
dition), (2) a CMAB task where feature values were visible
and participants were instructed that features might be use-
ful for their choices (explicit contextual condition), and (3) a
CMAB task where feature values were visible but participants
were not informed about the relation between features and the
value of alternatives (implicit contextual condition). The con-
textual conditions had an additional test phase with new alter-
natives, where we examined whether participants had learned
the function and could use the acquired knowledge to make
better choices when facing new alternatives.

Participants
In total, 193 participants (94 female), aged 18–73 years (M =
32.5 years, SD = 11.4), took part in this study on a volun-
tary basis. Participants were recruited via Amazon’s Mechan-
ical Turk (mturk.com) and were required to be based in the
United States and have an approval rate of 95% or above.1

Participants in the experiments earned a fixed payment of
US$0.30 and a performance-dependent bonus of US$0.50 on
average. Participants were randomly assigned to one of the
three experimental groups: the classic (N = 66), explicit con-
textual (N = 64), and implicit contextual (N = 63) conditions.

As Amazon’s Mechanical Turk is an online environment
that offers less control than laboratory experiments, we ex-

1This means that in at least 95% of cases they were paid for the
work they had done—a rough measure of the quality of the work
done on Mechanical Turk.

Figure 1: Screenshots from the experiment. A. Alternatives in the
classic multi-armed bandit (MAB) task were presented as simple red
boxes without features. B. Alternatives in the CMAB tasks were pre-
sented as the same red boxes but now with lengths of horizontal and
vertical yellow lines to represent features. Here we have illustrated
only 2 alternatives; participants actually faced 20 in the training and
3 in the test phase.

cluded participants who did not pay due attention to the ex-
perimental task. At the end of the instructions, participants
answered four questions to check whether they recalled ba-
sic information from the instructions. Excluding participants
who failed to answer all four questions correctly would have
left us with too small a sample, so we excluded participants
who failed to answer at least two of these correctly. Impor-
tantly, this exclusion was done before we looked at further
results. In total, 47 participants were excluded from the anal-
ysis.

Task
Training phase The task consisted of a training and a test
phase. The training phase comprised 100 trials and in each
trial participants were presented with the same 20 alternatives
(bandit arms) and asked to choose one. After making a choice
in trial t, they were informed of the payoff R(t) associated
with their choice. For each arm j = 1, ...,20, the payoffs R j(t)
on trial t were computed according to the following equation:

R j(t) = w1x1, j +w2x2, j + ε j(t).

The two feature values, x1, j and x2, j, of each alternative j
were drawn from a uniform distribution U(0.1,0.9), for each
participant at the beginning of the training phase. Weights
were set to w1 = 2 and w2 = 1 for all participants. The error
term, ε j(t), was drawn randomly from a normal distribution
N(0,1), independently for each arm. The difference between
conditions was that the feature values, x1, j and x2, j, were vi-
sually displayed in the contextual conditions but not in the
classic condition, as illustrated in Figure 1.

Test phase The structure of the task was similar in the test
phase, but now participants were presented with three new al-
ternatives with randomly drawn feature values on each trial.
Weights of the function were kept the same, w = (2,1). As
participants faced a new decision problem on each trial in the
test phase, there was no longer an exploration–exploitation
trade-off, and participants were expected to always choose
the alternative they deemed best. There were five types of
trials, specifically designed so that participants would exhibit
whether they had learned the functional form and the weights,
w1 and w2. Two of the types were easy and difficult interpo-
lation trials, where feature values were drawn from the same
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interval, U(0.1,0.9), as in the training phase. Two others
were easy and difficult extrapolation trials, with feature val-
ues drawn from U(0,0.1) and U(0.9,1). Trials consisted of
a dominating, a middle, and a dominated alternative. In easy
trials the difference in function values between the alterna-
tives was larger than in the difficult trials. The fifth type of
trial was designed so we could examine whether participants
learned which feature had the greater weight. Here a trial
consisted of one alternative that had a large value on a feature
with higher weight and a small value on the other feature, one
alternative with the opposite pattern, and one alternative that
was clearly dominated. There were 70 trials in the test phase.
Only participants in the contextual conditions completed this
phase.

