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Point Cloud Distortion Quantification based on
Potential Energy for Human and Machine

Perception
Qi Yang, Siheng Chen, Yiling Xu, Member, IEEE, Jun Sun, M. Salman Asif, Senior Member, IEEE, and Zhan

Ma, Senior Member, IEEE

Abstract—Distortion quantification of point clouds plays a
stealth, yet vital role in a wide range of human and machine
perception tasks. For human perception tasks, a distortion
quantification can substitute subjective experiments to guide 3D
visualization; while for machine perception tasks, a distortion
quantification can work as a loss function to guide the training
of deep neural networks for unsupervised learning tasks. To
handle a variety of demands in many applications, a distortion
quantification needs to be distortion discriminable, differentiable,
and have a low computational complexity. Currently, however,
there is a lack of a general distortion quantification that can
satisfy all three conditions. To fill this gap, this work proposes
multiscale potential energy discrepancy (MPED), a distortion
quantification to measure point cloud geometry and color differ-
ence. The proposed MPED is able to capture both geometrical
and color impairments by quantifying the total distortion be-
tween reference and distorted samples. By evaluating at various
neighborhood sizes, the proposed MPED achieves global-local
tradeoffs, capturing distortion in a multiscale fashion. We further
theoretically show that classical Chamfer distance is a special case
of our MPED. Extensive experimental studies validate MPED’s
superiority for both human and machine perception tasks. For
human perception tasks, the proposed MPED works as subjective
score predictor on two large subjective database. For machine
perception tasks, the proposed MPED is plugged in as the loss
function to enable the training of deep neural networks for three
tasks, including point cloud reconstruction, shape completion and
upsampling. The experimental results reveal that the proposed
MPED produces better results than the point-wise Chamfer
distance and Earth Mover’s distance under the same network
architecture. Our code is avaliable at https://github.com/Qi-
Yangsjtu/MPED.

Index Terms—Distortion quantification, objective quality as-
sessment, human perception, machine perception, potential en-
ergy, point cloud.

I. INTRODUCTION

Three-dimensional point clouds have become an important
geometric data structure, which precisely present the external
surfaces of objects or scenes in the 3D spatial space. They
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can be widely used in augmented reality [1], autonomous
driving [2], industrial robotics [3], art documentation [4]
and many others. To provide immersive user experience and
reliable performance, a high-quality point cloud is in high
demand. For example, point clouds used in augmented reality
provide rich color and detailed geometric structures to better
serve human perception; and point clouds used in autonomous
driving present informative depth information for accurate 3D
object detection (e.g., pedestrians, trees and buildings).

To evaluate the distortion of a point cloud based on a
reference point cloud, we need a reliable, accurate and ob-
jective distortion quantification that can be generally applied
for a wide range of scenarios. To reflect human perception, a
distortion quantification should be sensitive to both geometric
and color distortion. For example, the point cloud “LongDress”
[5] provided by the moving picture experts group (MPEG)
involves the RGB color as additional attributions. After com-
pressed by video-based point cloud compression (V-PCC), the
number of points might increase, and points’ colors might be
deteriorated due to the quantization [6].

Besides being used for quality assessment in human per-
ception tasks, an objective distortion quantification could also
serve for machine perception, which is a loss function to guide
the training of deep neural networks. Specifically, unsuper-
vised tasks of machine perception generally aim to extract
informative features from point clouds without using human
supervision [7]. Some typical tasks include reconstruction [8],
[9], completion [10], [11], and upsampling [12]. To train
those networks, a distortion quantification usually works as
the loss function to supervise the output of the network
towards the ground-truth. Therefore, a distortion quantification
should be differentiable to enable backpropagation and has
low computational complexity. Since machine perception tasks
need to train networks with a huge amount of data, a distortion
quantification needs to have a low resource overhead to
facilitate training.

Based on the above analysis, an ideal point cloud distortion
quantification need to satisfy three basic conditions, including
distortion discrimination, differentiability and low complexity.
Currently, however, there is a lack of a generic distortion
quantification for point clouds that can satisfy the above
three conditions at the same time. For example, Chamfer
distance (CD) [8], Earth mover’s distance (EMD) [13], and
PSNRYUV [14] use point-wise distance to quantify distortion,
which presents unstable performance when faced with multiple
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Fig. 1: MPED compares the total point potential energies of
multiple neighboring point clouds in the source and the target.

distortions. Besides, as the most widely used loss function
in machine perception tasks, CD has a shortcoming named
“Chamfer’s blindness” [8] or “point-collapse” [15] which can
lead to unexpected results (Fig. 2 (b)). Point cloud quality
metric (PCQM) [16] and GraphSIM [5] present obvious biases
in distortion detection [17] (e.g., both PCQM and GraphSIM
present excellent performance on local offset, while poor
performance on Gamma noise), and surface fitting and graph
construction used in these two methods are time-consuming.
This work aims is to fill this gap and design a universal
distortion quantification that can present robust and reliable
performance on point clouds distortion measurement.

Proposed distortion quantification. In this paper, we
present a new 3D point cloud distortion quantification; called
multiscale potential energy discrepancy (MPED). The pro-
posed MPED is inspired by the potential energy used in
classical physics. Consider that a lossless 3D point cloud
is a stable spatial system, the distortion can be regarded
as system disturbance caused by the external force [18].
Assuming each 3D point has potential energy corresponding
to the zero potential energy plane set manually, the system
disturbance can be quantified by the total energy variation.
Moreover, the standard the perceived distortion quantification
for evaluating 2D images, MSSIM [19], also inspires us that
multiscale features present more robust performance in terms
of 3D distortion detection. Specifically, the multiscale features
provide a more comprehensive measurement of the overall im-
pact of distortion [20]. Therefore, we fuse the thoughts about
distortion-energy inspiration and multiscale representation to
design our MPED.

Based on the above intuitions, we design MPED in the
following four steps. Specifically, Fig. 1 illustrates the scheme
of the proposed MPED, i) we first divide a point cloud into

multiple spatial neighborhoods and set the center of each
neighborhood at zero potential energy plane; ii) we assign the
potential energy to each point in the neighborhood using point
mass and spatial fields (e.g., gravitational acceleration); iii) we
compare the total point potential energies of neighborhoods
in two point clouds, the geometric and attributive differences
between two point clouds are converted to the total energy
variation; and iv) finally, MPED captures the distortion of a
point cloud at multiple scales by selecting various neighbor-
hood sizes.

We analyze the properties of MPED via several toy exam-
ples. The proposed MPED is differentiable, the complexity of
the proposed MPED is O(N2), which is the same as CD and
much lower than EMD (O(N3)), where N is the number of
points in a point cloud, and the proposed MPED is sensitive to
multiple types of distortion, including isometrical distortion.
We also prove that CD is a special case of the proposed MPED.

We validate the performance of MPED based on two main
applications: human and machine perception tasks.

In terms of human perception tasks, the proposed MPED
presents better performance on perception prediction. Specif-
ically, MPED provides better Pearson linear correlation
(PLCC), Spearman rank-order correlation (SROCC) and root
mean squared error (RMSE) than point-to-point (p2point),
p2plane, GraphSIM and PCQM on two large databases (e.g.,
SJTU-PCQA [21] and LSPCQA [17]).

In terms of machine perception tasks, the proposed MPED
achieves a better tradeoff between effectiveness and efficiency.
Compared with CD, MPED solves the “point-collapse” issue;
compared with EMD, MPED reduces the computational cost
from O(N3) to O(N2). Specifically, MPED provides better
performance compared to CD and EMD on three unsupervised
machine perception tasks (point cloud reconstruction, shape
completion, and upsampling);

The main contributions of this paper are summarized as:
• We present a new universal distortion quantification,

MPED, for point clouds. Inspired by classic mechanics, we use
potential energy variation to quantify point cloud distortion.
•MPED satisfies the three desired conditions for a universal

objective distortion quantification; that is, MPED is differen-
tiable, low-complexity, and distortion discriminative.
• MPED shows reliable performance for both human and

machine perception tasks.
The rest of the paper is organized as follows. Section II

presents the related work of point cloud quality assessment.
Section III introduces point cloud representation and distortion
types. Section IV demonstrates the proposed potential-energy-
based feature used for point cloud distortion quantification.
Section V presents the generic implementation of the proposed
MPED. Section VI presents the experimental results of MPED
on both human and machine perception tasks. Section VII
concludes the paper.

