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Thrombosis and hemostasis impact stroke neurology and 
cerebrovascular disease. Decision making for stroke pre-

vention and stroke treatment almost invariably involves phar-
macotherapies that involve coagulation, with drugs ranging 
from aspirin to anticoagulants, both new and old. Nevertheless, 
the focus on pharmacotherapy modulation of coagulation pro-
cesses tends to overlook some basic pathophysiological reali-
ties: the organ affected by stroke has its own unique system for 
regulation of thrombosis and hemostasis.

The purpose of this article is to review the brain’s intrin-
sic capacity for thrombosis and hemostasis regulation. At first 
glance, it may seem that this is esoteric subject matter. Indeed, 
until recently, it seemed that this material was largely of theo-
retical interest.

It is now evident that thrombosis, hemostasis, and the brain 
have enormous practical significance for the field of stroke 
neurology. Intrinsic regulation of thrombosis and hemostasis 
can no longer be ignored if one is to intervene pharmacologi-
cally in ways that impact coagulation. Manipulation of sys-
temic coagulation factors will necessarily have consequences 
implicating intrinsic brain regulatory mechanisms.

This article will review thrombosis and hemostasis from 
an organ-specific perspective and one organ in particular: the 
brain. The article will address how brain regulation of throm-
bosis and hemostasis manifests itself in the context of organ-
specific regulation. The phenomenon of cerebral microbleeds 
will then be discussed as a pivotal and perhaps paradigmatic 
example of the importance of this issue.

Thrombosis, Hemostasis, and Coagulation
The terms thrombosis, hemostasis, and coagulation are some-
times used interchangeably, but more precisely refer to differ-
ent processes. Hemostasis defines the avoidance or arrest of 
bleeding by maintaining blood within a vessel. Thrombosis 
is the formation of clot within a blood vessel, resulting in 
obstruction of flow, whereas coagulation refers to a liquid 
transformed into a coherent solid or semisolid mass.1

Coagulation is primarily regulated by circulating soluble 
factors, circulating cells, and vessel wall constituents, com-
bined with vascular integrity and blood flow. Circulating 
cells are considered the components of primary hemostasis, 

whereas circulating coagulation factors constitute secondary 
hemostasis.1 The 4-component model of coagulation (hepatic 
factors, bone marrow–derived hematopoietic cells, vascu-
lar tree, and endothelium) represents a useful conceptual 
approach to this complex system, in which primary hemosta-
sis consists of the relevant bone marrow–derived cells (plate-
lets and monocytes) while the liver provides the coagulation 
factors of secondary hemostasis.1

Another model incorporates the classical Virchow triad, 
consisting of alterations of blood flow, blood wall, and blood 
constituents. This model is typically used to explain predilec-
tion for thrombosis but is also highly relevant for maintenance 
of hemostasis.1–3 Although flow reduction, overproduction 
of coagulation factors, and exposure of subendothelial con-
stituents all contribute to thrombosis, low levels of coagula-
tion factors and disruption of vascular integrity will obviously 
impact hemostasis.

The process of coagulation (described in some detail in 
Figure 1) is initiated by activation of factor VII by tissue fac-
tor, and this extrinsic pathway activation is amplified by the 
intrinsic pathway.4 Coagulation activation leads to fibrin clot 
generation, and this process is largely regulated by 4 path-
ways, 3 of which are endothelial-based: the thrombomodulin-
protein C pathway, the tissue factor pathway inhibitor (TFPI) 
pathway, and the fibrinolytic pathway. Another important 
pathway involves circulating antithrombin III and cofac-
tor heparan sulfate proteoglycans (HSPG), which inhibit all 
coagulation proteases of the coagulation cascade.4,5 Studies on 
knockout mice demonstrate that all 3 anticoagulant pathways 
are necessary for coagulation cascade regulation; in contrast, 
animals lacking components of fibrinolytic pathway generally 
survive until adulthood, suggesting overlap of function for 
tissue-type plasminogen activator (tPA) and urokinase-type 
plasminogen activator (uPA).4

Organ-Specific Thrombosis and Hemostasis
Based on Virchow triad, it would be expected that substan-
tial alteration of circulating coagulation factors could result 
in diffuse thrombotic or hemorrhagic phenomena. And 
yet this is not the case, because focal or mutlifocal rather 
than diffuse events occur within the vasculature with these 
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changes in circulating factors. These local events, occurring 
in the presence of systemic changes of the coagulation sys-
tem, are indicative of organ-specific regulation of thrombo-
sis and hemostasis.5,6

Focal changes in the presence of a systemic prothrom-
botic state are evident in diseases of veins, arteries, and 
microvessels. There seems to be a dual basis for this focal-
ity, residing in the differential expression of anticoagulant 
and procoagulant factors within different elements of the 
vascular tree, along with specific effects of different organs.6 
For example, the endothelial protein C receptor (EPCR) is 
expressed predominantly in large arteries and veins, whereas 
TFPI is principally in capillaries.6,7 Other endothelial-depen-
dent anticoagulant (eg, nitric oxide) and procoagulant (von 
Willebrand factor) molecules show predilection for arteries 
and veins, respectively.6,8

