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Abstract

Monitoring agricultural behavior under climate change with cloud computing and satellite
imagery

by

Minghui Zhang

Doctor of Philosophy in Engineering- Civil and Environmental Engineering

University of California, Berkeley

Sally Thompson, Co-chair

Fotini K. Chow, Co-chair

Understanding agricultural productivity under climate change is critical to helping global
food systems tackle impending challenges in supply and demand. Crucially, this requires
us to understand planting dates: by controlling the yield and cropping intensity of rainfed
agriculture, planting dates could serve as a major adaptation strategy under climate pressure.
Currently, the lack of spatiotemporally resolved crop timing information makes it difficult
to produce insights into planting behavior, which is the result of complex human decisions
made under varying socio-economic and climatic contexts. This data gap hinders our ability
to understand how farmers will adapt to climate change by shifting planting dates, and
may negatively impact the accuracy of yield predictions. This dissertation addresses this
data gap by introducing a scalable method to estimate planting dates. I apply this method
to generate insights into historical and future planting dates of soy (Glycine max ) in the
heavily agricultural state of Mato Grosso, Brazil (MT). My work begins with a remote
sensing-based method to estimate field-scale (500 m) planting and harvest dates over large
(100,000 km2), and therefore computationally challenging areas, with sparse ground truth
information. The method pairs (1) a timeseries analysis algorithm for MODIS imagery,
implementable on the cloud computing platform Google Earth Engine (GEE), to extract 500
m phenological milestones and (2) proxy ground truth data based on Planet Labs imagery
to relate phenological milestones to observed planting and harvest dates. Next, I build
a statistical model of satellite-estimated planting dates as a function of the wet season
onset. This model reveals several novel insights about agricultural behavior in Mato Grosso.
First, traditional climatological definitions of wet season onset are less correlated to observed
planting dates than alternative, easily observable definitions based on rainfall frequency,
highlighting the need to explore farmer-relevant definitions of climate. Second, planting
dates’ sensitivity to wet season onset varies dramatically among fields and with cropping
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intensity; this heterogeneous response produces a wide range of planting dates that are rarely
included in crop models. Finally, a trend toward earlier planting dates, independent of wet
season onset, reveals nonstationary behavior that cannot be captured with the historical
survey data used by some yield prediction efforts. My findings suggest that under RCP 8.5
climate conditions, climatic windows will constrain planting dates relative to agronomically
preferred times, and the feasibility of double cropping will be endangered for vulnerable
portions of Mato Grosso. Both delayed planting dates and loss of double cropping suitability
are problematic for an economy that largely depends on agribusiness and that is central to
international soy supply. While Mato Grosso is the focus of this dissertation, the methods
developed here lay the groundwork for similar studies globally. By introducing a scalable
method to close the information gap on planting dates and generating new insights into
the planting dates of tropical rainfed crops, this work provides a foundation for investigating
planting date behavior and climate change adaptation in vulnerable, data-scarce agricultural
regions worldwide.
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Chapter 1

Introduction

1.1 Agricultural productivity under climate change

1.1.1 Agriculture faces pressure under climate change

Population growth, dietary change, and increased biofuel use will require a doubling of
agricultural production in this century [45], a challenge compounded by climate change.
Generally, and especially in the tropics, climate change is expected to harm food production
systems. A reduction in climatically suitable land and elevated likelihood of extreme weather
events like heat waves, droughts, and flooding are expected worldwide [123]. Additionally,
a hotter, drier climate is projected over tropical regions, where crops are heavily reliant on
rainfall and already experience the upper limit of their temperature tolerance [25, 113]. In
tropical climates, even moderate temperature increases of 1◦C can produce declines in yield
[25, 113]. Higher temperatures negatively impact crop growth by increasing photorespiration,
reducing carbon assimilation per unit of water consumed, and decreasing nutrient absorption
[69]. Consequently, the mean yield of major crops is expected to decline by 8% in the 2050s
across Africa and South Asia [79], with maize yields declining sharply at temperatures above
30◦C [122].

In addition to reducing the yield of individual crops, climate change may force shifts in
agricultural practices that sharply decrease overall production. For example, one concern
about agricultural adaptation to climate change is whether double cropping (the sequen-
tial planting of two crops in a single growing season) will decline in the face of changing
temperature and precipitation seasonality [106, 124].

The damage caused by climate change may be mitigated with adaptation strategies [78,
111]. Management has such a strong influence on productivity that farmers may be able
to minimize or even reverse the harmful effects of climate change through a broad range of
strategies, including cultivar selection, increased cropping intensity, improved water man-
agement, nutrient and pest management, and agroforestry [4, 8, 19, 58, 63, 111, 137, 143].
The adaptation strategies implemented in agricultural systems will determine the health of
economies, food systems, and societies globally. Successful adaptation could prevent global
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food crises; unsuccessful adaptation may hasten them.

1.1.2 Planting dates are an adaptation strategy under climate
change

As a primary control on the weather experienced by crops, the decision of when to plant
is one of the most cost-effective adaptations to climate change. A knowledgeable farmer
can select planting dates to optimize the exposure of crops to beneficial weather conditions
and to avoid exposure to harmful conditions during sensitive phenological stages. Examples
spanning production systems from sorghum in Italy [63]; to soybean in Austria [5], the US
south east [14], and sub-Saharan Africa [147]; rice in Sri Lanka [34] and India [69]; wheat
in Iran [101]; and corn in the US midwest [81] and Burkina Faso [149] demonstrate that
adaptations in planting dates to avoid drought and heat stress could mitigate or reverse the
negative effects of climate change on production.

However, planting dates of rainfed crops are limited by the timing of the wet season.
The gains from changing planting dates may be reduced if planting dates are restricted to
inopportune times by a delay in wet season onset (a date which I will refer to interchangeably
as “onset”). A later onset necessitates delayed, and possibly suboptimal, planting of rainfed
crops, in which crop growth stages can no longer be synchronized with optimum weather
conditions. For example, a 1% decrease in wheat yield was observed for every day of delayed
planting in northern India, a decline caused by heat stress during the grain filling period
of crop growth [102]. In the US, soy yields decrease linearly with delayed planting due to
reduced moisture supply [15]. Soy yields are also influenced by temperature. If the available
planting dates force soy to experience hotter weather, the higher temperatures accelerate
phenological development, allowing less time for biomass accumulation before maturity. This
hastens the harvest date and reduces yield [127].

Much of the damage inflicted by climate change may appear indirectly as a decline in
cropping intensity. Planting dates for rainfed crops rely heavily on the timing of water avail-
ability and may become ineffective as an adaptation strategy if the wet season is constricted.
In an extreme scenario, the shortening of the rainy season may force growers to give up a
double cropped system and settle for single cropping, effectively halving productivity. This
issue is already present in Iran, where delayed planting of the first crop in a double cropped
system reduces exposure to dry spells, but the postponement places the second crop at risk
[101].

Planting dates therefore simultaneously create adaptation strategies to climate change,
but also pose vulnerabilities to climate change. While shifting planting dates allows farmers
to avoid dry spells and other unfavorable weather events, this adaptation is ineffective under
extreme forms of climate change in which the number of possible crop rotations is constrained,
or in which the possible planting dates are all suboptimal. Crucial to the understanding
of how climate change will impact agricultural productivity is therefore quantification of
planting dates and their sensitivity to non-stationary climatic variables such as the wet
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season onset.

1.2 Existing planting data

1.2.1 Planting dates vary spatiotemporally because they depend
on a variety of social, economic, and physical constraints

Planting dates are highly variable in space and time, because deciding when to plant crops
involves inherent uncertainty [52, 103]: farmers must navigate the tradeoff between waiting
for improved weather conditions [for example, greater water availability or lower frost risk, 82,
94] while providing enough time for phenological development and crop maturation. Double
cropping places additional constraints on planting because the first crop must be planted
early enough to enable the second crop to mature before the end of the wet season [106]. To
navigate this uncertainty and decide to plant, farmers may draw on the weather experienced
within a given season to date [94, 109, 134], seasonal weather forecasts [135], memory of
planting dates in recent years and other subjective beliefs [75], and/or recommendations
from agricultural extension services [23].

Even if the planting date can be optimized with respect to uncertainties in phenology
and weather; economic, logistical, and social constraints may cause farmers to accelerate or
delay planting, for example based on the availability of agricultural credit [1], crop prices [19],
risk aversion [23, 44, 75], access to planting equipment and labor [36], use of irrigation [44],
desired cropping intensity [106], or soil type (slow-draining soil hampers planting equipment)
[23].

Because planting dates arise as uncertain decisions made by farmers [148], they are
dynamic, variable, and difficult to predict [66]. Variations in planting and harvest dates can
occur over spatial scales as small as individual fields [16], while interannual variations reflect
volatility in climate, crop price, equipment availability, or technological development [66, 80,
81, 91]. This spatiotemporal variability means that planting dates must be understood at
field-scales (500 m) and over individual years.

1.2.2 Existing global planting data are spatially aggregated,
outdated, or based on outdated assumptions

Few datasets resolve planting and harvest dates at field scale for each year. The datasets that
do are primarily ground surveys collected by researchers and agricultural organizations over
small groups of agricultural fields, and are not easily scaled or generalized to other areas or
years [20, 23, 88, 94, 116]. Globally, planting and harvest dates are often interpolated between
sparse measurements and may represent outdated crop varieties and agricultural practices
[150]. The Food and Agriculture Organization of the United Nations (FAO)’s AQUASTAT
database provides information about planting and harvest dates worldwide at the country
level [46]. At national levels, aggregated planting and harvest information can be found in
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Europe through the Statistical Office of the European Communities (EUROSTAT) [39, 108];
in Japan, through the Ministry of Agriculture, Forestry and Fisheries (MAFF) [116]; and in
China, through local agro-meteorological bureaus [104]. The most spatially resolved and up-
to-date planting and harvest datasets available over large regions are from the US, where crop
progress reports are available through the US Department of Agriculture (USDA) National
Agricultural Statistics Service. However, even these reports are not spatially explicit at the
field scale; rather, reporters assess the percent of crop planted or harvested over a county
[141]. The Risk Management Agency of the USDA records planting dates in randomly
sampled fields, but this information is not made public [140].

Datasets documenting the timing of crop planting and harvesting require improvement
in most agricultural areas, but they are least adequate in areas that are especially vulnerable
to global change. Large regions in Latin America, Africa, and the Asia-Pacific are vulnerable
in terms of both physical response (how crops are biophysically impacted by climate change)
and adaptive capacity of farmers and institutions [26, 84]. The effect of damaging extreme
weather events and higher average temperatures is compounded where adaptive capacity is
low [96]. The IPCC warns that the African continent “is most vulnerable to the impacts
of projected changes because poverty limits adaptation capabilities” [26], due to constraints
such as limited physical resources [57] and reliance on rainfed agriculture. In both Latin
America and Africa, a predicted 10% decrease in maize yield by 2055 will be compounded
by large spatial variability in yield: in some areas, extreme declines in yields will disrupt
the livelihoods of rural families, while in others, increased yields may enable crop intensi-
fication and increased wealth [73]. Spatially-resolved information about crop planting and
harvest dates could illuminate the limits of local adaptability, allowing targeted vulnerability
assessments.

Extending planting and harvest date information globally, however, remains challenging.
There are currently three approaches used to generate global datasets: crop progress reports,
planting rules based on crop requirements, and estimation of optimal (yield-maximizing)
planting and harvest dates. Examples of crop progress reports include SAGE [115] and
MIRCA2000 [108], which are spatially interpolated 5 min-resolution global maps of planting
and harvest dates based on national and subnational crop progress reports circa 2000. The
second approach is illustrated by Iizumi et al (2019), who produced global, 0.5 degree maps
of planting and harvest windows using a rule-based model of crops’ physical requirements
for water, heat and chill, along with field workability constraints derived from snow and soil
moisture. In the third approach, crop models are used to estimate yield-maximizing planting
and harvest dates [148]. All these methods can be critiqued. SAGE and MIRCA2000 are
outdated and require spatial extrapolation in many locations [66, 108]. Rule-based calendars
impose assumptions around the stationarity, homogeneity and accuracy of the rules used [55]
– assumptions that produce large errors in the tropics where multiple cropping is common
[115, 148] – and the requirement to force the calendar with daily weather data introduces
uncertainty in sparsely gauged regions (including the neotropics) [66]. Finally, while optimal
planting and harvest dates are informative of potential best practices, they are not a guide
to actual farmer behavior [148]. Therefore, existing datasets outside of areas with regularly
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updated, spatially-resolved agricultural census efforts provide limited insight into historical
planting dates and farmer’s responses to historical weather perturbations.

1.2.3 Planting date uncertainty introduces errors in crop yield
predictions

A major source of uncertainty in crop yield predictions is a lack of knowledge about how
planting date selections are affected by climate change. Currently, many efforts that predict
crop yields under climate change introduce untested, but necessary, assumptions about plant-
ing dates and their relationship to climate variables (following the rule-based approach to
estimating planting and harvest windows) [46, 150]. In the absence of high-quality planting
date data, a common assumption is that planting date for tropical rainfed agriculture occurs
either at wet season onset, or within a constant number of days after onset [148]. The idea
that planting date occurs at wet season onset features heavily in efforts to model crop yield
under climate change, which are usually performed under the implicit assumption that the
best planting dates for tropical rainfed agriculture follow directly from precipitation patterns.
A study of rainfed agriculture in sub-Saharan Africa predicts yields under the assumption
that planting date occurs at the “optimal” time, defined as the onset of the rainy season
[84]; in Sudan, the optimal planting for sorghum was exclusively based on dekadal (10 day)
rainfall values in relation to the total mean annual rainfall [23]; in East Africa, automatic
maize planting was triggered in the model when the soil profile was thoroughly wetted [138];
in southeast Asia, the average historical difference between monsoon onset and rice planting
date is used as a constant for predicting future planting dates [95]; in precipitation-limited
regions worldwide, it was assumed that crops were planted when 10-day precipitation totals
reached a certain threshold [18].

The assumption that planting date occurs at wet season onset appears to be a reasonable
approximation of real planting behavior: it relies on the idea that growers want to maxi-
mize the precipitation experienced by rainfed crops. However, it ignores the economic and
technological context in which planting date decisions are made, and assumes that planting
date sensitivity to climatic variables is uniform across all fields [115]. For example, Sacks et
al (2010) attempted to explain the spatial pattern of SAGE planting data in temperature-
limited regions (which are governed by freezing and thawing cycles) using temperature, and
in precipitation-limited regions (which are not governed by temperature cycles) using the
start of the rainy season [115]. They found the relationship between planting date and cli-
mate patterns is not always clear, especially in the low latitudes. In tropical regions with
long rainy seasons and multiple cropping, the assumption that planting occurs at wet season
onset can result in deviations between estimated and actual planting dates of more than
five months [148]. These errors arise because climate is only one of many determinants of
planting date. Projecting future planting date behaviors purely based on rainfall climatology
may therefore significantly bias predictions of future agricultural behavior and yield.

Complicating the estimation of rule-based planting dates, and the resulting crop yields,



CHAPTER 1. INTRODUCTION 6

is the uncertainty in how the wet season onset should be defined. While climate projec-
tions themselves are a major source of error in crop yield models, even if the precipitation
timeseries is perfectly known, there is still flexibility in defining the onset. Examples from
literature span climatological definitions such as the anomalous accumulation or Stern defi-
nition [23, 86, 132]; metrics based exclusively on volume of rainfall, soil moisture, or relation-
ship between precipitation and evapotranspiration [72, 121, 138]; and fuzzy logic algorithms
that simultaneously consider rainfall depth, frequency and dry spell duration [37, 84]. Some
definitions were chosen based on agreement with field-scale planting date observations, but
many of the planting dates used in defining onset were based on aggregated country-level
statistics or on expert knowledge [3, 121].

Ignorance about planting dates and how they respond to climate signals requires modelers
to make assumptions about planting date rules, and has led to a diversity of definitions
for the wet season onset. These unknowns, in turn, generate significant uncertainties in
crop model results that are rarely quantified [151]. An improved understanding of planting
dates’ response to a variety of possible definitions for wet season onset can help clarify these
assumptions. Observed and up-to-date planting information can be related to potential wet
season onset definitions with a regression model, where the strength of correlation between
variables represents the relevance of each onset definition.

1.2.4 Techniques to estimate spatiotemporally resolved planting
dates are needed

The lack of high-quality global planting date data, and of adequate rule-based proxies to esti-
mate planting dates from climate, motivates new techniques to observe crop timing. Ideally,
these techniques will produce spatiotemporally resolved planting dates rapidly and without
reliance on untested assumptions. Such planting date datasets would help us assess the im-
pact of planting and harvest dates on productivity, quantify farmers’ behavioral adaptations
to historical climate variability, and improve predictions of agricultural yield in regions where
significant climate change impacts are expected.

1.2.5 Satellite-based methods can derive planting and harvest
dates, but are typically difficult to upscale

Methods based on remote sensing have the potential to produce the global, spatiotemporally
resolved planting and harvest datasets that are needed to understand agricultural behavior
under climate change. Remotely sensed imagery can be used to calculate vegetation indices
of crop greenness, and timeseries analysis of these vegetation indices has been widely used
to identify planting, harvest, and phenological stages including emergence, peak vegetative
stage, and the yield-forming grain fill stage [20, 116, 156]. These methods require frequent,
high quality measurement of vegetation indices, generating a smooth timeseries with high
signal-to-noise ratio during the cropping cycle. A range of more-or-less complex timeseries
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analysis algorithms is applied to the observed vegetation indices in order to identify peaks,
inflection points and similar markers of crop growth. These timeseries indicators are then
calibrated and validated with ground-truth planting and harvest dates. These approaches
have been applied to agricultural locations across the US, Europe and Asia: in the midwest
US, maize, wheat and soybean planting dates have been estimated using MODIS, achieving
RMSE of less than 10 days compared to state-level Crop Progress Reports [112, 139]; in
Italy, rice planting and harvest dates have been estimated at 250 m scale with mean average
error of 10 days [20]; in Japan, planting and harvest dates at 1000 m scale were produced
with RMSE of 12.1 days and 10.6 days, respectively [116]; and phenological information
extracted for wheat at 1 km scale in Punjab, India and for wheat and corn at 30m in central
China were both highly correlated to validation data collected at an aggregated scale [88,
104].

As promising as these results seem, the approaches described above cannot be easily
upscaled globally, nor applied regionally in tropical and developing nations. Previous stud-
ies typically addressed areas on the order of 100 km2, for which computationally intensive
nonlinear timeseries analysis techniques are feasible. The scalability of such methods over
regional to global scales, however, is questionable, and requires access to advanced geospa-
tial computational infrastructure [112]. Accessible geospatial cloud computing tools such as
Google Earth Engine support a limited range of analytical approaches, which would require
new approaches to infer crop dates from vegetation indices that are compatible with available
tools. Simplifying assumptions used in previous studies, including relatively rigid assump-
tions about crop phenology and timing, are not defensible on regional scales, particularly
where single, double and triple cropping may co-occur.

Additionally, the quality and temporal resolution of optical data are not consistent. For
the rainfed agriculture that comprises 80% of the planted global agricultural area [40], fre-
quent cloud cover coincides with periods of rapid crop growth. Aerosol concentrations are
often high in the tropics [77], adding uncertainty to measured vegetation indices. Some of
these challenges could be addressed with newer sensors such as GOME-2’s solar-induced
fluorescence (SIF) and QuikSCAT’s Ku-band backscatter, which could reduce noise from
background reflectance and clouds, respectively [71, 89]. However, their relatively low radio-
metric accuracy and spatial resolution have prevented widespread use to date [139].

Finally, ground data availability is a major constraint in most parts of the world, where
planting and harvest date observations are not made consistently or over broad areas. This
creates difficulties for both calibration and validation of methods, forcing spatially resolved
satellite-based planting and harvest dates to be validated over aggregated scales and years,
using a limited set of surveys performed by individual researchers and their organizational
partners, or using privately held datasets [20, 88, 104, 112, 116, 139]. Further, lack of field-
scale crop cover maps generate difficulties in identifying where crops of a particular type are
planted, making it difficult to produce crop-specific calendars [116, 139].

In light of these challenges, I aim to develop a globally relevant planting date estimation
method that is scalable, cheap to employ, suitable for application in regions where agriculture
is primarily rainfed, and practical under limited ground data.
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1.3 Mato Grosso

In this work, I develop a planting and harvest date estimation method and apply it to
rainfed soy in the state of Mato Grosso, Brazil from 2004 to 2014. The estimated planting
dates illuminate agricultural response to historical variations in wet season onset, and enable
predictions of planting behavior in the future.

1.3.1 Context

Located in central-west Brazil, Mato Grosso has been an agricultural hub for over 40 years
(Figure 1.1). Its land area of 900,000 km2 comprises three major biomes: Pantanal (tropical
wetland, 62,000 km2) in the south, Amazon (humid tropical forests, 481,000 km2) in the north
and Cerrado (tropical savannas, 360,000 km2) in the center [22]. The state experiences a
hot, semi-humid to humid climate, with nearly constant and homogeneous temperatures (22
to 26◦C) year round [12], but a strong north-south gradient in rainfall. At the north of
the state, annual precipitation exceeds 2000 mm, with a 3 month dry season; in the south,
annual rainfall is 1000 mm with a 5 month (May-October) dry season.

Soy development in the Mato Grosso began in the 1970s following the introduction of
cultivars adapted to the local climate and photoperiod, and has expanded to account for 27%
of Brazil’s soybean production over the past several decades [144, 1]. Continued technological
advances in crop varieties have facilitated soybean-corn and soybean-cotton double cropping
systems, with the proportion of double cropped systems rising from 6% in 2000 to 30%
in 2006 [10]. By the mid-2010s, total row crop area covered nearly 100,000 km2, mostly
in the central Cerrado region [154], of which 70% was soybean [22] and 85% was double
cropped [27]. A long rainy season and continued technological advances in crop varieties
have facilitated rainfed soybean-corn and soybean-cotton double cropping systems [1, 30],
making Mato Grosso a center of agricultural production for over 40 years [11]. The vast
majority of the Mato Grosso’s agriculture is rainfed; only 2.5% of row crop is irrigated [56].