II. RELATED WORK

Point cloud distortion quantifications are first used in human
vision tasks. To evaluate the distortion introduced by lossy
compression, MPEG first uses p2point as the distortion quan-
tification. Specifically, p2point shares the same calculation
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method as the CD. However, according to a serial exper-
iments [14], [22]–[27], p2point presents unstable results in
terms of multiple types of distortion. Studies [19], [28] in
image distortion quantification have proven that the human
visual system is more sensitive to structural features, rather
than point-wise features. Therefore, recently proposed dis-
tortion quantifications for human perception tasks, such as
p2plane [29], PCQM [16], and GraphSIM [5] use the distortion
of structural features to replace the distortion of point-wise
features. Experimental results demonstrate that these methods
provide better performance than the original p2point. For
example, experiments in [5] show that the utilization of
structure features (e.g., gradients) presents better performances
when predicting human perception in terms of compression-
related distortion (e.g., V-PCC and geometry-based point cloud
compression (G-PCC)). However, PCQM and GraphSIM need
to convert scattered points to inerratic representations, such as
surface and spatial graph, which are time-consuming.

Besides, point cloud distortion quantifications are com-
monly used as loss functions to assist in unsupervised machine
perception tasks (such as point cloud reconstruction, shape
completion, and upsampling). There are two mainly used
quality quantifications in current machine perception tasks: CD
and EMD. EMD is the solution of a transportation problem
that attempts to transform one set to the other.

The advantage of CD is low resource overhead. Since
one point can be used multiple times during point matching,
this causes a significant drawback for CD, known as “point-
collapse” [15] or “Chamfer’s blindness” [8]. Specifically, the
generated samples that use CD as a loss function suffer from
obvious structure deformations. Fig. 2 (b) shows an example
in which the points of a chair arm in the reconstruction are
sparser than those in the ground truth, while the points of the
seat in the reconstruction are denser than those in the ground
truth. Points are over-populated around collapse centers [15].
The reason is that a reference point may be used multiple times
in the point-nearest-neighbor search, and the final results fall
into a local optima .

EMD is a method that computes the distance between two
distributions as the minimum mass that needs to transfer to
match two distributions. Compared to CD, the point matching
in EMD is stricter as any point that has been used in the
point matching cannot be used to match with other points
anymore. It means that the pairing of two points considers their
spatial distance as well as the global transfer costs. Therefore,
EMD is more reliable than CD in machine perception tasks.
Comparison of reconstruction results with CD and EMD as
loss functions in [8] reveal that CD can only provide partially
good reconstructed results while EMD can provide better
global reconstruction. Despite the better performance, many
methods avoid using EMD because of its computational com-
plexity [9], [15], [30]. The computational complexity of EMD
is O(N3) [13] and that of CD is O(N2) for N points. The
method in [10] provides a lightweight version of EMD with
complexity as O(N2k), where k is the number of iteration to
search for the best-matched point pair. By sacrificing a certain
amount of computational accuracy, the computation time can
be reduced. The selection of k, however, can be different

(a) Ground truth (b) CD

(c) EMD (d) MPED

Fig. 2: Point cloud reconstruction with LatentNet [8]. (a):
baseline; (b) CD as loss function; (c) EMD as loss function;
(d) MPED as loss function. MPED provides the best recon-
struction.

for different scales of point clouds, which is inconvenient in
practical application.

III. PROBLEM FORMULATION

In this section, we introduce some basic properties of 3D
point clouds and distortion quantification criteria.

A. 3D Point Cloud

Let P be a 3D point cloud with N points: P =
{x1, . . . ,xN}, where each xi ∈ R6 is a vector with 3D
coordinates and three-channel color attributes. We only con-
sider color attributes of point cloud in this paper; therefore,
xi = [x, y, z, R,G,B] ≡ [xOi ,x

I
i ], where xOi = [x, y, z] and

xIi = [R,G,B]. The superscript “O” stands for geometric
occupancy, and “I” stands for color intensity.

B. Point Cloud Distortion

Different from image/video distortion, point cloud distortion
can be divided into three categories, including i) geometry-
lossy and attribute-lossless, ii) geometry-lossless and attribute-
lossy, iii) and geometry-attribute superimposed distortion. We
now introduce each of the three distortions.

Geometry-lossy and attribute-lossless distortion. In this
case, the number of points and points’ coordinates are
changed, while points’ attributes keep unchanged. Let nO ∈
RN×3 be the additive geometrical noise and D(·) be a generic
measurement operator that produces a partial or enhance 3D
point cloud. The geometry-lossy and attribute-lossless (noted
as ΦD1) distortion is

ΦD1(P) = D([XO +nO,XI ]) ∈ RM×6,

where M is the number of point for the distorted sample.
Generally, the value of M depends on the type of D(·). For
example, when D(·) represents downsampling, M < N ; when
D(·) represent point cloud reconstruction (e.g., LatentNet [8]),
M = N ; when D(·) represents upsampling, M > N .
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Geometry-lossless and attribute-lossy distortion. In this
case, the points’ attributes are changed, while the number
of points and points’ coordinates keep unchanged. Let nI ∈
RN×3 be the additive color noise. The geometry-lossless and
attribute-lossy (noted as ΦD2) distortion is

ΦD2(P) = [XO,XI +nI ] ∈ RM×6.

The typical geometry-loss and attribute-lossless distortion in-
cludes color noise [21] and chromatic aberration [17].

Geometry-attribute superimposed distortion. In this case,
the number of points, points’ coordinates, and points’ at-
tributes are all changed. Geometry-attribute superimposed
distortion (Noted as ΦD3) is the superposition of above two
distortions. Mathematically,

ΦD3(P) = D([XO +nO,XI +nI ]) ∈ RM×6.

The typical geometry-attribute superimposed distortion in-
cludes video-based point cloud compression (V-PCC) and
geometry-based point cloud compression (G-PCC).

IV. POINT POTENTIAL ENERGY

Before presenting our objective distortion quantification
between two 3D point clouds, we first introduce a novel feature
to quantify the spatial distribution of 3D points. This feature
is inspired by the gravitational potential energy in physics and
lays a foundation for the proposed distortion quantification.
Let Px0 = {xi ∈ R6}Ki=1 be a set of K 3D points with x0

being the origin. We aim to propose a function f(·) so that
EPx0

= f(Px0
) reflects the spatial distribution of Px0

.
In classic mechanics, the potential energy is the energy that

is stored in an object due to its position relative to some
zero position, which is a quantitative measure of the object’s
physical state. For example, the gravitational potential energy
relative to the Earth’s surface is defined as E = mgh, where
m is the mass, h is the Euclidean distance to the origin x0 and
g reflects the gravitational field. We consider each 3D point
as an object with a certain mass and make a mathematical
analogy to define the potential energy of a point xi ∈ R6 as

Exi = mxigxihxi , (1)

where the zero potential plane is at x0.
As discussed in Section III-B, point cloud distortion might

be related to both geometric and attribute information. There-
fore, for a generalized potential energy field, we consider
that the mass mi is related to the point attributes, e.g.,
mxi = f1(xI0,x

I
i ); and the gravitational field gxi and distance

hxi is related to the point geometric coordinates, reflecting
the spatial location relative to the zero potential plane, e.g.,
gxi = f2(xO0 ,x

O
i ), hi = f3(xO0 ,x

O
i ). Note for a generalized

field, hxi might not be limited to the Euclidean distance. We
will give specific formulations for mxigxihxi in Section V-B
and Section V-C.