Arterial thromboses are particularly dependent on loss of 
vascular integrity with consequent exposure of subendothelial 
surfaces to blood.6 Nevertheless, thrombotic occlusion of the 
coronary arteries does not substantially increase with deficien-
cies of the protein C, protein S, or antithrombin III pathway.5 
On the contrary, deficiencies of these same factors clearly 
predispose to venous thrombosis.5,6 These venous thromboses 
tend to occur in the lower extremities, at sites of venous valve 
pockets where stagnation of flow and local hypoxia are com-
mon.6,9 A vastly different distribution of thrombosis occurs 
in the presence of polycythemia vera, paroxysmal nocturnal 
hemoglobinuria, and essential thrombocythemia, in which 

intraabdominal veins (where valves are sparse, if present at 
all) are common sites of thrombi.5,10

Further demonstration of the complexity of thrombus dis-
tribution is observed in the smaller vessels. The syndrome 
of erythromylagia, due to thrombotic occlusion of arterioles, 
tends to localize to the toes and fingers and is provoked by 
presence of myeloproliferative syndromes polycythemia 
vera and essential thrombocythemia.6,11 In contrast, warfarin-
induced skin necrosis tends to occur in buttocks, thighs, and 
breasts and is due to thrombotic occlusion of dermal venules 
in the presence of low circulating protein C.5,6,12

The concept of organ-specific regulation has been more 
frequently applied to thrombosis rather than hemostasis. 
Nevertheless, there are notable differences in the distribution 
of hemorrhage, with variations observed in both murine mod-
els and humans.4 The principal differences seem to depend on 
whether there are deficiencies of the extrinsic or intrinsic path-
ways. For example, low expression of tissue factor and low 
levels of factor VII both lead to murine hemorrhage in heart, 
lung, testis, uterus, and placenta.4 Deficiencies of intrinsic 
pathway, specifically factors VIII or IX, lead to hemorrhage 
involving muscles and joints, where tissue factor expression 
is known to be low.4

Additional evidence for organ-specific regulation of throm-
bosis derives from a variety of knockout mice, involving tPA, 
thrombomodulin, and TFPI.13–18 Initial reports of mice with 
combined deficiency of both tPA and uPA, with or without 
endotoxin injection to provoke thrombosis, showed extensive 

Figure 1. The complexities of the coagulation pathways are illustrated here. The effects of tissue factor (TF)–mediated activation of fac-
tor VII (FVIIa), representing extrinsic pathway activation, are amplified by the intrinsic pathway; this results in thrombin activation and 
generation of soluble fibrin monomer (SFM) and fibrin clot. This procoagulant pathway is negatively regulated by 3 anticoagulant path-
ways, 2 of which are derived from endothelial cells (EC): tissue factor pathway inhibitor (TFPI), which forms a quaternary complex with 
TF, FVIIa, and factor Xa (FXa); and the thrombomodulin (TM)–protein C (PC) pathway, in which the TM–thrombin complex activates PC, 
a process which is amplified by the endothelial protein C receptor (EPCR) with the resulting activated protein C (aPC) and its cofactor 
protein S (PS) then capable of inactivating factor Va (FVa) and factor VIIIa (FVIIIa). The third major anticoagulant pathway consists of cir-
culating antithrombin III (AT), which can inhibit thrombin, FXa, and other serine proteases; actions of AT are vastly amplified by its bind-
ing with endothelial-derived heparan sulfate proteoglycans (not shown). FXa is also inhibited by protein Z (PZ), whereas heparin cofactor 
(HC II) is another thrombin inhibitor. Fibrin dissolution is produced by the fibrinolytic pathway, with plasmin-induced clot lysis producing 
fibrin degradation products (FDP). Plasmin is derived from tissue-type plasminogen activator (tPA) or urokinase-type plasminogen acti-
vator (uPA) actions on plasminogen. Both tPA and uPA are inhibited by plasminogen activator inhibitor-1 (PAI-1), whereas tPA effects 
are amplified by annexin II (AnxII). Other negative regulators of fibrinolysis include α2-antiplasmin (α2-AP) and thrombin-activatable fibri-
nolysis inhibitor (TAFI). Thrombogenic surfaces for the FVa:FXa (prothrombinase) complex, the FVIIIa:factor IXa (FIXa) (intrinsic tenase) 
complex, and for factor XIa (FXIa) are provided by platelets (Plt). Factor XIIa (FXIIa) may participate in initiation and propagation of clot, 
whereas factor XIIIa stabilizes thrombus by crosslinking fibrin monomers. Reprinted from Mackman4 with permission of the publisher. 
Copyright ©2005, Wolters Kluwer Health.
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fibrin deposition in liver, lung, intestine, and uterus; thrombo-
sis of brain was not reported.13 A later study investigating mice 
deficient for either tPA or uPA demonstrated 10- to 20-fold 
increased fibrin deposition in vasculature of lung, spleen, heart, 
and liver. However, brain and kidney were spared thrombosis.14

