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Abstract

Variations on the Theme of the Conley Conjecture

by

Doris Hein

We prove a generalization of the Conley conjecture: Every Hamiltonian

diffeomorphism of a closed symplectic manifold has infinitely many periodic orbits if

the first Chern class vanishes on the second fundamental group. In particular, this

removes the rationality condition from similar theorems by Ginzburg and Gürel. The

proof in the irrational case involves several new ingredients including the definition

and the properties of the filtered Floer homology for Hamiltonians on irrational

manifolds. For this proof, we develop a method of localizing the filtered Floer

homology for short action intervals using a direct sum decomposition. One of the

summands only depends on the behavior of the Hamiltonian in a fixed open set

and enables us to use tools from more restrictive cases in the proof of the Conley

conjecture. We also prove the Conley conjecture for cotangent bundles of oriented,

closed manifolds, and Hamiltonians, which are quadratic at infinity, i.e., we show

that such Hamiltonians have infinitely many periodic orbits.
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Chapter 1

Introduction

The main topic of this thesis is Hamiltonian dynamics on symplectic man-

ifolds. We are particularly interested in the minimal number of periodic orbits

guaranteed by the topology of the underlying symplectic manifold. On many mani-

folds, it is known that every Hamiltonian system has infinitely many periodic orbits

and we extend the class of manifolds for which this result is established. More con-

cretely, we remove the rationality condition from the analogous theorem in [GG2]

for closed manifolds. We also prove the existence of infinitely many periodic orbits

for a certain class of Hamiltonians on cotangent bundles in the original setting of

Hamiltonian mechanics.

Classical Hamiltonian mechanics on cotangent bundles is the historical ori-

gin of modern symplectic dynamics. In this physical setting, the Hamiltonian is a

time-dependent function on the phase space, i.e., on the cotangent bundle of the

configuration space (a manifold). The base B describes the set of possible positions

of the particle and the fiber coordinate in the cotangent bundle T
∗
B is the momen-

tum. The Hamiltonian is then the function that describes the total energy of the

system, i.e. the sum of kinetic and potential energy depending on the position and

the momentum. The cotangent bundle T
∗
B carries a natural symplectic structure

given by the non-degenerate 2-form ω = dp∧ dq. Here, q is the position on the base

B and p is the fiber coordinate, i.e., the momentum. In modern symplectic geome-

try, the role of cotangent bundles with its natural symplectic structure is taken by

general symplectic manifolds. The Hamiltonian is now a time-dependent function

on such a symplectic manifold (M2n
, ω).

1



By the non-degeneracy of the symplectic form ω, the Hamiltonian func-

tion induces the Hamiltonian vector field via the equation iXH
ω = −dH. The flow

of this vector field and its orbits are the topics of Hamiltonian dynamics. An im-

portant step in understanding the flow, we mostly focus on periodic orbits with

integer periods. These periodic orbits can also be described as fixed points of the

time-1-map, the Hamiltonian diffeomorphism, and its iterations. To study the or-

bits of Hamiltonian diffeomorphisms, we can restrict our attention to Hamiltonians

which are one-periodic in time, i.e., we can view the Hamiltonian as a function

H : S
1×M → R. For a general Hamiltonian, we can reparametrize time and obtain

a Hamiltonian which is one-periodic in time and gives rise to the same Hamilto-

nian diffeomorphism. The main theorem of this thesis establishes the existence of

infinitely many periodic orbits of Hamiltonian systems under certain conditions on

the symplectic manifold and, in the cotangent bundle case, on the class of considered

Hamiltonians.

Providing a lower bound for the number of periodic orbits of a Hamiltonian

system in terms of the topology of the manifold, Conley and Zehnder proved the

Arnold conjecture in [CZ1], i.e., they proved that every Hamiltonian diffeomorphism

has at least as many periodic orbits as the minimal number of critical points of

a function on the underlying manifold. Shortly after this proof, in 1984, Conley

conjectured in [Co] that on certain symplectic manifolds, every Hamiltonian system

has infinitely many periodic orbits. Originally stated for tori, the Conley conjecture

has by now been established in a variety settings both in Hamiltonian dynamics on

symplectic manifolds and also in the analogous form in Lagrangian mechanics.

In the framework of classical Lagrangian mechanics on tangent bundles,

the Conley conjecture has been studied e.g. by Long, Lu and Mazzucchelli in [Lo1,

Lu, Ma] for different classes of Lagrangians. The similarity between the problems in

Hamiltonian and Lagrangian dynamics can also be seen on the level of the proofs,

although the methods utilized in [Lo1, Lu, Ma] are quite different from the Floer

homological techniques used here. The class of Hamiltonians on a cotangent bundle

which are quadratic at infinity considered in this thesis includes the Hamiltonians

of classical mechanics (see Example 2.1.2) and the convex quadratic Hamiltonians

used in [Lo1, Lu], but does not include all Tonelli Hamiltonians which are used

in [Ma]. Namely, Tonelli Hamiltonians are assumed to satisfy a convexity condition
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and to have superlinear (but not necessarily quadratic) growth everywhere on the

cotangent bundle. In this thesis, we consider Hamiltonians, which we only require

to have quadratic growth in the fibers outside a compact set.

In the Hamiltonian setting, the existence of infinitely many periodic orbits

has been studied mainly on closed manifolds. From the original Conley conjecture

concerning Hamiltonian systems on tori, the assumptions on the symplectic manifold

have been relaxed to more general settings. However, the Conley conjecture does

not hold on all closed symplectic manifolds. For example, there exist Hamiltonians

on S
2 for which the Hamiltonian diffeomorphism has exactly two fixed points and

no other periodic orbits, see Example 2.2.2.

The original conjecture, i.e., the existence of infinitely many periodic orbits

for all Hamiltonian systems on tori, was proved by Conley and Zehnder in [CZ2] in

the non-degenerate case. The general case including degenerate Hamiltonians was

established on all surfaces other than S
2 by Franks and Handel in [FH]. The proof

of the general case on tori by Hingston in [Hi] fully established the original Conley

conjecture for all Hamiltonians and presented ideas which opened the door to further

generalizations.

The non-degenerate case was already generalized by Salamon and Zehnder

in 1992 in [SZ] to the case of symplectically aspherical manifolds, i.e., symplectic

manifolds (M,ω) such that ω|π2(M) = 0 and c1(M)|π2(M) = 0. The main point in

this proof is that the existence of only finitely many periodic orbits contradicts the

non-degeneracy of the Hamiltonian.

The existence of a degenerate periodic orbit under the assumption of only

finitely many periodic orbits was further investigated by Hingston. She studied

this degenerate periodic orbit in detail and used its properties in [Hi] to prove the

degenerate Conley conjecture on tori. Ginzburg in [Gi2] introduced the notion of

symplectically degenerate maximum for a periodic orbit with these properties. Again

the geometric characterization of this special degenerate orbit played an important

role in proving the general case of the Conley conjecture for symplectically aspherical

manifolds. This proof also utilized the squeezing method developed in [GG1], which

relies on properties of the filtered Floer homology of different Hamiltonians and

uses special Hamiltonians whose periodic orbits are known. The combination of

this squeezing method with the properties of symplectically degenerate maxima has
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proved to be useful for establishing the Conley conjecture in more general cases.

Ginzburg and Gürel used these ideas to establish the Conley conjecture on closed

symplectically rational manifolds M with c1(M)|π2(M) = 0 in [GG2]. They also

showed in [GG4] that the Conley conjecture holds if the symplectic manifold is

negative monotone, i.e., the symplectic form and the first Chern class of the manifold

are related by ω|π2(M) = λc1(M)|π2(M) for λ < 0.

The Conley conjecture has also been investigated in other situations than

classical mechanics and Hamiltonians on closed manifolds. For instance, similar

results are known for Hamiltonian diffeomorphisms with displaceable support; see,

e.g., [FS, Gü, HZ, Sc, Vi1]. Here the manifold M is required to be symplectically

aspherical, but not necessarily closed.

It is likely that the conditions on the closed manifold can be further re-

laxed and there are several ideas about what more general settings for the Conley

conjecture should be. For instance, Chance and McDuff conjectured that a Hamilto-

nian diffeomorphism has infinitely many periodic orbits whenever certain Gromov-

Witten invariants of the underlying symplectic manifold vanish. A conjecture by

Gürel specifies this as the condition that the minimal Chern number is larger than

the dimension of the symplectic manifold. This conjecture would be implied by two

conjectures of Ginzburg; the first being that there are infinitely many periodic orbits

whenever there are more periodic orbits than guaranteed by the Arnold conjecture.

This result is known for S
2, see [Fr, LeC] and also [BH, CKRTZ, Ke], but open

in the general case. The second conjecture by Ginzburg is that it may be sufficient

that the Hamiltonian has a non-elliptic orbit to guarantee that it has infinitely many

periodic orbits.

In this thesis, we will establish the Conley conjecture in two new settings.

More concretely, we generalize the case of a closed manifold by dropping all re-

quirements on the symplectic form and only assuming that c1(M)|π2(M) = 0. In

the non-compact case, we do not work in the Lagrangian setting but with Hamil-

tonian systems on the cotangent bundle T
∗
B for a closed manifold B where the

Hamiltonians are quadratic at infinity.

The main tool for proving results of the type of the Conley conjecture is a

variational approach to Hamiltonian mechanics. The periodic orbits of a Hamilto-

nian diffeomorphism with fixed period are characterized as critical points of an action
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functional. For the action functional, Floer developed a homology theory analogous

to Morse theory, the Floer theory. For closed symplectic manifolds, the Floer ho-

mology has been shown to be independent of the Hamiltonian and isomorphic to

the singular homology of the underlying manifold. If the manifold is not closed, the

class of Hamiltonians needs to be restricted in order to obtain compactness results

for the moduli spaces. For the case of a cotangent bundle considered in this thesis,

we will use the class of Hamiltonians introduced and studied by Abbondandolo and

Schwarz. They proved in [AS] that for Hamiltonians which are quadratic at infinity,

the Floer homology is defined and isomorphic to the homology of the loop space of

the base, see also [Se, Vi3] for similar results for different classes of Hamiltonians.

In particular, we will use the isomorphisms in both cases to show that the Floer

homology in a certain degree is non-zero.

In determining a lower bound on the number of periodic orbits using Floer

homological methods, the main difficulty arises from two aspects of the definition

of Floer homology. The first one is the fact that Floer homology can detect orbits

of a fixed period, but does not distinguish between simple and iterated orbits. In

counting the number of periodic orbits, we must therefore find a way to exclude

iterated orbits from being counted as new orbits.

The second difficulty comes from the definition of the action functional.

For exact symplectic forms, the action functional can be defined unambiguously

for a loop by fixing a primitive. In the general case, the action functional used

to define the Floer homology is only defined for capped loops on the manifold, i.e.

loops equipped with embedded disks spanned by the loop. These disks are used

to trivialize the tangent bundle along the loop and needed to have not only the

Hamiltonian action but also the grading of Floer homology by the Conley-Zehnder

index of capped periodic orbits well-defined.

In this thesis, we do not impose any conditions on the symplectic form

as has been done in previous work on the Conley conjecture. This may result in

possibly very large Floer homology groups, since we need to involve each periodic

orbit together with different cappings. Depending on the second homotopy group of

the symplectic manifold, the number of different cappings of one periodic orbit can

be very large and becomes an issue in the definition of the action filtration of Floer

homology for degenerate Hamiltonians, see Section 4.2. We will give an example of
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a symplectic manifold where the space of cappings leads to a dense set of critical

values of the action functional. In this case, which was not covered in any of the

former proofs, the filtered Floer homology requires a more careful definition which

also affects certain choices in the proof of the Conley conjecture.

To overcome the issues of iterations and recappings of periodic orbits, we

need to construct special tools that distinguish periodic orbits. The difficulty aris-

ing from iteration already was an issue in proving the Conley conjecture in more

restrictive settings, e.g. in [Gi2, Hi, SZ]. In this thesis, we use similar ideas and

study the behavior of the action and the grading under iteration. These tools have

proved to be very powerful in Hamiltonian mechanics, establishing not only results

concerning the number of periodic orbits, but also information about the minimal

period of these orbits.

For the non-degenerate case of the Conley conjecture, the properties of

Floer homology and its grading are sufficient. The result then follows by a simi-

lar argument as the one used in the symplectically aspherical case in [SZ] proving

that there are either infinitely many periodic orbits or a degenerate orbit. In the

degenerate case, the issue is more involved. The main point for this case is to study

the degenerate periodic orbit whose existence is guaranteed by the argument for the

non-degenerate case. This orbit has special properties, which gave rise to the notion

of symplectically degenerate extrema. The geometric characterization of symplecti-

cally degenerate extrema and a localization of the problem are the key parts of the

proof in our settings.

The notion of a symplectically degenerate maximum was introduced in

[Gi2] and used in [Gi2, Hi] for the first proofs of the degenerate Conley conjecture

on manifolds other than surfaces. In this thesis, the existence of a symplectically

degenerate maximum cannot be guaranteed in the case of the cotangent bundle.