For the entire point cloud Px0
, we define the total point

potential energy as

EPx0
=

∑
xi∈Px0

Exi , (2)

which aggregates the the potential energies of all the points in
Px0

. The proposed total point potential energy is a quantitative
measure of the state of a 3D point cloud, reflecting the
geometric, attributive, and contextual information in this point
cloud.

An advantage of the potential energy is sensitive to the
isometrical distortion, which plays an import role in machine
vision tasks to generate high-fidelity samples (Please refer to
appendix for more details).
Definition 1: isometrical distortion distinguishability. Let
P be a reference point cloud and P ′ = P ⊕∆ be a distorted
point cloud with ⊕ the element-wise addition and ∆ some
perturbation that distorts the 3D coordinates or attributes of
one or multiple points. A measure H is isometrical distortion
indistinguishable when we can find a mapping function Q, so
that H(P,P ′) = Q(∆) for an arbitrary perturbation ∆.

Intuitively, the isometrical distortion indistinguishability re-
flects that the measure H is only aware of the distortion
and is invariant to the ego property of a point cloud. This
is unfavorable because in this case multiple perturbations
could lead to the same measure value; that is, H might not
distinguish a specific perturbation applied on a point cloud. A
good distortion quantification between two point clouds should
be isometrical distortion distinguishable.
Toy example. We illustrate a toy example of the isometrical
distortion in Fig. 3. Assuming x0 is the origin, the yellow line,
note as Y , is a coordinate axis, which represents the spatial
distance to the origin or color intensity difference compared
with the origin. When the axis means the Euclidean distance to
the origin, for a point x1 ∈ Y , H1 is a measure that calculates
the Euclidean distance differences after applying perturbation
∆. Mathematically,

H1(x1,x1 ⊕∆) =|‖x1 − x0‖2 − ‖x
′

1 − x0‖2|
=|‖x1 − x0‖2 − ‖x

′′

1 − x0‖2| = ∆.

We see that H1 is not sensitive to the direction of perturbation.
The distorted locations x

′

1 and x
′′

1 play the same role for H1.
Moreover, for a point x2 ∈ Y,x2 6= x1,

H1(x2,x2 ⊕∆) =|‖x2 − x0‖2 − ‖x
′

2 − x0‖2|
=|‖x2 − x0‖2 − ‖x

′′

2 − x0‖2|
=∆ = H1(x1,x1 ⊕∆).

We see that H1 is not sensitive to the initial location of
perturbation. The initial locations x1 and x2 play the same
role for H1.

When the axis means the color intensity difference com-
pared with the origin, and H1 is a measure that captures the
color differences after perturbation, the above derivations are
still true.

We consider six point clouds, P1 = [x0,x1], P2 = [x0,x
′

1],
P3 = [x0,x

′′

1 ], P4 = [x0,x2], P5 = [x0,x
′

2], and P6 =
[x0,x

′′

2 ]. Each point cloud has two points, and CD as H1.
Note the specific calculation method of CD is as follows:

dCD(P1,P2) =
∑
p∈P1

min
q∈P2

‖ p−q ‖22 +
∑
q∈P2

min
p∈P1

‖ p−q ‖22 .

(3)
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Fig. 3: Toy example of isometrical distortion.

We have

dCD(P1,P2) =dCD(P1,P3) = dCD(P4,P5)

=dCD(P4,P6) = 2∆2.

We see that CD cannot detect the influence of the same
perturbation on different point clouds. The reason is that the
CD only considers individual point features.

On the other hand, point potential energy takes contextual
information into consideration, which can distinguish isomet-
rical distortion. Specifically, we use mxi , gxi and hxi to
describe the unique role of each point for the whole point
cloud. Under the influence of the same perturbation, each
point will give a different response to facilitate discrepancy
quantification. We will validate the isometrical distortion dis-
tinguishability of point potential energy through multiple toy
examples in Section V-D2.

V. MPED: MEASURING POINT CLOUD DISTORTION VIA
MULTISCALE POTENTIAL ENERGY DISCREPANCY

As illustrated in Fig. 1, we present the proposed MPED in
several steps: i) neighborhood construction. Both source and
target point clouds are divided into multiple local neighbor-
hoods based on a set of points as the neighborhood centers;
ii) for each neighborhood, the neighborhood center is set
to be the zero-potential-energy plane. We then compute the
potential energy for each point, and the total potential energy
of a neighborhood is the summation of the potential energies
of all the points insides the neighborhood; iii) we propose
the potential energy discrepancy to quantify the difference
between the source and the target point clouds, leading to the
single-scale potential energy discrepancy (SPED); and iv) we
finally extend SPED to a multiscale form, e.g., MPED.

A. General Form of MPED

Here we first present the general form of MPED, then we
will present the implementation details of MPED for machine
and human perception tasks in Section V-B and V-C.

Neighborhood construction. Let S = {si ∈ R6}Ni=1 and
T = {ti ∈ R6}Mi=1 be source and target 3D point clouds
with N and M points, respectively. Assuming a set of points
as neighborhood center C = {ci ∈ R6}Li=1, its neighboring
point cloud in the source point cloud is N source

ci,K
⊂ S with

ci being the origin, which collects ci’s K closest points in
S. Similarly, N target

ci,K
⊂ T denotes ci’s K closest points in

T . Now, each center point has two local neighboring point
cloud that reflects its contextual roles in source and target
point clouds, respectively. We then can use the total point
potential energy, Eq. (2) to quantify the spatial distribution

properties in two neighboring point clouds; that is, EN source
ci,K

and EN target
ci,K

, respectively.
Point potential energy discrepancy. As we demonstrate

in Section III-B, the distortion of point clouds is related to
both geometric and attributive information. To capture this
distortion, we can leverage the point potential energy proposed
in Section IV, which quantifies the spatial distribution of 3D
points via Eqs. (1) and (2). Specifically, we consider the mass,
the spatial field, and the distance as follows,

mxi =

{
f1(xI0,x

I
i ), if xI0, xIi 6= φ

1, otherwise.
(4)

gxi = f2(xO0 ,x
O
i ), (5)

hxi = f3(xO0 ,x
O
i ). (6)

Here the mass mxi is related to the point color information.
Considering some point clouds do not have color information,
we set: i) when xI0,x

I
i 6= φ, mxi = f1(xI0,x

I
i ); ii) when

xI0,x
I
i = φ, mxi = 1 to avoid point potential energy becomes

0. The distance hxi is related to point coordinate information.
The spatial field gxi can be regarded as a weighting factor
when pooling all the point energies via Eq. (2). A benefit of
introducing gxi is to distinguish isometrical distortion. We will
validate this property in Section V-D2. We will give specific
formulations of mxi , gxi and hxi for human perception tasks
in Section V-B and for machine perception tasks in Section
V-C. Based on above three components, we use Eq. (2) to
calculate EN source

ci,K
and EN target

ci,K
, respectively.

We first set the distortion of point with greater energy
to contribute more to the total potential energy variation.
Consider in classic mechanics, for the object with the same
mass, the farther the object is from the zero potential energy
plane, the greater the energy. We need gi to satisfy the
following requirement:
Requirement 1. For two points x1 and x2 with same mass,
if hx1

≤ hx2
, gi should satisfy gx1

≤ gx2
.

With gxi satisfies Requirement 1, potential energy can
better detect the isometrical distortion, which will be proved
in Section V-D1 Theorem 1.

We now propose a potential energy discrepancy to measure
the difference between the source and the target point cloud.
Specifically, the discrepancy is defined as

SPEDK = A
(
{Mi(EN source

ci,K
, EN target

ci,K
)}Li=1

)
, (7)

where L is the number of neighborhood centers, Mi(·) rep-
resents the neighborhood-wise operation for the ith neigh-
borhood, and A(·) represents an aggregation method that
generates the final objective score. We will give the specific
formulations of Mi(·) and A(·) in Section V-B and Section
V-C.