Planting dates in Mato Grosso may respond to a range of climatic and socio-economic
constraints, all of which obscure our understanding of soy planting decisions (see Figure 4.1)
[1]. In addition to these considerations, planting dates are subject to an additional legal
constraint to prevent pathogen outbreaks, in which planting is prohibited during a sanitary
break from June 15 to September 15/30 [106].

1.3.2 Significance

Mato Grosso’s continued productivity depends in part on whether its intensive cropping
practices can be sustained in future climates, and is especially vulnerable to the shorter wet
seasons that are expected with climate change [10, 11]. Because the majority of agriculture
in this region is rainfed, planting dates and crop yields are expected to be sensitive to shifts
in precipitation patterns [106, 48]. With planted area and cropping intensity both nearing
capacity [130], a decrease in climatically suitable land or a shortening of the wet season would
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Figure 1.1: (a) Mato Grosso, Brazil and (b) its crop cover [130].

quickly force a change in agricultural practice [1]. Farmers who practice rainfed double
cropping may prefer to plant as early as possible in the wet season [106], so a shortened
wet season onset may render double cropping impossible, effectively halving the region’s
agricultural productivity [48].

Complicating the issue, Mato Grosso’s agriculture is involved in a feedback loop in which
agricultural expansion causes harmful, local-scale climate change. In Mato Grosso and other
deforested tropical regions, the land use change associated with agricultural expansion cause
local shifts in the water and energy balance. The lower albedo, lower surface roughness, and
shallower roots resulting from conversion of natural vegetation into cropland decrease the
ability of the land surface to maintain high evapotranspiration rates. In the tropics, lower
evapotranspiration, especially during the transition between dry and wet seasons, leads to
a reduction in the strength of tropical convection and subsequently a reduction in rainfall
[118]. Simultaneously, a reduction in evapotranspiration causes a decline in latent cooling of
the land surface, forcing a higher sensible heat flux and consequently a higher land surface
temperature. In South America, locally induced climate change may contribute to a one-
month reduction in the duration of the wet season by the end of the century, shortening the
window over which rainfed cropping (and especially double cropping) is possible [31].

The risks that both global and local climate change will pose to agricultural productivity
in Mato Grosso will be better understood with knowledge of how historical planting behavior
responded to changes in the wet season onset, and extrapolating to behavior under delayed
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onset conditions.

1.3.3 Technical challenges

In addition to its position as a vulnerable but important agricultural center, Mato Grosso
presents many of the technical challenges that have prevented the estimation of high-resolution
planting dates in much of the world. These challenges include sparse ground-truth data on
planting dates, harvest dates and crop cover; a large (and therefore computationally inten-
sive) study area; frequent cloud cover and aerosol interference that degrade satellite imagery;
and a wide variety of farming practices that thwarts rules of thumb. Mato Grosso is therefore
a challenging but important region for the estimation of planting and harvest dates, making
it an ideal study site.

1.4 Research Approach

I introduce a rapid, affordable planting date estimation method that allows unprecedented
insight into agricultural practice. In the following chapters, I develop a planting date esti-
mation method that harnesses new remote sensing and cloud computing tools (Chapter 2),
then apply it to rainfed soy in Mato Grosso, Brazil (Chapter 3). I then use these planting
estimates to select the features of precipitation most relevant for planting decisions and to
understand historical response to wet season onset (Chapter 4), and conclude with predic-
tions of planting behavior under future climate scenarios (Chapter 5).

Chapter 2: Developing a scalable planting and harvest date estimation method

In Chapter 2, I develop and test a remote sensing-based method to estimate planting
and harvest dates. The method extracts important crop development stages by applying
a timeseries analysis algorithm to satellite imagery taken from MODIS, a 500 m satellite
dataset which can track the progression of crop growth. The algorithm is designed to be im-
plementable in the powerful cloud computing tool Google Earth Engine (GEE), a platform
designed for large-scale satellite image analysis. In the absence of ground truth validation
data, I leverage imagery from high resolution (3 - 5 m) satellites deployed by Planet Labs
to generate ground-truth proxy planting and harvest dates. My method ensures scalability
by avoiding region-specific assumptions, specialized timeseries analyses, and heavy reliance
on ground-truth data. I show that the algorithm, simplified to accommodate GEE’s lim-
ited analytic tools, is competitive with the complex timeseries algorithms found in literature.

Chapter 3: Estimation of planting and harvest dates in Mato Grosso, Brazil

In this chapter, I apply the planting estimation method to rainfed soy agriculture (Glycine
max ) in the state of Mato Grosso, Brazil (MT) from 2004 to 2014. To target my estimates to
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the crop of interest, I train a crop cover classifier to extract the locations of double cropped
and single cropped soy. The classifier, which is trained on a variety of phenological, spectral,
and topographical features, is associated with a land cover classification error that must
be combined with the error of the planting and harvest date estimates. These two error
sources are combined with bootstrapping. The highly resolved planting and harvest date
maps, despite uncertainty (bias and its confidence interval of 6.9 ± 16.5 days for planting
and 1.8± 18.7 days for harvest), still provide insights into local agricultural practices. The
estimates produced in this chapter are used to quantify the relationships between planting
date, crop intensity, and wet season onset in Chapter 4.

Chapter 4: Quantifying planting date’s sensitivity to wet season onset

Regression models can describe the sensitivity of soybean planting dates to wet season
onset in Mato Grosso, Brazil from 2004 to 2014. This chapter, made possible by the 500 m-
scale planting date estimates from Chapter 3, develops a statistical model of planting date as
a function of wet season onset. Because it is unclear which features of precipitation are most
relevant to planting decisions, the model is used to explore planting sensitivity to different
definitions of wet season onset. Intuitively, I find that an easily observable definition based
on the frequency of rainfall in a four week period is most highly correlated to planting dates;
hard-to-observe climatological definitions are less correlated to planting behavior. Model
results demonstrate that, within each 25 km region, fields planted in the 5th percentile are
more sensitive to onset than fields planted in the 95th percentile. Similarly, double cropped
fields are more sensitive to onset than single cropped fields. A trend toward earlier planting
dates, independent of wet season onset, is also detected. The spatial variability in sensitivity
to wet season onset, and the interannual trend, imply that spatially aggregated planting
datasets, or those based on historical surveys, should not be used to predict future planting
behavior.

Chapter 5: Predicting planting dates under climate change scenarios

Climate change (specifically, changes in the timing of the wet season) can impact agri-
cultural yields by forcing planting to suboptimal dates or by destroying the possibility of
double cropping. In this chapter, I assess these risks by predicting changes in planting dates
and the feasibility of double cropping in Mato Grosso under RCP 8.5 conditions. In Mato
Grosso, the wet season is generally expected to shorten through equal contributions from
delayed onset and early demise, but the effect varies interannually and spatially. To account
for interannual variability, I predict planting behavior under short, medium, and long wet
season scenarios; for spatial variability, I split Mato Grosso into northeastern and northwest-
ern regions to reflect broad spatial patterns in precipitation. Predictions are made under all
combinations to delimit the set of possible outcomes for agriculture in Mato Grosso. Using
the statistical model of planting dates developed in Chapter 4, I anticipate that by 2024,
45% of single cropped and 61% of double cropped soy in the vulnerable northeast must delay
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planting (presumably to suboptimal days) if a short wet season is experienced. Under the
same wet season scenario, an earlier demise will prevent 74% and 21% of double cropping
in the northeast and northwest, respectively. These changes in planting behavior are con-
cerning for not only the yield of individual soy crops, but also for the continuation of the
lucrative double cropping practices on which this region depends.

Contributions of this work

1. Developed a scalable remote sensing-based method to estimate planting and harvest
dates at high spatial resolution (500 m) over large areas (100,000 km2) with sparse
ground truth data.

2. Produced the first spatiotemporally resolved planting and harvest dataset in Mato
Grosso, Brazil.

3. Quantified the sensitivity of planting dates to wet season onset based on the cropping
intensity, the definition of wet season onset, and planting percentile (early vs late
planting).

4. Discovered a trend to earlier planting dates, independent of wet season onset.

5. Predicted the consequences of changing wet season timing on the feasibility of preferred
planting dates and double cropping in Mato Grosso.
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Chapter 2

Developing a method to estimate
field-scale planting and harvest dates

2.1 Introduction

2.1.1 A novel, scalable method to estimate planting and harvest
dates

The selection of planting dates is a critical adaptation strategy to climate change, but our
knowledge is inadequate for understanding planting dates’ potential for supporting agricul-
tural yields. The high cost of ground surveys have prevented planting date estimation at
sufficient spatiotemporal resolution to isolate the various climatic, social, and economic con-
trols on planting behavior, forcing efforts at predicting crop yields to rely on aggregated
historical observations or on untested assumptions about planting response to climate.

Tracking the full spatiotemporal heterogeneity of planting dates requires a fast, field-
scale estimation method. While satellite imagery can provide spatially resolved observations
of crop development, existing methods to extract planting dates are complex and therefore
limited to relatively small areas of around 100 km2. In this chapter, I develop a satellite-based
strategy to rapidly estimate field-scale planting and harvest dates of soy crop. To ensure a
globally applicable method, I address common challenges associated with remote sensing-
based estimation: large area of interest; frequent cloud and aerosol cover; and limited ground-
truth data. Therefore, the method (i) leverages the power of geospatial cloud computing
while working within the constraints imposed by available platforms; (ii) is robust to low-
quality optical data; and (iii) augments or replaces sparsely available ground data on crop
timing.

The estimation method is based on linearized harmonic timeseries analysis of MODIS
imagery and was designed to be implementable on Google Earth Engine, a cloud geospatial
platform. It provides a level of scalability that is difficult to achieve with more sophisticated
approaches, while still maintaining estimation accuracy. The method addresses low-quality
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optical data with smoothing techniques, and uses high-resolution imagery from Planet Labs
microsatellites to provide validation data where survey information is unavailable.

With scalability and data scarcity in mind, my work was guided by the following research
questions:

1. Can smoothing approaches can be used to compensate for cloud-induced data gaps in
satellite imagery?

2. Can the simple, linear timeseries analysis tools available in Google Earth Engine be
used to extract phenological parameters from MODIS images without significant loss
of estimation accuracy, compared to complex or nonlinear methods?

3. Can ground-truth planting and harvest date data be supplemented or replaced with
high resolution satellite imagery?

These research questions were answered using select rainfed soy fields in Mato Grosso.

2.1.2 Background on soy life cycle and planting practices

The timeseries analysis method and planting date estimation uncertainty can be more clearly
understood in context of the soy life cycle and typical planting practices. In Brazil, soy is
planted as dry seeds (not pre-sprouted seedlings), at a density of 300,000 plants per hectare
(corresponding to roughly 20 seeds per meter, with rows 45 cm apart) [90, 42]. Seeds are
planted between 2.5 cm and 4 cm below the soil surface, with optimal depth varying by
soil type [131]. Once planted, the soy plant’s life cycle begins with seed germination and
emergence, a process in which a planted seed absorbs moisture from the soil (germination)
and sprouts above the soil surface (emergence). The time between the planting date and
emergence varies from four days to over two weeks, depending on soil moisture, temperature,
seed planted depth, and soil type [9, 119, 152]. After emergence, the plant enters the
vegetative growth phase, during which stems and leaves develop (six to eight weeks); followed
by the reproductive period, during which flowering (one to two weeks) and soybean pod
development (30 to 40 days) occur [152]. The final stages are senescence and maturity,
during which photosynthesis slows, and the seeds and leaves turn yellow [152].

2.2 Methods

2.2.1 Datasets

I used a range of remotely sensed imagery and ground-based datasets.
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MODIS imagery

The remotely sensed Enhanced Vegetation Index (EVI) tracks soy development over time and
space. EVI is calculated from cloud-masked Moderate Resolution Imaging Spectroradiometer
(MODIS) 8-day composite products (MYD09A1 and MOD09A1) at 500 m resolution from
2004 to 2014 [98, 99]. The 8-day composites are mosaics of images from 8-day periods chosen
for the clearest atmosphere and best viewing angle.

Of the many remotely sensed sources available, MODIS offers both the spectral and spa-
tial resolution required to calculate field-scale vegetation indices, and a history long enough
to cover the study period of 2004 - 2014. Its higher temporal resolution (compared to Landsat
[114]) makes it more appropriate for timeseries analysis in cloudy regions like Mato Grosso.
The MODIS system comprises two satellites, Aqua and Terra, which cover every point on
Earth in 1 - 2 days; in contrast, Landsat’s revisit time is 16 days. MODIS’ coarser spatial
resolution (500 m vs 30 m) is not concerning because 500 m is still more resolved than the
size of individual soy fields.

Crop cover

The locations of single and double cropped soy are available from a 9,000 point, 2003 - 2017
crop cover training dataset that was formed by intersecting a Landsat-based crop classifica-
tion produced by Agrosatelite [2] with a roadside survey of Mato Grosso’s agricultural areas
conducted by Embrapa and the Kansas Biological Survey [76].

Planet Labs imagery

High resolution satellite images from Planet Labs [107] are used to generate field-scale plant-
ing date estimates in Mato Grosso. At 3 m and 5 m spatial resolution, Planet Labs imagery
offer enough spatial resolution to clearly delineate soy fields, observe greenup soon after
planting, and follow the progress of harvest equipment as bright, bare patches gradually
replace mature, brown fields at the end of the growing season.

Images of soy fields in Mato Grosso were obtained from the PlanetScope (3 m) and
RapidEye (5 m) satellites from August 1, 2016 to July 31, 2017 at three locations: 11 images
of 32 km2 at (-55.389, -11.868); 11 images of 55 km2 at (-53.454, -15.396); and 16 images of
126 km2 at (-57.731, -13.285). The three locations were chosen to (1) cover only soy fields
and (2) represent all the potential sources of error in the estimation method. To ensure that
the image locations contain soy, I chose combinations of fields and years that were reported
as soy in the crop cover data. To ensure that the Planet Labs images are representative
of all potential error sources, I included both single and double cropped fields and chose
images located far apart. A large, persistent storm system would generate the same gap in
the vegetation index timeseries over adjacent fields, potentially causing the images to miss
a significant source of error that would have appeared if the storms occurred in a different
pattern. Additionally, using images scattered over Mato Grosso ensures that the validation
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dataset is not biased toward a single producer or toward practices that are local to a specific
region.

MATOPIBA planting and harvest survey

Calibration data at high spatial resolution is required to link the phenological information
derived from timeseries analysis to the planting and harvest dates.

While ground surveyed planting and harvest dates are not available over the study area of
Mato Grosso, they are available for 90 soy properties from 2010 to 2017 in the MATOPIBA
region of Northeast Brazil, comprising the states of Maranhão, Tocantins, Piaúı and Bahia.
Though I do not use this dataset to validate my estimates in Mato Grosso, I examine and
compare this survey against Planet Labs imagery to quantify potential reporting errors.

Ground truth data like the MATOPIBA dataset are considered the gold standard for
validation, but may be affected by recall bias: the MATOPIBA survey was conducted only
during the 8th year of the dataset (2017). Additionally, many responders reported vague date
ranges for planting and harvest (such as “early October”). To account for this, I introduced
error bars to the original reported date. The widths of these error bars were chosen based
on the wording of the reported date range. For example, a report of “2nd week of October”
received a range of October 10 +/- 7 days; “early October” received an error bar of October
10 +/- 15 days; and “October” received an error bar of October 15 +/- 20 days.

2.2.2 Definitions

The agricultural year in Mato Grosso begins on August 1, in the middle of the dry season.
To relate the calendar year to the agricultural year, I refer to “planting year” and “harvest
year”. For example, for the agricultural year commencing August 1, 2013, the planting year
is 2013, and the harvest year is 2014. A planting date of 60 for harvest year of 2014 refers
to September 30, 2013 (60 days after August 1, 2013).

Double cropping is an intensive cropping practice in which two crops are planted in
succession during one agricultural year. I refer to these successive crops as the first and
second crops [106]. Because soy in Mato Grosso can be single or double cropped, I refer
separately to “single cropped (SC) soy” and “double cropped (DC) soy”, using “soy” to
denote both SC and DC soy.

2.2.3 Method Overview

The planting and harvest estimation method is a five-step process, as illustrated in Figure
2.1. First, I calculate a vegetation index that is quantitatively related to crop growth (Step
1). A timeseries analysis method retrieves phenological parameters from the timeseries of
the vegetation index (Steps 2 and 3); finally, these phenological parameters are related
to planting and harvest dates through an equation that was calibrated with proxy ground
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truth data from Planet Labs (Steps 4 and 5). Each step is described in detail in the following
sections, concluding with a sensitivity analysis of the algorithm choices from Steps 2 and 3.

Figure 2.1: Method overview
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2.2.4 Step 1: Calculate vegetation index from MODIS imagery

The enhanced vegetation index (EVI) is used to track soybean phenology. EVI is a proxy for
greenness that does not saturate at high biomass and contains terms for aerosol correction
and canopy background adjustment [64]. EVI is calculated from MODIS 8-day composites
using Equation 2.1 [110]:

EVI =
G ∗ (NIR− red)

NIR + C1 ∗ red+ C2 ∗ blue+ L
(2.1)

where NIR, red, and blue refer to the reflectances from the near infra-red, red, and blue
bands, respectively. The calibration parameters for MODIS are given by: G = 2.5, C1 = 6,
C2 = 7.5 and L = 1. I removed cloud-contaminated pixels from the EVI images using
the “StateQA” band from the MOD09A1 and MYD09A1 data products, retaining only
pixels labeled as “clear” (Figure 2.2a) [156]. The removal of the cloudy pixels produces
EVI timeseries containing idiosyncratic and irregular gaps, impacting both EVI and its time
derivative, dEVI/dt.

2.2.5 Step 2: Reduce noise in EVI profile through smoothing
(RQ 1)

The resulting gap-containing timeseries provoked my first research question: can smoothing
approaches can be used to compensate for MODIS data that are heavily affected by cloud-
and aerosol-induced noise?

To address this question, I compare a range of procedures: (a) use of raw, gap-containing
timeseries, (b) smoothing dEVI/dt only, (c) smoothing EVI and dEVI/dt once each, (d)
smoothing EVI twice, and not smoothing dEVI/dt, and (e) smoothing EVI twice and
dEVI/dt once. In each smoothing step, the number and size of the moving average windows
are selected through a set of sensitivity analyses, detailed below. In all cases, I compute
dEVI/dt using a forward difference method.

These procedures are compared in terms of: (i) the percent of soy area for which reason-
able planting and harvest date estimates were obtained (as defined in Step 7, described in
Chapter 3); (ii) accuracy of planting and harvest date estimates (as obtained by comparison
to data described in Step 4); and (iii) robustness of estimates to the timing and number of
missing points in the EVI timeseries. To address the third point, I take complete, cloud-
filtered EVI timeseries soy pixels and randomly eliminate 1 to 10 EVI data points (out of
the 25 points between August 1 of the planting year and April 1 of the harvest year, covering
the timing of the first crop). Points are eliminated at random to make 50 timeseries. The
10 × 50 degraded EVI profiles are used to estimate phenological parameters under each of
the five smoothing combinations.

The best of the trialed methods is incorporated in the main algorithm: this involved
smoothing each pixel’s annual timeseries with two successive 20-day moving average windows
(Figure 2.2b), and smoothing dEVI/dt once with a 40-day moving average window (Figure
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2.2i). While these windows are large compared to the roughly 120-day growing cycle of soy,
they are necessary to eliminate high noise caused by cloud gaps and aerosols. The width
of these windows is justified because I am aiming to describe only broad features of the
timeseries, such as the date of the peak and width of the soy curve, which are not degraded
under the smoothing windows.

2.2.6 Step 3: Retrieve phenological parameters from EVI
timeseries via linear fitting (RQ 2)

The “greenup” and “browndown” dates for crop i, tigreenup and tibrowndown, are defined as the
dates of fastest increase and decrease in EVI. Here, i indicates the crop cycle, i.e. the first
or second crop. The “peak” day for crop i is similarly defined as the date of maximum EVI,
tipeak,num. These dates can be easily identified from the EVI timeseries with a high signal-
to-noise ratio [62]. Peak and greenup dates are often used to estimate planting and harvest
dates, which cannot be directly observed from EVI [116], and their high signal-to-noise ratio
makes them relatively robust to data gaps [62, 104].

I fit the smoothed EVI timeseries to a 1st order harmonic function [28], similar to other
functional forms used extensively in phenological studies [e.g. 53, 146]:

EV I = β0 + β1 · t+ A ∗ cos(2πω · t− φ) (2.2)

where the phase (φ) and amplitude (A) in Equation 2.2 can be calculated by linear regression
of EV I on time (t), if frequency (ω) is known [125], and once the mean (β0) and the linear
trend (β1) have been removed. I refer to this simplified case, in which frequency is known or
predefined, as the “linearized 1st order harmonic” because the remaining parameters can be
found by linear regression. I estimate ω using the “quarter period” (q), defined as the time
difference between tipeak,num and the preceding tigreenup or succeeding tibrowndown, where ω and
q are then related as q = π/2ω.

As shown in Table 2.1, peak, greenup and browndown dates are identified by searching
for maximum EVI or maximum | dEVI/dt | in four time windows corresponding to different
rotations and phenological stages (see Figure 2.2, panels c - f, j - l).