Therefore we need to consider a symplectically degenerate minimum in order to

prove the Conley conjecture in both our settings. For the case of a closed manifold,

both a symplectically degenerate maximum or minimum could be used. We will

discuss the definition of both symplectically degenerate maxima and minima and

compare their properties. In particular, we show that all results on symplectically

degenerate maxima established in previous proof of the Conley conjecture also hold

in a slightly modified form for symplectically degenerate minima and can be applied
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in a similar fashion to prove the Conley conjecture in our settings.

To overcome the problem of a large number of cappings of a periodic or-

bits, we will localize the filtered Floer homology in order to apply tools from the

symplectically aspherical case. In order to achieve this goal, we will discuss in detail

how filtered Floer homology is defined using a direct limit construction in the irra-

tional case and which properties carry over to the limit. To localize the problem,

we establish a direct sum decomposition of filtered Floer homology for small action

intervals. This decomposition is similar to the one used in [GG2] for symplectically

rational manifolds. Under certain additional assumptions, this direct sum decom-

position is compatible with the limit definition of filtered Floer homology. To meet

these assumptions, we need to modify some of the choices in the proof of the Conley

conjecture. This provides a method to localize the filtered Floer homology and use

the Darboux theorem to study one of the summands in detail, which has the same

properties as the filtered Floer homology in the aspherical case. For this summand,

we can then use the computations done in [Gi2] to generalize the proof of the Conley

conjecture.

The main point of the proof is then to show that the filtered Floer homology

for a large iteration is non-zero in a degree which does not contain any iterated orbits.

Thus there is a simple periodic orbit with this period and this degree. Using this, the

proof of the Conley conjecture relies on analyzing the indices and actions of periodic

orbits and their iterations. The fact that this Floer homology group is non-zero also

implies the generalization of results by Ginzburg and Gürel in [GG2] concerning the

behavior of the action and the index of capped periodic orbits under iteration. More

concretely, we show that the differences between actions and indices for iterations of

a capped periodic orbit and a sequence of geometrically distinct orbits are bounded.

This theorem by Ginzburg and Gürel is proved in the case of a rational symplectic

manifold using the analogous result on the filtered Floer homology group being non-

zero. Since we generalize this theorem in this thesis, we also obtain a generalization

of the bounded gap theorem.

In Chapter 2, we discuss the considered settings and state the results.

In Chapter 3, we introduce basic definitions in symplectic geometry in symplectic

geometry and Hamiltonian mechanics setting the stage for the definition of Floer

homology. Our main tool, the Floer homology and its properties, is discussed in

7



Chapter 4. In particular, we explain the action filtration in the irrational case and

study homomorphisms between Floer homology groups for different Hamiltonians

in this chapter. Using Theorem 2.2.6, we prove the existence of infinitely many

periodic orbits and also a statement on the minimal periods in Chapter 5. Before

we can prove Theorem 2.2.6, we need to establish our new tools needed to generalize

the existing results. For this matter, we define symplectically degenerate minima in

Chapter 6. We characterize them using their geometric properties and compare them

to symplectically degenerate maxima. In Chapter 7, we construct the direct sum

decomposition for small action intervals used to localize the problem and generalize

the concept of local Floer homology. Using these notions, we finally prove Theorem

2.2.6 in Chapter 8.

8



Chapter 2

Settings and main results

This thesis has two types of results. The first and most important is the

generalization of the Conley conjecture, which concerns the number of periodic or-

bits of a Hamiltonian system and also contains information about the periods. The

second result follows from an auxiliary result used in the proof of the Conley conjec-

ture and concerns the behavior of Hamiltonian actions and mean indices of periodic

orbits under iteration. The first section will be devoted to introducing the consid-

ered symplectic manifolds and classes of Hamiltonians before we state the theorems

more rigorously and discuss details of the proofs.

2.1 The Settings

In this section, we introduce the manifolds and the classes of Hamiltonians

we are going to work with. The two settings are a class of closed symplectic manifolds

and a special class of Hamiltonians on cotangent bundles. We will describe both

settings separately.

2.1.1 Quadratic Hamiltonians on cotangent bundles

As the first of our two settings, we consider a closed, oriented manifold

B and let M = T
∗
B be the cotangent bundle of B with its canonical symplectic

structure ω. Since this is a non-compact manifold, we need to restrict the class

of Hamiltonians in order to obtain compactness results needed for our main tool,

the Floer homology, to be defined. A natural class of Hamiltonians to work with,

9



from both technical and conceptual point of view, is that of Hamiltonians quadratic

at infinity, cf. [AS]. More concretely, we use the class of Hamiltonians defined by

requiring Hamiltonians H : S
1 ×M → R to satisfy the following conditions:

(H1) there exist constants h0 > 0 and h1 ≥ 0, such that

dH(t, q, p)
�

p
∂

∂p

�
−H(t, q, p) ≥ h0�p�2 − h1 and

(H2) there exists a constant h2 ≥ 0, such that

�∇qH(t, q, p)� ≤ h2(1 + �p�2) and �∇pH(t, q, p)� ≤ h2(1 + �p�).

We will call Hamiltonians on the cotangent bundle admissible, if they satisfy

these conditions. This class of Hamiltonians has originally been defined and studied

in [AS].

Remark 2.1.1 The choice of a class of Hamiltonians is important from at least a

technical point of view. For a Hamiltonian H in this class, it has been proven in [AS]

that the Floer homology is well-defined and independent of the choice of H in this

class. Furthermore, the results in [AS] imply that HF−n(H) �= 0. The restrictions on

the class of Hamiltonians are imposed to ensure these properties; see also [Se, SW,

Vi3] for similar results for different classes of Hamiltonians. One can expect a result

similar to Theorem 2.2.1 to hold for other classes of Hamiltonians. For example,

our argument also goes through for Hamiltonians which, at infinity, are autonomous

and fiberwise convex and have superlinear growth; see Remark 2.2.3. For the classes

of convex and quadratic Hamiltonians or Tonelli Hamiltonians, analogous theorems

were proven by means of Lagrangian methods in [Lo1, Lu, Ma]. It is not clear if the

Floer homology is defined for Tonelli Hamiltonians, since the Hamiltonian flow is

not automatically complete. Note, however, that the Floer homology is defined if the

Hamiltonian is autonomous and Tonelli at infinity. But even then, the invariance

of filtered Floer homology has not been established, cf. [Se, Vi3].

The class of Hamiltonians defined by the above conditions (H1) and (H2)

is natural from the historical perspective: These conditions on the Hamiltonian

imply that H grows quadratically at infinity, i.e., for some suitable constant h3, the

10



Hamiltonian H satisfies the growth condition

H(t, q, p) ≥ 1
2
h0�p�2 − h3. (2.1.1)

This inequality shows that our class of Hamiltonians includes an important example,

which relates to the origins of symplectic geometry in classical mechanics.

Example 2.1.2 In particular, the above growth conditions on the Hamiltonian hold

for all conservative Hamiltonians describing systems from classical mechanics on B,

i.e., Hamiltonians of the form H(t, p, q) = 1
2�p�

2 + V (q). More generally, one could

also use Hamiltonians of the form H(t, p, q) = 1
2�p�

2
t +V (t, p, q), where in every fiber

the function V is constant outside a compact set in M = T
∗
B. The metric � · �t

and V can be chosen to be time-dependent as long as both are periodic in time. Our

conditions on the Hamiltonian are also satisfied for periodic in time electro-magnetic

Hamiltonians, i.e., the Hamiltonians describing the motion of a charge in an exact

magnetic field and a conservative force field; see, e.g., [Gi1]. In this thesis, we only

work with time-periodic Hamiltonians and thus need to assume the magnetic field,

the metric and the potential to be periodic in time.

2.1.2 Closed symplectic manifolds with vanishing first Chern class

Let now M be a closed symplectic manifold, i.e. a compact manifold with

no boundary. Such manifolds can be equipped with an almost complex structure J

and thus have similar properties to complex manifolds. In particular, the Chern class

of such symplectic manifold is well-defined. For technical reasons, we assume that the

first Chern class vanishes over the second fundamental group, i.e., c1(M)|π2(M) = 0.

In particular, all Calabi-Yau manifolds fall into this case. Due to compactness of

the manifold M , we do not need to restrict the class of Hamiltonians in this setting.

For a Hamiltonian H to be admissible in this setting, we only require H to be one-

periodic in time, i.e., a smooth function H : S
1×M → R. See also Section 3.1 for a

more detailed discussion on symplectic manifolds and the conditions assumed here.

In the case of a closed symplectic manifold, some restrictions have to be

imposed on the manifold for our main theorems to hold, cf. Example 2.2.2 below.

For more restrictive classes of closed symplectic manifolds than the one considered

here, the results of this thesis have been established in [Gi2, GG2]. Our setting

11



is a strict generalization of the settings considered there, since we do not impose

any conditions on the symplectic form. See Example 3.1.1 for an example of a

closed symplectic manifold in the class considered here, where the previous proofs

of analogous results do not apply.

2.2 The Conley conjecture

Our first result establishes the existence of infinitely many periodic orbits

for admissible Hamiltonians in both settings described above. More detailed, we

have the following result:

Theorem 2.2.1 (The Conley Conjecture) Assume that M is one of the sym-

plectic manifolds described above and let H : S
1×M → R be an admissible Hamilto-

nian. Then the time-one-map ϕH of the Hamiltonian flow of H has infinitely many

periodic orbits. Furthermore, if the ϕH has only finitely many fixed points, then

there are simple periodic orbits of arbitrarily large period.

The following example shows that the condition that c1(M)|π2(M) = 0 in

the closed case cannot be dropped completely, even though further generalizations

than this condition may be possible.

Example 2.2.2 Let M = S
2 be the unit sphere in R3 and let H be a scaled height

function, i.e. H(x, y, z) = kz. If k/π is irrational, the only periodic orbits of ϕH

are the fixed points at the poles and thus ϕH does not have infinitely many periodic

orbits.

This a generalization of a conjecture Conley stated in 1984 in [Co] for the

case that M = T
2n is a torus. It has been proven for weakly non-degenerate Hamil-

tonian diffeomorphisms of tori in [CZ2] and of symplectically aspherical manifolds

in [SZ]. In [FH], the conjecture was proven for all Hamiltonian diffeomorphisms of

surfaces other than S
2. In its original form, as stated in [Co] for all Hamiltonian

diffeomorphisms of tori, the conjecture was established in [Hi] and the case of an

arbitrary closed, symplectically aspherical manifold was settled in [Gi2]. This proof

was extended to closed symplectically rational manifolds M with c1(M)|π2(M) = 0

in [GG2] and to negative monotone symplectic manifolds, i.e. to manifolds with
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ω|π2(M) = λc1(M)|π2(M) for λ < 0, in [GG4]. The papers of Hingston and Ginzburg

provided and studies the concept of symplectically degenerate extrema also utilized

here for dealing with the degenerate case of the Conley conjecture for compact man-

ifolds; see [Gi2, GG2, He2, Hi].

Our argument also uses recent results on the Floer homology of Hamilto-

nians on cotangent bundles proven e.g. in [AS, Se, Vi3]. In this thesis, we use the

class of Hamiltonians introduced in [AS] and use their result to guarantee that Floer

homology, the most important tool for the proofs, is well-defined, cf. [He1].

The Lagrangian version of the conjecture has been considered, e.g., in [Lo1,

Lu, Ma]. The similarity between the problems can also easily be seen on the level of

the proofs, although the methods utilized in [Lo1, Lu, Ma] are quite different from

the Floer homological techniques used here. Our class of Hamiltonians quadratic

at infinity includes the Hamiltonians of classical mechanics (see Example 2.1.2) and

convex quadratic Hamiltonians used in [Lo1, Lu], but does not include all Tonelli

Hamiltonians. Namely, Tonelli Hamiltonians are assumed to satisfy a convexity

condition and to have superlinear (but not necessarily quadratic) growth, while

Hamiltonians quadratic at infinity only need to have quadratic growth outside a

compact set.

Remark 2.2.3 Our proof of Theorem 2.2.1 can also be used for a more general

class of non-compact manifolds than the cotangent bundle considered here. Namely,

let (M, ω) be a Liouville domain and let H be a Hamiltonian, which is autonomous

and depends only on the ”radial variable” at infinity and has superlinear growth. For

such Hamiltonians, the Floer homology is defined and isomorphic to the symplectic

homology SH(M); see [Se]. This homology is a unital algebra with unit in degree

−n in our degree conventions. (Strictly speaking, the cohomology (HF(H))∗ is such

an algebra.) Hence, HF−n(H) = SH−n(M) �= 0 if and only if SH(M) �= 0. In

this case, our proof of Theorem 2.2.1 in Chapter 5 goes through and the Conley

conjecture holds in this general setting. Strictly speaking, this is not a generalization

of Theorem 2.2.1 since on cotangent bundles most Hamiltonians which are quadratic

at infinity are not in the above class.

By a similar argument as the ones used in the preceding proofs of this type

of results in [Hi, Gi2, GG2], the assumption of only finitely many periodic orbits

13



guarantees the existence of a special degenerate orbit, a so-called symplectically

degenerate minimum, see the proof in Section 5.1. Thus it suffices to prove Theorem

2.2.1 in the presence of a symplectically degenerate minimum.