Further studies examined effects of murine thrombomodu-
lin deficiency. Mice with inactivation of both alleles of the 
thrombomodulin gene demonstrated extensive fibrin deposi-
tion in lung; brain was not specifically examined in this study.15 
Studies of mice with heterozygous thrombomodulin deficiency 
and with modified thrombomodulin containing a single amino 
acid substitution (producing vastly reduced ability to activate 
protein C) showed extensive fibrin deposition in lung, heart, 
spleen, liver. Once again, brain and kidney did not demonstrate 
this fibrin deposition.14 The effect of the murine thrombomodu-
lin gene mutation (single amino acid substitution) was further 
studied using endotoxin, which provoked thrombosis in kidney, 
heart, spleen, and lung; however, the brain was again spared.16

These findings of organ-specific thrombosis (and organ-
sparing of thrombosis) were further explored by examining 
the effects of combining deficiencies of thrombomodulin with 
tPA/uPA and TFPI deficiency. Studies of single- and double- 
knockouts for murine thrombomodulin, tPA, and uPA showed 
that tPA had greatest impact on fibrin deposition in the heart.17 
Tissue deposition of fibrin was also studied in mice hetero-
zygous for TFPI deficiency combined with thrombomodulin 
mutation (single amino acid substitution), with fibrin dem-
onstrated in liver but not lung or heart. The impact of these 
combined defects included some evidence of fibrin deposition 
in pial vasculature.18

These murine investigations are consistent with clini-
cal studies indicating the focal and organ-specific nature of 
thrombosis and hemostasis. The murine investigations also 
emphasize a unique role for the brain in this organ-specific 
regulation. The concept of brain-specific regulation is sup-
ported by the paucity of brain thrombosis in these various 
knockout models. Taken together, these findings suggest that 
the brain, compared with other organs, has less reliance on 
antithrombotic and fibrinolytic pathways and imply that pro-
tection against hemorrhage is a higher priority for the brain.

Characteristics of Brain-Specific Regulation
The central nervous system fits well within the context of 
organ-specific regulation of thrombosis and hemostasis. The 
brain microvasculature demonstrates a remarkably consistent 
pattern of structural and functional organization that offers an 
unusual degree of protection against hemorrhage. These find-
ings are localized principally at the microvascular endothelial 
junctions, combined with constituent underexpression of a 
variety of antithrombotic molecules.

Structural Characteristics
Brain capillaries are well known for their characteristic tight 
junction features that largely constitute the blood–brain bar-
rier (BBB; Figure 2).19 This barrier is typically viewed from 
the perspective of limiting molecular transit into the brain. It 
is less well appreciated that this same barrier offers substantial 
protection against hemorrhagic phenomenon.

In systemic capillaries, ladder-like adherens junctions 
offer the principal structural protection against hemorrhage 
at the endothelial junction.20 These junctions are extensively 
enhanced in brain capillaries by the BBB. The tight junc-
tion constituents claudins and occludins provide protection 
against hemorrhage that goes well beyond adherens junc-
tions.19 This additional barrier is credited for the relative spar-
ing of the brain in systemic hemorrhagic phenomena, such as 
thrombocytopenia.20,21

Structural protection against hemorrhage in the microvas-
culature is not limited to tight junctions alone. The BBB peri-
cyte is preferentially localized opposite tight junctions. This 
characteristic pericyte localization allows for paracrine pro-
duction of a variety of trophic factors that enhance the BBB.22 
Adjacent astrocytes (Figure 3) were initially described as the 
principal initiator of paracrine regulation of the BBB,23 and 
the relative impact of these two cell types (pericytes and astro-
cytes) on barrier characteristics varies under different physi-
ological and pathological conditions.22,24

Although these paracrine effects are well known, the peri-
cyte offers additional hemorrhagic protection in the form of 
a structural barrier to crossing the junction, as well as phago-
cytic function that may further enhance this barrier protection 
effect.22 The location of the pericyte opposite the interendothe-
lial junction in effect constitutes a gate, preventing egress of 
blood constituents (Figure 3). This gatekeeper element of the 
pericyte, preventing exit of erythrocytes, may then be ampli-
fied by the erythrophagocytic function that is well described 
in systemic pericytes.25,26

Pathological and experimental evidence support this role 
for brain pericytes. A neuropathological study of cerebral 
microscopic hemorrhage, by electron microscopy, demon-
strated iron deposition in a pericyte immediately opposite 
a tight junction of a brain capillary, consistent with phago-
cytosis by pericytes of erythrocytes exiting capillaries.27 
Moreover, a mouse knockout model of the pericyte ligand 
platelet–derived growth factor receptor β, which results in 
absence of brain microvascular pericytes—with consequent 

Figure 2. Endothelial tight junctions, with transmembrane mol-
ecules occludin and claudin interacting with actin cytoskeleton 
and zonula occludens (ZO) proteins, including ZO-1. Reprinted 
from Kim et al19 with permission of the publisher. Copyright 
©2006, BMB Reports (http://www.bmbReports.org/).
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BBB dysfunction, microglial activation, and irreversible neu-
ronal injury—exhibits microscopic capillary hemorrhage.28 
These findings provide some indirect evidence that brain 
microvascular pericytes provide protection against capillary 
hemorrhage in the brain.