The method avoids computing dates in the middle of the wet season due to high levels
of cloud cover. Therefore, the quarter period, q, for the first crop is estimated as t1peak,num−
t1greenup, and q for the second crop as t2browndown− t2peak,num (Figure 2.2, panels k - m). Because
the harmonic function applies to a single crop cycle, the method splits the timeseries into
the first crop (from t1peak,num− 2q to t1peak,num + q), and the second crop (from t2peak,num− q to
t2peak,num+2q see Figure 2.2(g-h)) prior to fitting. These windows improve method robustness
in two ways. First, they maximize the number of EVI points available for fitting but avoid
associating EVI observations with the wrong crop. Second, they avoid the final quarter of
soy’s crop cycle, leaving the method unaffected by sudden decreases in EVI due to harvesting
that would invalidate the symmetric EVI shape on which the harmonic shape depends. These
advantages rely on the assumption that soy harvesting (and by extension, planting of the
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Description Symbol Date Window

Peak date of the first crop t1peak,num August 1 of the planting
year to March 31 of the

harvest year

Peak date of the second
crop

t2peak,num April 1 to July 31 of the
harvest year

Greenup for first crop t1greenup August 1 of the planting
year until t1peak,num

Browndown for the second
crop

t2browndown t2peak,num until July 31 of
the harvest year

Table 2.1: The date windows over which phenological stages were found.

second crop) occur after t1peak,num + q. This is reasonable because soy undergoes at least a
month of grain filling after the end of the vegetative stage (roughly corresponding to t1peak,num)
[152].

With ω for each crop cycle estimated from q, Equation 2.2 is fit to the EVI timeseries
for each crop cycle, and A and φ are obtained from the fitted values. The phase is then used
to calculate the “analytic” peak date for the first crop as t1peak,fitted = φ

2πω
. The analytic

peak date is an estimate of peak greenness that is more robust to noise and data gaps than
its numeric counterpart. The method does not calculate an analytic greenup or browndown
date.

The linearized 1st order harmonic function is more prescriptive and simpler in form
than other functions used to interpret phenological timeseries (e.g. double logistic functions
[156], wavelets [116], cubic splines, asymmetric Gaussian and Savitzky-Golay filters [74]).
This raised Research Question 2: does the linearized 1st order harmonic method extract
phenological parameters from MODIS images without significant loss of estimation accuracy
compared to nonlinear methods?

To answer this question, I compare my simpler fitting function, the linearized 1st order
harmonic, against three more complex/nonlinear methods: (i) a Savitsky-Golay filter, (ii) a
3rd order harmonic curve with predefined frequency term (which I will refer to as “linearized
3rd order harmonic”), and (iii) a 1st order harmonic with nonlinear fitting of the frequency
term (which I will refer to as “1st order harmonic”). Fitting methods (i) and (ii) offer
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a comparison to the methods of the established timeseries analysis tool TIMESAT [74],
while (iii) is a nonlinear version of my algorithm that fits the frequency parameter, avoiding
numerical estimation of q. For each method I compare (1) the accuracy in predicted peak and
greenup dates; (2) ability to handle the complex, rapidly changing EVI profiles associated
with more than two vegetation cycles (usually occurring for triple cropped systems or fields
with failed crops and significant weed growth prior to double cropping); and (3) scalability
and ease of use. The Supporting Information for Chapter 2 provides details on each of these
alternative fitting methods.

Estimates of the peak day, quarter period, planting and harvest dates from the three
complex/nonlinear methods are compared to those from the linearized 1st order harmonic
method for 15 randomly selected soy EVI timeseries across Mato Grosso. Additionally,
I compare estimation errors of each fitting algorithm relative to the Planet Labs-derived
validation dataset for 12 soy points. The tested points include triple cropped systems,
allowing me to identify how each of the fitting curves handle these rapidly changing EVI
profiles. To evaluate scalability and ease of use, I explore the sensitivity of estimated peak
and quarter periods to the parameters of each method, on the basis that high sensitivity
would make the method impractical for analysis over large areas.

Though I focus on the planting dates of the first crop, soy, this method can be applied to
estimate the planting and harvest dates for both first and second crops. I use phenological
estimates made for the second crop in crop cover classification (Step 6, described in Chapter
3) and quality control (Step 7, described in Chapter 3), but lack of crop cover data for
the second crop prevents estimation of planting and harvest dates. A sensitivity analysis,
detailed in Section 2.2.9, shows that estimates of the first crop’s planting and harvest dates
are independent of the presence or absence of a second crop, so the same methods are applied
to single and double cropped pixels.

2.2.7 Step 4: Generate proxy ground-truth data from Planet
Labs imagery (RQ 3)

Existing survey data from MATOPIBA are likely inadequate for ground-truthing soy in
Brazil, due to excessive spatial aggregation and concerns about farmers’ recall bias. Data in
this survey are reported at the property level (on average 52 km2); however, visual inspection
of Planet Labs imagery at this scale shows that planting and harvest dates vary by as much
as 3 months within a property. Additionally, quality assurance inspections of the survey data
reveals multiple survey responses reporting identical dates across all years, suggesting farmer
recall may have impacted the quality of the results. These concerns about the survey data
lead to my third research question: Can ground-truth planting and harvest date information
be supplemented or replaced with high resolution Planet Labs imagery?

To address this question, I explore the extent to which high-resolution Planet Labs im-
agery can be visually interpreted to identify planting and harvest activity, and the corre-
spondence of their timing to the existing farm survey data in MATOPIBA (Figure 2.3). I
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Figure 2.2: (i) Timeseries analysis method, (ii) the method breaks down when a natural veg-
etation pixel is misclassified as soy or when noise in the EVI timeseries causes the estimated
peak dates to shift in unpredictable ways .

create a dataset of planting and harvest dates based on visual inspection of Planet Labs im-
agery, and refer to it as the proxy ground-truth dataset. The ground-truth dataset includes
three distinct soy growing regions in Mato Grosso, from 1 August 2016 - 31 July 2017, each
containing 40 - 80 soy fields. Additionally, I obtain images over two MATOPIBA properties
to inspect the quality of survey responses. The locations of the Mato Grosso images and
MATOPIBA surveyed properties are shown in Figure 2.3.

Farms in the images are manually delineated into fields based on the presence of clearly
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visible paths. Visual classification of farming cycles (based on identifying bare soil, green
vegetation, brown mature crops, and bare soil) is undertaken for each field. This allows a
relatively precise estimation of harvest dates (illustrated in Figure A.1), based on the distinct
geometric patterns caused by harvesting equipment.

Planting dates are more uncertain, and are reported by visual assessment over a 2 to 5
week date range preceding the first observed increase in greenness in the soy fields. This
relatively large date range represents uncertainty introduced by (1) variable temporal res-
olution of cloud-free Planet Labs imagery, and (2) variability in the time between planting
date and satellite-detected greenness. This second source of uncertainty arises from my
attempt to estimate an on-the-ground action (planting date) using an event (detection of
biomass above the sensor threshold) that occurs days or weeks later. Thus, a significant
portion of the soy life cycle is traversed before greenness is observed by the satellite: (a)
the germination and emergence stages (in which the soy sprout emerges from the soil sur-
face), and (b) the early vegetative stage (in which the plant accumulates enough biomass
to be detected by the satellite). Both stages can vary in duration, increasing uncertainty
in the proxy ground truth data. First, the speed of seed germination and sprout growth
depend on the depth of the planted seed, seed size, soil type, soil moisture, the presence of
soil crusting, and temperature. These factors can introduce up to 2 weeks of variability [9,
119, 152]. Second, the number of days between biological emergence and satellite-detected
“emergence” depends primarily on the planted density and presence of weeds, both of which
influence whether greenness exceeds the sensor’s detection limit. In Brazil, most farmers use
a consistent plant density of 300,000 plants per hectare [90], but the presence of weeds and
other natural vegetation may introduce more uncertainty in the proxy ground truth dataset.
To account for this variability across Mato Grosso, my planting dates are reported with an
uncertainty of 2 to 5 weeks. The final proxy ground-truth dataset consists of the earliest
and latest possible planting and harvest dates.

2.2.8 Step 5: Calibrate an equation that relates phenological
parameters to the planting and harvest dates

The peak and greenup dates are used to estimate the planting and harvest dates through
equations calibrated to the proxy ground-truth data (described in Step 4):

planting date = t1peak,fitted − p ∗ q (2.3)

harvest date = t1peak,fitted + h ∗ q (2.4)

Where p and h represent the number of quarter periods (q) between the fitted peak date
(t1peak,fitted) and the planting and harvest dates, respectively.

Given the uncertainties in the planting and harvest date information, I compute the
RMSE as the difference (in days) between the estimate and the nearest date in the reported
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Figure 2.3: MATOPIBA survey points (red) and Planet Labs image locations within Mato
Grosso (blue).

date range if the estimated date falls outside of the range, or zero when the estimate falls
inside the range.

The best calibration RMSE of 2.5 and 1.6 days for planting and harvest date across all
three Planet Labs imagery sites, respectively (Figure 2.3), is achieved by setting the planting
date as t1peak,fitted − 1.75q, and harvest as t1peak,fitted + 1.1q. Take-one-out cross-validation,
in which one Planet Labs imagery site is removed per calibration, estimates out-of-sample
prediction RMSE as 2.92 and 1.61 days for planting and harvest date. I test the sensitivity
of the estimated planting and harvest dates to variations in these (p, h) and other timeseries
analysis parameters (moving window sizes from Step 2) that were settled by trial and error
by comparing each version of the estimated calendar to the proxy ground-truth dataset.
Section 2.2.9 details the selection of these parameters.
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2.2.9 Sensitivity Analysis

In Steps 2 and 3 (described in Sections 2.2.5 and 2.2.6), I use smoothing windows to com-
pensate for cloud-induced noise in the EVI timeseries, and calibrate parameters that relate
two phenological indicators, peak date and quarter period, to planting and harvest dates.
The size of the smoothing windows and value of the calibrated parameters are selected to
minimize error as compared to the proxy ground-truth dataset obtained from Planet Labs
imagery. As shown in Table 2.2, of the six parameters chosen through sensitivity analysis,
five have a significant impact on the estimated planting date.

As expected, the “peak cutoff date” (Figure 2.2) has no effect on the estimate for the first
crop, indicating that the method is independent of the cropping intensity. Here, the peak
cutoff date refers to the date after which EVI values are ignored for first crop estimates,
and the date before which EVI values are ignored for second crop estimates. In other words,
EVI values after the peak cutoff date (second crop) do not make any impact on estimates
based on EVI values before the peak cutoff date (first crop). EVI observations after the
chosen peak cutoff date of April 1 are not considered for estimating the planting/harvest
dates of the first crop, regardless of the cropping intensity. Because estimates of the first
crop date are independent of the presence or absence of a second crop, the same methods
can be applied to single and double cropped pixels.

I also test the effect of two successive smoothing windows on EVI. As both the peak
and greenup are calculated numerically from the smoothed EVI, smoothing is essential. An
overly wide smoothing window may merge two separate peaks into one, falsely increasing
the estimated quarter period, while an overly narrow smoothing window would distort the
location of the peak and greenup in unpredictable ways. The use of two successive smoothing
windows balances the need for increased smoothing without blending a double cropped field
into a single peak. Two moving windows for EVI decreases estimated error by 0.3 and 0.1
days for planting and harvest, respectively, compared to using only one window. Similarly,
the sensitivity analysis reveals that the error-minimizing smoothing window size for dEVI/dt
is 40 days, with errors increasing rapidly (roughly 0.1 day of error per 1 day change in window
size) if the window size shifts in either direction.

2.3 Results

2.3.1 RQ 1: Can smoothing approaches be used to compensate
for cloud-induced data gaps in satellite imagery?

Moving average smoothing is often used to reduce the effects of noise, gaps, varying at-
mospheric composition and viewing geometry, and to therefore improve the robustness of
phenological estimates made from satellite observations [62, 128]. Table 2.3 reports on the
performance of five smoothing methods applied to the EVI and dEVI/dt timeseries in terms
of the quantity of pixels retained for analysis after smoothing, and the resulting errors in the
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Timeseries analysis
parameter

Effect on planting
date error [days of

error per unit
change in

parameter]

Effect on harvest
date error [days of

error per unit
change in

parameters]

Error-minimizing
value

Peak cutoff [days] 0 0 April 1

First moving
window for EVI
smoothing [days]

0.01 0.1 20

Second moving
window for EVI
smoothing [days]

0.02 0.14 20

Smoothing window
for dEVI [days]

0.1 0.1 40

Planting calibration
[-]

21 - 1.75

Harvest calibration
[-]

- 13 1.1

Table 2.2: The estimates are most sensitive to the planting and harvest calibration parame-
ters, followed by dEVI/dt’s smoothing window size.

planting and harvest dates, where the timeseries is fit using the linearized 1st order harmonic
function (Section 2.2.6). As shown in Table 2.3, this method requires the use of smoothing
to perform well across the three tested criteria, and performs best when the most aggressive
smoothing method is used.
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EVI smoothing dEVI/dt
smoothing

Fraction soy
area remaining
after quality

masking (Step
7, Chapter 3)

Planting date
error [days]

Harvest date
error [days]

Double Yes 0.85 2.5 1.6
No No 0.47 9.1 9.1
No Yes 0.63 4.3 3.6

Double No 0.90 5.6 4.5
Single Yes 0.79 2.8 1.7

Table 2.3: The effect of smoothing combinations on quality of phenological and planting and
harvest date estimates for the linearized 1st order harmonic method. Errors are calculated
relative to Planet Labs-derived validation data.

However, the importance of smoothing to obtain robust phenological estimates in the
face of poor quality data varies with the function used to describe phenological variation.
As shown in Figure 2.4, the experiments suggest that the linearized 1st order harmonic
method is only robust if both EVI and dEVI/dt are smoothed, while the complex/nonlinear
methods depend much less on smoothing. The results suggest that for complex/nonlinear
curve fitting, the tendency for smoothing to lump separate peaks together may outweigh its
slight advantage in providing stability. In contrast, for my proposed method, smoothing of
both EVI and dEVI/dt is necessary to maximize the area over which planting and harvest
date predictions can be made, to obtain accurate results, and to retain robustness as data
quality deteriorates.

Although smoothing with moving average windows is only one of several available noise
reduction methods, other noise removal techniques failed to improve the timeseries (e.g.
the nadir bi-directional reflectance adjusted (NBAR) and atmospherically corrected MODIS
data products [20, 156]), could not eliminate residual cloud and aerosol effects over Mato
Grosso [61], or resulted in very sparse timeseries (the outcome of filtering images based on
view angle and reflectance [50, 116]).
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Figure 2.4: Predicted peak date and quarter period vary as input EVI data are progressively
degraded for different fitting curves and under different smoothing regimes. The results
suggest that the linearized 1st order harmonic function employed in this study requires
that input data are smoothed to remain robust to loss of input data quality. For example,
experiments using unsmoothed dEVI/dt (green and yellow lines) generate different quarter
periods from those that use smoothed dEVI/dt (black line), while experiments that smooth
both EVI and dEVI/dt (black line) make more robust estimates of the peak under conditions
of poor data quality. In contrast, smoothing is less important for the complex/nonlinear
methods. These methods do not use dEVI/dt to calculate any phenological parameters, so
results show the effects of smoothing EVI only. Smoothing does not provide a clear benefit
for stability in peak or quarter period under degrading data conditions, but may improve
robustness to the location of missing data (reduced confidence interval). Differences in
estimated quarter period between smoothed and unsmoothed experiments are approximately
half (4 days) of the differences seen between smoothed and unsmoothed data for the linearized
1st order harmonic function.
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2.3.2 RQ 2: Will the simple, linear timeseries analysis methods
available in Google Earth Engine extract phenological
parameters from MODIS images without significant loss of
estimation accuracy compared to complex or nonlinear
methods?

Table 2.4 shows the estimation difference between the linearized 1st order harmonic function
and the three complex/nonlinear fitting functions for a range of phenological predictions.
The linearized 1st order harmonic method estimates a peak that is slightly later (2 - 5 days)
and a quarter period that is slightly larger (5 - 7 days) than those estimated by the more
complex methods, presumably due to the tendency for the timeseries smoothing required by
this approach (see Section 2.3.1) to lump closely spaced EVI peaks together. This lumping
almost exclusively occurs on rare triple cropped areas. The longer quarter period translates
into a planting date 7 - 10 days earlier and harvest date 9 - 10 days later, or a slightly longer
estimated crop cycle length.

Amongst the other methods, there is close agreement between the nonlinear 1st order har-
monic function and the Savitsky-Golay method, while the linearized 3rd harmonic function
is inconsistent with the other methods by a large degree. These inconsistencies are partly
attributable to a spurious local minimum that arises when fitting this functional form, and
which tends to compress the estimated quarter period. While spurious minima can also
occur when fitting the other functional forms, their occurrence is much less frequent (see
Figure 2.5).

Additional methodological issues arise when fitting the different functions: for example,
estimates of the date of minimum EVI (and thus the estimated quarter period) are sensitive
to the time period used to fit each function for the 3rd order harmonic and Savitsky-Golay
forms, reducing the scalability of the methods. Similarly, key data needed for fitting the
nonlinear 1st order harmonic function are often unavailable in cloudy areas, reducing the
area over which estimates could be produced.

Finally, the simple form of the linearized 1st order harmonic offers other advantages
beyond robustness and the ability to maximize use of available data [142]. For instance, it
is easily interpretable - the phase (φ) represents the date of peak EVI and measures soy’s
seasonality, the frequency (ω) measures its crop cycle length, and amplitude (A) measures
the difference in EVI between bare soil and peak greenness, which is useful for land cover
classification purposes.

Additionally, I also compare planting and harvest dates estimated from each of the time-
series analysis algorithms to Planet Labs validation data. The estimation errors in Table
2.5 show that while my linearized 1st order harmonic algorithm has a slightly higher plant-
ing date error, it performs better for harvest dates. The higher error in planting dates is
mostly attributed to one triple cropped field, in which the smoothing algorithm combined
two closely occurring peaks into one, overestimating the quarter period.
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Estimation
differences [days]

Nonlinear 1st order
harmonic

Linearized 3rd order
harmonic

Savitsky-Golay

Peak date RMS
difference

4.8 5.1 4.9

Peak date difference -2.3 -5.1 -2.5

Quarter period
RMS difference

9.5 14.4 6.8

Quarter period
difference

-6.7 -14.4 -5.7

Planting date RMS
difference

9.4 20.0 7.5

Planting date
difference

9.4 20.0 7.5

Harvest date RMS
difference

13.8 21.0 12.2

Harvest date
difference

-9.7 -21.0 -8.7

Table 2.4: Comparing the estimated planting and harvest dates and phenological parame-
ters from my linearized 1st order harmonic algorithm to those from complex/nonlinear fitting
curves. Estimation differences are calculated as complex/nonlinear estimate minus my esti-
mate. Root mean squared (RMS) differences are also reported. These are calculated over
15 soy points in the point land cover dataset.

2.3.3 RQ 3: Can ground-truth planting and harvest date
information be supplemented or replaced with high
resolution satellite imagery?

MATOPIBA survey data and Planet Labs imagery collections coincide for two properties,
enabling a direct comparison between the two datasets. Significant differences in the planting
and harvest dates across fields within each property are visually evident in the Planet Labs
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Figure 2.5: Estimated peak and greenup dates from my proposed linearized 1st order har-
monic method and three complex/nonlinear methods. Though EVI data exists for the whole
year, only the points used for fitting are displayed.

imagery. However, each property only reports one set of planting and harvest dates. For
example, one property reported that their planting and harvest activity occurred over a
period of 1 and 1.5 months, respectively. For the same property, Planet Labs imagery suggest
that planting was spread over a 2 month period, and harvest activity over a 3 month period,
an increase of 100%. This larger range indicates that at least some fields are not covered
by the values reported in the MATOPIBA survey. For the other overlapping property, the
reported planting and harvest dates are not consistent with greenup and browndown observed
in Planet Labs imagery in 3 out of 4 of its fields, with differences of up to 1.5 months.

Selecting a preferred data source for calibrating and assessing error in planting and har-
vest dates entails a tradeoff between use of a proxy dataset based on visual interpretation
of imagery, and the potential issues of spatial aggregation and human recall bias involved
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Algorithm Planting date error [days] Harvest date error [days]

Linearized 1st order
harmonic

10.2 0.6

Nonlinear 1st order
harmonic

6.4 4.7

3rd order harmonic 1.75 5.3

Savitsky-Golay 1.9 5.7

Table 2.5: Comparing planting and harvest estimation errors from my linearized 1st order
harmonic algorithm and from complex/nonlinear fitting curves for 12 soy points over the
Planet Labs imagery locations. Errors are calculated as the estimate minus the closest date
in the Planet Labs-derived range of plausible planting and harvest dates.

in survey datasets. Further limitations of the proxy dataset include: (i) dependence on the
temporal resolution and quality of the satellite images, and (ii) large uncertainty that is
propagated into the estimated planting and harvest dates. In this case, examination of year-
to-year reported planting and harvest dates in the MATOPIBA dataset shows that some 5%
of properties repeatedly report the same dates, indicating recall bias. Examination of two of
these properties suggests that spatial aggregation could lead to large errors in reported crop
timing. I conclude that proxy ground-truth datasets may be a worthwhile approach because
it avoids the greater imperfections in some survey datasets.

2.4 Discussion

My results demonstrate that a simple, scalable estimator for planting and harvest dates
over large areas can be constructed by a combination of smoothing EVI data, fitting a lin-
earized 1st order harmonic function to represent crop phenological timeseries, and drawing
on satellite-based proxies to supplement or replace sparse ground-truth data of varying qual-
ity. With a pixel-level bias of 6.9 and 1.8 days for planting and harvest respectively, my
method provides comparable performance to more complex timeseries analysis techniques.
It allows users take advantage of existing computational machinery in the Google Earth En-
gine (GEE) platform, enabling implementation of the algorithm across large scales. Thus,
it allows us to benefit from the computational resources of GEE while retaining the ability
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to handle complex timeseries.
The main limitations of the proposed methodology are:
(i) The dependence on smoothing could risk combining closely spaced phenological peaks,

which might need to be distinguished in triple cropped systems, where first crops failed, or
for fields with a significant weed greenness peak that precedes the first crop. This issue is
not significant if peaks are sufficiently spaced in time (relative to the width of the smoothing
window), do not occur frequently in the study region, and, if it does occur, leads to erroneous
predictions that are removed during post-processing quality control of the planting and har-
vest date maps. Lumping peaks, however, could result in greater error in other regions, and
should be critically evaluated based on known cropping practices. At present, these limita-
tions are a necessary consequence of leveraging the power of geospatial cloud computing. As
cloud platforms become more powerful and versatile, these constraints will presumably be
lifted, diversifying the potential smoothing/fitting approaches.