Definition 2.2.4 An isolated capped k-periodic orbit x̄ of a k-periodic Hamiltonian

H is called a symplectically degenerate minimum of H if

∆H(x̄) = 0 and HF−n(H, x̄) �= 0.

In this definition, ∆H(x̄) denotes the mean index of x̄ and HF∗(H, x̄) is the

local Floer homology of H at x̄.

We refer to Section 3.3 for more details on the mean index and Section 4.3

for the definition of the local Floer homology. See also [GG3] for details on the local

Floer homology and to [SZ] for the definition of the mean index.

Theorem 2.2.5 (Degenerate Conley Conjecture) Let M be one of the above

manifolds and H an admissible Hamiltonian on M . Assume that ϕH has only finitely

many fixed points and, furthermore, that H has a symplectically degenerate mini-

mum. Then the Hamiltonian diffeomorphism ϕH generated by H has simple periodic

orbits of arbitrarily large period.

Similarly to the arguments in [Gi2, GG2] used for other classes of manifolds,

this theorem implies the Conley conjecture as stated in Theorem 2.2.1. We will

prove this theorem, and also show how it implies Theorem 2.2.1, in Chapter 5. The

argument will mainly rely on properties of Floer homology. In particular, the proof

of Theorem 2.2.5 is based on a Floer theoretical argument establishing

Theorem 2.2.6 Let M be one of the following:

• M is a closed symplectic manifold, which is weakly monotone and let H be a

Hamiltonian on M or

• M = T
∗
B is the cotangent bundle of a closed manifold B and H is an admis-

sible Hamiltonian on M as defined in Section 2.1.1.

Assume that x̄ is a symplectically degenerate minimum of H and that AH(x) = c.

Then for every sufficiently small � > 0 there exists some k� ∈ N such that

HF(kc−�, kc−δk)
−n−1 (H(k)) �= 0 for all k > k� and some δk ∈ (0, �).
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In this theorem, H
(k) denotes the one-periodic Hamiltonian H viewed as a k-periodic

function for some integer k, see also Section 3.2. As in [Gi2, GG2], this theorem

implies Theorem 2.2.5 and thus also Theorem 2.2.1. The main new point in the

proof of Theorem 2.2.6 is moving from a symplectically degenerate maximum to

a symplectically degenerate minimum in Chapter 6 and establishing a direct sum

decomposition in filtered Floer homology in the irrational case in Chapter 7.

2.3 Action and index gap

Theorem 2.2.6 can also be used to control the behavior of actions and mean

indices of periodic orbits, cf. [GG2]. To state the results, we need to introduce some

notation. We call the difference A
H(k)(x̄)−A

H(k)(ȳ) the action gap between the two

capped k-periodic orbits x̄ and ȳ. Similarly, the mean index gap between the two

orbits is the difference ∆
H(k)(x̄)−∆

H(k)(ȳ). Both can be zero, even for geometrically

distinct orbits x and y. The action-index gap between x̄ and ȳ is the vector in R2

whose components are the action gap and the mean index gap.

Recall also that an increasing sequence of integers ν1 < ν2 < . . . is called

quasi-arithmetic if the differences νi+1 − νi are bounded by a constant, which is

independent of i.

Theorem 2.3.1 (Bounded gap theorem) Let H be a Hamiltonian on a closed

symplectic manifold (M2n
, ω) with first Chern number N ≥ 2n such that all periodic

orbits of ϕH are isolated.

Then there exists a capped one-periodic orbit x̄ of H, a quasi-arithmetic

sequence of iterations νi, and a sequence of capped νi-periodic orbits ȳi, geometrically

distinct from x̄
νi, such that the sequence of action–index gaps

�
A

H
(νi)(x̄

νi)−A
H

(νi)(ȳi),∆H
(νi)(x̄

νi)−∆
H

(νi)(ȳi)
�

is bounded.

This is a generalization of a result in [GG2] where the theorem was proved

in the case of a symplectically rational manifold. As in the rational case, this theorem

implies the following corollary in the generalized situation.
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Corollary 2.3.2 Let M and H be as in Theorem 2.3.1. Then there exists a quasi-

arithmetic sequence of iterations νi and sequences of geometrically distinct νi-periodic

orbits z̄i and z̄
�
i

such that the sequence of action–index gaps between z̄i and z̄
�
i

is

bounded.

In the case of a closed, rational symplectic manifold, the analog of Theorem

2.3.1 was proved in [GG2, section 4] using the version of Theorem 2.2.6 for this class

of manifolds. We omit the proofs of Theorem 2.3.1 and Corollary 2.3.2 in this thesis,

as the argument in the present version follows the same path as the argument in

[GG2], utilizing the generalization of Theorem 2.2.6 to our class of manifolds.

Since we do not assume rationality of the symplectic manifold (M, ω), we

cannot use the rationality constant to obtain an action bound to show that the orbits

ȳi and the iterations of x̄ are geometrically distinct. For this purpose, we now use

bounds on the mean index, which could also have been used in the rational case.

Apart from this necessary change, the argument in [GG2] carries over to our case

word for word.
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Chapter 3

Preliminaries

In this chapter we will set the notation used throughout the thesis and

discuss details of the symplectic manifolds considered in the theorems.

3.1 Symplectic manifolds

Let (M, ω) be a closed symplectic manifold of dimension 2n, i.e., a manifold

equipped with a non-degenerate 2-form ω. Here, we will only discuss the structures

and properties of symplectic manifolds needed in the proofs. For more details on

symplectic manifolds and in particular for proofs of the results mentioned here, see

e.g. [MS1, MS2].

An almost complex structure J on M is called compatible with the symplec-

tic form ω, if ω(·, J ·) is a Riemannian metric on M . For every symplectic manifold

(M,ω), the space of compatible almost complex structures is non-empty and con-

tractible. Similarly, a Riemannian metric g is compatible with ω if it is of the form

g(·, ·) = ω(·, J ·) for some almost complex structure J . From now on, we will always

assume the Riemannian metric on M to be defined in this fashion.

For our purposes, the most important structures on a symplectic manifold

(M,ω) are the symplectic form and the first Chern class c1(M) ∈ H
2(M) and the

relation between them.

Both 2-forms define a homomorphism π2(M) → R via integration over

spheres in M . The subgroup �c1(M), π2(M)� ⊂ R is discrete and the positive gen-

erator N of this subgroup is the minimal Chern number. When this subgroup is
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zero, we set N = ∞. A symplectic manifold M is called monotone, if [ω] |π2(M) =

λc1(M)|π2(M) for some non-negative λ ∈ R. Throughout this thesis, we assume that

M is weakly monotone, i.e. M is monotone or N ≥ n− 2.

The manifold M is called rational, if the image of ω is also a discrete sub-

group of R. For closed rational symplectic manifolds, all our theorems were proved

in [GG2]. In this thesis, we will focus on the new methods needed to generalize the

results.

Let us now construct an example of an irrational symplectic manifold with

vanishing first Chern class, which falls into the setting of Section 2.1.2, but where

the result of Theorem 2.2.1 is not covered in [GG2].

Example 3.1.1 (An irrational symplectic manifold with c1 = 0) In order to

construct such a manifold, we first need a symplectic manifold X with vanishing

first Chern class and sufficiently large second homology H
2(X). There are several

examples of such manifolds, e.g., we could take X to be a K3-surface. To give a

more concrete example, take X to be the K3-surface given by a non-singular quartic

on CP3 with the canonical symplectic structure ω coming from the complex structure

of CP3. This symplectic form on M gives rise to the symplectic form (ω, ω) on the

product M = X ×X. A generic perturbation of this product symplectic structure is

irrational, i.e., a symplectic structure of the form (ω, αω) is irrational for generic

α ∈ R.

3.2 Hamiltonian flows and capped periodic orbits

A Hamiltonian is a smooth function H : S
1 ×M → R with S

1 = R/Z, i.e.,

all considered Hamiltonians H on M are assumed to be one-periodic in time and we

will set Ht(x) = H(t, x). A one-periodic Hamiltonian H is of course also k-periodic

for any integer k. For our argument it is sometimes crucial to keep track of the

period we are interested in. If a one-periodic Hamiltonian H is viewed as k-periodic,

we refer to it as the kth iteration of H and denote it by H
(k). In particular, the

function H
(k) is a function H

(k) : S
1
k
×M → R, where S

1
k

= R/kZ.

As the symplectic form ω is non-degenerate, the equation

iXH
ω = −dH

18



gives rise to a well-defined Hamiltonian vector field XH . For a fixed choice of an

almost complex structure J which is compatible with ω and the Riemannian metric

g(·, ·) = ω(·, J ·), we find that JXH = ∇H, where ∇H is the gradient of H with

respect to g. Denote the flow of this vector field by ϕ
t

H
.

The composition ϕ
t

H
◦ ϕ

t

K
of two Hamiltonian flows is again Hamiltonian

and generated by the function

(K#H)t = Kt + Ht ◦ ϕ
−t

K
.

In general, this function need not be one-periodic in time, even if both H and K are

one-periodic Hamiltonians. But K#H will be one-periodic if both are one-periodic

and, in addition, K generates a loop of Hamiltonian diffeomorphisms. This will

always be the case in this thesis.

The time-1-map of the flow of the Hamiltonian vector field XH is called

a Hamiltonian diffeomorphism and denoted by ϕH . The fixed points of ϕH are in

one-to-one correspondence with one-periodic orbits of ϕ
t

H
. A fixed point of ϕH (or a

periodic point of higher period) is called contractible, if the corresponding periodic

flow line of XH is contractible. In this thesis, we only work with contractible periodic

orbits and every periodic orbit is assumed to be contractible, even if this is not

explicitly stated.

Let x : S
1
T
→ M be a contractible loop, where S

1
T

= R/TZ is the circle

of circumference T . A capping of x is defined to be a map u : D
2 → M such that

u|∂D2 = x, where ∂D
2 is identified with S

1
T
. Two cappings are called equivalent if

the integrals over the symplectic form ω and the first Chern class c1(M) over the

two capping discs agree.

We refer to the pair (x, [u]) of a contractible loop x which is equipped

with an equivalence class of cappings [u] as a capped loop and denote it by x̄. In

the symplectically aspherical case, all cappings are equivalent. In particular, this is

true for the setting of M = T
∗
B described above. In our case of a closed manifold

however, the cappings introduce new difficulties in the proof, which are addressed

later in Section 4.2 and Chapter 7.
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3.3 Hamiltonian action and the mean index

The periodic orbits of a Hamiltonian systems can be characterized as crit-

ical point of a functional on the space of capped loops. In this section, we will

describe this action functional and also the mean index and the Conley-Zehnder

index used for the grading of Floer homology discussed further in Chapter 4.

The capped T -periodic orbits are the critical points of the Hamiltonian

action functional which is defined by

AH(x̄) = −
�

u

ω +
�

S
1
T

Ht(x(t)) dt (3.3.1)

on the space of capped loops in M . This space is a covering space of the space of

contractible loops. The set of critical values of the action is denoted by S(H) and

called the action spectrum of H.

Definition 3.3.1 A T -periodic orbit is called non-degenerate, if the linearized re-

turn map dϕ
T

H
does not have one as an eigenvalue. Following [SZ], we call an orbit

weakly non-degenerate if at least one eigenvalue is not equal to one and strongly

degenerate otherwise.

For the remaining part of this section, we will focus on the case of capped

one-periodic orbits of a Hamiltonian H which only has non-degenerate periodic

orbits. The non-degeneracy of all orbits is a generic condition on H and we call

such Hamiltonians non-degenerate. All definitions and properties carry over word-

for-word to capped T -periodic orbits.

Apart from the action, we also need the mean index ∆H(x̄) of a capped

periodic orbit x̄. Roughly speaking, this index is the rotation number of the eigen-

values of dϕ
t

H
along the orbit. For a rigorous definition and properties of the mean

index we refer the reader to [Lo2, SZ]. Strictly speaking, the mean index is defined

only on capped periodic orbits with a choice of trivialization of TM over the capping

disk. For a fixed choice of a capping, the space of trivializations is contractible. Thus

we only need to specify the capping to have the mean index well-defined. In [SZ],

the mean index is defined in the symplectically aspherical case, when everything

is independent of the capping. A list of properties of the mean index, taking the

dependence of the capping into account, can also be found in [GG2].
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Both the mean index and the Hamiltonian action of a capped periodic orbit

depend on the equivalence class of the capping u of the loop x. More concretely let

A ∈ π2(M) be an embedded 2-sphere and denote by x̄#A the recapping of x̄ by

attaching A to the capping disk. Then the above formula for the Hamiltonian

action shows that the action of the recapped orbit is related to the action of the

orbit with the original capping by

AH(x̄#A) = AH(x̄)−
�

A

ω.

For the mean index, we only mention that the mean index ∆(x̄) depends on the

capping via

∆H(x̄#A) = ∆H(x̄)− 2c1(A),

where c1(A) is the pairing of the first Chern class c1(M) with the sphere A.