Functional Characteristics
Vascular endothelium is characterized by constitutive expres-
sion of a variety of antithrombotic factors, which are expressed 
in a tissue-specific manner. In brain microvasculature, the 
unique cellular configuration impacts endothelial expression 
of these molecules. Moreover, brain microvascular cells in 
addition to endothelium, specifically astrocytes and pericytes, 
seem capable of providing unique contribution to thrombosis 
and hemostasis.

Functional components of the thrombosis and hemostasis 
regulatory system involve three principal antithrombotic path-
ways, as previously described: thrombomodulin, HSPG, and 
TFPI pathways. Moreover, the endogenous fibrinolytic path-
way is tPA-dependent, and the coagulation cascade itself is 
generated by tissue factor. As will be evident, all these compo-
nents have expression regulated at the level of the brain micro-
vasculature. Tissue factor and tPA in brain microvasculature 
are further regulated by specific cellular expression of astro-
cytes and pericytes.

Thrombomodulin
Thrombomodulin, the endothelial integral membrane protein 
cofactor for activation of protein C, first attracted neurological 
attention with the report that it was absent in human brain.29 
This initial observation was followed by a study that demon-
strated presence of thrombomodulin in brain capillaries, with 
particularly low expression in brain regions where small, deep 
infarctions (lacunes) are most prominent.30

These pathological investigations were followed by a series 
of in vitro studies examining regulation of brain microvas-
cular endothelial thrombomodulin expression. These studies 

demonstrated transcriptional regulation of endothelial throm-
bomodulin expression by astrocytes, with ≈20-fold down-
regulation of thrombomodulin expression when elements 
of the BBB became manifest.31 Later work showed that this 
downregulation was mediated in vitro by transforming growth 
factor-β.32 This work was one of the first descriptions of organ-
specific regulation of thrombosis and hemostasis.

Recent additional studies of thrombomodulin have shown 
enhanced expression of thrombomodulin in small arteries 
in the presence of small vessel disease,33 raising intriguing 
possibilities relating thrombomodulin and pathogenesis of 
small vessel stroke. Whether this enhanced thrombomodu-
lin expression in small vessel disease is specific for brain 
arteries remains to be determined. The EPCR, located adja-
cent to thrombomodulin and acting to enhance protein C 
activation ≈10-fold,34 has expression preferentially located 
to endothelium of arteries and veins, with low or absent 
expression in capillaries of brain and other organs.35

Fibrinolytic Pathway: tPA and Plasminogen Activator 
Inhibitor-1
tPA is the critical endothelial-dependent serine protease, bind-
ing to fibrin and activating the fibrinolytic pathway.4 Capillary 
tPA expression is largely absent in primate brain, with >95% 
showing no immunoreactivity.36 Systemic, but not brain, 
endothelial cells release tPA in response to α-thrombin in 
vitro.37,38 Multiple BBB models have demonstrated restricted 
expression of brain microvascular endothelial tPA in presence 
of BBB properties.39–41

Plasminogen activator inhibitor-1 (PAI-1) is the principal 
fibrinolysis inhibitor, and its expression has been studied in 
vitro and in vivo. Brain expression of PAI-1 shows no over-
all increased inducible expression in vivo.42 However, exami-
nation of PAI-1 expression in BBB models shows enhanced 
expression of PAI-1 by brain microvascular endothelium.39,41,43

Taken together, these studies of fibrinolysis by brain 
microvascular endothelium indicate restricted expression 

Figure 3. A model illustrating elements of brain-
specific hemostasis regulation. A pericyte, opposite 
capillary tight junction, prevents red blood cell exit, 
whereas tissue factor–expressing astrocytes pro-
vide additional protection against hemorrhage.
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of microvascular tPA and increased expression of PAI-1 by 
microvascular endothelium. The net effect of these changes is 
expected to be antifibrinolytic. The specific regulation of brain 
microvascular fibrinolysis seems to be a function of the BBB.