(ii) The uniformity of the calibration parameters that relate soy’s phenological develop-
ment stages to the timing of planting and harvest is not well understood. In this study,
I found that slightly different calibration parameters optimized the relationship between
planting and harvesting when the MATOPIBA dataset versus the proxy Planet Labs-based
dataset are used. It is not possible to determine if these differences arise from bias in one
of the datasets, or from non-uniformity in the calibration parameters. Both are plausible
causes: location significantly influences soy’s rate of phenological development [6], while, as
noted above, issues of recall bias could have impacted the MATOPIBA dataset. While the
assumption that relationships between phenological milestones and planting/harvest dates
are uniform has been used over regions as large as the US midwest [112] and is supported
by soy’s consistently symmetric and uni-modal EVI profile[117], the uniformity of calibra-
tion parameters will remain an important methodological issue to confront if upscaling these
methods.

(iii) The proxy ground-truth data that I used was limited in its extent and resolution by
currently available Planet Labs imagery, and limited in precision by the satellites’ temporal
resolution. Although it still enabled us to avoid errors due to uncertainty in farmer survey
products, there remains further scope for rapidly advancing satellite technology to allow
planting and harvest dates to be better constrained using high resolution imagery.

(iv) Crops like maize that have nonsymmetric EVI profiles would not be amenable to
fitting with the linearized 1st order harmonic form; their major phenological parameters
might be more accurately extracted by complex, nonlinear methods, which may not be
readily incorporated into tools for geospatial cloud computing platforms at present.

In spite of these limitations, the methods developed here provide a scalable, reliable
method to estimate soy planting and harvest dates across Mato Grosso’s 0.9 million km2

area.
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2.5 Conclusion

This chapter demonstrates the power of emerging microsatellite and cloud computing re-
sources to allow high-quality planting and harvest dates to be generated across large areas,
especially in regions where the effort of collecting ground data would have been prohibitively
high. I showed that the simple timeseries analysis methods currently available on cloud
computing platforms, if paired with quality control methods like cloud filtering, smoothing,
and post-estimation masking, are competitive with the more complex, nonlinear methods
available in R and other popular timeseries analysis tools. While the use of a cloud geospa-
tial tool does not improve the accuracy of planting and harvest date estimates at the pixel
level compared to these alternative approaches, it provides an opportunity to calculate plant-
ing and harvest dates over every planted field, ensuring that the highly spatially variable
responses of planting dates to climate change are recorded.

This chapter also demonstrated that imagery derived from Planet Labs can be used to
extract proxy ground-truth data that is free of the spatial aggregation and human reporting
errors that often degrade the quality of survey-generated ground data. Though the use
of satellite imagery to generate ground-truth data introduces additional uncertainty in the
data, this uncertainty will decline as the temporal resolution of microsatellites improves. As
cloud computing platforms mature and as microsatellites proliferate, they will allow us to
observe agriculture at unprecedented detail and scale. The high-resolution planting data
made possible by these advances can be used to gain new insights into historical and future
planting behavior over data-scarce regions.
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Chapter 3

Calculation of planting and harvest
dates of soybean in Mato Grosso,
Brazil

3.1 Introduction

The lack of high-resolution planting and harvest dates has prevented accurate predictions
of crop yields under future climate scenarios and has necessitated untested assumptions
about the timing of planting dates. For example, many efforts to predict crop yield assume
that planting occurs on the yield-maximizing date, and some efforts to define planting dates
assume that planting occurs at wet season onset (a date that I will refer to interchangeably
as “onset”) [55, 66, 115, 148]. In South America, these assumptions could produce errors in
planting date of up to five months [148]. And while planting date information is recorded in
many national and sub-national reports, they may represent outdated agricultural practices
and are typically highly spatially aggregated [150].

The scalable method for planting and harvest date estimation outlined in Chapter 2
allows me to create field-scale (500 m) planting datasets, updated each year. In this chapter,
I create a field-scale soybean planting date dataset in Mato Grosso, Brazil from 2004 -
2014, based on timeseries analysis of MODIS imagery. I produce spatiotemporally resolved,
observation-based maps of planting and harvest dates, with minimal reliance on untested
assumptions and outdated or aggregated crop progress reports.

The production of soybean planting and harvest date maps requires knowing the location
and cropping intensity of soy agriculture. The process of classifying pixels as single or
double cropped soy introduces additional errors in the crop calendar at the regional scale. In
addition to errors in planting and harvest date at a pixel known to be soy, uncertainties in the
crop cover classification will introduce errors in regionally aggregated planting and harvest
dates. For example, the planting date of double cropped soy within a 25 km region will
have uncertainties associated with both the planting date error at individual pixels and the
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misclassification of double cropped soy in the region. A third source of uncertainty originates
from the proxy ground truth validation dataset derived from Planet Labs imagery. Due to
cloud cover and two-week temporal resolution, the “true” values for each field are date ranges,
instead of single dates, preventing the calculation of a single value for the estimation error.
I combine these error sources to quantify the estimation uncertainty at pixel and aggregated
scales.

The planting and harvest date maps generated in this chapter can be used as input
data in crop models, or to extract insights about historical and future planting behavior. I
focus on the second application. In this chapter, I examine spatial and interannual trends
in planting dates, as well as their relationship to cropping intensity, the wet season onset,
and the sanitary break; in Chapter 4, these maps form the basis for a statistical model of
planting behavior as a function of climate and cropping intensity; in Chapter 5, this model
is used to predict planting behavior under climate change.

3.2 Methods

3.2.1 Data

I use a range of existing agricultural maps, ground-based datasets and climate products.

Mapping products

The crop cover dataset of soy across Mato Grosso from 2004 to 2014 is classified using
the point dataset of single and double cropped soy identical to the one used in Chapter 2,
MODIS imagery, and NASA’s Shuttle Radar Topography Mission (SRTM) containing 30 m
topographic information [41].

Datasets identifying irrigated fields and agricultural regions are used to target rainfed
agriculture. A center pivot irrigation map for 2014 from Brazil’s National Water Agency
(ANA) is used to mask out irrigated pixels [21]. Though I only have data for one year,
center pivot is a permanent structure that, once installed, will not be dismantled for several
years. This means that a field that was not irrigated in 2014 was likely not irrigated in
past years. In the absence of center pivot data for all years in the study period, I create a
conservative mask for center pivot by eliminating all pixels in previous years (2004 to 2013)
that were irrigated in 2014.

Agricultural regions are identified with Mapbiomas v3, a 30 m resolution land cover map
of Brazil from 1985 to 2017 produced by a group of universities, NGOs and technology
companies [92]. It is the most reliable and comprehensive land cover map available for
Brazil. Although it does not differentiate among individual crops, it does contain a class
representing general row crop agriculture. Because the crop cover dataset does not contain
training information for non-agricultural classes, I first classify all pixels in Brazil as one of
three agricultural classes (single cropped soy (SC); double cropped soy (DC); and non-soy
agriculture) and use Mapbiomas’ agriculture class to mask out all non-agricultural pixels.
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Climate data

Maps of wet season onset from 2004 to 2014 were calculated by Abrahao et al (2018), in
which the anomalous accumulation (AA) method was applied to a gridded (0.25 × 0.25 deg)
daily rainfall product produced through interpolation of 3625 rain gauges and 735 weather
stations across Brazil [153].

In the anomalous accumulation (AA) method, the wet season onset date is defined based
on the value of the anomalous accumulation [mm/day]:

AA(t) =
t∑

n=1

(R(n)−Rref) (3.1)

where R(n) is the rainfall on day n and Rref is a reference rainfall value, defined here as the
agronomically significant threshold of 2.5 mm/day [12]. Here, t = 1 refers to July 1. The
onset date is defined as the day at which the value of AA(t) reaches its minimum [86].

3.2.2 Method overview

The steps below are numbered in continuation from Chapter 2; Figure 3.1 summarizes all
steps from Chapters 2 and 3. Planting and harvest dates for soy are estimated within Mato
Grosso (Step 6), then filtered with a quality control process (Step 7). Finally, uncertainty
in the resulting planting and harvest dates is quantified (Step 8).
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Figure 3.1: Method overview, continued from Chapter 2.
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Step 6: Classify soy pixels across Mato Grosso to mask the estimated planting
and harvest dates

Because a crop cover map of soy and its cropping intensities is not available over Brazil, I
create a 500 m resolution map of soy trained on MODIS-derived phenospectral information
over the crop cover dataset. I first use the crop cover dataset to create a classifier that cate-
gorizes all pixels in Mato Grosso as either soy agriculture or other agriculture, then eliminate
non-agricultural pixels with the Mapbiomas dataset. Mapbiomas offers an agriculture class
that lumps all crops, so while it cannot be used to target specific crops like soy, it can be
used to highlight only the agricultural pixels after all pixels have been classified.

To map soy agriculture and its intensity, I adapted an existing crop classification tech-
nique tested for soy and corn in Parana State, Brazil [157]. In the Parana study, classifiers
were trained on a set of phenological and spectral input data derived from MODIS. Simi-
larly, in this study, I train a Cartesian classifier in GEE using topographic, phenological and
spectral information derived from MODIS. All phenological and spectral input data (cloud-
filtered and smoothed) are derived from the EVI timeseries calculated in Step 2 (described in
Chapter 2), while topographic data (elevation, slope, aspect and hillshade, relevant because
soy requires intensive equipment that functions best on flat, low-elevation land) are derived
from NASA SRTM. The phenological and spectral information is shown in Figure 3.2. Be-
cause cloud filtering of the MODIS data in Step 2 (Chapter 2) introduces spatial gaps in the
EVI images that, if not filled, would be propagated as gaps in the classifier’s training data,
the EVI images are gapfilled over space with a mean square kernel. This ensures that each
point in the crop cover dataset contains a full set of input data.

To maximize the amount of relevant information included in the input data while mini-
mizing the risk of overfitting, I explore (i) the spectral bands that most clearly separate single
cropped and double cropped soy from other agriculture, and (ii) three sets of input data:
phenological only, spectral only, and pheno-spectral. Studies of the spectral signature of
each crop cover class reveal that the NIR and red reflectance (components of the vegetation
index, EVI) during the wet season are best able to separate crop classes. Benchmarking the
spectral information on phenological stages rather than on calendar dates allows the classi-
fier to align input data across years and locations [157]. This alignment produces a classifier
that is robust to interannual and inter-regional variations in the planting and harvest dates,
sensitive to physiological and seasonality differences among crop types and crop intensity
levels, and relevant in extrapolated contexts. The Supporting Information for Chapter 3
provides detail on the selection process for input data. To finalize the crop cover map, I
combine the location and cropping intensity of soy, as classified using the method described
above, with a map of agricultural areas (Mapbiomas).
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Figure 3.2: Input data for the crop classification.

Step 7: Quality control on planting and harvest dates

The soy cover map from Step 6 is used to eliminate non-soy pixels from the planting and
harvest date maps produced in Steps 1 to 5 (Chapter 2). I also use a map of center pivot
irrigation locations in 2014 to mask out potentially irrigated pixels from 2004 to 2014, under
the assumption that non-irrigated locations in 2014 were also non-irrigated in previous years.
Irrigated fields do not conform to the assumptions made in the timeseries analysis, and will
correspond to fundamentally different planting dates and adaptation options than rainfed
pixels.

In a final quality control step, I test the predicted planting and harvest dates against a
series of rules intended to screen out implausible findings:

1. The peaks of the first and second crop must be more than 20 days apart.

2. Planting must occur between August 1 of the planting year and May 31 of the harvest
year. That is, planting cannot occur within the dry season [1].

3. The crop cycle of soy (planting to harvest) must be between 60 and 150 days. This is
based on observations that the average soy crop cycle is 120 days long, with short cycle
varieties averaging a 90 day cycle [1] (See Figure 2.2 for an example of this error.)

4. A soy pixel must have a raw peak EVI of at least 0.8 during the growing season and a
fitted EVI amplitude of at least 0.15. This filters out natural vegetation pixels that are
misclassified as soy using EVI properties of soy that are established in literature. Soy
pixels display a much higher seasonal change in EVI than forest and have a larger peak
EVI value than savannah, so pixels can be filtered by peak EVI and the amplitude of
the fitted EVI curve [50].
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Step 8: Quantify errors for the planting and harvest dates

The planting and harvest dates generated from Steps 1 to 7 contain errors from two sources:
(1) pixel-level errors associated with timeseries analysis and the calibrated equation, as
well as uncertainties in the validation data itself; and (2) regional-level errors associated
with the crop cover map. Pixel level errors can be quantified with the proxy ground-truth
data. However, when pixel estimates are aggregated to regional scales, errors associated
with the crop cover map must be included. While pixel level planting and harvest dates are
valuable for understanding field-scale behavior, spatially aggregated planting and harvest
dates highlight broader trends across time and space. Therefore it is worthwhile to aggregate
estimates to regional scales, even though additional errors due to misclassified soy cover will
appear.

First, I describe pixel-level errors using a probability distribution. Since the ground-
truthing data are reported as a range of plausible planting/harvest dates, the calibration
data contain uncertainty. I use the law of total probability, represented in Equation 3.2, to
aggregate the error and its uncertainty at individual pixel scales into an error distribution
that describes all pixels. Uncertainty in pixel-level error is modeled as a uniform distribution
spanning from the difference between the estimate and the lower bound, and the difference
between the estimate and the upper bound of the reported range. Each pixel in the dataset
contains its own unique pixel-level errors, which are then aggregated into a single pixel-level
error distribution, p(x), describing all pixels, using Equation 3.2. The distributions of the
error bounds, a and b, are found by fitting a normal distribution to a and b values found at
individual pixels. Equation 3.2 is solved numerically in R, with planting and harvest error
distributions treated separately.

p(x) =

+∞∫
0

+∞∫
−∞

H(x− a)−H(x− y − a)

y
∗ p(a) ∗ p(y) da dy (3.2)

Where:

a = estimate - upper bound of reported range

b = estimate - lower bound of reported range

y = b - a

H = Heaviside function

p(a) = probability density distribution of a

p(y) = probability density distribution of b

After pixel-level errors are defined, I introduce error due to land cover misclassification.
Because the planting and harvest date estimation method is independent of land cover clas-
sification, the misclassification in land cover contributes to planting and harvest date as a
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mislabeling of pixels when aggregating. I simulate the error introduced by misclassification
through bootstrapping: I generate a “true” land cover map for a 25 km region containing the
average proportion of single cropped soy, double cropped soy and non-soy agriculture found
in Mato Grosso. From this, I generate many “erroneous” land cover maps in agreement with
the confusion matrix. For each erroneous land cover map, I calculate the median planting
and harvest dates for single cropped soy, double cropped soy, and all soy pixels. The dif-
ference between this median and the corresponding median for the “true” land cover map
represents the error introduced to the aggregated planting and harvest dates by erroneous
land cover classification. The total error at the 25 km aggregated scale is a simple sum of
the pixel level estimate error and the error introduced by the land cover classification.

Application and evaluation

Steps 6 - 8 generate maps detailing planting dates, harvest dates, and cropping intensities
(and their respective errors) for soy agriculture in Mato Grosso. In the following section,
aggregated planting and harvest dates for single and double cropped soy are separately
visualized as maps and histograms to detect the relationships between crop timing and
cropping intensity, year, and location. Results reported for the year 2014 refer to planting
year of 2013 and harvest year of 2014. I also calculate the delay between estimated planting
dates and wet season onset, and observe its change over time.

Finally, to benchmark the performance of this method in Mato Grosso, I compare my
aggregated planting and harvest dates to those reported in (1) the SAGE dataset, which com-
piles national and subnational planting and harvest date statistics circa 2000, and (2) weekly
crop progress reports from Brazil’s Instituto Mato-Grossense de Economia Agropecuaria
(IMEA) agency.

3.3 Results

3.3.1 Crop cover classification

Figure 3.3 shows the soy cover map for a sub-region of Mato Grosso and the change in total
area of each land cover class from 2004 to 2014. The vast majority of the agricultural area
in Mato Grosso throughout this decade is double cropped soy. The timeline of crop area
(Figure 3.3b) shows a steep increase in soy cropped area over the analysis period, almost all
of which is double cropped soy.

The zoomed-in map of crop cover (Figure 3.3a) reveals that most of the soy is arranged
in a dendritic pattern, clustered around major roads. The most established (oldest) soy
areas are nearest to the roads, and newer soy areas mainly extend from existing soy areas,
suggesting a close relationship between transportation networks and soy agriculture [105].

The soy cover maps are consistent with reported patterns of land use in Mato Grosso [27].
The soy map has an overall accuracy of 82.5%; the confusion matrix, producer’s accuracy
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Figure 3.3: (a) Land cover over the selected years in the study period, revealing the expansion
of double cropped soy. (b) The dominance of double cropped soy can be seen in both the
timeseries and crop cover map over Mato Grosso. Here, the year corresponding to the land
cover map is the harvest year: a double cropped pixel in the 2014 land cover map was double
cropped from August 1, 2013 to July 31, 2014.

and consumer’s accuracy are shown in Table 3.1. This is comparable to the 87% accuracy
reported for a similar study in Parana [157].

3.3.2 Spatial pattern and variation in planting and harvest dates

Figure 3.4 shows quality-controlled, pixel-scale estimates of the planting and harvest dates
for two out of three Planet Labs imagery locations in Mato Grosso. At pixel scale, my data
reveal large differences in the timing of soy agriculture across adjacent fields, showing that
neighboring fields of 1 - 2 km in size can have planting dates that differ by more than one
month, and harvest dates that differ by more than two months.

Figure 3.5 shows median planting and harvest dates over 25 km cells for single and double
cropped soy for selected years between 2004 and 2014. The maps display interannual and
regional variation in the planting and harvest dates.

The long-term spatial pattern of planting and onset dates, averaged over 2004 to 2014,
is shown in Figure 3.6. For both cropping intensities, central Mato Grosso is planted earlier,
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Single cropped
soy

Double cropped
soy

Non soy
agriculture

Producer’s
accuracy

Single cropped
soy

440 548 3 44%

Double cropped
soy

301 4367 53 92%

Non soy
agriculture

9 128 107 43%

Consumer’s
accuracy

59% 86% 66% 82.5%

Table 3.1: Soy map accuracy and confusion matrix.

while areas closer to the border are planted later. Onset likely plays a large role in deter-
mining these the regional differences in planting dates, as the spatial patterns in planting
roughly follow patterns of onset. However, onset cannot explain all of the regional variabil-
ity: time-averaged onset is more spatially homogeneous compared to time-averaged planting
dates. The difference in spatial pattern of planting dates (and of planting dates after the
influence of onset is removed, Figure 3.7) between the two cropping intensities also hints at
non-climatic controls on planting decisions. Single-cropped soy appears to have a stronger
spatial pattern in planting dates than double cropped soy, though they experience the same
onset. Additionally, the similarity in planting dates between the two cropping intensities
changes in space: in the central part of Mato Grosso, single and double cropped soy are
planted at very similar times, but the difference widens on the edges of the state.

3.3.3 Sanitary break is not a hard limit for early planting, but
wet season onset may be influential

Figure 3.8a shows histograms of planting and harvest dates for single and double cropped soy
from 2004 to 2014, overlaid on Mato Grosso’s median wet season onset for the corresponding
year in blue; Figure 3.8b shows the delay between planting date and onset for single and
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Figure 3.4: Estimated pixel-scale planting and harvest dates and their estimation errors for
Planet Labs data locations (as labeled in Figure 2.3). The pixels in these maps were quality
masked as described in Step 7. Some fields did not contain reported data because there
were not enough Planet Labs images to construct a range of possible planting/harvest dates
less than 1.5 months long. The error shown in this figure is defined as the distance between
estimate and the nearest date in the reported range, and is calculated for each individual
pixel. This error is in contrast to the “averaged” pixel-scale errors generated in Step 8, which
is a single error distribution applied across all pixels.

double cropped soy from 2004 to 2014. These data reveal that the delay consistently (with
the exception of 2010) decreased from 2004 to 2014 for both single and double cropped soy.
During 2010, there was an anomalously early onset of the wet season, but planting dates
did not shift to a correspondingly early time. By 2014, the delay for both double and single
cropped soy were both at an all-time low of 19 and 30 days, respectively.

For most soy in Mato Grosso, planting dates occurred much later than both the wet
season onset and the sanitary break, indicating that neither of these constraints becomes a
hard limit for early planters. These results indicate that the mean planting date for double
cropped fields is 89 days after August 1 (late October), while the mean planting date for
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Figure 3.5: Estimated median planting and harvest dates, in days after August 1 of the
planting year, over 25 km cells.

single cropped fields is 98 days after August 1 (early November) (Figure 3.8a). Thus, the
average planting date for double cropped soy is over a month after the end of the sanitary
break. Similarly, Figure 3.8a reveals a delay between planting and wet season onset of at least
19 days, but up to three months for late-planted single cropped soy and up to two months
for late-planted double cropped soy. Such a delay in planting may raise the suspicion that
the onset date itself is estimated too early. However, as the onset is defined based on the
agronomic requirements of soy seedlings in Mato Grosso, it is deemed the most appropriate
onset definition for this application [1, 12].
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Figure 3.6: Estimated mean planting and onset dates, averaged from 2004 to 2014, in days
after August 1 of the planting year. The areas shown represent only soy planted in all years
of the study period.