The kth iteration of a capped orbit x̄ carries a natural capping given by the

k-fold covering of D
2 and with that capping it is denoted by x̄

k. The mean index

and the action both are homogeneous with respect to iteration and the action and

mean index of iterations are given as

A
H(k)(x̄k) = kAH(x̄) and ∆

H(k)(x̄k) = k∆H(x̄). (3.3.2)

Related to the mean index, we can also assign an integer-valued index to

capped periodic orbits which will be used as a grading for the Floer homology. Up

to sign we define the Conley-Zehnder index as in [Sa, SZ], to which we refer for more

details on the definition. In this thesis, we use the normalization and conventions

from [Gi2], i.e., the grading is defined such that for a non-degenerate maximum x̄0

with trivial capping of an autonomous Hamiltonian with small Hessian at x0 we

have µCZ(x̄0) = n.

The Conley-Zehnder index is closely related to the mean index. More con-

cretely, the Conley-Zehnder index grows roughly linearly with the order of iteration

and the mean index can be viewed as the linear part, i.e., an alternative definition of

the mean index is ∆H(x̄) = limk→∞ µCZ(x̄k)/k. Furthermore, the difference between

the Conley-Zehnder index and the mean index is bounded in terms of the dimension

of the symplectic manifold. Namely, we have

�∆H(x̄)− µCZ(x̄)� ≤ n (3.3.3)
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for all capped periodic orbits of H and the inequality is strict if the orbit x̄ is non-

degenerate. This bound of the Conley-Zehnder index in terms of the mean index

and the linearity of the mean index in the order if iteration will play a crucial role

in the proofs.
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Chapter 4

Floer homology

In this thesis, we are interested in the periodic orbits of a Hamiltonian. One

of the most important tools to study the periodic orbits is the Hamiltonian Floer

homology, which is an analog of Morse homology defined for the action functional

of a non-degenerate Hamiltonian.

In this section, we define the (Hamiltonian) Floer homology and discuss the

properties used in the proofs. From now on, we always assume that M is equipped

with an almost complex structure J compatible with ω and the corresponding Rie-

mannian metric g discussed in Section 3.1. This almost complex structure can also

be one-periodic in time, but we omit the time-dependence in the notation.

As mentioned above, we phrase all definitions in terms of one-periodic

orbits. All constructions carry over word for word to capped T -periodic orbits for

arbitrary T with the same properties.

4.1 Definition of Floer homology

The Floer homology is defined analogously to the Morse homology for the

action functional defined in (3.3.1) on the infinite-dimensional space of capped loops.

We refer the reader to Floer’s original papers [Fl1, Fl2, Fl3, Fl4] or to, e.g., [HS,

MS2, Sa, SZ] for further references and introductory accounts of the construction

of (Hamiltonian) Floer homology. Throughout this thesis, we use the notation and

conventions of [Gi2, GG2], where the grading convention is that of [Gi2], which is

also described above.
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For this section, we always assume that the Hamiltonian is non-degenerate.

Many results establishing the existence of infinitely many periodic orbits of Hamilto-

nian systems were proved first under this additional assumption and generalized later

to the degenerate case. The main tools, Floer homology and the Conley-Zehnder

index, are constructed in the non-degenerate case and extend by continuity to all

Hamiltonians. For filtered Floer homology, the extension is slightly more involved

and requires a direct limit construction, see Section 4.2.

The Floer chain groups are generated as vector spaces over Z2 by the

capped one-periodic orbits of H and the boundary operator is defined analogously

to the boundary operator of Morse homology. The gradient flow lines are replaced

by maps u : S
1 × R → M that solve the Floer equation

∂u

∂s
+ J(u)

∂u

∂t
= −∇Ht(u), (4.1.1)

the so-called Floer trajectories. The energy of a Floer trajectory u is defined by

E(u) =
� ∞

−∞

�

S1

����
∂u

∂s

����
2

dt ds.

For a non-degenerate Hamiltonian H, Floer trajectories with finite energy

converge to periodic orbits x and y as s goes to ±∞ The boundary operator ∂ counts

Floer trajectories converging to periodic orbits y and x as s → ±∞. As the orbits

x and y enter the Floer chain groups multiple times with different cappings, we also

require Floer trajectories connecting the capped orbits x̄ and ȳ to be compatible

with the cappings in the sense that [(capping of x̄)#u] = [capping of ȳ]. For such

Floer trajectories, the energy is given by

E(u) = AH(x̄)−AH(ȳ).

If the almost complex structure J satisfies certain generic regularity re-

quirements, see e.g. [MS2, Sa], the space of such solutions is a smooth compact

manifold and carries a natural R-action by a shift in the s-direction. Denote the

quotient of the solution space by this action, the moduli space, with M(x̄, ȳ, J).

The dimension of the moduli space M(x̄, ȳ, J) is µCZ(x̄)−µCZ(ȳ)−1. Now

the boundary operator is defined by

∂x̄ =
�

y

#M(x̄, ȳ, J) · ȳ
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where the sum runs over all x̄ such that µCZ(ȳ) = µCZ(x̄) − 1 and #M(x̄, ȳ, J) is

counted modulo 2. For this index difference, the moduli space is zero-dimensional

and due to compactness results for M(x̄, ȳ, J), the number of elements in this space

is finite.

In the case of a closed manifold M , the necessary compactness results for

the moduli space M(x̄, ȳ, J) are by now well-known. For more details and proofs of

these results, we refer, e.g., to [MS2, Sa].

For our class of Hamiltonians on the cotangent bundle, it is shown in [AS]

that the conditions (H1) and (H2) on the Hamiltonian H imply that the Floer

trajectories are uniformly bounded in the C
0-norm, if the almost complex structure

J is sufficiently close to the standard almost complex structure on M = T
∗
B. Using

this bound, the compactness of moduli spaces follows as in the case of a closed

manifold. Similar bounds on Floer trajectories for different classes of Hamiltonians

on non-closed symplectic manifolds are established in, e.g., [Se, Vi3].

Studying the moduli spaces for index difference two, it is well-established

that this definition of ∂ indeed defines a chain boundary operator satisfying ∂◦∂ = 0

and the Floer homology is defined in the usual way, see, e.g. [Sa].

4.1.1 Homotopy maps

For two non-degenerate Hamiltonians H
0 and H

1, we could now ask how

their Floer homologies are related. It turns out that the Floer homology is inde-

pendent of the Hamiltonian and only depends on the underlying symplectic mani-

fold. Namely, a homotopy from H
0 to H

1 induces a homomorphism of chain com-

plexes which gives an isomorphism between the Floer homology groups HF∗(H0)

and HF∗(H1). To define this homomorphism, denote by H
s the homotopy from H

0

to H
1 such that H

s = H
0 for s ≤ 0 and H

s = H
1 for s ≥ 1. Then the map between

the Floer homologies of H
0 and H

1 is given similarly to the Floer boundary operator

using a version the Floer equation (4.1.1) with the homotopy H
s on the right hand

side, i.e., counting solutions of

∂u

∂s
+ J(u)

∂u

∂t
= −∇H

s

t (u). (4.1.2)

Similarly to the definition of the Floer boundary operator, solutions to

equation (4.1.2) converge to a capped periodic solution x̄ of H
0 as s → −∞ and

25



a capped periodic solution ȳ of H
1 as s → +∞. The moduli space M(x̄, ȳ, H

s
, J)

of solutions is finite if µCZ(ȳ) = µCZ(x̄). (The necessary compactness result in the

cotangent bundle case follows again from a uniform bound on the solutions in the

C
0 topology which is established in [AS].)

Now we define the map ΦH0,H1 : HF∗(H0) → HF∗(H1) by

Φ(x̄) =
�

y

#M(x̄, ȳ, H
s
, J) · ȳ. (4.1.3)

It is shown in [Sa, SZ] that this map is a natural isomorphism and independent

of the choice of the homotopy. These properties of ΦH0,H1 also imply that we can

concatenate homotopies and find for three Hamiltonians H
0
, H

1
, H

2 that

ΦH0,H2 = ΦH1,H2 ◦ ΦH0,H1 . (4.1.4)

Since the homotopy maps provide an isomorphism of Floer homology for

different Hamiltonians, we could ask now what the Floer homology on a given sym-

plectic manifold is. The answer to this question is different in our two different

settings.

In the setting of a closed manifold, there is an isomorphism relating the

Floer homology of a Hamiltonian to the homology of the symplectic manifold. More

concretely, we have

HF∗(K) ∼= H∗+n(M)⊗ Λ (4.1.5)

for the Novikov ring Λ, which is needed to take different cappings into account.

For a more detailed definition of the Novikov ring, see e.g. [GG2, HS, Us1]. This

isomorphism is a standard fact about Floer homology, see e.g. [MS2, Sa] and can

be established using a Hamiltonian which is a C
2-small Morse function on M . For

such a Hamiltonian H, the periodic orbits are the critical points of H and the Floer

homology is (up to a shift in the grading) equal to the Morse homology and thus

equal to the singular homology of M .

For the cotangent bundle setting and our class of admissible Hamiltonians,

it is proven in [AS] that there exists an isomorphism

HF∗(H) ∼= H−∗(Λ0B), (4.1.6)

where Λ0B is the space of contractible loops on the base B. See also [Se, SW, Vi3]

for similar results for somewhat different classes of Hamiltonians.
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4.2 Filtered Floer Homology

In this section, we give a definition of filtered Floer homology for degen-

erate Hamiltonians on symplectically irrational manifolds. We will also discuss the

compatibility of the homotopy maps with the action filtration and properties of

homotopy maps between filtered Floer homology.

4.2.1 Action filtration and homotopy maps revisited

As the action decreases along Floer trajectories of a non-degenerate Hamil-

tonian H, we can also define the Floer chain complex with a restriction of the action

interval. Namely, we only consider orbits with action in an interval (a, b) if the

endpoints a and b of the action interval are not in the action spectrum S(H). This

complex gives rise to the filtered Floer homology HF(a, b)
∗ (H).

The action filtration is respected by homotopy maps defined in (4.1.3) if

the homotopy is monotone decreasing, i.e. if ∂H
s
t /∂s ≤ 0 for all t ∈ S

1. Thus we can

use the homotopy maps again to extend also filtered Floer homology by continuity

to degenerate Hamiltonians if the manifold is rational. The rationality assumption

is needed, since in this case small perturbations do not change the capped periodic

orbits with action in (a, b) and the construction does not depend on the choice of a

sufficiently small perturbation. In the irrational case, we will discuss the details of

filtered Floer homology for degenerate Hamiltonians in Section 4.2.2 and focus on

the rational case here.

By construction of filtered Floer homology for non-degenerate Hamiltonians

and a standard diagram chasing argument, we have a long exact sequence of filtered

Floer homology groups

· · · → HF(a, b)
∗ (K) → HF(a, c)

∗ (K) → HF(b, c)
∗ (K) → HF(a, b)

∗−1 (K) → · · · (4.2.1)

for any non-degenerate Hamiltonian K with a, b, c /∈ S(K).

Let us now study some special cases of homotopy maps of filtered Floer

homology in the rational case before we define the filtered Floer homology in the

irrational case. We will then discuss which properties carry over to the irrational

case. Assume for now that the symplectic manifold is rational.
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The homotopy map for monotone homotopies Hamiltonians is not necessar-

ily an isomorphism of filtered Floer homology. This can be easily seen by considering

a homotopy which shifts the Hamiltonian H
0 by an additive constant to H

1 = H
0+1

and a small action interval, i.e., we consider the homotopy H
s = H

0 + f(s) with

f(s) = 0 for s < 0 and f(s) = 1 for s > 1. Then all Hamiltonians in the ho-

motopy have the same periodic orbits and the homotopy map is the identity map.

The action of a one-periodic orbit x̄ get also shifted up by f(s). If the action in-

terval (a, b) is chosen such that 0 �= x̄ ∈ HF(a, b)
∗ (H0) and AH0(x̄) ≥ b − 1, then

AH1(x̄) = AH0(x̄) + 1 /∈ (a, b) and thus ΨH0,H1(x̄) = 0.

In some special cases, however, the homotopy map does induce an iso-

morphism of filtered Floer homology. For example, consider a (not necessarily de-

creasing) homotopy H
s from H

0 to H
1 for which the endpoints a, b of the action

interval are not in the action spectrum of H
s for all s. Such a homotopy induces an

isomorphism of filtered Floer homology and we find

HF(a, b)
∗ (H0) ∼= HF(a, b)

∗ (H1). (4.2.2)

The isomorphism is constructed by breaking the homotopy into a composition of

nearly constant homotopies, see [BPS, Gi2, Vi2] and depends on the homotopy, but

not on other choices in the construction. In general, this map does not agree with

the homotopy map ΨH0,H1 . For a monotone decreasing homotopy, however, the

isomorphism in (4.2.2) does coincide with ΨH0,H1 .

A particular case of a homotopy with a, b /∈ S(Hs) for all s, which will be

used later in the proof, is the following

Definition 4.2.1 A homotopy H
s is called isospectral if the action spectrum S(Hs)

is independent of s.

As in [Gi2, GG2], one particular case of an isospectral homotopy is of in-

terest for us. For t ∈ S
1 and s ∈ [0, 1], let η

t
s be a family of loops of Hamiltonian

diffeomorphisms based at id, i.e., η
0
s = id for all s. In other words, η

t
s is a based

homotopy from the loop η
t

0 to the loop η
t

1. Let G
s
t be a family of one-periodic Hamil-

tonians generating these loops and let H be a fixed one-periodic Hamiltonian. Then

H
s := G

s#H is an isospectral homotopy, provided that G
s are suitably normalized.