Multiscale point potential energy discrepancy: MPED. A
hyperparameter K is introduced in SPED to establish a spatial
neighborhood. Inspired by MSSIM [19], we extend SPED to
a multiscale form, e.g., MPED via

MPEDΨ =
1

|Ψ|
∑
K∈Ψ

SPEDK , (8)
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in which Ψ represents a collection of K, |Ψ| represents the
number of elements in Ψ.

B. MPED Implementation Details on Human Perception
Tasks.

In this section, we present the detailed implementation of
MPED on human perception tasks. The point clouds used for
human-oriented applications target for visualizations, which
usually require dense point distributions and contain rich color
information. For example, MPEG compression standardiza-
tion, “RedandBlack” [31] data has 729,133 points rendered
inside a cube of size of 393×977×232. Such dense sampling
provides realistic visual experiences of 3D objects observed in
a human visual system.

Neighborhood center selection.
Human visual system is more sensitive to high-frequency

information [32] [20], such as edge and contour. Therefore,
human perception tasks need to pay more attention to the dis-
tortion of high-frequency features. In Section V, we establish
multiples neighborhoods to calculate point potential energy
via setting a set of neighborhood centers. Therefore, we use
high-pass filters to select a set of high-frequency points as
neighborhood centers. The total point potential energy of these
neighborhoods can reflect the characteristics of point cloud
high-frequency structures.

Refer to the proposal in [5], we use the method proposed
in [33] to filter high-frequency points as element of C. Specif-
ically,

C = bΥ(S, β)cL ∈ RL×6, L� N,

where Υ(·) is a Haar-like filter, β is filter length, and L is the
number of points for C. For more details, please check [33]
[5].

Point potential energy. In Section V, we give a generic
formulation of point potential energy. In this part, we present
the specific implementations of Eqs. (5), (4) and (6). Specifi-
cally, we consider the mass, the spatial field, and the distance
as follows,

mxi = f1(xI0,x
I
i ) =

3∑
j

kj |(xI0)j − (xIi )j |+ 1,

gxi = f2(xO0 ,x
O
i ) =

(
1 + e−

‖xOi −xO0 ‖
2
2

σ2 ΓK

)−1

, (9)

hxi = f3(xO0 ,x
O
i ) = ‖xOi − xO0 ‖pp,

where ki represents the weighting factors between different
color channel, e.g., if xI ∈ RGB, kR : kG : kB = 1 : 2 : 1; if
xI ∈ YUV, kY : kU : kV = 6 : 1 : 1 [5]. We have presented
in Section V that gxi is used to pooling element which in the
same neighborhood, therefore we introduce ΓK = 0 if K = 1,
ΓK = 1 if K > 1. mi ≥ 1 to avoid energy become 0 when
xI0 = xIi . When p = 1, ‖ · ‖11 represents 1 norm; when p = 2,
‖ · ‖22 represents the square of 2 norm. The form of gxi in Eq.
(9) satisfies Requirement 1.

Discrepancy calculation. For the human visual system, the
final score is derived based on the whole object, and the score
is a normalized value. Therefore, we first aggregate the energy

of multiple neighborhoods and obtain the overall energy of
source and target point clouds. We formulate the functions
proposed in Eqs. (7) and (8) as follows,

{Mi(EN source
ci,K

, EN target
ci,K

)}L
i=1

=[
∑
ci∈C

EN source
ci,K

,
∑
ci∈C

EN target
ci,K

]

=[Esource, Etarget].

For Esource and Etarget, the discrepancy is defined as

SPEDK =A([Esource, Etarget])

=
2× Esource × Etarget + T

E2
source + E2

target + T
,

where T is a small constant to prevent the denominator
from being zero. Obviously, the range of SPEDK is [0, 1].
Subjective scores distributed in a certain range [21], objective
scores also need to be normalized into a fixed range. Refer to
SSIM [32] that normalizes the objective score into [0,1], we
adopt the same method to calculate the discrepancy.

C. MPED Implementation Detials on Machine Perception
Tasks.

In this section, we present the detailed implementation of
MPED on machine perception tasks. The point clouds used for
machine-oriented applications target for 3D machine percep-
tion and the point distributions are usually sparser than those
for human perception. For instance, samples in ShapeNet [34]
and ModelNet [35] consist of thousands of points that only
reflect rough shapes of objects (e.g., Fig. 2 (a)). These sam-
ples are often used in machine perception tasks, including
supervised learning and unsupervised learning. Specifically,
unsupervised machine perception tasks extract informative
features from point cloud samples without human supervi-
sion [7]. Some typical tasks include reconstruction [8], [9],
completion [10], [11], and upsampling [12]. Recently, deep
neural networks are common tools to achieve those tasks, and
an objective point cloud distortion quantification is usually
needed as the supervision to train deep neural networks.

Neighborhood center selection. Different from human
perception tasks, machine perception tasks usually aim to
generate samples that exactly the same as the reference
samples. Therefore, distortion quantifications used in machine
perception tasks need to equality detect the shape deformation
at any location.

We make MPED equally detect the shape deformations at
any location via applying the following neighborhood center
selection strategy: both source and target samples are used as
references to calculate the geometrical distortion. Therefore,
we set

C = S
⋃
T .

Point potential energy. Specifically, we consider the mass,
the spatial field, and the distance as follows,

mxi = 1,

gxi = f2(xO0 ,x
O
i ) =

(
1 + e−

‖xOi −xO0 ‖
2
2

σ2 ΓK

)−1

, (10)

hxi = f3(xO0 ,x
O
i ) = ‖xOi − xO0 ‖pp.
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Same to human perception tasks, we set ΓK = 0 if K = 1,
ΓK = 1 if K > 1. mxi = 1 to avoid energy become 0 when
xI0 = xIi = φ. When p = 1, ‖ · ‖11 represents 1 norm; when
p = 2, ‖ · ‖22 represents the square of 2 norm. The form of gxi
in Eq. (10) satisfies Requirement 1.

Discrepancy calculation. The networks in machine per-
ception tasks solve the optimization problem by minimizing
the differences between original and reconstructed samples.
We need to quantify the discrepancy in each neighborhood.
Therefore, we propose a machine perception tasks oriented
discrepancy calculation method.

We formulate the functions proposed in Eqs. (7) and (8) as
follows. Specifically, We first calculate the neighborhood-wise
difference, e.g.,

Mi(EN source
ci,K

, EN target
ci,K

) =

|EN source
ci,K

− EN target
ci,K

| = dci,K .

Then, the discrepancy is defined as

SPEDK = A({dci,K}
L
i=1) =

L∑
i=1

dci,K .

D. Property

In this section, we discuss the properties of the proposed
MPED. Specifically, we first demonstrate that the proposed
MPED is monotonic when encountering isometrical distortion
(i.e., Theorem 1 and Theorem 2 ). Then, we prove that CD
is a special case of the proposed MPED (i.e., Theorem 3).
Finally, we illustrate several toy examples to validate that
the proposed MPED satisfies all three conditions for an ideal
objective distortion quantification (e.g., differentiability, low
complexity, and distortion discrimination).

1) Theorem:

Theorem 1. When m1 = m2,
∥∥xO1 − xO0

∥∥
2
≤
∥∥xO2 − xO0

∥∥
2
,

g satisfies Requirement 1. Then,

Ex1
≤ Ex2

.

For an isometrical perturbation ε ∈ R, we further have

Ex1+ε(x1−x0) − Ex1
≤ Ex2+ε(x2−x0) − Ex2

.