Procedure2

After providing informed consent, participants started the ex-
periment by reading the instructions and completing a brief
sociodemographic questionnaire, followed by comprehension
questions with which we checked how much attention they
paid to the instructions. Participants were told that they would
be presented with 20 alternatives, that their task was to se-
lect between them, and that for each choice they would re-
ceive experimental points that would at the end be converted
to money, with an exchange rate of US$1.00 for 400 exper-
imental points. The goal of the game was to win as many
experimental points as possible. Participants were informed
that they would see the same alternatives in every round but
that the rewards associated with each alternative might vary
from round to round.

After reading the instructions and completing the question-
naires, participants started the experimental task. On each
trial, they were presented with 20 alternatives in the form of
simple square-shaped buttons. They selected an alternative
via a mouse click. The number of points won or lost was then
displayed below the alternative until they pressed the ENTER
key, which would display the next trial. Buttons in the clas-
sic condition were empty, while in the contextual conditions
feature values were displayed on each button in the form of
one horizontal and one vertical line, both starting from the
lower left corner of the square. We randomized whether a
certain feature was represented as a vertical or a horizontal
line across participants. Throughout the task, a counter dis-
played the total points received thus far, the number of the
current trial, and the total number of trials in the phase. In
the training phase, participants completed only a single MAB
problem. After finishing it, participants in the contextual con-
ditions read the instructions for the test phase. We told them
they would face new alternatives in every trial, would not see
any feedback in the second phase, and would no longer see
the running total but that their payoff would still be affected
by their choices.

2Readers can try out the experiment at the following
URL: experimentnext.com/CMABvsMABexp1. Raw data
from the experiments are also publicly available on Figshare:
http://dx.doi.org/10.6084/m9.figshare.1314099

Behavioral Results
Training phase

Performance in the training phase is illustrated in Figure 2.
Over the course of the training phase participants in both the
classic and contextual MAB conditions were able to improve
their performance by choosing more promising alternatives.
This is evident in the downward slopes of linear fits of the av-
erage rankings of the chosen options as a function of trial. As
the training phase progressed, participants discovered alter-
natives that yielded higher earnings on average, and the aver-
age ranking of the alternatives they had chosen decreased as
a result. Although the increase in returns was similarly steep,
the participants in the CMAB conditions had a head start and
identified better alternatives already in the first rounds. This
seems to have been the case especially for the explicit con-
textual condition where participants were instructed that the
features could be used to improve their decisions. Such an
increase early on may have been due to a strong prior expec-
tation for positive linear relationships, as often found in the
function learning literature (Busemeyer et al., 1997).

We analyzed choice performance with a generalized linear
mixed-effects model. Trials were aggregated into four blocks
of 25 trials each. We included experimental condition and
block as fixed effects and subject-specific random intercepts.
The main effect of condition was significant, χ2(2) = 10.91,
p = 0.004, where differences stem from the classic condition,
for which the intercept estimate was significantly higher, in-
dicating worse performance overall. The main effect of block
was also significant, χ2(3) = 91.34, p < 0.001, reflecting a
general decrease in average ranking of selected alternatives
from the first to the fourth block. Thus, participants learned
to make better choices and the choice performance improved
over time in all three conditions. The interaction between
condition and block was not significant. The same conclusion
was reached when we analysed expected earnings instead of
rankings of the chosen alternative. We report the results for
the rankings because, due to the random selection of feature
values, potential earnings differed between participants.

To get a sense of the improvement made possible by the
presence of features, it is instructive to examine the over-
all earnings. The range of possible expected earnings was
from 0.3 to 2.7 experimental points per trial. Empirically,
the lowest ranking arm had a value of 0.6 points on average,
while the highest ranking alternative had the average value of
2.4 points. Participants in contextual conditions earned more
on average per trial (M = 1.8 points, SD = 0.52, both con-
textual conditions combined) than participants in the classic
condition (M = 1.64 points, SD = 0.54), t(123.9) = 3.896,
p < 0.001, 95% CI [0.08, 0.23]. The possibility to use func-
tion learning enabled the participants to reach about 10%
higher earnings.