However, it is clear that the onset and sanitary break do have some impact on crop timing:
planting dates almost never occur before these two constraints (Figure 3.8a). Among the
two limits, the wet season onset likely exerts the stronger pull on behavior. Except for
the anomalously early-onset year of 2010, onset occurred after the end of the sanitary break,
suggesting that the sanitary break rarely becomes relevant for planting behavior compared to
onset (Figure 3.8a). Additionally, as planting dates moved closer to the onset, the probability
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Figure 3.7: Estimated delay between median planting dates and onset, averaged from 2004
to 2014, in days after August 1 of the planting year. The areas shown represent only soy
planted in all years of the study period.

density distribution of planting dates became more concentrated. This “piling up” effect is
most obvious in 2014 and suggests that farmers collectively pay closer attention to onset as
they attempt to plant earlier each year (Figure 3.8b).
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Figure 3.8: (a) Histogram of estimated planting and harvest dates for single and double
cropped soy across Mato Grosso from 2004 to 2014. The median wet season onset across the
state is shown in red vertical lines, median planting and harvest dates in black vertical lines,
and the sanitary break in a gray vertical line. (b) The delay between planting and onset
dates across Mato Grosso. Positive value indicates that planting occurs after onset. A delay
of zero is represented by the blue vertical line.

3.3.4 Double cropped soy is planted earlier than single cropped
soy

Double cropped soy was consistently planted earlier than single cropped soy, although this
gap shrank over time - the difference between median planting date for double and single
cropped soy across Mato Grosso ranged from 24 days in 2004 to 10 days in 2014 (Figure
3.8). This is mostly associated with earlier planting of single cropped soy, rather than later
planting of double cropped soy. Double cropped soy planting dates also appear more sensitive
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to wet season onset than single cropped soy. For example, in 2010, double cropped soy was
planted earlier to match the unusually earlier onset, while single cropped soy did not adjust
as strongly to the earlier onset. The left side of double cropped planting date histogram in
Figure 3.8 pushes against the wet season onset, while the right side of the histogram tapers
off around 110 days after August 1 - a cutoff consistent with the need to harvest soy in time
for the second crop to be planted. Single cropped soy, in contrast, was less constricted on
both ends and its probability density distributions are much wider.

3.3.5 Validation with other existing crop calendars

Though my estimates cannot be validated with a spatially resolved dataset, I ensure that
my estimates agree with spatially aggregated statistics. First, my estimated planting and
harvest dates indicate a mean crop cycle length of 112 days, consistent with reported values
[1]. I also compare my estimates to two existing crop calendars. The SAGE dataset estimates
that in Brazil, soy is planted in late November and harvested in late March, equivalent to
120 and 240 days after August 1, respectively [115]. This estimate is closest to my planting
and harvest date estimates for single cropped soy in 2004 - close to the year during which the
SAGE data were collected and in a period of time when single cropped soy was the dominant
planting intensity. While SAGE data represent both irrigated and rainfed cropland at the
global level, only 2.5% of Mato Grosso’s row crop was irrigated as recently as 2017 [56],
so almost all soy in Mato Grosso was rainfed during the SAGE period. Second, a weekly
crop progress report for Mato Grosso’s soy is available from the Instituto Mato-Grossense
de Economia Agropecuaria (IMEA) agency [67]. The date at which 50% of Mato Grosso is
planted is comparable to the reported values, as shown in Table 3.2.

3.3.6 Estimation error for planting and harvest dates

The trends and relationships described above must be placed in context of the planting and
harvest date error. To quantify the pixel-scale error in the planting and harvest date estimate
for known soy fields, I compare these estimates to the planting and harvest dates observed
directly from Planet Labs imagery. The agreement between the estimates obtained from
analyzing EVI timeseries and those made directly from Planet Labs imagery provides an
estimate of the accuracy of the timeseries analysis algorithm, including internal calibrated
parameters. These pixel-level errors quantify the accuracy of the planting and harvest date
estimation method itself, independently of errors in the land cover map. Following Equation
3.2, the pixel level bias and its confidence interval is 6.9±16.5 days for planting and 1.8±18.7
days for harvest. This error includes the differences between the estimated and reported
planting and harvest dates, and the uncertainties in the reported planting and harvest dates
themselves.

Planting and harvest date errors at the 25 km aggregated scale are shown in Table 3.3.
The values shown here combine errors in land cover classification and the uncertainties in
pixel-scale estimates.
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Year IMEA-reported
date of 50%

planted

Estimated date
of 50% planted

(SC, DC)

IMEA-reported
date of 50%
harvested

Estimated date
of 50%

harvested (SC,
DC)

2013 October 25 October 25,
October 14

February 25 February 12,
February 27

2014 October 24 October 29,
October 20

February 20 February 16,
February 28

Table 3.2: Comparing the estimated planting and harvest dates to IMEA’s weekly crop
progress reports. Unfortunately, IMEA does not report crop progress separately for single
and double cropped soy.

Total error [days] Single cropped soy Double cropped soy All soy (single +
double cropped)

Planting 6.9 ± 18.7 6.9 ± 17.5 6.9 ± 17.4

Harvest 1.9 ± 21.3 1.8 ± 19.9 1.8 ± 19.8

Table 3.3: Planting and harvest date error at aggregated scales. This combines pixel level
errors in planting and harvest date estimates and land cover classification errors.

Pixel scale errors (RMSE of 6.9 ± 16.5 days for planting and 1.8 ± 18.7 days for harvest)
are comparable to those in other satellite-based studies of soy agriculture (mostly in the US
and validated on USDA NASS Crop Progress Reports at the county level). For example,
Urban et al (2018) achieved an RMSE of about 5 days for soy planting dates in the central
US; RMSEs of 3.2 to 6.9 days were associated with different soy phenological stage estimates
in a study across 3 regions in Eastern Nebraska [155]; and an RMSE of 5.3 days was achieved
for estimates of the start of the soy season in the Midwestern US [112]. While the mean
error in this study is comparable to these past efforts, the precision of the error is lower due
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to the uncertain nature of planting and harvest dates derived from Planet Labs imagery.
Important features of planting behavior can be detected despite the error and imprecision.

Differences between median planting dates of single and double cropped soy (10 to 24 days,
depending on the year), the trend toward earlier planting (13 to 20 days over the study period,
for double and single cropped soy), and the delay between planting date and onset (29 to
41 days) all appear clearly against the magnitude of RMSE. Despite the errors introduced
from the simple timeseries analysis method, the estimates reveal important patterns in the
planting and harvest dates’ changing relationship to cropping intensity and wet season onset.
While imprecision at pixel scale (17 to 21 days) is still sizeable compared to the detected
differences, the imprecision of these aggregated differences will be much lower.

3.4 Discussion

3.4.1 Soy Agriculture and its timing in Mato Grosso

My results suggest that the common assumption that the onset controls the planting date
of tropical rainfed crops is too simplistic, and often incorrect. Instead, Figure 3.8 reveals
a delay between planting and wet season onset of up to 3 months for single cropped soy
and up to 2 months for double cropped soy, a window first posited by Abrahao et al (2018)
based on soy’s photoperiod and climatological requirements. Averaged across all years, the
delay between onset and planting date was 41 days for single cropped soy and 29 days for
double cropped soy. The smaller delay over double cropped fields is important because much
of Mato Grosso’s agricultural revenue depends on the feasibility of double cropping [11]. If
onset is delayed sufficiently to make the earlier planting dates of double cropping impossible,
the state may suffer a loss of profit. Further, the magnitude of delay changed over time for
all soy: the delay was larger in earlier years, suggesting factors that allow farmers to plant
closer to the onset each year. The presence of a delay, and its change over time, means that
planting and harvest date estimates in this region should not be based upon precipitation
data alone. This also means that global datasets depicting planting and harvest dates and
which rely on the assumption that planting date occurs at the onset of the wet season may
be up to 3 months in error.

The delay between planting dates and the wet season (and occasionally the sanitary
break, if it occurs later than the onset) could be attributed to a variety of non-climatic
factors: (1) the time (up to 4 weeks) needed to complete planting operations [106], (2) the
result of logistical and economic constraints that delay farmers from planting at a desired
time [148], or (3) a deliberate choice to improve soy yields: simulations suggest that moving
planting date from Sept 25 to Oct 5 increases soy yields by increasing the precipitation
received by crops [106]. The reasons leading to the rift between the onset and the observed
planting dates have significant implications for the future of double cropping in Mato Grosso,
and should be examined further.

More evidence of the non-climatic constraints on planting can be found in the spatial
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patterns of planting dates, emphasizing the need for high-quality planting data that can
isolate these effects. At pixel scale, my maps of soy planting and harvest dates reveal that
differences in crop timing between nearby fields are comparable to or greater than interannual
and regional differences in the planting and harvest dates. This suggests that field-scale
knowledge is essential to characterizing planting and harvest dates across a property, an
insight that should inform future survey design. At regional scales, a distinct spatial pattern
of planting dates emerges: the center of the state is planted earlier than most other areas.
This could be a result of the uniquely favorable climate, soil and topography surrounding the
BR163 highway running north and south across the state [105]. While the spatial patterns of
planting for both double and single cropped soy roughly match the spatial pattern of onset,
it is clear from the spatial patterns remaining in the delay (in which the effect of onset is
taken out) that planting dates follow a spatial pattern that is independent of onset (Figure
3.7). Importantly, this pattern differs by cropping intensity: planting dates and delays
for double cropped soy appear more spatially homogeneous. This discrepancy may stem
from differences in resource access or optimal planting time. Single cropping practitioners
typically lack the resources to complete the more expensive (but more profitable) double
cropping operations, and farmers located away from the central highway network may be
unable to plant as early as they desire due to logistic constraints [105]. On the other hand,
the spatial homogeneity in double cropping may result from the necessity of planting as early
as possible to allow the second crop to mature before the dry season begins [1, 106]. Single
cropping practitioners have more flexibility in choosing a yield-optimizing time, which may
contribute to the spatial heterogeneity. In the future, the state’s growing transportation
network (such as the expansion north into the Amazon) and shifting cropping practices
may create a changing spatial pattern in planting dates, highlighting the importance of
spatiotemporally resolved planting information [29, 105].

3.4.2 Implications for planting date and crop yield predictions
under climate change

These insights could aid efforts to assess the impact of climate change on Brazilian agriculture
in a way that reflects the diverse non-climatic factors that go into planting decisions [60,
111]. Globally, crop modeling efforts often resort to approximations in which planting is
triggered based on precipitation, temperature, or soil moisture [56, 72, 133, 38, 121]. While
these rules were developed in tandem with crop requirements and, in certain cases, historical
observations, there is no guarantee that socio-economic constraints will allow farmers to plant
in strict accordance with crop requirements, or that rules derived from historical observations
will continue to apply under new crop varieties and agricultural practices. Indeed, these rules
were found to perform well on a global or continental scale, but are less appropriate on smaller
scales [35]. It would be beneficial to incorporate what we now know about the sizeable and
shifting delay between onset and planting dates into crop yield predictions for Mato Grosso.

In addition to improving predictions of crop yield, my spatially resolved, updated plant-
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ing dates are key to understanding adaptation choices at the individual level. Adaptive
behaviors, such as shifts in planting dates and cropping intensity, are the result of heteroge-
neous information access, resources, and beliefs [68]. The nuances of adaptation, and their
implications on crop yield, profitability, and food security, are nearly impossible to predict
when disparate individuals are lumped together [60, 111]. My planting date maps are a
necessary step towards a more robust understanding of current planting decisions and how
they can be optimized.

3.4.3 Planting dates extend phenological information

As discussed in Chapter 2, the estimation of planting dates from remotely sensed data is
limited by the spatial and temporal resolution of the sensor, and by the potentially high
variability in duration between planting and satellite-detected emergence. This increases
uncertainty in planting date estimates, and may mean that planting dates are not necessarily
the most suitable input for predicting crop yields. Indeed, the reproductive stage of soy,
during which seeds are developing, is the most critical to seed growth and therefore the
most highly predictive of crop yield [7, 17]. The reproductive stage is more easily estimable
from satellite imagery because of its higher above-ground biomass, and may be a better
option for studies in which greenness at this stage is already known. Examples include yield
forecasting, which predict crop yields for actively growing crops before they are harvested
[17], or predicting yields in cases where the future phenological trajectory is known [136].
However, because phenology is a complex function of weather and adaptive strategies [23,
44, 75], it is unlikely that the reproductive stage can be forecast accurately without first
understanding the preceding decisions, such as planting date. Lack of knowledge about
planting dates would be a major shortcoming in efforts to predict yields under climate
change. Planting and harvest dates reveal adaptations (such as switching between cropping
intensities and crop varieties) that propagate into subsequent phenological development and
influence yields in unpredictable ways. Understanding soy development from the beginning
of the life cycle can also help to capture the full effect of climate change on yield. For
example, the expected delay in wet season onset across Mato Grosso may disproportionately
affect development in the early growth stages. Thus, knowledge of planting dates extends
our understanding of crop growth and yield by more explicitly including the management
decisions and weather variability that occur at the start of the growing season.

3.5 Conclusions

A realistic understanding of planting behavior, and consequently an accurate depiction of
future yields, is only possible with updated, highly resolved planting data. My field-scale
planting dates for Mato Grosso may aid in developing a mechanistic framework of how
farmers respond to weather variability. This mechanistic understanding is indispensable
because planting dates and other adaptation decisions are ultimately made on the individual



CHAPTER 3. CALCULATION OF PLANTING AND HARVEST DATES OF
SOYBEAN IN MATO GROSSO, BRAZIL 55

level, in response to a variety of internal and external factors [68]. In dynamic areas like Mato
Grosso, where climatic, technological, and economic trends cause the planting and harvest
dates to shift on the time scale of years rather than decades, quickly updated planting date
information is essential to forming a timely response to climate change.

The planting dataset produced here provides rich information about individual farmers’
behavior - knowledge that will allow extrapolation to behavior and productivity under future
scenarios. Planting date variability across fields can be equal to variability across the state,
indicating the importance of understanding planting decisions at the farm scale. At the
regional (25 km) scale, a consistent spatial pattern emerges: central Mato Grosso tends to be
planted earlier than other areas, indicative of differences in climate or availability of planting
equipment. In addition to spatial variability, there is an interannual trend towards earlier
planting, independent of onset, which may reflect improvements in planting technology, soy
variety, or the transportation network. This trend was possible because average planting at
the start of the study period (2004) occurred at least a month after the end of the sanitary
break and the median wet season onset, suggesting either deliberate delays to maximize
yields, or involuntary delays caused by logistic limitations. The assumptions that planting
occurs at wet season onset or immediately after the sanitary break are therefore untrue for
most of Mato Grosso. Finally, the results confirmed that double cropped soy is planted
earlier than single cropped soy, but the difference between their planting dates shrank over
the study period. The rapid approach of double cropped planting dates toward the wet
season onset between 2004 and 2014 suggests that a delay in wet season onset due to climate
change could render double cropping impossible, or force planting to suboptimal dates. The
estimation strategies used for Mato Grosso may be useful for risk assessment in regions such
as southern Asia and southern Africa, which face not only the most severe consequences of
warming, but also data scarcity and limited adaptive capacity [54, 84, 87].
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Chapter 4

Modeling the sensitivity of planting
date selection to wet season onset

4.1 Introduction

Planting date shifts are a primary adaptation strategy under climate change, and in some
agricultural regions, they are projected to more than compensate for its harmful effects.
However, planting dates for rainfed crops rely heavily on the timing of water availability
and may become ineffective as an adaptation strategy if the wet season is constricted. A
crucial piece of understanding how climate change will impact agricultural productivity will,
therefore, require quantifying planting dates and their sensitivity to climatic variables such
as wet season onset. This chapter describes the sensitivity of soybean planting dates to wet
season onset in Mato Grosso, Brazil from 2004 to 2014.

Before planting dates can be related to the wet season onset, the onset itself must be de-
fined. The selection of the definition for wet season onset, and of the precipitation data from
which it is calculated, both introduce uncertainty in the definition of wet season metrics. Pre-
cipitation data sources derived from satellite data products or interpolated from rain gauge
observations may introduce biases that propagate into measures of precipitation seasonal-
ity. A study of gridded precipitation datasets over Brazil’s Cerrado (the rainforest-savannah
transition region which includes Mato Grosso) proposed a method to select precipitation
datasets based on agreement with streamflow measurements. Their method exploits the
natural correlation between rainfall and streamflow: because these variables are measured
independently, streamflow measurements can inform the selection of a hydrologically relevant
precipitation dataset [85].

Similarly, the most suitable definition of wet season onset in the context of planting
decisions will have the highest correlation to observed planting dates, and will presumably
highlight the attributes of precipitation that are most relevant in decision-making. This
idea has been applied in Mali: four onset definitions were tested, and the definition that
produced the closest agreement between onset date and planting windows was chosen as the
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start of the growing season. However, two drawbacks affected the quality of the findings.
Because historical planting dates were unknown, the study relied on expert knowledge to
define planting windows. Further, all the definitions highlighted related features of precipi-
tation: they were based on total rainfall accumulation over a certain number of days and no
subsequent dry spell, with variations on the thresholds used [3]. This effort can be extended
by using observed and spatially resolved planting dates, and by testing a broader range of
onset definitions. In this chapter, I develop regression models to extract the sensitivity of
soy planting dates to various definitions of onset. The definition with highest correlation to
planting dates is selected for further analysis.

A statistical model that defines the effect of climate on planting dates must control for the
impact of non-climatic factors on planting date. Figure 4.1 displays a conceptual diagram of
planting date decisions. Delayed agricultural credit to purchase seeds [1]; slow transportation
of heavy planting equipment [36]; the physical time required to plant a field; perception of
climate risk [23, 44, 75]; and the desire to avoid harmful climate during sensitive phenological
stages [59, 70, 31] may all contribute to a delayed planting date. In contrast, high crop prices
[19], use of irrigation [44], and multiple cropping [106] may advance the planting date.

Additionally, Mato Grosso’s unsteady institutional and economic background cause it
to experience more volatile crop timing than regions with more established agricultural
practice [29]. The continued development of new soybean varieties, improving transportation
network, and variations in planting equipment availability and timing of agricultural credit
disbursement continue to influence cropping intensities and planting dates [1, 43, 51].

These socio-economic controls mean that farmers may not respond perfectly to climate,
and that sensitivity to climate may vary widely between individuals. The presence of con-
founding factors and possibility of nonstationary behavior inform the development of the
model, which aims to describe the heterogeneous planting response to wet season signals
across Mato Grosso. My effort to define planting date’s sensitivity to precipitation regimes
can be summarized with two related research questions:

1. What features of precipitation are most relevant to planting decisions in Mato Grosso?

2. What is the sensitivity of planting date to wet season onset in Mato Grosso?

Though Mato Grosso is the focus of this study, the insights and techniques introduced
here can be applied to rainfed agriculture worldwide. Regression of various onset definitions
with observed planting dates can clarify the features of precipitation that are most relevant to
decision-makers at the farm level. In turn, these regressions may reveal a large difference in
onset sensitivity for different cropping intensities and fields. Because adaptation strategies
are implemented by individuals, quantifying the diversity of responses to onset is crucial
to accurately predicting agricultural adaptation and yields under changing precipitation
regimes.
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Figure 4.1: Economic, logistic, and physical (climate) constraints all exert a pull on planting
date. They must be considered either explicitly through the inclusion of explanatory variables
in the regressions, or accounted for with fixed effects. Gray arrows indicate data sources;
blue arrows indicate that the constraint is met; and red arrows indicate that the constraint
is not met (and therefore delays planting date).

4.2 Methods

4.2.1 Data

Precipitation

Two daily, gridded precipitation datasets are separately used to calculate wet season onset:
(1) PERSIANN, available globally from 1983 to the present at 0.25 degree scale, estimates
precipitation using infrared satellite data and is adjusted with the Global precipitation Cli-
matology Project (GPCP) monthly product [13]; and (2) CHIRPS, available globally from
1981 to the present at 0.05 degree scale, estimates precipitation based on rain gauge and
satellite-based cold cloud measurements [49]. Each of these datasets was used, individually,
to calculate the wet season onset date.

The choice of rainfall dataset introduces data selection uncertainty that will impact the
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calculation of precipitation statistics such as the wet season onset. Precipitation over areas
with sparse rainfall gauge density are generally better described with remotely sensed prod-
ucts. Though remotely sensed precipitation may suffer from bias that worsens with complex
topography, the flat terrain of Mato Grosso and low rain gauge density (fewer than 15 per 104

km2) make it the preferred option. A study of rainfall datasets available over the Cerrado re-
gion found that PERSIANN was the best performing gridded dataset, with high correlation
to streamflow observations and to interpolated in-situ rainfall measurements. Other gridded
products tested were the Global Precipitation Climatology Project (GPCP, 1 degree), Cli-
mate Prediction Center Unified Gauge-Based Analysis of Global Daily Precipitation (CPC,
0.5 degrees), and the Tropical Rainfall Measuring Mission (TRMM, 0.25 degrees) [85]. Grid-
ded CHIRPS data was not examined, but I use it to exploit its high spatial resolution (0.05
degrees) and gain a fine-grained understanding of sensitivity to wet season onset.

Planting dates

Planting dates of rainfed single (SC) and double (DC) cropped soybean from 2004 to 2014
in Mato Grosso were created in Chapter 3 and used here. Though the planting dates were
estimated at MODIS (500 m) scale, they are aggregated to the spatial resolution of the
onset data to which they were compared (25 km for PERSIANN-derived onset, and 5 km
for CHIRPS-derived onset). For each 25 × 25 km or 5 × 5 km grid cell in the onset map,
I calculate the 5th, 25th, 50th, 75th, and 95th percentile of the 500 m pixel-scale estimates
within that cell. Single and double cropped pixels are aggregated separately to produce
a total of ten aggregated planting date maps for each year, representing a combination of
(single cropped soy, double cropped soy) × (5th, 25th, 50th, 75th, and 95th percentile). As
in previous chapters, I refer to planting date in days after August 1. To relate the calendar
year to the agricultural year, I refer to “planting year” and “harvest year”. Results reported
for the year 2014 refer to planting year of 2013 and harvest year of 2014.

Political boundaries

Individual farm property boundaries circa 2010 are reported by the National Environmental
Registry of Rural Properties (CAR) [126].