Proof. F = ma = mgx, F represents force, and a represents
accelerated speed. Assuming in Euclidean distance space, we
plot the variation of F corresponding to distance h in Fig. 4,
∵ ‖x1 − x0‖2 ≤ ‖x2 − x0‖2, ε is an isometrical perturbation,
we use h = 0 represents x0, h = 1 represents x1, h = 2
represents x2, and ε = 1.
∴ Ex1+ε(x1−x0) − Ex1

− (Ex2+ε(x2−x0) − Ex2
) = ∆E1 −

∆E2 ≤ 0.

Theorem 1 explains that with two points share the same
mass while different distances to zero potential plane, MPED
can detect the geometrical isometrical distortion via total
energy variation.

Theorem 2. When
∥∥xO1 − xO0

∥∥
2

=
∥∥xO2 − xO0

∥∥
2
, m1 ≤ m2,

g satisfies Requirement 1. Then,

Ex1
≤ Ex2

.

0 1 2 3 4 5
distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fo
rc
e

F1
F2

Fig. 4: Force-distance curves.

For an isometrical perturbation ε ∈ R, we further have

Ex1+ε(x1−x0) − Ex1
≤ Ex2+ε(x2−x0) − Ex2

.

Proof. F1 = m1a = m1gx1
≤ F2 = m2a = m2gx2

.
Assuming in Euclidean distance space, we plot the varia-
tion of F1 and F2 corresponding to distance h in Fig. 4.
∵ ‖x1 − x0‖2 = ‖x2 − x0‖2, ε is an isometrical perturbation,
we use h = 0 represents x0, h = 1 represents x1 and x2, and
ε = 1.
∴ Ex1+ε(x1−x0) − Ex1

− (Ex2+ε(x2−x0) − Ex2
) = ∆E1 −

(∆E3 + ∆E1) ≤ 0

Theorem 2 explains that with two points share the same
distance to the zero potential planes while different masses,
MPED can detect the geometrical isometrical distortion via
total energy variation.

Theorem 3. For P1, P2, if ∀pi ∈ P1, qi ∈ P2 satisfy
pIi ,q

I
i = φ (P1, P2 only have coordinate information),

Ψ = [1], p = 2, C = P1

⋃
P2, MPED = dCD.

Proof. Refer to Eq. (4), if point clouds do not have additional
attributes except for spatial coordinate, we have mxi = 1.
Considering ci ∈ P1, the nearest neighbor for ci in P is
exactly ci. Therefore, ENP1

ci,1
= 0. The same when ci ∈ P2,

e.g., ENP2
ci,1

= 0. Therefore,

MPED =
∑
ci∈C

dci,1

=
∑

ci∈P1

|ENP1
ci,1
− ENP2

ci,1
|+

∑
ci∈P2

|ENP1
ci,1
− ENP2

ci,1
|

=
∑

ci∈P1

|0− ENP2
ci,1
|+

∑
ci∈P2

|ENP1
ci,1
− 0|

=
∑

ci∈P1,qi∈P2

‖ci − qi‖22 +
∑

ci∈P2,qi∈P1

‖ci − qi‖22

=dCD.

Theorem 3 explains that CD is a special case of MPED.
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Fig. 5: Toy examples of geometrical and attributive distortion
sensitivity.

2) Qualification: We further check the three conditions for
an ideal distortion quantification proposed in Section I.
• Differentiability. Refer to specific implementations illus-

trated in Section V-B and Section V-C, all the steps adopted
in MPED are clearly differentiable;
• Low complexity. The complexity of MPED is O(N2),

which is the same as CD. Note the complexity of EMD is
O(N3);
• For distortion discrimination, we use several toy examples

to validate. Specifically, we use CD, EMD and PSNRYUV

[14] as comparison. For PSNRYUV, it first matches points
via Euclidean distance like CD, e.g., pi ∈ P1, qi ∈ P2,
min(‖pOi − qOi ‖2). Then calculating the color difference
between paired pi and qi. Specifically,

PSNRYUV = (6× PSNRY + PSNRU + PSNRV)/8,

PSNRj,j∈{Y,U,V}

= 10 log10(
2552

mean(
∑min(pOi −qOi )

pi∈S1,qi∈S2 [(pIi )j − (qIi )j ]
2)

), (11)

where mean(·) represents average operator.
Case 1: Sensitivity to attributive isometrical distortion.

As illustrated in Fig. 5 d1 and d2, ∆m means a perturbation
on three color channels simultaneously.
� dCDd1

= 0 = dCDd2
;

� dEMDd1
= 0 = dEMDd2

;
� PSNRd1

YUV = PSNRd2

YUV;
� Because of h1 6= h2, MPEDd1 6= MPEDd2 .
Case 2: Sensitivity to geometrical isometrical distortion.

As illustrated in Fig. 5 d3 and d4, ∆h means a perturbation
on distance.
� dCDd3

= ∆h = dCDd4
;

� dEMDd3
= ∆h = dEMDd4

;
� PSNRd3

YUV = 0 = PSNRd4

YUV;
� Because of h1 6= h2, m1 6= m2, MPEDd1 6= MPEDd2

under most cases.
Case 3: Sensitivity to attributive distortions at various

locations. As illustrated in Fig. 5 d5 and d6,
� dCDd5

= 0 = dCDd6
;

� dEMDd5
= 0 = dEMDd6

;
� PSNRd5

YUV = PSNRd6

YUV;
� For neighborhood a, MPEDa,d5 = MPEDa,d6 ; For

neighborhood b, because of h3 6= h4, MPEDb,d5 6=

Requirement CD EMD PSNRYUV MPED
differentiability X X X X
low complexity X × X X

distortion discrimination × × × X

TABLE I: MPED satisfies all the three conditions.

MPEDb,d6 , therefore, MPEDd5 = MPEDa,d5+MPEDb,d5 6=
MPEDa,d6 + MPEDb,d6 = MPEDd6 .

Case 4: Sensitivity to geometrical distortions at various
locations. As illustrated in Fig. 5 d7 and d8,
� dCDd5

= ∆h = dCDd6
;

� dEMDd5
= ∆h = dEMDd6

;
� PSNRd5

YUV = 0 = PSNRd6

YUV;
� For neighborhood a, MPEDa,d7 = MPEDa,d8 ; For

neighborhood b, because of h3 6= h4, MPEDb,d7 6=
MPEDb,d8 , therefore, MPEDd7 = MPEDa,d7+MPEDb,d7 6=
MPEDa,d8 + MPEDb,d8 = MPEDd8 .

We compare the properties of four typical distortion quan-
tifications in Table I.

VI. EXPERIMENT

In this section, we test the proposed MPED on both human
and machine perception tasks.

A. Experimental Evaluations on Human Perception Tasks

For human perception tasks, we test MPED on two fairly
large database: i) the first is SJTU-PCQA People [21]; ii) the
second is LSPCQA [17].

Subjective point cloud assessment database
• SJTU-PCQA database. There are 5 high-quality human

body point cloud samples in SJTU-PCQA People category.
Each native point cloud sample is augmented with 7 different
types of impairments under 6 levels, including four individual
distortions, Octree-based compression (OT), Color noise (CN),
Geometry Gaussian noise (GGN), Downsampling (DS), and
three superimposed distortions, such as Downsampling and
Color noise (D+C), Downsampling and Geometry Gaussian
noise (D+G), Color noise and Geometry Gaussian noise
(C+G). Please refer to [21] for more details.
• LSPCQA database. There are 104 high-quality point cloud

samples in LSPCQA, each reference sample is processed with
34 types of impairments under 7 levels. In all there are 24,752
samples in LSPCQA, 1,020 of them provide mean opin-
ion scores. The distortion types include Quantization noise,
Contrast change, V-PCC, G-PCC, Local rotation, Luminance
noise, and so on. For more details about LSPCQA, please
check [17].