Tissue Factor
Tissue factor is the principal generator of the coagulation cas-
cade and is known to have a distribution suggesting its func-
tion as a hemostatic envelope surrounding blood vessels and 
encasing organs.44 The brain, of all body organs, is among the 
most robust sources of tissue factor.44,45 Immunohistochemical 
studies have demonstrated that astrocytes, including BBB 
astrocytes, are the principal source of tissue factor in the cen-
tral nervous system.46 Astrocyte expression of tissue factor at 
the BBB is entirely consistent with the hemostatic envelope 
concept, providing protection against hemorrhage particularly 
at the microvascular level. Tissue factor has also been local-
ized to surface of brain pericytes.47

Tissue Factor Pathway Inhibitor
TFPI, representing 1 of 3 critical anticoagulant pathways, 
is a protease inhibitor synthesized by endothelial cells and 
acting, via factor Xa, on the tissue factor–VIIa complex.4 
Organ expression study of TFPI demonstrated that only 
brain demonstrated absence of tissue factor pathway mRNA 
by Northern blot.48 Using polymerase chain reaction, TFPI 
message was detectable in brain and estimated to be at a 
level ≈1/12 that of lung.48 Immunohistochemistry demon-
strated TFPI protein in brain endothelium; in addition, some 
staining for TFPI was observed by astrocytes and oligoden-
drocytes.48 These overall findings suggest relatively low 
expression of TFPI by brain.

Antithrombin III–HSPG
Antithrombin III–HSPG represents the third endogenous anti-
coagulant pathway, in addition to thrombomodulin and TFPI. 
Antithrombin III is another protease inhibitor, synthesized by 
liver and forming covalent complexes with coagulation fac-
tors, with actions amplified by several orders of magnitude 
when bound to HSPG in cell membrane or extracellular matrix 
basement membrane.49 HSPG is synthesized by endothelial 
cells, and tissue distribution of HSPG was studied in rat by 
immunohistochemistry of antithrombin III. Anticoagulantly 
active HSPG was demonstrable in most organs, but absent in 
brain capillaries by both light and electron microscopy.49

Protease Nexin-1
Protease nexin-1 is a serine protease inhibitor synthesized 
and secreted by a variety of cell types, including smooth 
muscle cells and platelets, and capable of inhibiting both 
thrombin and plasminogen activation.50 Brain expression of 
protease nexin-1 has been localized to pericytes in vitro51 
and astrocytes in tissue sections.52 Given its inhibitory 
effects on both thrombin and fibrinolysis, the net impact of 
protease nexin-1 expression (ie, pro- or anticoagulant) in 
brain is uncertain.

Prostacylin and Endothelial Nitric Oxide
Two critical endogenous regulators of platelet aggregation 
are prostacyclin and nitric oxide.53 Prostacyclin is derived 
from precursor prostaglandin H2 by prostaclyin synthase.54 

Prostacyclin is thought to be largely endothelial-dependent, 
although neuronal and glial sources, in addition to vascular 
origin, of prostacyclin synthase have been described.54 Organ 
distribution of prostacyclin synthase mRNA has been studied 
in rat, with relatively low expression in brain compared with 
most other organs.55

Endothelial nitric oxide synthase (eNOS) is the primary 
nitric oxide synthase expressed by endothelium, with endo-
thelial-derived NO an important regulator of platelet function; 
other sources of NO (neuronal NOS and inducible NOS) seem 
to have negligible effects on platelet function.56 Cell culture 
studies indicate low expression of eNOS by bovine brain 
microvascular endothelial cells.57 However, investigation of 
eNOS expression in transgenic mice suggested similar expres-
sion levels of eNOS compared with other organs studied.58

Summary
The brain displays a remarkably consistent pattern of hemo-
stasis regulation, providing a unique system integrating both 
structural and functional aspects (Table). The presence of tight 
interendothelial cell junctions, combined with pericyte local-
ization opposite these junctions, is then supplemented with a 
pattern of underexpression of most anticoagulant factors by 
endothelial cells, which are then further surrounded by tissue 
factor–expressing astrocytes. Organ-specific hemostatic regu-
lation, to prevent local hemorrhage, seems to be of exceptional 
importance for the brain.

Cerebral Microbleeds and Brain-Specific 
Hemostasis

There has been considerable attention to the phenomenon 
of cerebral microbleeds during the past decade. These focal 
areas of hemosiderin iron were initially studied by MRI using 
gradient echo sequence, and later investigations showed that 
susceptibility-weighted imaging was even more effective 
in demonstrating microbleeds.59 The consensus view is that 
cerebral microbleeds represent small foci of hemorrhage 
that are largely age-dependent.60 In addition to age, principal 
risk factors for microbleeds are cerebral amyloid angiopathy 

Table.  Elements of Brain-Specific Regulation of Thrombosis 
and Hemostasis

Expression Level/Consequence

Structural components

  Tight junctions Added barrier to RBC vascular escape

  Pericytes Enhance BBB and provide additional 
structural barrier to RBC escape

Functional components

  Thrombomodulin Restricted expression at BBB

  Tissue plasminogen activator Restricted expression at BBB

  Plasminogen activator inhibitor-1 Enhanced expression at BBB

  Tissue factor Enhanced expression (by astrocytes) 
at BBB

  Tissue factor pathway inhibitor Restricted expression at BBB

  Heparan sulfate proteoglycans Restricted expression at BBB

BBB represents blood–brain barrier.
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(for cortical microbleeds) and hypertensive vasculopathy 
(for subcortical lesions).60,61 Microbleeds limited to lobar 
location are more prevalent in ApoE €4 carriers and with 
the ApoE €2/€2 genotype.60 There is a strong correlation 
between cerebral microbleeds and cerebral white matter dis-
ease of aging (leukoaraiosis),62–68 and microbleeds are also 
associated with ischemic and hemorrhagic stroke, as well as 
Alzheimer disease.69–71

Most studies of cerebral microbleeds have focused on 
their imaging and their correlates with aging and a variety 
of disease entities as noted above. Increasingly, attention 
has been directed to what the presence of microbleeds tells 
us about the brain itself. The latter is an issue that involves 
neurological consequences of microbleeds, the impact 
of pharmacotherapies on microbleeds, and perhaps most 
importantly the underlying pathophysiological mechanisms 
for cerebral microbleeds.