4.2.2 Regression model

A regression model is built to simultaneously (1) select an agriculturally relevant onset
definition, and (2) to quantify the sensitivity of planting date to onset (and how it varies
for different cropping intensities and percentiles of planting within an area). To achieve
this, I rely on a statistical model that allows an intuitive interpretation of the planting-onset
relationship. In this section, I describe the model specification; the Supporting Information
for Chapter 4 details the range of model specifications that were tested and the evaluation
metrics that guided my choice.
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I selected an ordinary least squares (OLS) regression with fixed effects (FE), shown in
Equation 4.1, in which planting date is the response variable, each onset grid cell i is assigned
a fixed effect αi, with onset date and year included as additional predictors. OLS regression
relates the response in a dependent variable (planting date) to its explanatory variables by
fitting a line that minimizes the sum of the squares of residuals between the fitted equation
and the data. In Equation 4.1, βonset and βyear are the coefficient of the wet season onset
and year, interpreted as the number of days that planting shifts for unit change in onset and
year, respectively, with all other variables held constant. They are the estimated quantities
of interest, and will be referred to as the “onset coefficient” and “year coefficient”. In this
generalized equation, onset can refer to any pairing of onset definition and precipitation
dataset, and plant is aggregated to the scale of the onset dataset and may refer to any
combination of cropping intensity and aggregation percentile: (single crop, double crop) ×
(5th, 25th, 50th, 75th, and 95th percentile). The uncertainty associated with the onset
and year coefficients is a combination of the standard error of the individual coefficient
estimates and the error in planting date estimates. This uncertainty is evaluated through
bootstrapping.

plant = αi + βonset ∗ onset + βyear ∗ year + ηi (4.1)

Fixed effects background

I chose to include fixed effects because there are few datasets available to control for the
economic and logistic variables that affect planting dates (see Figure 4.1). Fixed effects
regression extends linear regression to control for unobserved explanatory variables that are
constant in time but variable over space. This is accomplished by fitting separate lines to
observations in pre-defined “groups” of space, rather than pooling all observations to fit a
single line (as in OLS). The fixed effect term, αi, represents the separate intercepts for each
fixed effect unit, i. The inclusion of fixed effects allows the model to separate the group-
specific effects on planting date from the effects associated with changes in the explanatory
variables. By fitting a unique intercept to each group, fixed effects absorb differences in
baseline planting behavior produced by spatially varying constraints. Ignoring fixed effects
may result in omitted variable bias of the onset sensitivity. For example, if an inverse
relationship exists between wet season onset and speed of access to planting equipment, a
pooled OLS that ignores the access variable may confound the effect of a delayed onset with
faster access and produce a lower estimate of the onset coefficient. While the fixed effect
terms cannot control for spatiotemporally varying missing predictors, it can compensate for
missing time-invariant factors like soil type, access to transportation networks, and access to
credit and equipment. These are unobserved but may play a role in planting date decisions.
I will refer to pooled OLS models as OLSpooled, and OLS models with fixed effects as OLSFE.
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Model selection

The OLSFE model specification was selected through a series of exploratory regressions,
in which a variety of model types, observation scales, sampling grid sizes, and predictors
were tested. This specification was selected from a set of possibilities based on model diag-
nostics, predictive accuracy, interpretability, and robustness under the condition of missing
and/or spatiotemporally autocorrelated predictors. The Supporting Information for Chapter
4 provides the set of specifications explored and justifies the final choice through a series of
selection criteria.

Model evaluation metrics

For both OLSpooled and OLSFE models, unbiased coefficient estimates are only guaranteed
if several OLS assumptions are met. I tested the chosen OLSFE model specification for
adherence to the following assumptions:

• Residuals have zero mean.

• Residuals are normally distributed. This is tested with a QQ plot.

• Residuals are exogenous. This is tested by calculating the correlation coefficient be-
tween the residual and each of the predictors.

• Residuals are independent and not autocorrelated. This is tested with Durbin-Watson
for temporal autocorrelation and Moran’s I for spatial autocorrelation.

• Predictors are not multicollinear. This is tested by calculating the correlation matrix
for the selected predictors.

• Residuals are homoscedastic. This is tested by looking for constant variance in residuals
in a residual-fitted value plot.

If these assumptions are met, the residual contains no useful information about planting
date.

These model selection and evaluation steps were performed once for each onset definition
tested. This ensures that the most appropriate model is specified for each onset definition
before their modeled coefficients are compared.

4.2.3 Selecting an agriculturally relevant onset definition

Onset definitions

Several definitions of the wet season onset exist in the literature, but it remains unclear
which features of precipitation are most often perceived as the “start of the wet season”
by farmers. I explore six definitions of onset that have been applied in South America,
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Africa, and India, and quantify their correlation to the planting date decisions made in
Mato Grosso based on the magnitude of the fitted onset coefficient. An onset definition with
a higher onset coefficient indicates that observed planting dates are more correlated to the
features of precipitation described in that definition.

The six onset definitions are:

1. The anomalous accumulation (AA) method. The AA method is a standard climato-
logical definition of wet season onset. In AA method, the wet season onset date is
defined based on the value of the anomalous accumulation [mm/day]:

AA(t) =
t∑

n=1

(R(n)−Rref) (4.2)

where R(n) is the rainfall on day n and Rref is a reference rainfall value, defined here
as the agronomically significant threshold of 2.5 mm/day [12]. Here, t = 1 refers to
July 1, the middle of the dry season. The onset date is defined as the day at which
the value of AA(t) reaches its minimum [86].

2. Depth method. This defines onset as the first day after August 1 with rainfall depth
over some threshold. This has been used to define onset in Rondonia, Brazil [24].

3. Volume method. The volume method defines onset as the first time total rainfall over
10 days exceeds a certain depth, where the subsequent 15 days experiences total rainfall
over a certain depth. The onset occurs at the end of the 10 day period. This has been
used to define onset in West Africa [83].

4. Frequency method. The frequency method defines onset as the end of a 4 week period
in which the number of rainy days (depth ≥ 1 mm) exceeds a certain number. This
has been used to define onset in the Brazilian Cerrado, a region south of the Amazon
which includes the state of Mato Grosso [129].

5. Pentad method. The pentad method defines onset as the start of the earliest pentad
with total rainfall greater than a certain depth, with the previous pentad has less total
rain and the following pentad with more total rainfall. It has been used to define onset
in the Amazon [93].

6. Monsoon method. The monsoon method defines onset as the first wet day (rainfall ≥
1 mm) that is not followed by a 10 day dry spell (total rain less than a given depth).
It has been used to characterize onset in India [68].

Because each onset definition involves some threshold(s) of depth or frequency, I test a
variety of threshold values. For each onset definition, a “sensible” set of threshold values for
Mato Grosso was found by testing a large range of potential threshold values, and choosing
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the values that produce “reasonable” onset estimates (in which all locations in the state
have onset dates within the agricultural year). I calculate onsets with each definition and
threshold combination, listed in Table 4.1, using both PERSIANN and CHIRPS data sources.
PERSIANN produces onset estimates at 25 km resolution; CHIRPS produces onset estimates
at both its native resolution of 5 km or aggregated to 25 km. This set of onset variations
allows me to simultaneously explore the features of precipitation most closely followed by
farmers, but also explore the effect of spatial resolution and precipitation data source on
the modeled relationship between planting date and onset. Computations are performed in
Google Earth Engine (GEE), a cloud computing platform offering easy access to PERSIANN
and CHIRPS datasets.

Onset definition Threshold(s) Threshold values tested

Anomalous accumulation Agronomically significant
value

2, 2.5, 3 mm

Frequency Minimum wet days in 4
week period

5, 8, 10, 12, 14 days

Depth Minimum depth of rainfall
in one day

10 mm

Monsoon Minimum total rainfall in
10 days

30, 40 mm

Pentad Minimum total rainfall in 5
days

8, 10, 15 mm

Volume (Minimum total rainfall in
10 days preceding,

minimum total rainfall in
15 days following)

(15, 30); (15, 40); (20, 20);
(20, 30); (30, 40)

Table 4.1: Thresholds values tested for each onset definition. These options were tested for
each precipitation dataset; for CHIRPS-derived onset, both 5 km and 25 km scales were
tested.
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Selection criteria

The onset definition (and accompanying threshold value) with the highest estimated onset
coefficient in the chosen OLSFE specification is selected as the one to which farmers are most
sensitive. However, each onset definition and threshold comes with many values for the onset
coefficient: corresponding not only to variations in the precipitation data source, but also to
the different cropping intensities and percentiles of planting date that are modeled.

I choose the “best” onset definition as the one that generates the highest average onset
coefficient for all percentiles of double cropped soy because the dynamics of double cropped
planting dates are expected to be more sensitive to wet season onset and more vulnerable to
climate change.

Examining spatial and temporal patterns in wet season onset definitions

To illuminate why planting dates appear more responsive to certain definitions, I compare
the spatial patterns and temporal trends associated with each onset definition. I test three
mechanisms that may allow certain definitions to perform better than others: (1) a higher
spatial variability in estimated onset would increase the variation of planting dates that
are attributed to onset, in the absence of any systematic spatial or temporal differences
among onset definitions; (2) consistent, long-term spatial biases among definitions allow
some to capture spatial planting patterns better than others; and (3) differences in temporal
patterns among definitions allow some to capture interannual variation in planting better
than others.

4.2.4 Sensitivity and robustness tests

Even with model specification and onset definition selected, the model results are still sus-
ceptible to missing predictors, planting date estimation error, and, for OLSpooled, to shifts in
the sampling grid position (see Supporting Information for Chapter 4). Because my aim is
to quantify the difference in sensitivity to onset for subsets of soy agriculture (depending on
cropping intensity and percentile), I perform robustness tests to ensure that these differences
can be detected in spite of the uncertainties.

4.3 Results

Though the selection of model specification and wet season onset definition are described as
separate tasks, they are choices made in tandem. The full set of combinations between model
specification and onset definition is tested to ensure that the model specification does not
impact the choice of onset definition, and vice versa. However, in the interest of space, not all
combinations are reported: here, I report model selection criteria based on the selected onset
definition; and onset definition selection criteria based on the selected OLSFE specification.
Model results (estimated coefficients and uncertainties) are reported only for the selected
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onset definition here; results for one alternative definition are described in the Supporting
Information for Chapter 4.

4.3.1 Onset definitions

I choose the “best” onset definitions as the definitions and their thresholds with the largest
onset coefficient for double cropped soy under the chosen OLSFE specification across all
percentiles, precipitation data sources and aggregation scales.

Figure 4.2 displays the onset coefficients for the 5th, 25th, 50th, 75th, and 95th plant-
ing date percentiles. The frequency and volume definitions have the highest onset coeffi-
cient, a trend that is robust to not only different cropping intensities and percentiles, but
also to different precipitation data sources and aggregation scales (5 km or 25 km). The
ideal thresholds for the frequency definition are 10 and 8 days, and the ideal thresholds for
the volume definition are (15mm, 40mm) and (20mm, 30mm). While both definitions are
best regardless of the precipitation data used, onsets calculated with PERSIANN tend to
have higher onset coefficients for double cropped soy, and those calculated with CHIRPS
have higher onset coefficients for single cropped soy. The top onset definition for double
cropped soy is frequency10, PERSIANN, while the top onset definition for single cropped soy is
frequency8, CHIRPS.
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Figure 4.2: Onset coefficients calculated with each onset definition and planting date per-
centile. Circles indicate the top three onset coefficients, and error bars denote standard
error.
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Figure 4.3: The scale makes a bigger difference in onset coefficient than the precipitation
data.

Two factors may explain the differences between onset calculated for PERSIANN versus
CHIRPS: (1) the difference in spatial resolution and (2) differences in the depth of precip-
itation detected. I investigate the first possibility by aggregating CHIRPS to 25 km scale,
eliminating the mismatch in scale. Figure 4.3 shows that the difference between CHIRPS-
and PERSIANN-derived onset coefficients stem primarily from the scale mismatch. When
CHIRPS data are aggregated to PERSIANN scale, the estimated onset coefficients become
almost identical.

I choose the frequency10, PERSIANN definition of onset for analysis because it creates the
highest onset definition for double cropped soy, the category of higher interest. Planting
dates for single cropped soy align most closely with the frequency8, CHIRPS definition. I report
results calculated under this alternative onset definition in the Supporting Information and
confirm that the same insights and patterns can be found if frequency8, CHIRPS were used.
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4.3.2 Comparison of onset definitions

I explore the varying agreement between planting and onset based on the hypothesis that
each onset definition produces differing levels of spatial variability or systematic biases in
spatiotemporal patterns. I focus on the differences between the best onset definitions (which
are based on frequency and volume) and a baseline definition, AA2.5, PERSIANN, a common
climatological definition that has been adapted and used for soy agriculture in Brazil [1, 56].

First, I test the possibility that the higher onset coefficients associated with the frequency
and volume definitions are due to higher spatial variability in the onset estimate (in the
absence of systematic spatial or temporal differences). Higher spatial variability could be
the result of a definition that is more sensitive to small variations in precipitation, or the
result of noise in the onset estimate. Both may allow the OLSFE model to attribute more of
the planting date variability to onset, resulting in a possibly spurious high onset coefficient.
However, Figure 4.4 indicates that the definitions with higher onset coefficients do not have
higher spatial variability within each year. Therefore, the higher onset coefficients cannot
be attributed to noise or higher sensitivity to the precipitation signal.

Figure 4.4: (a) Boxplot of estimated onset within each year, (b) standard deviation of
estimated onset within each year. Higher within-year spatial variability is not associated
with higher onset coefficients.

Second, I test the hypothesis that consistent, long-term spatial biases among definitions
cause differing agreement to planting observations. I isolate the long-term spatial pattern of
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onset from the interannual variability by transforming onset values into within-year quantiles,
and taking the average of the quantiles across the study period. These maps, shown in Figure
4.5, indicate systematic differences in the spatial pattern of onset, especially in the eastern
region. The frequency definition tends to estimate relatively late onset values in the east,
a pattern that does not exist for the AA definition. This systematic difference in spatial
pattern may help explain why the frequency definition is more closely associated to observed
planting data.

In addition to spatial differences in quantiles of onset, there is also a systematic long-
term difference in the value of onset among the definitions. As shown in Figure 4.6, the
AA definition estimates onsets that are later on the edges of MT and earlier in the cen-
ter compared to the frequency- and volume-based definitions. The frequency and volume
definitions produce values that are more similar to each other than to the AA definition,
but still have systematic spatial differences. The frequency-based definition produces onset
estimates that are later on the northeast quadrant of Mato Grosso, and earlier onsets on
the western side of MT, compared to volume-based definition. The systematic spatial biases
among the onset definitions means that different definitions might pick up different aspects
of the spatial pattern in planting dates, shown in Figure 3.6.

Finally, I test the hypothesis that differences in temporal patterns among the definitions
cause differing agreement with planting observations. I isolate temporal variability of onset
from spatial variability by taking the mean and standard deviation of onset over space for
each year. Figure 4.7 shows that interannual patterns in onset are similar for the frequency,
volume and AA definitions.

The differences in onset coefficients therefore most likely arise from systematic spatial
differences in onset produced by each definition. The long-term spatial pattern in planting
dates matches better with frequency definitions, suggesting that the frequency definition is
better able to capture the spatial variability in the most important features of precipitation.

4.3.3 Model evaluation metrics

Prior to reporting estimated coefficients, I confirm that the ten fitted models (one for each
cropping intensity and percentile) satisfy the linear regression assumptions listed in the
Methods section. Residual plots confirm that the residuals have zero mean, are uncorrelated
with the fitted value, and are homoscedastic; the QQ plot confirms that the residuals are
normally distributed (Figure 4.8); Durbin-Watson and Moran’s I, reported in the Supporting
Information for Chapter 4, show that the residuals are not temporally or spatially autocor-
related; and a correlation matrix shows that the predictors are not multicollinear and that
residuals are exogeneous (Table 4.2).

The model cannot be directly used for accurate predictions of planting date under climate
change. The prediction error is about 10 days, higher than the expected magnitude of
planting date change: if onset is delayed by a month, planting date would only change by 3
- 5 days. Instead, I use the onset and year coefficients to discuss the sensitivity of planting
date to a unit change in onset. In the following section, I use robustness tests to show that
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Figure 4.5: Quantiles of onset within each year were averaged from 2004 to 2014 to produce
a map of spatial variability in onset.

the onset coefficient estimates, and the differences in the onset coefficient among cropping
intensities and planting percentiles, are significant under sources of uncertainty.
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Figure 4.6: Long-term spatial patterns in the difference between onset estimates.
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Figure 4.7: Temporal pattern, averaged over space, for each onset definition. Error bars
represent standard deviation of onset within each year (i.e. the spatial variation).

Onset Year Residual

Onset 1 -0.024 -0.014
Year -0.024 1 4.9x10-4

Residual -0.014 4.9x10-4 1

Table 4.2: Correlations show that predictors are not multicollinear and that residuals are
exogenous. These are correlations for DC, percentile25, but correlations are similar for other
intensities and percentiles.

4.3.4 Sensitivity and robustness tests

In this section, I confirm that the onset coefficients, and the differences in onset sensitivity
among cropping intensities and planting percentiles, are robust to uncertainties caused by
missing predictors and errors in planting date estimates. These robustness tests show that
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Figure 4.8: Residual and quantile-quantile plots confirm homoscedastic, nearly normal
residuals for (a) double and (b) single cropped soy planted in the 25th percentile. Similar
results are observed for other percentiles.

despite uncertainty, trends and differences in behavior among soy intensities and planting
percentiles are still observable.

I test the robustness of the onset coefficient to missing predictors by eliminating known,
important predictors such as year and location from the model and observing the change in
the onset coefficient. I perform these tests in both the OLSpooled and OLSFE specifications.
Though the final model specification is OLSFE, the OLSpooled specification enables me to
eliminate location-related predictors; these are automatically included in the fixed effects
terms at the heart of the OLSFE specification. Table 4.3 shows that the onset coefficient
is robust even when I have eliminated all predictors except onset. Even with all predictors
but onset eliminated, the onset coefficient changes by a maximum of 0.04 compared to a
model with the full set of known predictors. Similarly, Figure 4.9 shows that the OLSFE

specification is also robust when year is eliminated, and that both OLSFE and OLSpooled

are robust to eliminated location and year predictors across all intensities and percentiles.
While the effect of missing predictors for which there is no data can never be quantified, the
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stability of the onset coefficient when known predictors are missing is encouraging.
Additionally, as shown in Table 4.2, the residuals are uncorrelated to onset. This indicates

that the onset coefficient is unbiased, even if the residuals could have been modeled with
more predictors. Together, these tests indicate that the estimate of the onset coefficient is
unbiased.

SC onset coefficient DC onset coefficient

OLSFE, all predictors 0.25 0.38
OLSFE, only onset 0.26 0.39

OLSpooled, all predictors 0.26 0.37
OLSpooled, only onset 0.29 0.40

Table 4.3: Onset coefficients estimated by OLSFE and OLSpooled. All predictors means that
onset, year, latitude, longitude, and region were used. I report model results for the 25th
percentile of planting here.

4.3.5 Planting date sensitivity to wet season onset

The onset coefficients for the chosen OLSFE specification and onset definitions are summa-
rized in Figure 4.10. The error bars represent bootstrapped uncertainties in planting date
estimates. As expected, the onset coefficient changes with the cropping intensity and plant-
ing date percentile. The onset coefficient is higher for soy that is planted early (double
cropped soy and soy in the 5th percentile) compared to soy that is planted later (single
cropped soy and soy in the 95th percentile). For double cropped fields, the onset coefficient
ranges from 0.5 at the 5th percentile to 0.25 at the 95th percentile; for single cropped fields,
the onset coefficient ranges from 0.35 at the 5th percentile to 0.1 at the 95th percentile.
These coefficients are statistically significant at the 5% level and follow naturally from the
fact that growers who plant early more likely to be affected by changes in the onset of the
wet season than those who plant late.

Additionally, my results indicate that planting date became earlier with each successive
year, independently of the onset. The year coefficients are shown in Figure 4.10 and are
statistically significant at all cropping intensities and planting percentiles, indicating that
the trend to earlier planting dates affects all soy growers. However, the trend is stronger
for single cropped fields than for double cropped fields, possibly because single cropped
planting dates are generally later and have more flexibility to advance. The 95th percentile
has consistently the smallest trend, representing the fields that are planted late. These
quantitative results agree with the qualitative findings from Chapter 3.

Figure 4.10 also shows that despite uncertainty from errors in planting date data, dif-
ferences in the onset coefficient for the various cropping intensities and percentiles are ob-
servable. To account for the effect of planting estimate error, I bootstrap 1,000 simulated
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Figure 4.9: The onset coefficient is robust to eliminated predictors in both the OLSFE and
OLSpooled specifications. Error bars represent standard error.

datasets of the same size as the original dataset. The bootstrapping method replaces each
planting observation in the dataset assuming a normal distribution with mean equal to the
observed value and error of 6.9 days (calculated in Chapter 3). Each simulated dataset is then
fit to the OLSFE model to create 1,000 bootstrapped onset coefficients for each percentile ×
intensity. Next, I use unpaired, two-sided t-tests to confirm their statistical significance. For
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Figure 4.10: Onset coefficients appear statistically different among cropping intensities
and percentiles, despite uncertainty. Error bars represent the standard deviation of 1,000
bootstrapped coefficients, reflecting planting date estimation error.

each percentile, I perform a two-sided t-test for the onset coefficient of single versus double
cropped soy; and for each cropping intensity, I perform two-sided t-test for the onset coeffi-
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cient of adjacent percentiles (5th vs 25th; 25th vs 50th, etc). The p-values of all t-tests are
below the threshold of 10-15, indicating that the different cropping intensities and planting
percentiles do have statistically different sensitivities to onset. Thus, the signals of interest
exceed the noise, allowing insight into planting date sensitivity to onset despite uncertainty.