Parameters of MPED. i) σ2. For fairness, when ci belongs
to source sample, we use the average square of Euclidean
distance of ci and its neighbors collected from source sample
as σ2, e.g., σ2 =

∑
pi∈N source

ci,K
‖pi − ci‖22/K, and vice versa;

ii) Ψ. For human perception tasks, we set Ψ as [10, 5] for
both p = 1 and p = 2; iii) L and β. Refer to [5], we set
L = N/1000 and β = 4; iv) T . Refer to [5], we simply set
T = 0.001; v)kj . We first using RGB color space to calculate
mxi , therefore, we set kR : kG : kB = 1 : 2 : 1.
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PLCC SROCC RMSE
quantification: OT CN GGN DS D+C D+G C+G ALL OT CN GGN DS D+C D+G C+G ALL OT CN GGN DS D+C D+G C+G ALL

Pe
op

le
(a

ve
)

M p2po 0.88 - 0.97 0.96 0.97 0.99 0.99 0.89 0.80 - 0.95 0.92 0.97 0.97 0.97 0.79 0.84 - 0.67 0.64 0.61 0.38 0.40 1.11
p2pl 0.90 - 0.96 0.80 0.77 0.99 0.99 0.74 0.80 - 0.94 0.56 0.66 0.98 0.98 0.66 0.78 - 0.71 1.36 1.55 0.34 0.39 1.66

H p2po 0.86 - 0.96 0.91 0.84 0.99 0.99 0.80 0.80 - 0.95 0.89 0.81 0.97 0.97 0.70 0.92 - 0.66 0.95 1.32 0.38 0.40 1.49
p2pl 0.89 - 0.97 0.82 0.86 0.99 0.99 0.71 0.81 - 0.95 0.77 0.87 0.97 0.97 0.66 0.82 - 0.67 1.31 1.23 0.37 0.40 1.83

PSNRYUV 0.54 0.97 0.86 0.74 0.98 0.85 0.98 0.71 0.52 0.94 0.82 0.74 0.97 0.77 0.97 0.71 1.52 0.48 1.34 1.56 0.49 1.37 0.52 1.74
PCQM 0.81 0.92 0.97 0.91 0.97 0.98 0.99 0.89 0.77 0.88 0.95 0.83 0.97 0.97 0.98 0.89 1.06 0.72 0.66 0.94 0.57 0.47 0.42 1.12

GraphSIM 0.81 0.90 0.97 0.97 0.95 0.99 0.98 0.89 0.71 0.82 0.96 0.91 0.95 0.96 0.97 0.88 1.05 0.78 0.62 0.55 0.79 0.43 0.52 1.13
MPED(p = 1) 0.82 0.92 0.97 0.97 0.96 0.99 0.97 0.92 0.74 0.86 0.96 0.93 0.97 0.96 0.94 0.93 1.03 0.70 0.60 0.56 0.65 0.40 0.58 0.95
MPED(p = 2) 0.83 0.92 0.97 0.97 0.97 0.99 0.97 0.92 0.76 0.85 0.96 0.92 0.97 0.97 0.96 0.91 1.01 0.71 0.65 0.54 0.62 0.39 0.56 1.00

TABLE II: Model performance (PLCC, SROCC and RMSE) for point clouds samples in SJTU-PCQA database in terms of
different impairments. People (ave) represents treat all the samples in SJTU-PCQA as whole. The proposed MPED presents
robust performance in terms of multiple types of distortion.

Performance evaluation. We compare our MPED with
another 7 state-of-the-art distortion quantifications, e.g.,
• PSNR-MSE-P2point (M-p2po)
• PSNR-MSE-P2plane (M-p2pl)
• PSNR-Hausdorff-P2point (H-p2po)
• PSNR-Hausdorff-P2plane (H-p2pl)
• PSNRYUV

• PCQM
• GraphSIM
To ensure the consistency between subjective scores (e.g.,

mean opinion scores) and objective predictions from various
models, we map the objective predictions of different models
to the same dynamic range following the recommendations
suggested by the video quality experts group (VQEG) [36],
[37], to derive popular PLCC for prediction accuracy, SROCC
for prediction monotonicity, and RMSE for prediction consis-
tency for evaluating the model performance. The larger PLCC
or SROCC comes with better model performance. On the
contrary, the lower RMSE is better. More details can be found
in [36]. Note we use RGB color space in this part to calculate
point mass.
• SJTU-PCQA database. Table II presents the performance

of MPED and other state-of-the-art distortion quantifications
on SJTU-PCQA. We see that: i) MPED presents best overall
performance on SJTU-PCQA. Specifically, the overall PLCC,
SROCC and RMSE of MPED(p = 1) is (0.92, 0.93, 0.95) and
MPED(p = 2) is (0.92, 0.91, 1.00). While M-p2po is (0.89,
0.79, 1.11), M-p2pl is (0.74, 0.66, 1.66), H-p2po is (0.80, 0.70,
1.49), H-p2pl is (0.71, 0.66, 1.83), PSNRYUV is (0.71, 0.89,
1.12), PCQM is (0.89, 0.89, 1.12), and GraphSIM is (0.89,
0.88, 1.13); ii) the performance of MPED under p = 1 or
p = 2 is close, which means the proposed MPED is robust on
multiple selection of spatial distance.

For different distortion quantifications in terms of distortion
types. We see that: i) M-p2po, M-p2pl, H-p2po, and H-
p2pl cannot handle CN because they only consider point-
wise geometrical features; ii) PSNRYUV presents the best
performance on CN, while the worst performance on OT.
Referring to Eq. (11), PSNRYUV first matches two points via
nearest neighbor searching, then uses the color difference of
point pairs as distortion measurement. Essentially, OT uses a
central point to replace all the points within a spatial cube. The
central points usually share similar attributes with replaced
points, and can be used multiple times during point matching.
Therefore, PSNRYUV are not sensitive to OT.

quantification: PLCC SROCC RMSE

L
SP

C
Q

A

M p2po 0.46 0.26 0.73
p2pl 0.42 0.24 0.75

H p2po 0.36 0.21 0.77
p2pl 0.36 0.21 0.77

PSNRYUV 0.50 0.48 0.72
PCQM 0.32 0.42 0.75

GraphSIM 0.33 0.31 0.78
MPED(p = 1) 0.64 0.61 0.63
MPED(p = 2) 0.66 0.60 0.62

TABLE III: Model performance (PLCC, SROCC and RMSE)
for point clouds samples in LSPCQA database. The proposed
MPED presents best PLCC, SROCC and RMSE on LSPCQA.

Color Space PLCC SROCC RMSE
RGB 0.6569 0.6015 0.6229
YUV 0.6558 0.6030 0.6237
GCM 0.6575 0.6048 0.6225

TABLE IV: Model performance with various color spaces on
LSPCQA. The proposed MPED presents stable performance
for multiple types of color space.

• LSPCQA database. Table III presents the performance
of MPED and other state-of-the-art distortion quantifications
on LSPCQA. We see that: i) MPED is obviously superior to
other distortion quantifications on LSPCQA. Specifically, the
PLCC and SROCC of MPED are above 0.6, other distortion
quantifications are all lower than 0.5; ii) the SROCCs of M-
p2po, M-p2pl, H-p2po and H-p2pl are lower than 0.3. The
reason is that there are several types of geometry lossless
but color lossy distortion, such as color quantization dither
(CQD). These four distortion quantifications cannot detect
color distortion.

Ablation Study: Color Space.
We have exemplified the effectiveness of MPED based on

the RGB-based color channel decomposition. In this part, we
test the performance of MPED in terms of other color channel
space, e.g., YUV and Gaussian color model (GCM) [38].
YUV and GCM are two color channel spaces that consist of
one luminance component and two chrominance components.
Given that human visual system is more sensitive to the
luminance component [14], we set kl = 6, kc1 = kc2 = 1 [5].
kl represents the weighting factors of luminance component,
and kc1, kc2 for chrominance components. We use LSPCQA
as the test database and the results shown in Table IV.