Clinical and radiological correlates of cerebral micro-
bleeds provide clues to their underlying pathophysiology.  
(1) Cerebral microbleeds show strong age-dependence. In a 
population-based cohort study, microbleeds were demonstra-
ble in only 6.5% of subjects aged 45 to 50 years, but increas-
ing to 35.7% in individuals aged ≥80 years.60 (2) Cerebral 
amyloid angiopathy is a well-defined risk factor for cerebral 
microbleeds, particularly cortical or peripheral microbleeds.60,61  
(3) Hypertension is another well-defined risk factor for micro-
bleeds, particularly subcortical or deep microbleeds.60,61 (4) A 
strong and consistent association has been observed between 
cerebral microbleeds and white matter disease of aging.62–68

What do these correlates tell us about the process(es) that 
produces cerebral microbleeds? The current consensus view is 
that cerebral microbleeds are produced by focal tears in small 
arteries or arterioles leading to local bleeding,72,73 and this 
seems highly likely at least for some cases given the strong 
association between cerebral microbleeds and clinical intrace-
rebral hemorrhage74; indeed, there is evidence suggesting het-
erogeneity among cerebral microbleeds.75 Nevertheless, the 
radiographic appearance of cerebral microbleeds can some-
times suggest a different etiology. Figure 4 shows examples 
of cerebral microbleeds from 2 different patients in which a 
diffuse, disseminated process, rather than a focal or multifocal 
process, would seem to be more likely. These cases, although 
perhaps clinically extreme, are shown to emphasize a point: 
a disseminated process seems capable of producing the MRI 
appearance of cerebral microbleeds.

The likely source of such a diffuse process underlying 
cerebral microbleeds would involve the microvasculature. 
There are multiple lines of evidence supporting this conten-
tion: (1) White matter disease of aging, strongly correlated 
with cerebral microbleeds, seems to have a microvascular 
origin, probably involving the BBB,76 and is likely to involve 
inflammatory and oxidative injury.77 (2) The BBB is well 
known to exhibit age-dependent changes, with increased 
permeability demonstrable with aging.78,79 (3) Both hyper-
tension and cerebral amyloid angiopathy have been shown 
to contribute independently to BBB dysfunction by oxida-
tive injury, inflammation, and tight junction alterations.80,81 
(4) MRI of high- altitude cerebral edema patients, a clinical 
syndrome known to be microvascular in origin and almost 
certainly involving BBB disruption, demonstrates cerebral 
microbleeds.82

Given these elements of circumstantial evidence relat-
ing cerebral microbleeds to microvascular dysfunction, it 
is noteworthy that careful neuropathological evidence has 
demonstrated age-dependent capillary hemorrhage in human 
brain.27,83–86 This was first described as high prevalence of cor-
tical microscopic hemorrhage in aging brain,83 and high prev-
alence of capillary-derived cerebral microscopic hemorrhage 
has subsequently been confirmed by multiple studies.27,84–86 
Indeed, presence of microscopic hemorrhage in putamen 
is almost invariably present in human brain from subjects  
aged >70 years and existing independent of either hyperten-
sion or local deposition of amyloid.27

The fact that there is age-dependent accumulation of small 
foci of hemorrhage within the brain is striking. As discussed 
above, the brain is characterized by a unique system of brain-
specific hemostasis regulation, focused on the microvascula-
ture, largely encompassed by the BBB, and, by all appearances, 
designed to protect the brain against occurrences such as 
microbleeds. It is logical to consider the likelihood that devel-
opment of cerebral microbleeds represents progressive failure 
of this system of brain-specific hemostasis, a scenario that is 
outlined in Figure 5. In this scenario, age-dependent changes 
of brain-specific hemostasis are amplified by effects of hyper-
tension and amyloid angiopathy, with superimposed transient 
injury contributing to formation of microhemorrhages/micro-
bleeds. The transient injury may be inflammatory, known to 
produce enhanced transcellular permeability,87 and amplifica-
tion of cerebral microhemorrhages has been demonstrated in 
this setting.88

Figure 4. Examples of severe cerebral microbleeds, 
imaged using 3-Tesla MRI and susceptibility-
weighted imaging sequences. A, A 67-year-old 
man with hypertension; (B) A 51-year-old man with 
multiple medical problems, including hypertension, 
diabetes, end-stage renal disease, sepsis, and 
thrombocytopenia; a right frontal intracerebral hem-
orrhage was also present (not shown).
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Therapeutic Challenges: Mixed  
Cerebrovascular Disease

Stroke prevention efforts typically are either–or affairs, focus-
ing on either ischemic stroke or hemorrhagic stroke. It has 
become increasingly clear that that approach is overly simplis-
tic, due to frequent coexistence of ischemic and hemorrhagic 
cerebrovascular disease. It thus becomes critical to clarify: For 
what kind of cerebrovascular disease is preventative treatment 
being offered?