For details on the normalization, we refer to [Gi2, GG2].
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Consider now a homotopy H
s such that the endpoints a, b of the action

interval are not in the action spectrum S(Hs) for all s. If a third Hamiltonian K is

less than all Hamiltonians in the homotopy, i.e., if K ≤ H
s for all s, the diagram

HF(a, b)
∗ (H0)

∼= ��

∼= �������������
HF(a, b)

∗ (H1)

��

HF(a, b)
∗ (K)

(4.2.3)

is commutative for homotopy maps given by homotopies from H
0 and H

1 to K and

the horizontal map being the isomorphism (4.2.2). For this diagram to commute,

it is essential that K ≤ H
s holds for all Hamiltonians in the homotopy and not

just for the endpoints H
0 and H

1, since we need to break the homotopy H
s into a

composition of small homotopies with the same properties for the proof.

4.2.2 Filtered Floer homology in the irrational case

In the case of an irrational manifold, the action filtration of Floer homology

for degenerate Hamiltonians cannot be unambiguously defined simply by continuity

as the resulting groups depend very sensitively on the non-degenerate perturbation.

We thus use the following construction for the filtered Floer homology, which in the

case of a rational manifold gives the same homology groups as the above extension

by continuity.

Let H be a fixed Hamiltonian on M . To define HF(a, b)
∗ (H), consider per-

turbations K of H with the following properties:

(P1) the Hamiltonian K is non-degenerate;

(P2) the boundary values a and b of the action interval are not in the action spec-

trum S(K) of K;

(P3) we have K ≥ H.

For the remaining part of this section we will always assume the above properties

whenever we speak of perturbations K of a Hamiltonian H.

The set of such perturbations is partially ordered by K
1 ≤ K

0 whenever

K
1
t (x) ≤ K

0
t (x) for all x ∈ M and t ∈ S

1. Consider a monotone decreasing homo-

topy K
s from K

0 to K
1. By condition (P1), both perturbations K

0 and K
1 are
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non-degenerate. Thus we have an induced monotone homotopy map between the

Floer homology groups, which are well-defined by (P1) and (P2). In this case, the

homotopy map is still a homomorphism, but it need not be an isomorphism. Those

monotone homotopy maps give rise to transition maps HF(a, b)
∗ (K) → HF(a, b)

∗ (K̃)

whenever K ≥ K̃. Then we can define the filtered Floer homology of H by

HF(a, b)
∗ (H) = lim

−→
HF(a, b)

∗ (K)

as the direct limit of filtered Floer homology groups for perturbations satisfying the

conditions (P1)-(P3).

Remark 4.2.2 If H is non-degenerate and a and b are not in the action spectrum

S(H), this definition yields the ordinary filtered Floer homology of H, as H can

be viewed as the trivial perturbation of itself. Due to the non-degeneracy, H itself

satisfies the conditions required from the considered perturbations K. Thus the set

{H} is cofinal and is sufficient to define the limit.

The maps of the exact sequence (4.2.1) commute with the monotone ho-

motopy maps. Hence, for the limit function H, the analog sequence

· · · → HF(a, b)
∗ (H) → HF(a, c)

∗ (H) → HF(b, c)
∗ (H) → HF(a, b)

∗−1 (H) → · · · (4.2.4)

is also exact, since exactness is compatible with the limit construction, when the

homotopy maps used in the limit commute with the maps of the exact sequence.

In the definition of the filtered Floer homology as a limit, we can also

restrict the family of perturbations by requiring other properties in addition to

(P1)-(P3). The restricted family of perturbations is sufficient to define the limit if

they form a cofinal set, i.e. for any perturbation satisfying (P1)-(P3) we can find a

smaller one with the additional properties. The limit then does not depend on the

perturbations that do not have the additional properties.

In particular, we will later consider a cofinal set of perturbations for which

the filtered Floer homology splits into a direct sum decomposition that is compatible

with the monotone homotopy maps. Then we will also have a direct sum decompo-

sition of the limit, see Section 7.1 and in particular Remark 7.1.5.

We can also define monotone homotopy maps for homotopies starting at

a degenerate Hamiltonian H. Due to condition (P3), the monotone homotopy map
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for a homotopy from any perturbation K factors through all perturbations closer

to the limit function H than K. Then we define the monotone homotopy map

from HF(a,b)(H) as the limit of monotone homotopy maps from the perturbations.

The resulting map, still called monotone homotopy map, has the same properties

as the usual homotopy maps. If the endpoint of the homotopy is a degenerate

Hamiltonian, it follows from the definition of the direct limit and property (4.1.4)

that the homotopy map into the limit homology is also well-defined.

4.3 Local Floer homology

In this section, we define a local version of Floer homology providing an

invariant for isolated periodic orbits. The local Floer homology groups can be seen

as building blocks for the Floer homology of non-degenerate Hamiltonians. In this

section, we briefly recall the definition and basic properties of local Floer homology

following mainly [Gi2, GG2], although this notion goes back to the original work of

Floer (see, e.g., [Fl4, Fl5]) and has been revisited a number of times since then; see,

e.g., [Po, Section 3.3.4].

Let x̄ be an isolated capped one-periodic orbit of a Hamiltonian H. Pick

a sufficiently small tubular neighborhood U of x̄ and consider a non-degenerate C
2-

small perturbation H̃ of H supported in U . Then the degenerate periodic orbit x̄

splits into a finite number of periodic orbits of H̃ equipped with a capping which

is a perturbation of the capping of x̄. Every (anti-gradient) Floer trajectory u

connecting two one-periodic orbits of H̃ lying in U is also contained in U , provided

that �H̃−H�C2 and supp(H̃−H) are small enough. Thus, by the compactness and

gluing theorems, every broken anti-gradient trajectory connecting two such capped

orbits also lies entirely in U . The vector space (over Z2) generated by one-periodic

orbits of H̃ in U is a complex with (Floer) differential defined in the standard way.

The continuation argument (see, e.g., [SZ]) shows that the homology of this complex

is independent of the choice of H̃ and of the almost complex structure. We refer to

the resulting homology group HF∗(H, x̄) as the local Floer homology of H at x̄. The

proofs of these facts are very similar to the proof of the direct sum decomposition

in Chapter 7. In fact, local Floer homology is a special case of that direct sum, see

Remark 7.1.2.
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Example 4.3.1 Assume that x̄ is a non-degenerate one-periodic orbit of a Hamil-

tonian H with µCZ(x̄) = k. Then HFl(H, x̄) = Z2 when l = k and HFl(H, x̄) = 0

otherwise.

The local Floer homology groups can be seen as building blocks of filtered

Floer homology for small action intervals. Namely, let c ∈ R be such that all capped

one-periodic orbits x̄i of H with action c are isolated. (As a consequence, there are

only finitely many orbits with action close to c.) Then, if � > 0 is small enough,

HF(c−�, c+�)
∗ (H) =

�

i

HF∗(H, x̄i). (4.3.1)

In particular, if all capped one-periodic orbits x̄ of H are isolated and HFk(H, x̄) = 0

for some k and all x̄ with µCZ(x̄) = k, we have HFk(H) = 0 by the long exact

sequence (4.2.4) of filtered Floer homology.

We define the support of HF∗(H, x̄) as the collection of integers k such

that HFk(H, x̄) �= 0. Clearly, the group HF∗(H, x̄) is finitely generated and hence

supported in a finite range of degrees, namely in [∆H(x̄) − n, ∆H(x̄) + n] ∩ Z. As

the mean index grows linearly with the order of iteration, the support of local Floer

homology will also change with iteration and provide an important tool for the proof

of the Conley conjecture.
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Chapter 5

Proofs of Theorem 2.2.1 and

Theorem 2.2.5

In this Chapter, we will prove the Conley conjecture, i.e., the existence of

infinitely many periodic orbits for Hamiltonian systems, in both our settings. Post-

poning the technical proof of Theorem 2.2.6 to Chapter 8, we will assume this result

in this chapter and use it to prove Theorem 2.2.1 and Theorem 2.2.5. The arguments

in this chapter follow the proofs in [He1, He2] and mainly use the properties of Floer

homology and the behavior of the mean index under iteration discussed above.

5.1 Proof of Theorem 2.2.1

In this section, we proof the Conley conjecture in both settings described

Section 2.1. To do this, we show that there exists a symplectically degenerate

minimum whenever the number of one-periodic orbits is finite. Then Theorem 2.2.1

follows from Theorem 2.2.5 which is established in Section 5.2.

The key to the proof are the isomorphisms (4.1.5) and (4.1.6) relating the

Floer homology groups to the homology of the underlying manifold. Using these

isomorphisms, we can show

Lemma 5.1.1 In both settings considered in Theorem 2.2.1, we have HF−n(K) �= 0

for all admissible Hamiltonians K.
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Proof We consider the two settings separately, since we need to use a different

isomorphisms depending on the setting.

For closed manifolds, we use the isomorphism (4.1.5). In this case, the

lemma follows from the basic fact that for all closed symplectic manifolds H0(M) �= 0

and therefore also HF−n(K) = H0(M) �= 0 for all Hamiltonians K.

For the cotangent bundle setting whith M = T
∗
B and our class of Hamil-

tonians, we use the isomorphism (4.1.6) established in [AS]. The base manifold B is

contained in the space Λ0B of contractible loops in B via constant loops. Therefore

also have isomorphisms

HF∗(H) ∼= H−∗(Λ0B) ∼= H−∗(B)⊕H−∗(Λ0B, B).

Since we assume that B is closed and orientable, we have Hn(B) �= 0. Then the

above isomorphism in degree ∗ = −n reads HF−n(K) ∼= Hn(Λ0B) �= 0 and thus

implies the lemma.

This lemma applies for all admissible Hamiltonians independent of the

period considered in the construction of Floer homology. In particular, the lemma

holds for iterated Hamiltonians K = H
(k).

To proof the theorem, assume now that there are only finitely many one-

periodic orbits. If H does not have a symplectically degenerate minimum, all one-

periodic orbits with non-zero local Floer homology in degree −n have non-zero mean

index. The main point of the proof will be the behavior of the mean index under

iteration and the support of local Floer homology.

The mean index ∆
H(k)(x̄k) grows linearly with iteration by (3.3.2), and is

related to the Conley-Zehnder index grading the Floer homology via (3.3.3). This

shows that for every one-periodic orbit x̄ with non-zero mean index, the mean index

of a sufficiently large iteration is larger than n or less than −3n.

Using the inequality (3.3.3), this implies that the Conley-Zehnder index

of this iteration is not in the interval [−2n, 0] and thus the support of local Floer

homology, i.e., the degrees in which the local Floer homology is non-zero, shifts away

from this interval. Thus for a sufficiently large order k of iteration of the Hamiltonian

H, the local Floer homology HF−n(H(k)
, x̄

(k)) becomes zero for all iterated one-

periodic orbits with mean index ∆H(x̄) �= 0. It follows then by a standard argument
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using (4.3.1) that for the kth iteration of H we have 0 = HF−n(H(k)), see e.g.

[Gi2, GG2, Hi, SZ].

This contradicts Lemma 5.1.1 and thus proves the existence of a symplec-

tically degenerate minimum if the number of one-periodic orbits is finite. In the

presence of a symplectically degenerate minimum, the theorem follows from Theo-

rem 2.2.5, which also implies the statement concerning the periods of the periodic

orbits.

5.2 Proof of Theorem 2.2.5

In this section, we will show how the degenerate Conley conjecture follows

from Theorem 2.2.6, which is proved in Chapter 8. This will also complete the proof

of Theorem 2.2.1.

Recall that we assume the existence of a symplectically degenerate mini-

mum, i.e., a capped one-periodic orbit x̄ satisfying

∆H(x̄) = 0 and HF−n(H, x̄) �= 0,

and that the number of one-periodic orbits is finite. We also recall that Theorem

2.2.6 asserts that the filtered Floer homology group

HF(kc−�, kc−δk)
−n−1 (H(k)) �= 0 (5.2.1)

for sufficiently large k and some constants � > 0 and δk ∈ (0, �), where c is the action

of the symplectically degenerate minimum x̄. We will use this to prove that there

are simple periodic orbits of all sufficiently large prime periods. In particular, this

implies the existence of infinitely many distinct periodic orbits.

Arguing by contradiction, we assume that the assertion of Theorem 2.2.5

is false, i.e., that for sufficiently large periods all periodic orbits are iterated. Let k

be a sufficiently large prime. We choose k to be prime to ensure that all k-periodic

orbits are either simple or iterated one-periodic orbits. In particular, assume k to

be so large that every k-periodic orbit is an iterated one-periodic orbit and (5.2.1)

holds.

Since the Floer chain groups are generated by periodic orbits, Theorem

2.2.6 implies that every Hamiltonian with a symplectically degenerate minimum has
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a capped periodic orbit in degree −n− 1. In particular, this holds for all iterations

of our Hamiltonian H. By the inequality (3.3.3) relating the mean index to the

Conley-Zehnder index, this means that there exists a k-periodic orbit yk of H with

−2n− 1 ≤ ∆
H(k)(yk) ≤ −1.