4.4 Discussion

4.4.1 Research Question 1: Planting dates’ sensitivity to onset

While model results shed light on the heterogeneous and nonstationary nature of planting
behavior in Mato Grosso, the model itself cannot describe the full range of planting behavior.
The OLSpooled models only explain 16% - 22% of total planting date variability; OLSFE

models explain 42 - 57%, an increase that may be attributed to the capture of time-invariant
factors such as the transportation network and soil type [36]. The remaining unexplained
variability may come from spatiotemporally varying factors such as access to agricultural
credit and perception of agricultural risk, for which there is not yet data [1, 23, 44, 75].

While much of the variability in planting dates is not captured in the models, the stability
of the onset coefficient to the elimination of known predictors is encouraging, and indicates
that the coefficients represent an unbiased estimate of planting date’s sensitivity to onset.
The low explanatory power does not necessarily result from a bad model; rather, it may
result from noisy ground level behavior (for which data are not available) and random error
in the planting date estimates. While the possibility of missing predictors prohibits the
use of these models for prediction of absolute planting dates, the coefficients that are fitted
provide new insights into planting decisions.

For example, results show that planting date, and its sensitivity to onset, has rich local
variability: within individual 25 km cells, a field planted in the 5th percentile will be more
sensitive to onset than a field planted in the 95th percentile; a double cropped field will be
more sensitive than a single cropped field. These spatial nuances are not captured under
the assumption that planting date occurs at wet season onset, and are commonly absent in
global aggregated datasets for planting dates and in efforts to predict crop yield under climate
change. This aggregation is problematic: because adaptation strategies are implemented by
individuals, quantifying the diversity of responses to onset is crucial to accurately predicting
agricultural adaptation and yields under changing precipitation regimes.

Finally, the presence of a trend towards earlier planting dates, independent of onset,
indicates technological or logistical progress enabling growers to plant closer to the wet
season onset in at the end of the study period, 2014, than at the beginning, 2004. If this
trend continues, planting dates may become increasingly sensitive to wet season onset. This
trend also means that planting date datasets based on older survey information, such as
MIRCA2000, may be outdated in regions with developing agricultural practice.
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4.4.2 Research Question 2: Best onset definition

While farmers are sensitive to wet season onset, they may refer to different features of
precipitation than those used by climatological definitions. The worst-performing onset
definition is the depth definition, with an onset coefficient of only 0.25 for the most sensitive
group, double cropped soy at the 5th percentile. It’s possible that this is least favored by
farmers as an indication of onset because one large rainfall event contains less information
about the arrival of the wet season compared to the arrival of many rainfall events over a
longer period of time. Additionally, its reliance on comparing the rainfall on a single day
to a predetermined threshold makes the onset date (and therefore onset coefficient) highly
sensitive to small variations in the threshold value and in the precipitation data.

The climatological definition of onset based on anomalous accumulation (AA) has average
performance, with onset coefficients ranging from 0.1 to 0.4 for SC-95th percentile and DC-
5th percentile, respectively. AA’s moderate performance indicates that other features of
precipitation are more relevant in this context. The AA definition requires farmers to predict
future precipitation during the agricultural year, making it impossible to observe in real time.
In contrast, definitions based on the frequency of rainy days or the total volume of rain in a
month are easy to observe and calculate.

While the pentad and monsoon definitions are also based on easily identifiable cumula-
tive volume metrics, they have lower performance than the frequency and volume definitions.
This could be because they observe rainfall over shorter periods of time. Rainfall signals over
11 days (monsoon definition) or 15 days (pentad definition) may not carry as much infor-
mation for risk-averse farmers as definitions based on information from 28 days (frequency
definition) or 25 days (volume definition).

Farmers’ perception of the start of the wet season is therefore best captured by the
frequency definition, one of the more easily observable precipitation-based measures of wet
season onset. The frequency definition in Brazil is also used for cropping intensity decisions.
A study in the Cerrado found that cropping intensity was more closely related to a frequency
definition than to the AA definition [129]. The importance of the frequency definition for
both planting behavior and cropping intensity should encourage wet season projections to
favor easily observable definitions over climatological ones.

However, precipitation may not be the only indicator of onset, opening up possibilities for
future investigation. In Niger and Kenya, farmers are likely to use soil moisture at a certain
depth [94, 97] as indication that the wet season has begun. In some cases, decisions are
not based on water availability at all: farmers in southeastern Kenya use indicators such as
budding of trees, animal behavior, and wind direction to detect the rainy season [115]. These
onset definitions are difficult to observe remotely, but could be approximated by merging
temperature and soil moisture datasets with precipitation signals [145]. It may be worthwhile
to examine these non-precipitation climate variables in defining the wet season.
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4.5 Conclusions

The results reveal two important insights: (1) considerable heterogeneity exists in planting
date’s relationship to onset, and (2) the way in which onset is defined causes a significant
change in planting dates’ sensitivity to onset.

The sensitivity of planting dates to wet season onset is highly variable across cropping
intensities and fields, suggesting that different growers will respond to onset depending on
their unique constraints. In Mato Grosso, onset sensitivity changes between cropping in-
tensities (double cropped soy is more sensitive than single cropped soy) and across fields
(early-planted fields are more sensitive than late-planted fields). Further, planting dates can
shift over time, independently of climate, suggesting technological advances in crop variety
or the expansion of the transportation network. This means that global planting datasets
that rely on climate-based assumptions and old survey data may be inappropriate. Simi-
larly, areas with developing agriculture or areas affected by a changing climatic, economic,
or logistical context may also be badly estimated by existing global datasets. The heteroge-
neous and changing planting behavior over Mato Grosso, if ignored, could generate grossly
incorrect agricultural yield projections.

The definition of the wet season onset also impacts onset sensitivity: climatological defini-
tions, such as those based on deviations from annual mean precipitation, are less correlated
to planting behavior than definitions based on easily observable features of precipitation,
such as the frequency of rainfall events. Agricultural studies that use climatological defi-
nitions of onset should acknowledge that their definition may not be the most reflective of
farmers’ behavior.

These findings reveal that planting dates have a more complex relationship to wet season
onset than previously believed, signifying the need for a closer look at common global planting
date maps and yield prediction efforts. Though Mato Grosso is the focus of this study, this
work provides insight into planting behavior in agricultural systems worldwide. For example,
the assumption that planting date uniformly occurs at climatological onset is likely untrue
elsewhere. A better understanding of farmers’ response to precipitation signals will impact
predictions of how planting dates, and therefore agricultural productivity, will respond to
climate change.
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Chapter 5

Predicting planting dates under
climate change scenarios

5.1 Introduction

Climate change has contributed to a historical shortening of the wet season in Brazil, and
projections suggest this trend will continue. In the state of Rondonia in southwestern Ama-
zonia, deforestation since the 1970s has delayed wet season onset by an average of 11 days
in the past three decades [24]. Similarly, a study of onset over South America found an
average onset (dry season end) delay of 11.5 +/- 2 days per decade, and attributed this de-
lay primarily to global biogeochemical climate change [48]. Climate simulations also predict
that deforestation in the Cerrado region of Brazil will cause a one-month reduction in the
length of the wet season (from 6 months to 5 months), contributed by both delayed onset
and earlier demise [31]. These observations are concerning for rainfed agriculture in Mato
Grosso, whose significant area of double cropped soy relies on a long rainy seasons to support
two sequential crops.

The choice of planting date is both a major adaptation strategy under climate change
and vulnerable to its effects. While planting later helps crops avoid drought when the
onset is delayed, it may reduce the likelihood of a successful second crop. The feasibility
of double cropping would be further diminished under an accelerated wet season demise.
Understanding the degree to which planting dates will adapt to changing wet season onset,
and what delayed planting will mean for crop yields and intensive cropping practices, is
crucial for predicting agricultural productivity under climate change.

While many studies have highlighted planting dates’ potential as an adaptation strategy,
there is still a need for a realistic understanding of planting behavior and its future trajectory.
Studies that simulate optimal, yield-maximizing planting dates under climate change sce-
narios may recommend unrealistic dates, or dates that prevent intensive cropping systems.
In Cameroon, optimized planting dates were three months later than traditionally observed
planting dates [84]; in Sudan, the recommended planting date was two to four weeks earlier
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than actual practice [23]. The large gap between actual and optimal dates suggests that
the optimized scenario may not be implemented without systematic (and possibly unlikely)
changes in agricultural practice. Additionally, it is implausible that all farmers, in their
various socio-economic contexts, will adapt to an equal degree.

As an alternative to potentially unrealistic yield-optimizing planting dates, historical
models of planting behavior can form the basis of yield predictions. Regression models
from Chapter 4 have shown that the wet season onset correlates to planting dates, but this
association (1) does not perfectly follow onset (i.e. the planting date changes by less than
1 day for every 1 day delay in onset), and (2) changes between cropping intensities (double
cropped soy is more sensitive than single cropped soy) and across fields (early-planted fields
are more sensitive than late-planted fields). The heterogeneity in onset sensitivity indicates
that while all farmers will adjust planting behavior under climate change, this adaptation
will vary spatially. Additionally, these models demonstrate that planting dates have trended
earlier each year, independently of onset, suggesting technological factors may be influencing
planting dates. The uneven impact of changing wet season timing and the trend towards
earlier planting should be embedded in predictions of agricultural yield.

In this chapter, I predict planting behavior based on the regression model developed in
Chapter 4. These predictions reflect a realistic, short-term (10 year) change in planting
behavior in Mato Grosso as a response to expected perturbations in wet season timing.
Given that both delayed wet season onset and earlier wet season demise are expected over
Mato Grosso, I answer the following questions about planting and cropping behavior:

1. How will delayed wet season onset impact planting dates in Mato Grosso?

2. How will earlier wet season demise impact feasibility of double cropping in Mato
Grosso?

5.2 Methods

5.2.1 Projected wet season

Projected wet season onset and demise dates were simulated by Costa et al (2019). First,
daily precipitation timeseries were simulated using the HadGEM2-ES CMIP5 model; wet
season metrics (onset and demise) were then extracted using the anomalous accumulation
method with threshold of 2.5 mm. Precipitation timeseries were generated based on historical
climate for the period 1970 - 2003, and based on the RCP8.5 scenario for the period 2006
- 2049. Figure 5.1 depicts simulated wet season metrics for northwest and northeast Mato
Grosso.
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Figure 5.1: Costa et al (2019)’s historical and predicted wet season onset, demise, and length.
Historical and predicted years are separated with a 20-year gap, 2000 - 2020. A red line is
drawn at 200 days, the expected crop cycle length for double cropped soy.

5.2.2 Prediction scenarios

The magnitude of delayed onset and earlier demise in Mato Grosso are projected to vary
interannually and spatially, with northeastern Mato Grosso more vulnerable to shorter wet
seasons than northwestern Mato Grosso [32]. The simulated onset demise dates are therefore
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aggregated separately to northwestern and northeastern Mato Grosso. Northwestern and
northeastern Mato Grosso are defined as the area north of 15◦S and west or east of 54◦W,
respectively, a line where precipitation patterns experience an abrupt shift. No simulations
were made for areas south of 15◦S [32]. Within each region, I account for interannual
variability by making predictions under the prototypical scenarios of early, medium, and
late onset/demise (corresponding to the 10th, 50th, and 90th percentiles).

Due to a likely incomplete set of predictors, the model provides a relative change in
planting date in response to a change in onset (i.e. the number of days planting is delayed
for every one day delay in onset) rather than an absolute planting date in response to an
absolute onset date. To this end, for each of the two regions, I calculate changes in wet
season onset demise using the average simulated values during 1970 - 2000 as a baseline.
Future wet season metrics for the prototypical scenarios are calculated by taking the 10th,
50th, and 90th percentiles of simulated wet season onset and demise during 2020 - 2049. The
differences between these percentiles and the historical baseline become the onset delay or
demise acceleration for prototypical early, medium, and late onset/demise years. I exclude
simulations from the transition period of 2001 - 2019 to ensure a clear switch from historical
to future regimes.

Though predictions of wet season metrics are available until 2049, I only make predictions
for ten years (2024) following the modeled period (2004 - 2014). I limit predictions to 10 years
in the future because non-stationarities may exist in the onset sensitivity, in the nature of the
unobservable variables characterized by fixed effects, and in the interannual trend towards
earlier planting (as observed in Chapter 3). The statistical model is unable to capture
these long-term changes in behavior and may bias predictions if applied to the far future.
Assuming that the distribution of wet season metrics remains stationary over the period 2020
- 2049, I use simulated onset and demise during these 25 years to define a set of plausible
wet season scenarios in 2024: this allows me to account for the high interannual variability
in wet season timing expected in Mato Grosso. Figure 5.1 suggests that the stationarity
assumption is valid.

Predictions are made under three wet season cases:

1. Early (10th percentile) onset and late (90th percentile) demise. This represents the
best case scenario, in which the wet season length is longest.

2. Median (50th percentile) onset and median demise. This represents a moderate wet
season scenario.

3. Late onset and early demise. This represents the worst case scenario, in which the wet
season length is shortest.

These wet season cases are chosen to represent a moderate scenario and best- and worst-
case bounds. The three scenarios are equally likely under the assumption that onset and
demise are uncorrelated, in which a late onset is not more likely to be offset by a late
demise or exacerbated by early demise. Figure 5.2 shows that the independence assumption



CHAPTER 5. PREDICTING PLANTING DATES UNDER CLIMATE CHANGE
SCENARIOS 84

is warranted: there is no statistically significant correlation between onset and demise in
the 1970 - 2049 study period. The possibility of random combinations of onset and demise
dates is confirmed in Figure 5.1, which displays a 125-day range for the wet season length,
contributed by independent variations in onset and demise.

Figure 5.2: Correlation between simulated wet season onset and demise.

Table 5.1 shows the 10th, 50th, and 90th percentiles of onset delay and demise acceler-
ation expected in 2020 - 2049 relative to the historical period of 1970 - 2000 [32]. These
percentiles account for the large interannual variability in wet season timing: the vulnerable
northeast region of Mato Grosso may experience an onset up to 21 days later and demise up
to 26 days earlier [32].
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Region Percentile Onset change [days] Demise change
[days]

Northeast 10 -9.16 -26.42
Northeast 50 6.99 -7.70
Northeast 90 20.92 4.06
Northwest 10 -4.48 -22.83
Northwest 50 3.91 -3.69
Northwest 90 13.64 9.93

Table 5.1: Projected changes in wet season timing in years 2020 - 2049, subtracted by the
average onset or demise from 1970 - 2000 [32].

5.2.3 Model for planting predictions

For each of the three wet season cases, I predict the cumulative distribution function (CDF)
of 2024 planting dates, using 2014 observations as the baseline. The 2014 CDFs represent
planting dates observed in an average 25 km cell within either northeast or northwest Mato
Grosso, and the future planting CDF is predicted using the percentile- and cropping intensity-
specific coefficients found in Chapter 4. Though I selected a frequency-based definition of
onset as the most relevant for Mato Grosso soy in Chapter 4, predictions of wet season
metrics for Mato Grosso are only available under the climatological anomalous accumulation
definition. To maintain consistency with available climate predictions, I use onset and year
coefficients that were fitted for the AA2.5, PERSIANN onset definition. The coefficients used for
prediction are shown in Table 5.2.

5.2.4 Predicted planting metrics

While predictions can account for both the onset and year trend effects, I additionally report
planting dates under only the onset effect. This eliminates a major uncertainty in predictions,
as it is unclear whether the trend toward earlier planting dates will continue to 2024. It also
isolates the impact of delayed onset from other, potentially opposing, directions. Together,
predictions under onset alone and under onset+year effects are used to calculate five metrics:

1. The average planting delay in a 25 km region due to delayed onset. The average
planting delay is calculated as the area between the cumulative distribution functions
(CDFs) of planting dates observed in 2014 and planting dates predicted under the
future onset scenario. This delay only occurs if the trend toward earlier planting
does not continue; otherwise, the trend towards earlier planting overpowers the onset-
controlled delay in planting. In this case, delay is reported as a negative number.
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Cropping intensity Planting percentile Onset coefficient Year coefficient

SC 5 0.27 +/- 0.02 -2.13 +/- 0.06
SC 25 0.19 +/- 0.02 -1.98 +/- 0.06
SC 50 0.12 +/- 0.02 -1.92 +/- 0.06
SC 75 0.08 +/- 0.02 -1.80 +/- 0.06
SC 95 0.073 +/- 0.02 -1.36 +/- 0.07
DC 5 0.39 +/- 0.02 -1.64 +/- 0.06
DC 25 0.33 +/- 0.02 -1.46 +/- 0.06
DC 50 0.29 +/- 0.02 -1.51 +/- 0.06
DC 75 0.26 +/- 0.02 -1.52 +/- 0.07
DC 95 0.22 +/- 0.02 -1.29 +/- 0.08

Table 5.2: Onset and year coefficients estimated by OLSFE, using AA2.5, PERSIANN onset
definition. Error bars are bootstrapped standard deviations representing planting estimation
error.

2. The percent of soy fields whose “preferred” planting date will no longer be feasible
due to delayed onset, assuming the interannual trend in planting continues and pushes
the “preferred” planting date earlier each year. This is calculated as the percent of
the predicted planting dates that fall before the predicted onset. Graphically, it is the
point at which the predicted planting CDF intersects with the predicted onset.

3. The percent of historically double cropped soy that would no longer continue double
cropping, due to a combination of delayed onset and earlier demise. This represents
the percent of soy that is planted too late to allow the second crop to mature before
the end of the wet season. The “last day to harvest” for double cropped fields is 30
days after the wet season demise, representing 20 days of soil moisture use and 10 days
of grain drying. The “last day to plant” is, in turn, 200 days before the “last day to
harvest” (90 days for the first crop and 110 days for the second crop) [1]. Graphically,
it is the point at which the predicted “last day to plant” intersects with the predicted
planting CDF.

4. The critical threshold of onset change that would cause the earliest (5th percentile) of
predicted planting dates to experience wet season onset as a hard limit. This represents
the leeway available for onset delays before historical sensitivities to onset must change
for early-planted fields. Graphically, it is the change in onset at which onset intersects
with the 5th percentile point of the predicted planting CDF. I also report the likelihood
that this critical threshold of onset change will be reached, based on climate projections
for 2020 - 2049.

5. The available planting window, in days. This is delimited by the “too early to plant”
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date set by the onset, and the “too late to plant” date set by the demise and cropping
intensity. If the “too late to plant” date occurs after the “too early to plant” date, the
available planting window is zero.

These metrics are calculated under each wet season case and region (northwest and
northeast Mato Grosso).

5.3 Results

5.3.1 Planting predictions under bounding scenarios

The planting responses to the wet season scenarios listed in Table 5.1 are predicted for each
percentile and cropping intensity using Table 5.2. The predicted planting CDFs are shown
in Figures 5.3, 5.4, and 5.5.
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Figure 5.3: Observed and predicted CDF for planting dates within a 25 km cell that
experiences the worst case scenario of late onset and early demise (worst case scenario). The
“too late to plant” dates for single cropped soy are 182 and 190 days after August 1 for
northeast and northwest Mato Grosso, respectively, and do not appear on the plots.
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Figure 5.4: Observed and predicted CDF for planting dates within a 25 km cell that
experiences medium onset and medium demise (moderate scenario). The “too late to plant”
dates for single cropped soy are 200 and 210 days after August 1 for northeast and northwest
Mato Grosso, respectively, and do not appear on the plots.
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Figure 5.5: Observed and predicted CDF for planting dates within a 25 km cell that
experiences early onset and late demise (best case scenario). The “too late to plant” dates
for single cropped soy are 212 and 223 days after August 1 for northeast and northwest Mato
Grosso, respectively, and do not appear on the plots.

In these figures, the observed CDF represents the mean value of the 25 km cell-scale
planting dates observed in 2014. For example, the observed 5th percentile for the northeast
region is the mean of the 5th percentile in planting dates observed in each individual 25 km
cell located in northeastern Mato Grosso in 2014. The predicted CDFs represent expected
planting dates in 2024 under the influence of onset or onset+year trend, assuming that the
onset and demise dates do not become the primary constraint on planting dates and crop-
ping intensity. However, it is expected that delayed onset and earlier demise will eventually
become the dominant constraint for planting and cropping intensity for certain areas, im-
pacting the shape and extent of future planting CDFs. While I am unable to predict the
exact shape of these future CDFs, I account for these hard constraints by calculating the
extent to which planting dates must change.
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5.3.2 Predicted planting metrics

The true planting CDF will be the combination of (1) shifts of the planting CDF due to
changes in onset and in response to interannual trends, and (2) hard limits on planting date
and cropping intensity placed by delayed onset and earlier demise. Five metrics, derived
from the predicted CDFs, serve as indicators of the many ways in which wet season timing
can impact planting behavior. They are reported in Figures 5.6, 5.7, 5.8, 5.9, and 5.10,
respectively.

Figure 5.6: Projected changes in average planting date within a 25 km cell. Negative values
indicate future planting dates that are earlier than 2014 values.

First, the area between the observed planting date CDF and predicted CDF represents the
average change in planting date experienced by a 25 km cell, tabulated across all percentiles
(Figure 5.6). This is done because the magnitude of delay will vary by field: farmers who
plant in the 5th percentile will be more heavily affected than those who plant in the 95th
percentile. These variations were summarized as an average delay in planting across all
percentiles. It is important to note that these planting date changes are calculated solely
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based on estimated onset and year coefficients, and are not bounded by the “too early to
plant” and “too late to plant” limitations. Much of the advancement in planting dates
predicted under the trend will be impossible due to delayed onset, and some of the delayed
planting dates predicted without the trend will be impossible due to earlier demise. The
average changes in planting dates, therefore, serve as bounding values for the expected
change in behavior. If the trend does not continue, planting delays of 3.6 and 5.6 days
are expected for double cropped soy in northwest and northeast Mato Grosso, respectively,
under the worst case wet season scenario. This delay may impact agricultural yields: wheat
in northern India experienced a 1% decrease for every day of delayed planting, caused by
heat stress during the grain filling period of crop growth [102]. A similar decline may occur in
Mato Grosso. However, under the worst wet season scenario, many of these delayed planting
dates will not produce a successful second crop (in other words, they would be after the “too
late to plant” limit). Thus the average change in planting, while indicative of the degree
to which planting dates will shift, is insufficient; the “too early to plant” and “too late to
plant” limitations should be included.