This difficult clinical context has led to the development of 
a new diagnostic formulation for stroke: mixed cerebrovas-
cular disease.89,90 This diagnostic categorization incorporates 
both ischemic and hemorrhagic stroke, clinical and subclini-
cal. Ischemic syndromes include ischemic stroke (clinical) 
and silent infarction (subclinical), the latter occurring as much 
as 4 times more frequently than clinical infarction.91 White 
matter disease of aging is included on the ischemic side, with 
the acknowledged difficulties that it may be sometimes dif-
ficult to distinguish normal white matter changes of aging 
(present in >95% of the population aged >65 years) and path-
ological white matter disease (leukoariaosis).92 Hemorrhagic 
stroke syndromes include intracerebral hemorrhage (clinical) 
and cerebral microbleeds (subclinical).

The advantages of a diagnostic categorization of mixed 
cerebrovascular disease are its emphasis on coexistence of 
ischemic and hemorrhagic processes and the resultant impli-
cation that a more specific prevention strategy is indicated. 
The necessity for this specific prevention approach is based on 
the substantial body of data indicating that risk of hemorrhagic 
stroke is predicted by presence of cerebral microbleeds.74,75,93 
Adding to the complexity of this situation are the observa-
tions suggesting that microbleeds themselves may contribute 

to neurological dysfunction (see below), thereby emphasizing 
the importance of treatment strategies that limit progression of 
cerebral microbleeds.

Platelet medications used for stroke prevention are known 
to increase risk for intracerebral hemorrhage, with aspi-
rin increasing risk for hemorrhagic stroke by 84%94 and 
combined treatment with aspirin–clopidogrel increasing 
hemorrhagic stroke risk beyond what is encountered with 
clopidogrel alone.95 Multiple reports indicate an important 
linkage between cerebral microbleeds and risk for intracere-
bral hemorrhage, for patients with both hypertension and cere-
bral amyloid angiopathy.74,75 Cerebral microbleeds, therefore, 
represent a plausible mechanistic link between use of platelet 
medications and risk of intracerebral hemorrhage; this has in 
fact been well demonstrated, when Wong et al96 and others 
reported that presence of cerebral microbleeds increased risk 
for intracerebral hemorrhage in patients using aspirin.93

Intracerebral hemorrhage is the most feared complication 
of anticoagulant therapy, with warfarin therapy carrying a risk 
of intracerebral hemorrhage generally ranging from 0.3% to 
1% annually.97 This risk is substantially lessened, by as much 
as 33% to 60%, with the use of the new-generation antico-
agulants rivaroxaban and dabigatran.98,99 Cerebral microbleeds 
once again represent a plausible mechanistic link, and sub-
stantial increased risk of intracerebral hemorrhage (as high as 
>80-fold increase) has been reported in patients with cerebral 
microbleeds receiving anticoagulant therapy.100–102 Moreover, 
cerebral white matter disease of aging is linked to increased 
risk (≈13-fold increase) of intracerebral hemorrhage in 
patients using warfarin,103 further emphasizing the likely com-
mon pathophysiological origin for both white matter disease 
of aging and cerebral microbleeds.

Although cerebral microbleeds represent an apparent 
mechanistic link between antithrombotic therapy and risk of 
intracerebral hemorrhage, the microbleeds themselves are 
increasingly associated with neurological dysfunction inde-
pendent of hemorrhage. For example, Qiu et al104 reported that 
presence of multiple cerebral microbleeds more than doubled 
the risk for vascular cognitive impairment. These findings, 
relating cerebral microbleeds and cognitive impairment, were 
largely confirmed by later work.105–107 A relationship between 
microbleeds and neurological dysfunction is not surprising, 
given the demonstrable effects of heme on microglial activa-
tion via toll-like receptor-4, with resultant enhanced cytokine 
expression producing inflammatory injury.108

Aspirin remains one of the most commonly used plate-
let medications for stroke prevention, but its use has been 
implicated in development of cerebral microbleeds. Vernooij 
et al109 reported ≈70% increased risk of cerebral microbleeds 
with use of platelet medications, and chronic use of aspirin 
(>5 years) was found to be associated with >5-fold increased 
risk of cerebral microbleeds in a Chinese population treated 
for cerebrovascular disease.110 The apparent aspirin–cerebral 
microbleed linkage, independent of the risk of intracerebral 
hemorrhage, emphasizes the importance of developing a more 
refined stroke prevention strategy that is less likely to contrib-
ute to development of cerebral microbleeds.