The mean index of an iterated capped orbit growths linearly with iteration.

Thus for a one-periodic orbit, the mean indices of the iterations are zero whenever

the one-periodic orbit has mean index zero. For a one-periodic orbit with non-zero

mean index, the mean index of a sufficiently large iteration is not in the interval

[−2n− 1, −1]. The assumption that there are only finitely many one-periodic orbits

implies that for sufficiently large k, no kth iteration of a one-periodic orbit has mean

index in [−2n− 1, −1]. Thus the orbit yk cannot be an iterated one-periodic orbit

in contradiction to the choice of k. This shows the desired result, since we have

found a simple k-periodic orbit yk for all sufficiently large primes k.
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Chapter 6

Symplectically degenerate

extrema

In this chapter, we will study symplectically degenerate extrema and their

geometric characterization. Even though we use a symplectically degenerate min-

imum in the proof of Theorem 2.2.6, the symplectically degenerate maximum was

studied first and used to prove similar results. The existence of a symplectically

degenerate minimum was established in Chapter 5 and only enters the proof of

Theorem 2.2.6 via the geometric properties discussed here. The discussion of sym-

plectically degenerate maxima follows [Gi2]. We will omit the details of the proof

and only point out which details need to be changed. The results on symplectically

degenerate minima are also discussed in [He1].

6.1 Symplectically degenerate maxima

In this section, we state some geometric properties of symplectically degen-

erate maxima, which are defined analogously to symplectically degenerate minima

which were already defined in Section 2.2 and will be discussed later.

Definition 6.1.1 An isolated capped k-periodic orbit x̄ of a k-periodic Hamiltonian

H is called a symplectically degenerate maximum of H if

∆H(x̄) = 0 and HFn(H, x̄) �= 0.
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Remark 6.1.2 To prove Theorem 2.2.1 in the case of a closed manifold M , both

a symplectically degenerate minimum or a symplectically degenerate maximum can

be used. In this case, the isomorphism 4.1.5 give both HFn(H) ∼= H2n(M) �= 0 and

also HF−n(H) ∼= H0(M) �= 0. The former is used in [Gi2, GG2, He2] to prove the

existence of a symplectically degenerate maximum by an analogous argument to one

in Chapter 5.

In the case of the cotangent bundle M = T
∗
B, the transition to a symplecti-

cally degenerate minimum is necessary to prove Theorem 2.2.1. The Floer homology

for a Hamiltonian on the cotangent bundle is isomorphic to the homology of the free

loop space Λ0B of the base manifold up to a sign change in degree. A symplectically

degenerate maximum would have degree n > 0 in the Floer chain groups and would

therefore necessarily be zero in homology, since H−n(Λ0B) = 0. Thus we would get

the analog of Lemma 5.1.1 in degree n for closed manifolds, but not for our class of

Hamiltonians on cotangent bundles.

For the formulation of the geometric characterization of a symplectically

degenerate maximum we first need to define the norm of a tensor with respect to

a coordinate system. By definition, on a finite-dimensional vector space, the norm

�v�Ξ of a tensor v with respect to a coordinate system Ξ is the norm of v with

respect to the inner product for which Ξ is an orthonormal basis. For a coordinate

system ξ on a manifold M near a point x0, the natural coordinate basis in Tx0M is

denoted by ξx0 .

Proposition 6.1.3 ([GG2, GG3]) Let x̄ be a symplectically degenerate maximum

of a Hamiltonian H and let x0 = x(0) ∈ M . Then there exists a sequence of

contractible loops γi of Hamiltonian diffeomorphisms such that x(t) = γ
t

i
(x0), i.e

each loop ηi sends x0 to x. Furthermore, the Hamiltonians G
i given by ϕ

t

H
= γ

t

i
◦ϕt

Gi

and the loops γi satisfy the following conditions:

(G1) The point x0 is a strict local maximum of G
i
t for t ∈ S

1.

(G2) There exist symplectic bases Ξi of Tx0M such that

��d
2(Gi

t)x0

��
Ξi
→ 0 uniformly in t ∈ S

1
.
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(G3) The loop γ
−1
i
◦ γj has identity linearization at x0 for all i and j (i.e. for all

t ∈ S
1 we have d

�
(γt

i
)−1 ◦ γ

t

j

�
x0

= I), and is contractible to id in the class of

such loops.

A proof of this proposition and also of the fact that this description is

equivalent to the definition of symplectically degenerate maxima can be found in

[Gi2, GG3, GG2]. When the concept of a symplectically degenerate maximum was

introduced in [Hi] by Hingston and also in the first formal definition in [Gi2], the

geometric characterization was used as a definition of symplectically degenerate max-

ima. It is also shown in [GG3] that the conditions (G1) and (G2) already imply (G3)

as a formal consequence.

For the proof of Theorem 2.2.6, we need an additional property of the loops

γi for our tools to apply.

Remark 6.1.4 The loops η
−1
i
◦ ηj are loops of Hamiltonian diffeomorphisms fixing

x0. The construction of these loops in [Gi2] shows that the loops ηi can be chosen

such that η
−1
i
◦ ηj are supported in an arbitrarily small neighborhood of x0.

6.2 Symplectically degenerate minima

In this section we prove the geometric properties of symplectically degen-

erate minimaand show how its geometric properties compare to the properties of

symplectically degenerate maxima. The existence of a symplectically degenerate

minimum enters the proof of Theorem 2.2.6 only via those properties and was es-

tablished in Chapter 5.

First, recall from Definition 2.2.4 in Section 2.2 that a symplectically de-

generate minimum x̄ satisfies

∆H(x̄) = 0 and HF−n(H, x̄) �= 0.

Similarly to a symplectically degenerate maximum, also a symplectically

degenerate minimum can be characterized by its geometric properties:

Proposition 6.2.1 ([GG3, GG2]) Let x̄ be a symplectically degenerate minimum

of a Hamiltonian H and let x0 = x(0) ∈ M . Then there exists a sequence of

39



contractible loops ηi of Hamiltonian diffeomorphisms such that x(t) = η
t

i
(x0), i.e

each loop ηi sends x0 to x. Furthermore, the Hamiltonians K
i given by ϕ

t

H
= ηi◦ϕt

Ki

and the loops ηi satisfy the following conditions:

(K1) the point x0 is a strict local minimum of K
i
t for t ∈ S

1;

(K2) there exist symplectic bases Ξi of Tx0M such that

��d
2(Ki

t)x0

��
Ξi
→ 0 uniformly in t ∈ S

1;

(K3) the loop η
−1
i
◦ ηj has identity linearization at x0 for all i and j (i.e. for all

t ∈ S
1 we have d

�
(ηt

i
)−1 ◦ η

t

j

�
x0

= I), and is contractible to id in the class of

such loops.

The proof of this proposition follows from the analog result of Proposition

6.1.3 for symplectically degenerate maxima. The main point is a modification of

the Hamiltonian turning a symplectically degenerate minimum into a symplectically

degenerate maximum and back to a minimum.

Proof To prove the proposition, we will consider the Hamiltonian H
inv = −Ht◦ϕ

t

H

generating the inverse flow of ϕ
t

H
. The (local) Floer homology of H

inv can be

calculated from the Floer homology of H, since all one-periodic orbits of H give

rise to one-periodic orbits of H
inv by reversing the orientation. The Conley-Zehnder

index and the action of a periodic orbit of H
inv are the negatives of the Conley-

Zehnder index and the action of the corresponding periodic orbit of H; and the

Floer trajectories are the Floer trajectories of H with reversed orientation on S
1

and s replaced by −s.

Let y(t) = x(−t) be the symplectically degenerate minimum traversed in

opposite direction. Then y is a 1-periodic orbit of the Hamiltonian H
inv
t . As the only

difference between the loops x and y is the orientation, we keep the same capping

for both capped orbits. The capping is not relevant to the proof and thus is omitted

in the notation. The properties of the symplectically degenerate minimum x imply

that ∆Hinv(y) = −∆H(x) = 0 and HFn(H inv
, y) = HF−n(H,x) �= 0. Therefore,

y is a symplectically degenerate maximum of H
inv and we can use the geometric

characterization of symplectically degenerate maxima from [GG3, GG2] and Section

6.1 to construct Hamiltonians G
i
t and loops γ

t

i
such that
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(i) the point x0 = x(0) = y(0) is a strict local maximum of G
i
t for t ∈ S

1,

(ii) there exist symplectic bases Ξi of Tx0M such that

��d
2(Gi

t)x0

��
Ξi
→ 0 uniformly in t ∈ S

1
,

(iii) the loop γ
−1
i
◦γj has identity linearization at x0 for all i and j and is contractible

to id in the class of such loops,

(iv) ϕ
−t

H
= ϕ

t

Gi ◦ γ
t

i
.

Now we define the loops ηi and the Hamiltonians K
i by inverting the loops

γi and the flows of the Hamiltonians G
i, i.e., η

t

i
= γ

−t

i
and K

i
t = −G

i
t ◦ ϕ

t

Gi . Then

we have ϕ
t

H
= ηi ◦ ϕ

t

Ki , as required in the proposition.

The properties (K1), (K2) and (K3) of the loops ηi and the Hamiltonians

K
i follow directly from the properties (G1), (G2) and (G3) of γi and G

i with the

same coordinate systems Ξi of Tx0M .

Remark 6.2.2 The equation ϕ
−t

H
= ϕ

t

Gi ◦γ
t

i
in (iv) is a modification of the geomet-

ric characterization of symplectically degenerate maxima in [GG3, GG2]. In those

papers and in the definition of a symplectically degenerate maximum in [Gi2], the

requirement takes the form ϕ
−t

H
= γ

t

i
◦ ϕ

t

Gi. But in the construction of the loops

and the Hamiltonians, the order of composition is not crucial, see [Gi2] for details.

In the proof of Theorem 2.2.6, we need the order of composition to be ηi ◦ ϕ
t

Ki to

ensure that a composition η
t

i
◦ ϕ

t

F
for an autonomous Hamiltonian F is generated

by a one-periodic Hamiltonian. This would not necessarily be the case if the order

of composition is changed.

Remark 6.2.3 The loops η
−1
i
◦ ηj are loops of Hamiltonian diffeomorphisms fixing

x0. The construction of the loops γi in [Gi2] for the case of a symplectically degener-

ate maximum shows that the loops γi can be chosen such that γ
−1
i
◦ γj are supported

in an arbitrarily small neighborhood of x0. Hence also the loops ηi = γ
−1
i

can be

chosen to be supported near x0. This will be important to apply the direct sum de-

composition from Proposition 7.1.1 to a neighborhood of a symplectically degenerate

minimum in order to prove the theorems.
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Chapter 7

Direct sum decomposition in

filtered Floer homology

In this chapter, we prove the existence of a direct sum decomposition of

filtered Floer homology for short action intervals and Hamiltonians of a certain

form. This decomposition enables us to localize the problem and to restrict our

attention one of the summands. This summand only depends on the behavior of the

Hamiltonian on a fixed open set and we can apply methods from the symplectically

aspherical case on manifolds in our setting. The construction of this direct sum

decomposition is done originally in [He1].

7.1 The direct sum decomposition

In this section, we construct the direct sum decomposition for certain non-

degenerate Hamiltonians and discuss in which situations it can be extended to the

degenerate case.

To construct this direct sum decomposition, we need the Hamiltonian to

be of a certain form and to choose particular open sets. Let K be a non-degenerate

Hamiltonian on M . Consider two open sets U and V such that U ⊂ V and both sets

are bounded by level sets of K. On the shell V̄ \ U , assume that the Hamiltonian

K is autonomous and does not have one-periodic orbits. In particular, this implies

that U and V are homotopy equivalent. At this point, we also fix an almost complex

structure J on M , which is compatible with ω.
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Recall that the Floer chain groups are spanned by capped one-periodic

orbits, i.e. all one-periodic orbits enter the chain groups with multiple equivalence

classes of cappings. Consider the splitting of Floer chain groups into the direct sum

CF(a, b)
∗ (K) = CF(a, b)

∗ (K, U)⊕ CF(a, b)
∗ (K;M,U), (7.1.1)

where the first summand is generated by the one-periodic orbits in U with capping

equivalent to a capping contained in U . The second summand is spanned by all the

remaining capped orbits.

Proposition 7.1.1 Let the Hamiltonian K and the open sets U and V be as above.

There exists an � > 0, depending only on J , the open sets U and V and on K|V \U
such that (7.1.1) gives rise to a direct sum decomposition of homology

HF(a, b)
∗ (K) = HF(a, b)

∗ (K, U)⊕HF(a, b)
∗ (K;M, U) (7.1.2)

whenever the action interval (a, b) is chosen such that b− a < �.

In the case of a symplectically rational manifold, an analogous direct sum

decomposition was proven in [GG2] if K is constant on V \ U . The proof in the

rational case relies on energy bounds for J-holomorphic curves using the rationality

constant. In the irrational case in this thesis, we use more general bounds on the

energy of Floer trajectories and relax the conditions on the Hamiltonian. To prove

Theorem 2.2.6 we are going to apply Proposition 7.1.1 to the functions H± and F .