In terms of exploration, participants in the contextual con-
ditions tried 10.4 alternatives, and in the classic condition
they tried 11.2 alternatives on average. For the remaining
analyses we decided to pool the results for the two contextual
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Figure 2: Average ranking of the chosen alternative in the training
phase as a function of trial. Averages are across the participants and
the lines were obtained by linear regression. Shaded areas are 95%
confidence intervals.

conditions, since the performance in them was very similar.

Test phase
While behavior in the training phase showed evidence of
function learning, the true test of function learning is perfor-
mance on new, previously unseen items. If participants in the
contextual conditions did not learn the function, we would
expect that participants would choose randomly between the
new sets of three alternatives. Results are presented in Ta-
ble 1. On easy trials, participants selected the alternative with
the higher expected value almost 50% of the time, while the
middle and dominated alternatives were selected much less
frequently (approximately 25% of the time each). On dif-
ficult trials, in contrast, participants selected the dominating
and the middle alternative equally often, approximately 37%
of the time. The dominated alternative was still selected ap-
proximately 25% of the time. Extrapolation trials are crucial
for establishing the extent of function learning (Busemeyer et
al., 1997). In our case, performance in interpolation and ex-
trapolation trials was similar, indicating that participants ex-
trapolated relatively well. Performance on the “weight test”
trials gives a clue as to why they chose the middle alterna-
tives as often as they did—on average, participants seem not
to have learned the feature weights correctly, which may have
been because of the level of noise in the alternative values (the
error term ε j(t) in the function value). Participants seem to
have learned that both feature weights were positive, but not
that they differed.

Modeling
In addition to the behavioral results, we used computational
modeling to further assess whether participants based their
decisions on knowledge of the functional relationship be-

Table 1: Choice allocation between alternatives with high, medium,
or low expected earnings in the test phase. Each row of the table
corresponds to a different type of trial. The high, medium, and low
columns refer to the dominating, middle, and dominated items, re-
spectively.

Type of trial # Trials High Medium Low
Easy interpolation 15 0.47 0.28 0.25
Difficult interpolation 25 0.38 0.37 0.25
Easy extrapolation 10 0.49 0.27 0.24
Difficult extrapolation 10 0.39 0.35 0.26
Weights test 10 0.36 0.37 0.27

tween the feature values and the alternative value. To explain
the behavior in CMAB problems, we developed a new re-
inforcement learning model based on function learning and
pitted it against reward-only reinforcement learning models
employed to explain behavior in MAB problems.

Reward-only reinforcement learning models do not take
into account the feature values and update the expected value
of an alternative only on the basis of rewards received after
making a choice. We call this type of learning mean learn-
ing. In our novel feature-based model, a participant observes
the feature values and uses the knowledge of the functional
relationship between features and value to compute the ex-
pected value of a particular alternative. Instead of updating
the expected value of an alternative directly, participants up-
date the parameters of the functional relationship. We call
this type of learning function learning. To provide the clean-
est comparison, we used the same choice rules in both types
of models. The main difference was in whether the expected
values were computed by mean learning or function learn-
ing and then passed as inputs to the choice rules. Overall, we
evaluated a factorial combination of 4 Learning rules (2 mean
learning + 2 function learning) × 2 Choice probability rules,
producing a total of eight models. The models were assessed
in two ways. First we examined how the models fit the train-
ing data; second, we used the parameters from the training
phase and let the models predict the choices in the test phase.

Mean learning
We assumed that after receiving a reward R j(t) on trial t for a
chosen alternative j, participants would update the expected
value E j(t + 1) of choosing alternative j on trial t + 1. We
considered two learning mechanisms: the delta rule and the
decay rule.

Delta learning The delta rule is a popular model-free learn-
ing rule:

E j(t) = E j(t−1)+δ j(t)η[R j(t)−E j(t−1)],

where δ j(t) is an indicator variable, being 1 if alternative j
was chosen on trial t, and 0 otherwise. We opted for a simple
fixed learning rate, η≥ 0.