For the patient with mixed cerebrovascular disease, with 
coexistent ischemic and hemorrhagic processes, what will be 

Figure 5. A model relating brain-specific hemostasis regula-
tion to development of cerebral microscopic hemorrhage and 
microbleeds.  Transient injury may be inflammatory. HTN indi-
cates hypertension.
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the optimal approach for preventative treatment? Given the 
observed associations linking platelet medications and antico-
agulants with microbleeds and intracerebral hemorrhage, it is 
apparent that the standard one-size-fits-all approach for stroke 
prevention is insufficient. For the present, perhaps the most 
attractive strategy involves combining platelet effects with 
vascular wall protection.

A simple approach to achieve platelet inhibition and ves-
sel wall protection is via modulation of intracellular cyclic 
nucleotides, for both platelets and vascular endothelial cells. 
This is achievable via modification of signal transduction 
pathways using phosphodiesterase (PDE) inhibitors to regu-
late intracellular levels of cAMP and cGMP. PDE inhibitors, 
of which there are 11 families with >60 isoforms, modulate 
hydrolysis of these cyclic nucleotides.111 Elevation of platelet 
cAMP and cGMP interferes with all known platelet activation 
pathways,111 whereas cAMP pathways have a critical role in 
development of the BBB.112 Both dipyridamole and cilostazol 
are PDE inhibitors that have already been studied in stroke 
prevention trials and shown to be beneficial.113–116

Dipyridamole, with stroke prevention effects comparable 
to aspirin,113 acts via relatively nonspecific PDE inhibition 
impacting both PDE3 and PDE5.111 Dipyridamole produces 
platelet effects via elevation of plasma adenosine (by reduced 
red cell uptake) and increasing effects of prostacyclin and nitric 
oxide, whereas vessel wall protection is achieved by antioxi-
dative effects and reduction of interactions between platelets 
and monocytes.117 Reduction of infarct size in experimental 
stroke has been demonstrated with dipyridamole.118 Moreover, 
in a mouse model of cerebral microbleeds and at clinically 
relevant plasma levels, dipyridamole did not worsen cerebral 
microscopic hemorrhage in aged transgenic animals subjected 
to immunotherapy-induced hemorrhagic worsening.88

Cilostazol is a specific PDE3 inhibitor, resulting in rela-
tively selective inhibition of cAMP hydrolysis.111 Cilostazol 
inhibits multiple pathways of platelet activation and aggrega-
tion, whereas vessel wall protection has been demonstrated 
in vitro by enhancement of endothelial cell barrier properties 
and reduction of histamine-induced transient barrier disrup-
tion.111,119 Cilostazol has also been shown to reduce hemor-
rhagic conversion in several murine models of experimental 
stroke.120,121 In clinical stroke prevention trials, cilostazol has 
been demonstrated as effective compared with both placebo 
and aspirin. Hemorrhagic events, including intracerebral hem-
orrhage, were reduced by more than one half for cilostazol, 
compared with aspirin treatment.116

The patient with mixed cerebrovascular disease presents a 
unique therapeutic challenge, in which both ischemic risk and 
hemorrhagic tendencies must be addressed simultaneously. 
Therapy concurrently directed to both platelets and the vessel 
wall seems to be an attractive way to address this dilemma. 
This therapeutic challenge thus appears to represent a conse-
quence of changes in the specific system of hemostasis regula-
tion that resides in the brain.

Conclusions
The unique hemostasis regulatory system present in the brain 
resides in the microvasculature and seems primed to protect the 

brain against hemorrhagic injury. This regulatory system has 
important structural and functional components and appears 
largely to be a component of the BBB or neurovascular unit. It 
is proposed that changes in brain-specific hemostasis regula-
tion are a critical underlying factor for age-dependent hem-
orrhagic changes of the brain, which manifest pathologically 
as microscopic hemorrhage and radiographically as cerebral 
microbleeds.

Much work needs to be done to fully flesh out this conceptual 
framework. Development of new animal models of cerebral 
microbleeds will be an important step,122 as well as definition 
of molecular elements of age-dependent changes of the BBB. 
Exquisitely careful correlations will be necessary between 
MRI cerebral microbleeds and neuropathologically demon-
strable cerebral microscopic hemorrhage. The relationship 
between cerebral microinfarcts123 and cerebral microscopic 
hemorrhage86 represents an important area for investigation, 
particularly with potential contribution of hemorrhagic micro-
infarction to development of cerebral microbleeds.86

The future evolution of stroke prevention efforts will need 
to more carefully address the underlying pathophysiology 
of the ongoing cerebrovascular processes of concern. Just 
as with the revision of our concepts of transient ischemic 
attacks,124 newer definitions such as mixed cerebrovascular 
disease may lead to more effective efforts to reduce the prev-
alence of stroke.  This will only come about with optimal 
efforts addressing stroke prevention.
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