In Table IV, we see that the performance of MPED is very
close for multiple color spaces, which proves the robustness
of MPED.
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Fig. 6: Illustration of point cloud reconstruction. The proposed
MPED presents the best reconstruction quality.

B. Experimental Evaluation on Machine Perception Tasks

For machine perception, we test MPED on three typical
unsupervised learning tasks, e.g., point cloud reconstruction,
shape completion, and upsampling.

Parameters of MPED. i) σ2. Same to human perception
tasks; ii) Ψ. For machine perception, we set Ψ as Ψ1 = [5, 1]
and Ψ2 = [10, 5, 1] for both p = 1 and p = 2;

Performance evaluation. To validate the proposed MPED
as a loss function for machine perception tasks, we compare
it with CD [39] and EMD [40]. For each task, with various
supervisions, we test several state-of-the-art networks under
the same training settings, e.g., same network, same epochs,
and same network parameters. To compare the final perfor-
mance, we use CD, EMD, and JSD as objective quantitative
evaluation. JSD measures the marginal distributions between
the generated and reference samples [8]. To distinguish CD
as loss function and quantitative metrics, we use CD as loss
function while CD as the quantitative metric. The EMD in the
same way.
• 3D Point Cloud Reconstruction
Here we adopt ShapeNet dataset used in [8] and validate

the proposed MPED on three typical networks for point
cloud reconstruction with default network parameter setting
expect training epochs, e.g., LatentNet [8], AtlasNet [30], and
FoldingNet++ [9]. For a fair comparison, we randomly set
training epochs of LatentNet, AtlesNet and FoldingNet++ as
500, 300, and 100 due to the default training epochs selected
by presenting best CD value on the test sequences. Four sub-
categories from ShapeNet are used as test sequences, e.g.,
“Chair”, “Airplane”, “Table” and “Rifle”. Specifically, for each
sub-category, we set 75% as training set and 25% as testing set.
Table V shows the reconstruction performance of three net-
works with various supervisions. We use red, blue and cyan
to highlight best performance for three networks, respectively.
Besides the individual performance, we also present average
performance treating four categories as a whole.

We see that: i) for LatentNet, CD presents best CD, worst
EMD and JSD; EMD presents best EMD, worst CD, and
passable JSD; MPED presents best JSD, while passable CD
and EMD; ii) for AtlasNet and FoldingNet++, MPED presents
dominated performance while only several EMDs are awarded
by EMD; iii) the proposed MPED presents close performance
under different scales and norms, which prove the robustness

Complete point cloud

LatentNet

PF-GAN

PF-Net

CD EMD MPED

Hollow part

Fig. 7: Illustration of point cloud completion. The proposed
MPED presents the best completion quality.

of the proposed model; iv)considering JSD as the third party
metric that was not involved in training, the proposed MPED
is more capable. When using CD as the supervision, it is less
objective to prove its superiority by providing CD is best.

Fig. 6 illustrates several reconstruction results for three
networks under various supervisions. MPED(p = 2, Ψ2) are
set as representation. We see that: i) the results of CD present
structure losing or blurred, especially finer parts, e.g., the leg of
a chair; ii) EMD presents some “noise” points around sample
surface, which means the coordinate of a single point is not
accurate enough. iii) the proposed MPED can reconstruct each
part of samples with high quality.
• 3D Shape Completion
Same to reconstruction, we use the ShapeNet dataset pro-

posed in [8]. Four sub-categories from ShapeNet are used
as the test sequences, e.g., “Chair”, “Airplane”, “Table” and
“Car”. The incomplete samples are generated via the method
proposed by [11]. Specifically, for each sub-category, we set
75% as training set and 25% as testing set. We use LatentNet
[8], PF-Net and PF-GAN [11] with default network parameter
setting to test the empirical performances of various loss func-
tions on the task of shape completion. Besides the individual
performance, we also present average performance treating
four categories as a whole. All the results are shown in Table
VI. We see that: i) for three networks, EMD presents the best
EMD, while other top performances are provided by MPED;
ii) similar to point cloud reconstruction, the four versions of
MPED show similar performances under most cases, which
also proves the robustness of the proposed method.

The qualitative examples of shape completion are illustrated
in Fig. 7. MPED(p = 1, Ψ2) is selected as the MPED
representation. For LatentNet, the output is the whole sample,
while PF-GAN and PF-Net only generate the missing part.
We use black points to represent the input samples, grey points
represent the hollow part (e.g., airplane tail), and orange points
to highlight generated points. We see that: i) the tail of CD is
quite blurred, while EMD is too tight with several scattered
points far away from the reconstructed surface; and ii) the
proposed MPED generates the most realistic hollow part.
• 3D Point Cloud Upsampling
We use PU-Net [41] to test the performance of three loss
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Model Loss CD(×10e-4) EMD(×10e1) JSD(×10e-2)
Chair Air Table Rifle Ave Chair Air Table Rifle Ave Chair Air Table Rifle Ave

L
at

en
tN

et

CD 6.84 2.35 6.47 2.82 4.62 4.88 2.28 5.78 4.68 4.41 3.13 1.84 3.35 3.21 2.88
EMD 11.74 3.51 12.57 4.03 7.96 2.36 1.21 2.43 2.41 2.10 1.57 1.73 1.38 1.80 1.62

MPED(p = 1, Ψ1) 6.86 2.42 6.85 2.84 4.74 3.26 1.65 3.16 3.62 2.92 0.55 0.70 0.47 0.96 0.67
MPED(p = 1, Ψ2) 7.25 2.43 7.13 2.87 4.92 2.92 1.43 2.79 3.26 2.60 0.47 0.49 0.30 0.72 0.50
MPED(p = 2, Ψ1) 7.35 2.57 7.13 2.80 4.96 2.98 1.44 2.87 3.28 2.64 0.51 0.47 0.30 0.63 0.48
MPED(p = 2, Ψ2) 7.35 2.57 7.13 2.80 4.96 2.98 1.44 2.87 3.28 2.64 0.51 0.47 0.29 0.63 0.48

A
tla

sN
et

CD 20.67 3.08 29.46 3.39 8.98 3.76 3.21 4.19 4.94 4.03 2.93 9.98 2.61 12.70 7.06
EMD 22.74 3.59 8.99 6.89 10.55 2.79 0.73 1.65 2.90 2.02 3.18 2.44 0.82 6.12 3.14

MPED(p = 1, Ψ1) 13.84 3.04 7.70 4.81 7.35 2.22 0.96 2.19 1.93 1.83 0.92 0.98 0.78 1.35 1.01
MPED(p = 1, Ψ2) 11.12 4.25 8.01 6.26 7.41 1.98 0.96 1.79 1.78 1.63 0.95 1.67 0.66 1.46 1.19
MPED(p = 2, Ψ1) 15.25 2.82 7.76 2.99 7.21 2.48 0.89 2.05 1.80 1.81 1.55 1.37 0.67 1.06 1.16
MPED(p = 2, Ψ2) 8.18 2.97 8.20 3.73 5.77 1.69 0.79 1.90 1.98 1.59 0.69 1.51 0.62 1.69 1.13

Fo
ld

in
gN

et
++

CD 9.11 3.17 8.29 3.43 7.43 7.10 2.98 13.14 5.25 7.12 11.18 9.46 8.03 10.57 9.81
EMD 10.97 4.67 11.86 6.61 11.49 2.00 1.23 2.01 2.67 1.98 1.92 4.37 1.98 5.13 3.35

MPED(p = 1, Ψ1) 6.74 2.33 6.36 2.65 4.52 2.68 1.52 2.31 2.68 2.30 0.94 1.06 0.40 1.08 1.37
MPED(p = 1, Ψ2) 6.65 2.33 6.26 2.62 4.47 2.35 1.11 2.01 2.76 2.06 0.58 0.95 0.42 0.92 0.72
MPED(p = 2, Ψ1) 7.52 2.33 6.36 2.65 4.72 2.92 1.52 2.31 2.68 2.36 1.24 1.06 0.40 1.08 0.95
MPED(p = 2, Ψ2) 6.79 2.48 7.02 3.03 4.83 2.43 1.16 2.19 2.95 2.18 0.66 0.82 0.62 1.67 0.94

TABLE V: Point cloud reconstruction on ShapeNet. The proposed MPED grants most of the top-level performance on different
networks.