Decay learning The decay rule (e.g. Ahn et al., 2008) is
another popular model-free learning rule, according to which
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expected values of the unchosen alternatives decay toward 0:

E j(t) = ηE j(t−1)+δ j(t)R j(t),

with decay parameter 0≤ η≤ 1.

Function learning
Least mean squares network model The least mean
squares (LMS) network model (e.g. Speekenbrink & Shanks,
2010) is essentially a linear regression model that updates the
weights from trial to trial. Feature values x j are inputs, and
the expected value of an alternative is the function output,
E j(t) = x jŵ(t), where ŵ(t) is a vector of estimated connec-
tion weights (identical for each alternative). Weights are up-
dated through the delta rule

ŵ(t +1) = ŵ(t)+δ j(t)η(R j(t)−E j(t))xT
j ,

where η is a vector of feature-specific learning rate parame-
ters. Starting weights were initialized to ŵ(0) = (0,0)T . We
considered two versions of the LMS model: one with an in-
tercept (LMSi) and without it (LMS).

Choice rules
ε-greedy A heuristic rule for balancing exploitation and ex-
ploration (e.g. Sutton & Barto, 1998) exploits the alterna-
tive with the maximum expected value with probability 1−ε,
and with probability ε chooses randomly from the remaining
arms:

P(C(t) = j) =

{
(1− ε)/Kmax if E j(t)> Ek(t), ∀k 6= j
ε/(K−Kmax) otherwise

where K is the number of arms and Kmax is the number of
arms with the same maximum value. If all the values are the
same, P(C(t) = j) = 1/K.

Softmax The “softmax” choice rule varies gradually be-
tween pure exploitation and pure exploration through a tem-
perature parameter θ≥ 0:

P(C(t) = j) =
exp(θE j(t))

∑
K
k=1 exp(θEk(t))

Model estimation and inference
We estimated the model parameters for each participant by
maximum likelihood using the Nelder–Mead simplex algo-
rithm implemented in the optim function in R. For model
selection purposes in the training phase, we computed the
Bayesian information criterion (BIC), reported as difference
scores between a baseline model3 and the model of inter-
est, ∆(BIC). For these difference scores, negative values of
∆(BIC) indicate that the model fitted worse than the baseline
model, while increasing positive values indicate better fit. We

3The baseline model was a parameter-free random choice model
with probability of choosing an alternative equal to 1/K.

also reported BIC weights, w(BIC) that approximate the pos-
terior probability of the models assuming equal prior proba-
bility (Wagenmakers & Farrell, 2004). To model the behavior
in the test phase, we used models with parameters estimated
on the training data to predict choices in the test phase. For
model selection we used Mean absolute deviation (MAD) of
choices from model predictions.

Modeling results
We fitted the models to the training data of the contextual
conditions. Because the behavioral and modeling results were
similar for explicit and implicit contextual conditions, we col-
lapsed the results into a single contextual condition. Table 2
shows the fit measures. The BIC scores show, contrary to our
expectation, that the best fitting models are reward-only rein-
forcement learning models. This holds in terms of both aver-
age ∆BIC, BIC weights and number of participants best fitted
by the models. Decay learning with the softmax choice rule
is a clear winner. Participants often repeated their previous
choices, and the decay rule is able to capture that tendency
better (Ahn et al., 2008). Among function learning models,
LMSi version with the intercept is able to learn the average
earning in the task so this model can be thought of as a hybrid
between mean and function learning. However, LMSi did not
fare much better than the version without intercept. The soft-
max rule also worked much better than ε-greedy—people’s
response probabilities were obviously sensitive to expected
values and the softmax choice rule captures this aspect better.

The modeling results thus contrast with the behavioral re-
sults, which showed evidence of function learning. One rea-
son for this discrepancy might be that the LMS model is not
the appropriate function learning model. Hence, in future
work there is scope for examining more complex associative
function learning models (Busemeyer et al., 1997) and gen-
eralized context models (Nosofsky, 1984). Another reason
might be that the LMS model learns too well, that is, weights
learned by the LMS model tend to the objective weights too
fast. Participants were not giving their predictions on values
of chosen alternatives and without them it is difficult to prop-
erly calibrate the function learning part of the model. Hence,
obtained weights might not reflect participants’ actual beliefs
about feature weights. Indeed, results from the test phase,
shown in Table 1, indicated that participants on average did
not learn which feature had a larger weight.