Remark 7.1.2 The direct sum decomposition in (7.1.2) generalizes the concept of

local Floer homology. Indeed, if x̄ is an isolated capped periodic orbit with action c,

one can find neighborhoods U and V of x̄ containing no other periodic orbits. Then

for a sufficiently small � > 0, the summand HF(c−�, c+�)
∗ (K, U) is exactly the local

Floer homology HF∗(K, x̄) of the Hamiltonian K at x̄. Indeed, for sufficiently small

non-degenerate perturbations K̃ of K, the periodic orbits of K̃ near x̄ have action in

the interval (c− �, c + �) and therefore are in this summand of the Floer homology.

Remark 7.1.3 The definition of local Floer homology in Remark 7.1.2 using the di-

rect sum decomposition is fundamentally different from the localization in the original

definition of local Floer homology. Here we only fix the Hamiltonian on a shell V \U
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between two bounded open sets U and V . Then we use the small action interval, and

thus small energy of Floer trajectories, to ensure that the trajectories do not leave V

using the energy bounds from Section 7.2.

In the construction of local Floer homology we do not directly restrict the

action interval but fix the Hamiltonian outside an open set U that only contains

one isolated one-periodic orbit x̄. Then we take a small non-degenerate perturbation

of the Hamiltonian on U to split this one-periodic orbits up into non-degenerate

periodic orbits. The action of those is close to the action of x̄ and thus the energy

of Floer trajectories connecting them is small. As the Hamiltonian is fixed outside

U , this ensures that Floer trajectories between orbits in U stay in U . Then the local

Floer homology is defined by restricting the definition of Floer homology to U .

To prove Proposition 7.1.1, we need to show that for such Hamiltonians

K no Floer trajectory can connect orbits from different summands, if the action

interval is sufficiently small. The key to that is proving the following proposition

which provides a lower bound on the energy for those Floer trajectories.

Proposition 7.1.4 Let K be a non-degenerate Hamiltonian and let U and V be

open sets that are both bounded by level sets of K. Assume furthermore that K

does not have one-periodic orbits in V̄ \ U and is autonomous on this shell. Let

u : S
1 × R → M be a Floer trajectory that intersects ∂U and ∂V . Then there is

a constant � > 0, only depending on the open sets U and V , the restriction of the

Hamiltonian K and the almost complex structure J to V̄ \ U , such that E(u) > �.

This bound on the energy of Floer trajectories is sufficient to prove the

direct sum decomposition for small action intervals.

Proof [Proof of Proposition 7.1.1] Let x̄ and ȳ be two capped orbits in HF(a, b)
∗ (K).

Assume that x̄ and ȳ are connected by a Floer trajectory u, and let x̄ be in

HF(a, b)
∗ (K, U). We need to show that y is contained in U and the capping of ȳ

is equivalent to a capping in U .

By construction, V is homotopy equivalent to U and the capping of ȳ is

equivalent to u#(the capping of x̄). Thus it suffices to show that the Floer trajectory

u is contained in V . If u did leave V , it would have to intersect both boundary

components of V \ U , as u is converging to the orbit x, which is contained in U .
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By Proposition 7.1.4, such a trajectory would have to have energy E(u) > � for

some constant � > 0. Thus, if we choose the action interval (a, b) such that b− a is

smaller than the lower bound � in Proposition 7.1.4, the Floer trajectory u has to

be contained in V and we have the desired direct sum in homology.

Remark 7.1.5 In general, the direct sum decomposition from Proposition 7.1.1

need not be compatible with monotone homotopy maps. In some important cases,

however, this is the case. For example, consider two Hamiltonians K
1 and K

2

that agree on V \ U up to an additive constant and assume K
1 ≥ K

2. Then the

above direct sum decomposition is compatible with the monotone homotopy map

HF(a, b)
∗ (K1) → HF(a, b)

∗ (K2). Indeed, the monotone homotopy map is defined us-

ing a version of the Floer equation. If the two Hamiltonians agree up to a constant,

their Hamiltonian vector fields agree and this equation is exactly the standard Floer

equation. Thus Proposition 7.1.4 the above proof of Proposition 7.1.1 also apply in

this setting and show that the monotone homotopy map is compatible with the direct

sum decomposition for sufficiently small action intervals.

Corollary 7.1.6 Let K be any Hamiltonian, which we do not necessarily assume

to be non-degenerate. Assume that the open sets U and V are bounded by level sets

of K as above. If the Hamiltonian K is autonomous on V \ U and does not have

periodic orbits in V̄ \ U , then for sufficiently small action interval (a, b) the direct

sum decomposition (7.1.2) holds.

Proof It suffices to construct a cofinal set of non-degenerate perturbations of K,

such that the direct sum decomposition (7.1.2) holds for all of those Hamiltonians

and is compatible with the monotone homotopy maps.

Consider the perturbations that differ from K on V \ U only by a con-

stant. These form a cofinal set, since for every perturbation H ≥ K we can find

a smaller one with that additional property. We can choose these perturbations to

be non-degenerate, as K does not have periodic orbits in V̄ \ U and there are no

restrictions on the perturbation outside V̄ \ U . The connecting maps between the

Floer homologies of the perturbations are monotone homotopy maps and respect

the direct sum decomposition. Thus we also have a direct sum in the limit.
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7.2 Proof of the direct sum decomposition

To prove the proposition, we need to find a lower bound for the energy

of Floer trajectories crossing the shell V \ Ū . The following lemma can be used to

bound the time-integral in the expression for the energy away from zero for the part

of a Floer trajectory in a compact set not containing one-periodic orbits.

Lemma 7.2.1 Let W be a bounded open set with smooth boundary and at least

two boundary components. Further, let K be an autonomous Hamiltonian on W̄ .

Assume that K is constant on each boundary component and does not have one-

periodic orbits in W̄ .

Then there exists a constant C1 > 0, depending only on the almost complex

structure J , the open set W and K such that:

(i) For T ≤ 1, any path γ : [0, T ] → W̄ , which connects two distinct boundary

components of W , satisfies
�

T

0
�γ̇(t)−XK(γ(t))�2 dt > C1.

(ii) Any loop γ : S
1 → W̄ satisfies

�

S1
�γ̇(t)−XK(γ(t))�2 dt > C1.

This lemma is a generalization of lemmas in [Us2], but the existence of

similar lower bounds goes back to [Sa]. The proof given in Section 7.3, however,

differs from the proofs in [Sa, Us2]. With W = V \Ū , this lemma implies Proposition

7.1.4 if the area of u
−1(W ) is small. If this area is not small, we need the following

lemma to relate the area of the domain and the energy for certain parts of a Floer

trajectory.

Lemma 7.2.2 (Usher’s lemma) Let W be a bounded open set with smooth bound-

ary and at least two boundary components and let K be an autonomous Hamiltonian

on W̄ . Let S be a connected subset of the cylinder S
1×R and let u : S → W̄ satisfy

the Floer equation (4.1.1) with Hamiltonian K. Assume that u(∂S) ⊆ ∂W . If u(S)

intersects two distinct boundary components of W , then there exists a constant C2,
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depending only on the domain W , the Hamiltonian K and the complex structure J

on W , such that

Area(S) + E(u) ≥ C2.

This lemma is a generalization of Lemma 2.3 in [Us2] and also the proof

follows the same lines the proof in [Us2]. We include the proof of this lemma in

Section 7.4 and continue here with the proof of Proposition 7.1.4. Similarly to the

special case in [Us2], both lemmas are applied in the case when W is a shell between

two open sets to bound the energy of certain Floer trajectories away from zero.

To prove Proposition 7.1.4, we choose two more open sets U
� and V

�

bounded by level sets of K such that

U ⊂ U
� ⊂ V

� ⊂ V.

Denote the loop t �→ u(t, s) for fixed s by γs(t) and consider the set

Z =
�
s ∈ R | γs intersects V

� \ U
��

.

Then for every s ∈ Z, we either have γs ⊆ V \U or γs intersects one of the

boundary components of V \ U . In the first case, we can apply Lemma 7.2.1 (ii) to

the Hamiltonian K and W = V \ Ū . In the second case, the path γs also intersects

one of the boundary components of V
� \U

� and we can apply Lemma 7.2.1 (i) with

W taken to be one of the shells V \ V
� or U

� \U . Denote by C the minimum of the

constants C1 from Lemma 7.2.1 for the shells V \U , V \V
� and U

� \U and our fixed

Hamiltonian K and almost complex structure J .

Then we have the following estimate for the energy of u:

E(u) =
�

R

�

S1
�∂su�2 dt ds

≥
�

Z

�

S1
�∂tu(s, t)−XK(u(s, t))�2 dt ds

≥
�

Z

C ds = C mLeb(Z).

If mLeb(Z) ≥ C2/2, where C2 is the constant from Lemma 7.2.2 for the

shell W = V
� \ U

�, we have found a lower bound CC2/2 for the energy of u.

If mLeb(Z) < C2/2, we want to use Lemma 7.2.2. To do so, we choose S as

one connected component of u
−1(V � \U

�), such that u(S) intersects both boundary
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components. Since u intersects both ∂U and ∂V , such a set S exists and S ⊆ Z×S
1.

Then we have Area(S) ≤ mLeb(Z) ≤ C2/2 and u(∂S) ⊆ ∂(V � \ U
�). Now Lemma

7.2.2 applies with W = V
� \ Ū � and we find that

E(u) ≥ E(u|S) ≥ C2 −Area(S) ≥ C2/2.

Thus with � = min{CC2/2, C2/2} we have found a lower bound for the energy in

either case.

7.3 Proof of Lemma 7.2.1

To find lower bounds for the integrals in question, we first use the Schwarz

inequality to get

�
T

0
�γ̇(t)−XK(γ(t))�2 dt ≥

��
T

0
�γ̇(t)−XK(γ(t))� dt

�2

for T ≤ 1 and it suffices to find a lower bound for the L
1-norm.

To that end, for a path γ(t) in W̄ , we define the path η(t) = ϕ
−t

K
(γ(t)). By

the chain rule we have

γ̇(t) = dϕ
t

K(η(t))η̇(t) +
�

d

dt
ϕ

t

K

�
(η(t))

= dϕ
t

K(η(t))η̇(t) + XK(γ(t)).

Recall for part (i) that we assume K to be autonomous and constant on

the boundary components of W . The two boundary components of W are thus

preserved under the flow. Since γ connects two distinct boundary components of

W , the same is true for η. Denote the distance of these boundary components with

respect to the metric given by ω and J by δ. Then we find the desired lower bound

by the following calculation:
�

T

0
�γ̇(t)−XK(γ(t))� dt =

�
T

0
�dϕ

t

K(η(t))η̇(t)� dt

> c ·
�

T

0
�η̇(t)� dt

≥ c · d(η(0), η(T ))

≥ c · δ.
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The constant c is positive since K is smooth and both t and η(t) are varying in

compact sets and K has no critical points in W̄ .

Similarly, we find for part (ii)
�

S1
�γ̇(t)−XK(γ(t))� dt =

� 1

0
�dϕ

t

K(η(t))η̇(t)� dt

≥ c · d(η(0), η(1))

= c · d
�
γ(0), ϕ−1

K
(γ(0))

�
.

As W̄ is compact and ϕK is continuous with no one-periodic orbits in W̄ , this

distance is bounded away from zero.

Thus in both parts we have found a lower bound and we set C1 to be the

minimum of those bounds.

7.4 Proof of Usher’s lemma

Recall that we want to prove the existence of a lower bound for the sum of

the energy and the area of the domain of a Floer trajectory u, i.e., for Area(S)+E(u),

which is independent of u. For simplicity of notation, we assume that W has exactly

two boundary components. Since u is a solution of the Floer equation and S is a

subset of the cylinder S
1×R, the graph ũ : S → S

1×R×W̄ is a J̃-holomorphic curve

for a certain almost complex structure J̃ which is tamed by ω̃ = ds∧dt−dt∧dK+ω.

(For the precise definition of J̃ , see the proof of Lemma 2.3 in [Us2]). This almost

complex structure J̃ depends only on the almost complex structure J on W̄ and on

the Hamiltonian K on W̄ .

For any subset S
� ⊂ S, this definition of ω̃ gives

�

S�
ũ
∗
ω̃ =

�

S�
ds ∧ dt +

�

S�

����
∂u

∂s

����
2

Jt

ds dt = Area(S�) + E(u|S�).

Let Σ be a closed hypersurface in W which separates the two boundary

components. By assumption, there is a z0 ∈ S such that u0 = u(z0) ∈ Σ. Let D

be a disk centered at z0 with radius independent of all other choices, say, e.g., 1/3.

Also choose a ball B centered at u0 such that B ⊆ W .

Now we consider a ball B̃ centered at (z0, u0) and contained in D × B.

Since the radius of D is fixed, the radius of this ball B̃ depends only on the radius
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of B and thus only on the open set W . Then we define

S̃ = {z ∈ S | ũ(z) ∈ B̃}.

By definition, the boundary of S̃ is mapped to the boundary of B̃. Indeed,

ũ(∂S) is contained in (∂S)× (∂W ) and therefore not in B̃ ⊆ D ×B.