Model Loss CD(×10e-3) EMD(×10e1) JSD(×10e-1)
Chair Air Table Car Ave Chair Air Table Car Ave Chair Air Table Car Ave

L
at

en
tN

et

CD 8.05 5.00 4.99 5.68 5.93 5.87 4.32 3.50 3.44 4.28 5.79 4.39 4.21 3.97 4.59
EMD 5.04 2.58 5.01 5.41 4.51 1.44 1.17 1.69 1.53 1.46 5.22 3.78 4.16 3.50 4.17

MPED(p = 1, Ψ1) 3.93 2.43 4.05 4.33 3.69 1.89 1.88 2.07 1.60 1.86 4.73 3.49 3.64 3.20 3.77
MPED(p = 1, Ψ2) 3.90 2.35 4.26 4.33 3.71 1.67 1.65 1.91 1.47 1.68 4.72 3.49 3.68 3.16 3.76
MPED(p = 2, Ψ1) 3.86 2.33 3.91 4.33 3.61 1.87 1.69 2.19 1.52 1.82 4.95 3.63 3.84 3.20 3.91
MPED(p = 2, Ψ2) 3.82 2.16 3.95 4.16 3.52 1.60 1.40 1.88 1.34 1.58 4.82 3.51 3.80 3.18 3.83

PF
-N

et

CD 3.98 2.32 4.28 4.56 3.79 4.35 2.50 4.65 3.26 3.69 5.66 4.34 4.14 3.84 4.50
EMD 5.57 3.22 5.57 5.57 4.98 1.40 1.08 1.59 1.47 1.39 5.35 4.04 4.29 3.42 4.28

MPED(p = 1, Ψ1) 3.72 2.17 4.17 4.32 3.60 1.53 1.21 1.83 1.40 1.49 4.62 3.34 3.56 3.10 3.66
MPED(p = 1, Ψ2) 3.96 2.27 4.51 4.49 3.81 1.83 1.50 2.24 1.43 1.75 4.75 3.50 3.64 3.19 3.77
MPED(p = 2, Ψ1) 4.89 3.03 5.31 5.02 4.56 1.78 1.47 2.13 1.55 1.73 5.16 4.04 3.98 3.40 4.15
MPED(p = 2, Ψ2) 5.44 3.51 5.97 5.40 5.08 2.29 1.77 3.20 1.77 2.26 5.39 4.35 4.23 3.49 4.37

PF
-G

A
N

CD 4.80 2.60 4.99 5.03 4.36 2.15 1.60 2.60 1.68 2.01 5.22 4.10 4.13 3.35 4.20
EMD 5.43 2.93 5.44 5.70 4.88 1.37 1.01 1.58 1.41 1.33 5.36 3.99 4.20 3.60 4.29

MPED(p = 1, Ψ1) 4.25 2.46 5.13 4.82 4.17 1.83 1.42 2.22 1.55 1.76 4.78 3.53 3.74 3.17 3.81
MPED(p = 1, Ψ2) 3.94 2.11 4.43 4.50 3.75 1.57 1.29 1.92 1.42 1.55 4.64 3.38 3.64 3.16 3.71
MPED(p = 2, Ψ1) 7.24 5.02 8.19 7.34 6.95 2.13 1.85 2.63 1.68 2.07 5.99 5.29 4.88 3.98 4.29
MPED(p = 2, Ψ2) 5.88 3.60 6.50 6.10 5.52 1.89 1.64 2.29 1.59 1.85 5.53 4.59 4.39 3.68 4.55

TABLE VI: Shape completion on ShapeNet. The proposed MPED grants most of the top-level performance on different
networks.

Ground truths

(4096 points)
Input

(1024 points)

Output

(CD)

Output

(EMD)

Output

(MPED)

Fig. 8: Illustration of point cloud upsampling. The proposed MPED presents the best upsampling results.
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Model Ratio Loss Upsampling
CD EMD JSD

PU-Net

2

CD 6.50 5.93 10.12
EMD 9.17 4.92 13.53

MPED(p = 1, Ψ1) 5.82 4.49 8.36
MPED(p = 1, Ψ2) 6.23 4.41 9.05
MPED(p = 2, Ψ1) 6.21 4.59 9.13
MPED(p = 2, Ψ2) 6.64 4.47 9.66

4

CD 2.78 8.64 4.57
EMD 5.56 8.26 7.85

MPED(p = 1, Ψ1) 2.89 7.97 3.55
MPED(p = 1, Ψ2) 3.63 7.85 4.41
MPED(p = 2, Ψ1) 3.03 7.90 3.76
MPED(p = 2, Ψ2) 3.48 7.70 4.19

TABLE VII: Upsampling results on PU-Net (CD (×10e-4),
EMD (×10e1), and JSD (×10e-2)). The proposed MPED
presents most of the top-level performance.

functions for the upsampling task. We vary the upsampling
ratio as 2 and 4, respectively. And the we use the database
provided by the [41], all the experiment parameters are default
parameters refer to the implementation proposed by [42].
The results are shown in Table VII. Fig. 8 illustrates some
upsampling examples under ratio = 4, and MPED(p = 1,
Ψ1) is used as representation. We zoom in some details for
better observation.

We see that: i) for both ratio = 2 and 4, the MPED
presents dominant performance; and ii) compared with MPED,
CD presents more discontinuities, such as holes in horse’s leg
and chair’s seat; EMD generates some uneven texture, which
damages the viewing experience to some extent.

Ablation Study: Convergence Rate.
To illustrate the effectiveness of the proposed MPED, Fig. 9

(a) shows the tradeoff between performance and computational
cost. We use LatentNet as an example. The y-axis shows the
performance of JSD under different loss functions, and the
x-axis shows the training time. We see that MPED achieves
lower JSD while reducing the computational time by 3 times
compared to EMD. Fig. 9 (b)-(d) show the reconstruction loss
of CD, EMD and JSD under different training epochs.

For CD, e.g., Fig. 9(b), MPED presents obvious faster
convergence rate in the early stage, after which it realizes close
performance with CD; for EMD, e.g., Fig. 9(c), the variation
of EMD and MPED curves show similar trends. They cost
around 300 epochs to reach stable and best results; for JSD,
e.g., Fig. 9(d), 200 epochs is enough for MPED to converge to
stable results, while CD and EMD need 500 and 300 epochs,
respectively.

VII. CONCLUSIONS

In this paper, we propose a universal point cloud distortion
quantification named multiscale potential energy discrepancy
(MPED). The proposed MPED is differentiable, has low
computational complexity, and can discriminate distortions.
MPED presents robust performances for both human percep-
tion and machine perception tasks. Specifically, for human
perception tasks, MPED reveals the best performance on two
fairly large databases, e.g., SJTU-PCQA and LSPCQA; for
machine perception tasks, MPED shows better performance
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Fig. 9: (a) Performance vs. time. The proposed MPED presents
best performance with low time consuming; (b)-(c): recon-
struction loss under different training epochs (b) CD; (c) EMD;
(d) JSD.

than Chamfer distance and Earth mover’s distance on three
typical unsupervised tasks, e.g., point cloud reconstruction,
shape completion and upsampling. We further demonstrate the
robustness of MPED in ablation study, the results show that the
proposed MPED exhibits stable and reliable performance in
terms of various color spaces, and presents high optimization
efficiency as loss function.
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