Even though LMS models did not fit the training phase
best, the true value of function learning should become ob-
vious when new alternatives appear in the choice set. This
was the logic behind having the test phase with new alter-
natives. Importantly, the reward-only models cannot predict
anything other than random choice. Test trials were single-
shot decisions and reward-only models have no means of es-
timating the expected values of arms without sampling them
first. In the test phase, the only way to distinguish the alter-
natives was through their feature values. We used the LMS
models with parameters fitted in the training phase to predict
choices in the test phase. Table 3 shows that the LMS mod-
els indeed did better than the reward-only models, which here
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Table 2: Modeling results of the training phase. Values of ∆(BIC)
and w(BIC) are averages and the standard deviation is given in
parentheses. Values of N are the total number of participants best
fit by the corresponding model according to the BIC.

Learning Choice N ∆(BIC) w(BIC)
Decay Softmax 42 127.56 (150.35) 0.36 (0.45)
Delta Softmax 22 106.85 (139.47) 0.19 (0.36)
Decay ε-greedy 12 100.86 (140.72) 0.06 (0.19)
Delta ε-greedy 9 80.34 (120.52) 0.02 (0.08)
LMSi Softmax 11 56.73 (80.05) 0.11 (0.23)
LMS Softmax 10 55.78 (80.51) 0.08 (0.18)
LMS ε-greedy 8 19.49 (53.94) 0.03 (0.14)
Note. BIC, Bayesian information criterion; LMSi, least
mean squares with intercept; LMS, least mean squares
without intercept.

would perform as well as the baseline random choice model.
On average LMS models predicted the choices of the partic-
ipants with 50%. According to the MAD criterion, the ma-
jority of participants were best predicted by one of the LMS
softmax models, 13 participants were best predicted by a ran-
dom choice model and 19 by ε-greedy LMS model.

Table 3: Modeling results of the test phase. Values of MAD are
averages and the standard deviation is given in parentheses. Values
of N are the total number of participants best fit by the corresponding
model according to the MAD.

Learning Choice N MAD
LMSi Softmax 54 0.50 (0.14)
LMS Softmax 44 0.54 (0.13)
LMS ε-greedy 19 0.65 (0.02)
RCM 13 0.67 (0)
Note. MAD, mean absolute deviation; LMSi, least mean
squares with intercept; LMS, least mean squares without
intercept; RCM, random choice model.

Discussion and Conclusion
We developed a novel experimental paradigm that can be the-
oretically framed as a CMAB problem. In contextual con-
ditions in our experiment each alternative had two features
that were linearly related to the value of the alternative. In
reward-only reinforcement learning models contextual infor-
mation is ignored—mean returns are estimated directly from
the sequence of past rewards without a demanding function-
learning mechanism. We argued that in decision-making
problems encountered in everyday life, people cannot afford
to sample alternatives enough times to get reliable estimates.
Moreover, choice sets change often, and estimating the value
of new alternatives without trying them is a useful ability. Un-
der these circumstances function learning seems to be an in-
dispensable mechanism, even if unnecessary or prohibitively
expensive in a single decision situation.

In the experiment we compared contextual and classic ban-
dit problems, with feature information presented and not pre-
sented, respectively. We showed that with a large enough
choice set, people engage in function learning—participants

in the contextual conditions performed better even in the
training phase. More importantly, function learning enabled
them to generalize their knowledge in the test phase, where
they faced one-shot trilemmas with new alternatives. We
also developed a novel function-learning-based reinforce-
ment learning model. Our simple model did not work as well
as expected in the training phase, but it performed better in
terms of predicting choices in the test phase where reward-
based reinforcement learning models cannot do better than
chance level. Other, more complex function-learning model-
ing approaches are left for future work.
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