Let us now view the graph of u as a map ũ : S̃ → B̃. As B is contained

in W , where K is fixed, the almost complex structure J̃ on D×B depends only on

K|W and the complex structure J on B. The almost complex structure J depends

on the ball B and therefore on the point u0.

By definition of S̃, the center (z0, u0) = ũ(z0) of the ball B̃ is contained

in the image of ũ. Now ũ is considered to be a J̃-holomorphic curve in B̃, which is

passing through the center ũ(z0) and has no boundary in the interior of B̃. For such

ũ, Proposition 4.3.1(ii) in [Si] applies and we have Area(S̃) + E(u|
S̃
) ≥ C2(u0).

This constant C2(u0) still depends on u, since the choice of u0 depends on

u. To achieve a constant that does not depend on u, we take the infimum over all

u0 ∈ Σ and define

C2 = inf{C2(u0) | u0 ∈ Σ}.

Since the hypersurface Σ is compact, this constant C2 is positive and independent

of u. With this choice of C2, we have the desired result that Area(S) + E(u) ≥
Area(S̃) + E(u|

S̃
) ≥ C2 > 0.
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Chapter 8

Proof of Theorem 2.2.6

The proof of this theorem relies on the original proof of the Conley con-

jecture in the case of a symplectically aspherical manifold in [Gi2]. Since we do not

restrict the properties of the symplectic form, the computations in the proof cannot

be done explicitly in our settings. To apply the computation from the aspherical

case in our setting, we use the direct sum decomposition from Chapter 7 to local-

ize the problem. Then Darboux theorem removes the dependence on the ambient

manifold and we can apply tools from more restrictive cases. For the direct sum

decomposition to hold, we need to change some details in the construction of aux-

iliary Hamiltonians. Furthermore, we use a symplectically degenerate minimum in

contrast to previous work using a symplectically degenerate maximum. This change

also requires some modifications in the proof.

8.1 Outline of the proof

The keys to proving Theorem 2.2.6 are the geometrical description of sym-

plectically degenerate minima given in Proposition 6.2.1 and the direct sum decom-

position from Chapter 7. In particular, we can assume the symplectically degenerate

minimum to be a constant orbit x0 with trivial capping and omit the capping in

the notation from now on. Furthermore, we can assume that x0 is a strict local

minimum of H and that H has arbitrarily small Hessian at x0.

Then we use the squeezing method from [BPS, Gi2, GG1] and construct

Hamiltonians H+ and H− such that H− < H < H+. It suffices to show that a
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linear homotopy from H+ to H− induces a non-zero map between the filtered Floer

homology groups of H± for the action interval in question. This map is independent

of the choice of the monotone decreasing homotopy. Since H− < H < H+, the

homotopy can be chosen to pass through the Hamiltonian H and thus also the

homotopy map factors through the filtered Floer homology group of H, which can

therefore not be trivial.

Similarly to the construction in [Gi2, GG2], the functions H± are radi-

ally symmetric and centered at the symplectically degenerate minimum; see Section

8.2 for details. The only difference to the construction in [Gi2, GG2] is that we

need these functions to satisfy the requirements for the direct sum decomposition

from Proposition 7.1.1 to apply. For the cotangent bundle case, we also choose the

functions to satisfy the growth condition at infinity.

To prove that the monotone homotopy map is non-zero, we use the direct

sum decomposition proved in Chapter 7. It suffices to show that the restriction to

one of the summands is an isomorphism. The considered summand HF∗(H±, U) is

defined using a small neighborhood U of the symplectically degenerate minimum x0.

This summand depends only on the restriction of the functions H± to U and the

symplectic structure in U and is independent of the ambient manifold. By Darboux

theorem for symplectic manifolds, we can view U as an open set in any symplectic

manifold of dimension 2n and the theorem follows as in the closed, symplectically

aspherical case in [Gi2].

8.2 The functions H+ and H−

By the geometric characterization of the symplectically degenerate mini-

mum in Proposition 6.2.1 above, it suffices to prove the theorem for the function

K
1 and the constant orbit x0 as symplectically degenerate minimum. We keep the

notation H for K
1. Fix a neighborhood W of x0 such that x0 is a strict global

minimum of H on W and that there exist Darboux coordinates for M in W . On

the cotangent bundle, we choose W such that �p� ≤ C in W for some possibly very

large constant C > 0. We also fix now an almost complex structure J on M that is

compatible with ω.

Let U and V be balls centered at x0 and contained in W . We then construct
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the function H− and an auxiliary function F to be of the form shown in Figure 8.2.

The construction differs slightly in the two different settings. In the case of a closed

manifold, we can choose both functions to be constant outside a neighborhood of

the symplectically degenerate minimum. In the case of a cotangent bundle, we need

these functions to be in our class of Hamiltonian and satisfy the growth condition

at infinity.

To construct the Hamiltonian H− near the symplectically degenerate min-

imum x0, we fix balls

Br− ⊂ Br+ ⊂ Br ⊂ U ⊂ V ⊂ BR ⊂ BR− ⊂ BR+ � W

centered at x0. In W , the function H− takes the following form as a function of the

distance from x0:

• H− ≥ H and H− ≡ c = H(x0) on Br− ;

• on Br+ \Br− the function H− is monotone increasing;

• on Br \Br+ the function is constant;

• in the shell BR \Br the function is monotone decreasing, linear as a function

of the square of the distance from x0 with small slope α on V \ U such that

there are no one-periodic orbits in V \Br;

• the function H− is again constant on BR− \BR with a value less than c;

• it is monotone decreasing on BR+ \BR− ;

• outside BR+ , the function H− is constant and equal to its minimum.

Outside W , we define the function H− differently in our two different set-

tings. For the case of a closed manifold, we take H− to be constant outside W .

On the cotangent bundle, the function H− also has to meet the require-

ments (H1) and (H2). This can be realized by defining H− to be a positive, non-

degenerate quadratic form for �p� ≥ C i.e. we choose H− to satisfy (2.1.1) and

thus conditions (H1) and (H2). The coefficients of the quadratic form are chosen

such that we have H− ≤ H on M . Thus H− is of the general form mentioned in

Example 2.1.2.
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Figure 8.1: The functions H− and F as functions of the distance from x0.

This function is constructed very similarly to the ones used in [Gi2, GG2]

near a symplectically degenerate maximum. More concretely, up to an additive

constant (and the quadratic growth condition in the cotangent bundle case), this is

the negative of the function H+ used in [He2], since we are using a symplectically

degenerate minimum here. See also Section 8.3 for details about the choices made

in the construction of H−.

Let us now turn to the construction of H+, which is again constructed

similarly to the function H− in [Gi2] for the case of a symplectically degenerate

maximum. This is the point where we use the existence of a symplectically de-

generate minimum and its geometric characterization discussed in Section 6.2. The

geometric characterization of symplectically degenerate minima in Proposition 6.2.1

and Remark 6.2.3 imply that there is

• a loop η
t of Hamiltonian diffeomorphisms fixing x0, which is supported in U

and

• a system of coordinates ξ on a neighborhood W of x0

such that the Hamiltonian K generating the flow η
−t◦ϕt

H
has a strict local minimum

at x0 and maxt

��d
2(Kt)x0

��
ξ

is sufficiently small. The loop η is contractible in the

class of loops having identity linearization at x0, i.e. there exists a homotopy of loops
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of Hamiltonian diffeomorphisms with identity linearization at x0 between η and a

constant loop. Let G
t
s be a Hamiltonian generating such a homotopy η

t
s normalized

by G
t
s(x0) ≡ 0. We then normalize K by the additional requirement that Kt(x0) ≡ c

(or equivalently that H = K#G
0).

By the characterization of the symplectically degenerate minimum, there

exists a function F , depending on the coordinate system ξ, such that

•
��d

2
Fx0

��
ξ

is sufficiently small,

• F ≥ K and F (x0) = c = H(x0) is the global minimum of F .

To be more precise, in Br the function F is the negative of a bump function centered

at x0. Furthermore, F is chosen to differ from H− only by a constant in V \U . The

last condition is needed to have the direct sum decomposition in Proposition 7.1.1

below for the filtered Floer homology groups of both H− and F and to ensure that

these decompositions are compatible with the monotone homotopy map for a linear

homotopy from H− to F ; see Remark 7.1.5.

Outside BR, we choose F similar to H−. In the case of a closed manifold,

we can define F to be constant outside BR. For the cotangent bundle case, we define

F to be constant outside BR for �p� ≤ C. For �p� > C, we define F to be of the

form described in Example 2.1.2, i.e., a positive, non-degenerate quadratic form, to

ensure that F satisfies the growth conditions (H1) and (H2). Relevant for the proof

of Theorem 2.2.6 is mostly the shape of the functions H− and F inside W and the

inequality H− < H < H+ between the Hamiltonians, but not the concrete definition

of H± outside W . The coefficients of the quadratic form are fixed now in such a

way that all functions of the homotopy F
s = G

s#F satisfies F
s ≥ H− for all s and

F
1 = F ≥ K.

This is an isospectral homotopy, since the homotopy G
s is normalized to

be of the form discussed after Definition 4.2.1. We define the function H+ by

H+ := G
0#F ≥ G

0#K = H.

We have chosen the loop η to be supported in U to ensure that the function G
0

is constant outside U . This implies that H+ differs from F only by the constant

value of G
0 on V̄ \ U . Thus H+ also differs only by a constant from H− on this set

55



by the definition of F . Therefore we also have the direct sum decomposition from

Proposition 7.1.1 for H+. It is compatible with the homomorphism induced by the

homotopy F
s and the monotone homotopy map for a homotopy from H+ to H−.

8.3 The Floer homology of H± and the monotone ho-

motopy map

Before we go into detail on the Floer homology of the functions H±, we

need to specify the choices made in the construction of these functions. The order

in which the constants are chosen is important to guarantee the conditions in all

auxiliary propositions. To be more precise, we first choose some small constant

α0 > 0 such that α0/π is irrational. Then we fix the Hamiltonian H− on Br and

pick � > 0 smaller than the energy bound from Proposition 7.1.1 for a Hamiltonian,

which is linear in the radius with slope α0 on V \U . Using these choices, we take a

sufficiently large order of iteration k as in [Gi2, GG2]. Furthermore, we now fix H−

outside Br with slope α = α0/k on V \U . We thus have the direct sum decomposition

of filtered Floer homology by Proposition 7.1.1 for H
(k)
− . At this point we choose

some δk ∈ (0, �/2), depending on the order of iteration k, to ensure that the action

intervals (kc + δk, kc + �) and (kc− δk, kc + δk) are small enough for the direct sum

decomposition (7.1.2) to exist.

Thus Proposition 7.1.1 applies to the functions H± and F and we can

restrict ourselves to the summand of the Floer homology containing the orbits in

U . This direct sum decomposition is also constructed to be compatible with all

monotone homotopy maps arising in the proof. Since U is contained in a Darboux

neighborhood of x0, this summand does only depend on the restriction of the function

to U and is independent of the ambient manifold.

For the calculation of this part of the Floer homology groups, we refer the

reader to [Gi2, GG3] as the functions and homotopies used here are very similar to

the constructions used in these papers. Namely, the functions H− and F in this

thesis are autonomous and generate the inverses of the flows of the Hamiltonians

H+ and F used in [Gi2, He2], hence they are just the negatives of those functions.

The Floer equation (4.1.1) is the same equation as for the functions in [Gi2] with the
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orientation in both coordinates of S
1 × R reversed and the negative Hamiltonians.

Thus the numbers of connecting Floer trajectories are equal.

Similarly, the homotopy from F to H− here is the negative of the homotopy

from H+ to F in [Gi2] and we obtain an isomorphism of Floer homology groups

2
∼= HF(kc−�, kc−δk)

−n−1 (F (k)
, U) → HF(kc−�, kc+δk)

−n−1 (H(k)
− , U) ∼= 2

by the same argument.

Since the homotopy F
s is isospectral with F

s ≥ H− and for this summand,

the filtered Floer homology does not depend on the manifold, we can use (4.2.3) for

iterations of the Hamiltonians F and H±. As in the symplectically aspherical case

in [Gi2], we have the commutative diagram

HF(kc−�, kc−δk)
−n−1 (F (k)

, U)
∼= ��

∼= ������������������
HF(kc−�, kc−δk)

−n−1 (H(k)
+ , U)

Ψ
��

HF(kc−�, kc−δk)
−n−1 (H(k)

− , U)

for this summand, where the horizontal map is induced by the isospectral homotopy

F
s and the other maps are monotone homotopy maps. The diagonal map is an

isomorphism by the same argument as in [Gi2] using the long exact sequence (4.2.1)

of filtered Floer homology to go over to the action interval (kc− δk, kc+ δk). By the

commutativity of this diagram, the map Ψ is also an isomorphism of this summand

if the filtered Floer homology groups. This implies that the monotone homotopy

map

HF(kc−�, kc−δk)
−n−1 (H(k)

+ ) → HF(kc−�, kc−δk)
−n−1 (H(k)

− )

for the complete filtered Floer homology is non-zero. This map factors through the

Floer homology group of H, which we want to show to be non-trivial. This proves

Theorem 2.2.6 and thus also completes the proofs of Theorems 2.2.1 and 2.2.5.
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