To this end, I calculate the second and third metrics: the percent soy area whose “pre-
ferred” planting dates will not be feasible under the projected onset delay and the percent
double cropped area that not be feasible under the projected onset and demise scenarios
(Figures 5.7 and 5.8).
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Figure 5.7: Projected percent of soy area whose planting dates will be affected by onset
delay.

The percent of soy that will be affected by delayed onset depends on whether the current
trend of earlier planting dates continues. Technological progress may continue to push plant-
ing dates earlier and earlier until onset becomes a hard limit. Under the worst case onset
delay, the trend toward earlier planting dates cannot continue for 61% of double cropped
soy and 45% percent of single cropped soy in the vulnerable eastern part of Mato Grosso. A
median onset year will force 18% of single cropped and 24% of double cropped soy to delay
planting in the northeast. Thus, if the interannual trend towards earlier planting persists,
the difference between the “desired” planting date and “feasible” planting date will grow,
and onset will become the primary constraint for some planting dates. If, however, the trend
toward earlier planting dates does not continue, the delayed onset does not “catch up” with
the predicted planting CDF and delayed onset will not become the primary constraint for
planting.
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Figure 5.8: Projected percent of currently double cropped soy that will need to give up
double cropping.

Even if they aren’t directly affected by delayed onset, farmers may contend with an ac-
celerated demise. While an earlier demise does not affect the planting date decision itself, it
may reduce the land area suitable for double cropping. Conservative estimates put the crop
cycle lengths of single and double cropped soy at 90 and 200 days, respectively [1]. With
historical onset from 1970 - 2014 averaging 219 days for northeast and 233 days for northwest
Mato Grosso, much of the state is already nearing the limit for double cropping suitability.
A constriction of the wet season, expected to average 17 and 8 days in the northeast and
northwest respectively, could make double cropping impossible for many of the currently
double cropped fields. A medium demise date in the northeast would destroy 42% of double
cropped area if the trend toward earlier planting does not continue; even the trend persists,
12% of double cropped area will be destroyed. An early demise would be catastrophic for
double cropping: 74% and 21% of double cropped soy will be affected in northeast and
northwest Mato Grosso, respectively, if technology allows planting dates to shift about 15
days earlier by 2024; 100% and 75% will be affected if this trend is absent. However, these
percentages should be viewed two caveats. First, these metrics were calculated assuming
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that planting occurs exactly as predicted. It is possible that farmers will collectively plant
in a smaller time frame, creating a steeper planting CDF and allowing a larger percentage
of double cropping to succeed. Second, in 2014, about 20% of double cropped soy in north-
east Mato Grosso was planted after the “too late to plant” cutoff, suggesting flaws such as
insufficiency of climatological definition of wet season timing used, an error in the crop cover
map, and/or error in the planting date estimate. Fortunately, this discrepancy translates to
less than 10 days and the relative impacts of each onset/demise scenario still hold.

Figure 5.9: The change in onset, relative to 2014 values, that would cause at least the
5th percentile of predicted planting dates to experience wet season onset as the primary
constraint to planting. Changes are calculated as future onset minus 2014 observed onset.
The likelihood of these changes is also reported.

In addition to exploring limits on planting dates imposed by the three wet season scenar-
ios, I also examine the threshold of onset change at which farmers would begin to experience
wet season onset as a hard limit to planting. Historically, onset sensitivity was below unity:
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a one-day delay in onset resulted in less than one day of delay in planting. I define the critical
threshold of onset change as the point at which the delayed onset would overtake planting if
historical sensitivity persists. At this point, farmers will presumably become perfectly sen-
sitive to onset and experience the onset date as a hard limit to planting. Figure 5.9 shows
the change in onset (relative to 2014 values) that would cause the 5th percentile of predicted
planting dates to experience wet season onset as the primary constraint, and the likelihood
of this critical change based on 2020 - 2049 climate projections. Though the northeast is
more vulnerable to extreme onset delays, it is slightly less likely to experience onset as the
primary constraint because historical planting dates were farther from onset. Negative onset
changes in Figure 5.9 mean that onset will need to occur even earlier than 2014 values to
allow the 5th percentile of planting to continue the trend toward earlier planting, a highly
unlikely scenario. The trend to earlier planting for the 5th percentile, historically stronger
than the trend of higher percentiles, is likely impossible for both regions. Without the trend,
only a small minority of double cropped soy will experience wet season onset as the primary
constraint, and current planting sensitivities will be more secure. Unfortunately, a cessation
of the trend would put double cropping practices at risk as demise becomes earlier. Planting
practices are therefore limited on both ends of the wet season.

Figure 5.10: Projected number of days available for farmers to plant for a given cropping
intensity.
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The planting window, or the number of days available for planting, summarizes the extent
of farmers’ planting options (Figure 5.10). In agreement with projections from Pires et al
(2016), severe impacts on double cropping are expected under the worst case scenario: in
northeast Mato Grosso, the double cropping window shrinks to 8 days; in northeast Mato
Grosso, double cropping becomes impossible (window of zero days). Even nonzero planting
windows, when too small, may make it impossible for planting equipment to cover the whole
property [106]. The planting windows observed in 2014 were 35 days for double cropped and
45 days for single cropped soy; therefore, the 24-day planting window for double cropped soy
under a moderate scenario may still be disruptive.

5.4 Discussion

5.4.1 Predicted planting behavior in Mato Grosso

Mato Grosso is projected to experience a shorter wet season, an effect equally attributed to
delayed onset and earlier demise. My predictions of planting dates’ response to a delayed wet
season onset are made under two behavioral scenarios: (1) planting dates are only affected
by delayed onset and there is no trend to earlier planting after 2014, and (2) planting
dates are affected by delayed onset and the trend to earlier planting continues. Planting
dates under these behavioral scenarios will experience the negative impacts of wet season
change differently. In general, planting dates that trend earlier each year will experience
severe constraints related to delayed onset, while planting dates that do not trend earlier
will primarily experience cropping intensity constraints due to earlier demise. Because it
is impossible to anticipate whether and how much planting dates will trend earlier in the
future, I discuss the two behavioral scenarios as bounding cases.

In the first bounding case, the trend toward earlier planting continues and planting dates
will become about 15 days earlier in 2024 compared to 2014 values. Here, planting dates will
come under two opposing forces: (1) a trend toward earlier planting, which pushes planting
dates about 15 days earlier compared to 2014 values; and (2) the relatively smaller delay
in planting due to delayed onset. The trend towards earlier planting is presumably made
possible by improved technology, crop varieties, and transport networks that allow farmers
to plant closer to the start of the wet season. While this trend cannot continue indefinitely,
historically observed delays of around 30 days between onset and planting indicate that
the trend is technically sustainable for at least another decade. The sanitary break in Mato
Grosso, which ends on Sept 15/30, may also discontinue the trend [106], but average historical
planting dates are a month later than the sanitary break. Therefore it’s likely that a delayed
onset, rather than external constraints like the sanitary break, would become the primary
limitation for this trend by 2024. Assuming that the predicted planting distributions under
the influence of delayed onset and interannual trend (Figures 5.3, 5.4 and 5.5) represent the
“desired” planting date given technological and wet season onset sensitivities, I calculate the
percent of soy area that must push planting later than the desired date due to a delay in
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onset. In 2024, a median level of onset delay (7 days) in the vulnerable northeast region
will delay the desired planting dates of only a minority of double cropped soy (up to 24%),
but a late onset year (21 days) would coerce a majority (61%) of double cropped soy to
delay planting. However, because the magnitude of the year coefficient may change (and
likely decrease as technological advances push against climatic limits), these predictions are
uncertain. This is an important caveat because the trend toward earlier planting comprises
the majority of the difference between observed and predicted planting date distributions.

In the second bounding case, the trend toward earlier planting does not continue and
planting dates are most likely delayed relative to 2014 values. This is the result of a soft
limit imposed by delayed onset, in which onset does not directly touch planting dates, but
does cause a delay in planting. During a late onset year, single cropped fields in the vulnerable
northeast region will delay planting by an average of 3.6 days, while double cropped fields
in the northeast region will delay planting by an average of 5.6 days. The delayed planting
dates may force important phenological stages of the crop to be exposed to extreme high
heat during the middle of austral summer. Additionally, when combined with earlier demise,
the delay in planting will render double cropping impossible for large parts of the northeast:
in the worst wet season case, all double cropping will be destroyed. While changes in the wet
season during most years will generate milder consequences on double cropping, the chance
of a severely disruptive year is still cause for concern. The decrease in cropping intensity,
even occasionally, may have disastrous consequences for a state whose agriculture is 85%
double cropped [27].

These bounding cases show that the necessary changes in planting behavior under delayed
onset and/or earlier demise may be problematic for agricultural productivity for several
reasons. First, the yield of individual crops may be impacted: planting dates that shift in
response to either a hard or soft limit imposed by wet season onset may become suboptimal.
Second, productivity may experience a sharp decline if double cropping becomes infeasible for
some or all of currently double cropped areas. Third, the smaller planting windows imposed
by delayed onset and earlier demise will require faster planting, which may be physically
impossible or logistically difficult. Productivity may be affected by some or all of these
avenues, depending on the presence of the trend, on the region, and on the year-specific wet
season timing.

5.4.2 Caveats for predicted results

While the predicted results indicate that changes in wet season timing will disrupt planting
and cropping practices in Mato Grosso, these predictions should be used cautiously. Because
these results are based on a statistical model of historical (2004 - 2014) cropping practices,
they lack a process-based understanding of variables that affect planting date and cropping
intensity. It is unknown whether the fixed effects found in the regression models will persist
in the future, whether new variables that influence planting dates will emerge, whether
improved and short-cycle soy varieties will allow double cropping to survive under wet seasons
shorter than 200 days, or whether historical sensitivities to onset will remain the same.
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Additionally, I have shown in Chapter 4 that the climatological anomalous accumulation
(AA) definitions of onset and demise are not the most relevant for planting decisions; wet
season predictions based on the AA definition are therefore imperfect representations of
behavior.

Other adaptive behaviors may used to alleviate the pressure on Mato Grosso’s soy agri-
culture - these are not captured in the regression models. Farmers may respond to these
stressors by expanding soy planted area to beyond what was observed in 2014. Because fixed
effects cannot be calculated in new locations, it is impossible to use the OLSFE models to
predict planting date behavior in “new soy” areas located beyond the spatial extent of the
training dataset. Therefore, while soy extensification may play a role in the future agricul-
tural yields of Mato Grosso, I only predict planting date for historically planted soy regions.
Likewise, although the onset scenarios and regions are representative of the broader spatial
and interannual variations, it is possible that more extreme wet season timings may occur
within each region and year. These extremes are overlooked in the predictions. Dramatic
changes such as the replacement of small properties with large, mechanized agribusinesses
may cause sudden shifts in planting behavior and yield [56]. Irrigation may also be used
to avoid delaying the planting date. Although only 247 thousand ha of land is currently
irrigated in Mato Grosso, improved power infrastructure may boost irrigated area in the fu-
ture [56]. These adaptations could disrupt planting dates, but are ignored in the statistical
model.

5.4.3 Understanding adaptation capacity

Adaptations such as planting date are central to agriculture’s response to climate change,
and planting dates are the most frequently tested adaptation strategy in crop models [151].
However, the lack of better information on planting behavior forces many crop yield projec-
tions to rely on planting scenarios or assume that farmers perfectly follow precipitation, soil
moisture, or temperature patterns. The studies usually exclude other practices that impact
planting dates, such as crop rotations, tillage practices, poverty, and lack of information [33,
47, 151]. My observation-based predictions of planting dates provide a more realistic idea
of the speed and extent to which planting dates actually respond to climate variability, and
implicitly account for imperfect responses to climatic variables and for the spatially hetero-
geneous response among individual farmers. As such, my predicted planting scenarios can
generate more accurate predictions of crop yield under climate change.

5.5 Conclusions

In Mato Grosso, delayed onset and earlier demise under RCP 8.5 conditions will force planting
dates to later (possibly suboptimal) times while decreasing the likelihood of a successful
second crop. Under the first bounding case, in which the trend toward earlier planting dates
continues into the future, planting dates will be delayed (and likely suboptimal) for 61% of
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double cropped soy during the worst case wet season scenario in the vulnerable northeastern
Mato Grosso (onset delayed by 21 days). More than 80% of years between 2020 and 2049
will experience a wet season onset that is delayed enough to become a hard limit to planting
for 5th percentile double cropped soy. Under the second bounding case, in which the trend
toward earlier planting does not continue, the demise of the wet season plays a larger role. In
the worst wet season case, a wet season demise that arrives 26 days earlier will make 100% of
double cropping infeasible in northeastern Mato Grosso (unless new short-cycle varieties are
introduced). While these predictions come with significant uncertainties and should be taken
with caution, they are based on the most spatiotemporally resolved planting observations
available and are indicative of the fragility of Mato Grosso’s agricultural practices. Future
work can improve planting predictions by calculating projected wet season metrics based
on features of rainfall that are most relevant for decision-making, quantifying the likelihood
of alternative adaptations that make planting dates less vulnerable to the wet season (such
as irrigation, new crop varieties, and agricultural extensification), and accounting for non-
stationarities in planting behavior.

Similar predictive efforts would improve our understanding of agricultural yields world-
wide. The magnitude of change in the wet season is expected to be concerning in many
rainfed regions: in Malawi, the RCP8.5 climate scenario will shorten the growing season by
20 - 55 days by midcentury [145]. El Nino events in Indonesia are expected to increase in
the probability of a highly disruptive 30-day delay in monsoon onset from 9 - 18% in 2007
to 30 - 40% in 2050 [100]. In Burkina Faso, the rainy season onset will be delayed by an
average of one week in 2021 - 2050 compared to the 1971 - 2000 baseline under the A1B
scenario, [65] and in West Africa the combined effect of delayed onset and earlier demise
will cause a 20% reduction in the length of the growing season by 2050 [120]. Because my
planting date estimation method and statistical analysis are scalable, they can be applied
over agricultural areas like these to evaluate the sensitivity of planting date to wet season
onset. These analyses can help to quantify risk to agricultural productivity, especially in
vulnerable tropical and developing regions.
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Chapter 6

Conclusions

6.1 Summary of Findings

The lack of updated, resolved planting date information impedes our understanding of how
planting dates have responded to weather variability in the past, and consequently how
they will evolve under climate change. This is a major deficiency in attempts to improve
and predict future crop yields. Because planting dates are a major control on agricultural
production (both directly by controlling the weather experienced by crops and indirectly by
influencing cropping practices) and are a result of climatic, economic and social factors, we
need to understand how they have behaved in the past before making extrapolations to the
future.

In this work, I introduced a new, remote sensing-based estimation method for plant-
ing and harvest dates (Chapter 2). This method is uniquely scalable and addresses chal-
lenges that have previously prevented the creation of high resolution planting and harvest
maps: lack of ground data and low computational resources. It avoids untested assumptions,
sidesteps the requirement for ground truth calibration and validation data with microsatel-
lite imagery from Planet Labs, and relies only on simple algorithms implementable in the
cloud computing platform, Google Earth Engine. Additionally, I designed the method to be
appropriate for locations that experience high cloud cover and aerosol interference during
the growing season. Numerical experiments indicate that the smoothing methods imple-
mented to address atmospheric noise produce estimates that are competitive with methods
that reduce noise through complex, nonlinear timeseries analysis.

With this method, I produced updated planting and harvest date maps for soy in Mato
Grosso, Brazil at unprecedented detail and scale (Chapter 3). The finer-resolution under-
standing of planting date behavior made possible by these maps is crucial for a region that
is both vulnerable to climate change and subject to a shifting technological and economic
context.

Regressions of planting date against the date of wet season onset over Mato Grosso reveal
statistically significant differences in farmers’ sensitivity to onset over small areas (Chapter
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4). Fields planted relatively early (in the 5th percentile) within a 25 km region are up to three
times more sensitive to the onset than fields planted late (in the 95th percentile). Cropping
intensity also exerts strong control on the onset sensitivity: double cropped fields are almost
twice as sensitive to onset as single cropped fields. Additionally, I discovered that farmers
in Mato Grosso planted earlier each year from 2004 to 2014, a trend that occurred indepen-
dently of wet season onset. Technological advances in crop variety or the expansion of the
transportation network may have contributed to this trend. The heterogeneous and changing
planting behavior over Mato Grosso, if ignored, could generate grossly incorrect agricultural
yield projections. These regressions also revealed additional uncertainty surrounding the
definition of the wet season: it is unclear which features of precipitation are most relevant
for decision-makers. I found that climatological definitions such as the popular anomalous
accumulation method are not as correlated to observed planting dates as definitions based
on easily observable metrics, such as frequency of rainfall. Future studies of planting dates’
sensitivity to weather may benefit from carefully chosen definitions of climatic variables.

Finally, predictions of planting behavior under future climate imply that delayed onset
and earlier demise may become a primary constraint for agricultural productivity in Mato
Grosso (Chapter 5). While high interannual variability in wet season timing and nonsta-
tionarity in planting behavior prevent the prediction of a precise impact, the bounding cases
suggest that delayed onset and earlier demise may delay planting to suboptimal times, in-
hibit lucrative double cropping practices, and/or constrain the available planting window to
a fraction of the historical range. These effects are concerning for a region whose economy
depends on agribusiness.

These insights into historical and future planting behavior are only possible with up-
dated, highly resolved planting data. By introducing an estimation method that closes the
information gap on planting dates without the need for expensive ground survey data, this
work helps to reduce uncertainty and error in crop yield models and propels understanding
of how agriculture will adapt to future challenges. This information will be valuable for
vulnerable agricultural regions such as southern Asia and southern Africa, which face not
only the most severe consequences of warming, but also data scarcity and limited adaptive
capacity [84, 87].

6.2 Future Work

Future work could improve the robustness of my estimation method to heterogeneous land
cover and cloudiness, reduce reliance on irrigation maps, and deepen our understanding of
the social and economic drivers of planting dates.

Fusion of satellite data sources

While my planting date estimation method was designed to be applicable to agricultural
regions worldwide, it is expected to have varying degrees of success. Extensions of the
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method to regions with less cloud cover, better air quality, less intensive cropping and to
crops with longer crop cycles would be highly feasible: these features of the cropping sys-
tem and environment would increase data availability, slow down the pace of phenological
(crop growth) change, and allow less aggressive smoothing. Heavily irrigated, arid areas
dominated by single cropping, such the central US and California, would be ideal candi-
dates for this method. However, in regions with complex topography, fragmented cropland,
where crop phenological change happens rapidly relative to the 8-day MODIS resolution, or
where critical phenological periods (such as the date of maximum EVI change) occur during
times of maximum cloud cover, the method may be of less value. Because smoothing risks
merging separate crop peaks, areas dominated by triple cropping, frequent failed first crops
that partially green up, or significant weed growth will overestimate the length of the crop
cycle. The fusion of multiple satellite sources with varying spectral range and spatiotempo-
ral resolution would improve estimates in these challenging areas. Fusion of MODIS with
satellite sources that offer higher spatial resolution (Landsat and Sentinel-2) would improve
estimates in regions with fragmented cropland, and fusion with cloud-penetrating radar data
(Sentinel-1 Synthetic Aperture Radar) would offer higher robustness to clouds.

Irrigation detection

Because this work targeted only rainfed fields, the study period was limited by available
irrigation maps (which were used to eliminate irrigated fields from consideration). The latest
irrigation map available for Mato Grosso was produced in 2014, forcing the study to end at
that year. While it is theoretically possible to train a classifier or image analysis algorithm
to detect the locations of center pivot irrigation using the 2014 data as training information,
it was difficult to do in practice. In the United States, an image analysis algorithm based
on Google Earth Engine (GEE) detects center pivots by searching for circular patterns in
remotely sensed images. However, unlike the standardized center pivots in the US, Brazil’s
center pivots are non-uniform in radius and layout, making it necessary to use different
algorithms to detect differently arranged and sized center pivots. Additionally, while center
pivots in the US consistently appear different (much greener) than their backgrounds at
the beginning of spring, there is no season during which Brazilian center pivots consistently
contrast with their background. Finally, the patchiness of natural vegetation in Brazil causes
a high degree of falsely detected center pivots. The possibility of irrigation techniques beyond
center pivot further complicates irrigation detection. These challenges could be tackled with
deep learning algorithms or image analysis techniques.

Additional variables in regression model

The regression model that quantifies planting dates’ sensitivity to onset explains only half
of the total planting date variability. Its predictive power could be improved by including
independent variables that are informed by ground-level surveys of growers, reflecting the
economic, social logistical considerations involved in planting. Detailed surveys about plant-
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ing decisions are not yet available for Mato Grosso, but would be valuable for understanding
which adaptations are employed and how extensively they are used. This knowledge would
also help define a region’s adaptive capacity, highlight barriers to adaptation, and direct
efforts to increase resilience.

New climatic drivers of planting date can also be explored. The model’s assumption that
wet season onset is the primary climatic driver of planting is reasonable in a tropical area
such as Mato Grosso, but temperature and freezing/thawing dates should be included before
applying a similar approach in colder regions: in northern China, wheat farmers responded
to warming by planting 2.1 days earlier for each 1◦ C increase in maximum temperature
[136]. A model with these adjustments could explain planting date behavior in a larger
range of climates.

Including these additional variables can clarify the cognitive drivers behind adaptation,
help us predict which adaptation strategies are more likely, and form the basis of better
statistical or process-based models to understand adaptive behavior and future yields.
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Appendix A

Supporting Information for Chapter 2

This Supporting Information details (1) the complex/nonlinear fitting algorithms that I
tested against my linearized harmonic fitting algorithm and (2) the derivation of planting
and harvest dates from Planet Labs imagery.

A.1 Complex/nonlinear fitting algorithms

In Chapter 2, I argued that my simple, linear timeseries analysis method extracts phenologi-
cal parameters from MODIS images without significant loss of estimation accuracy compared
to complex or nonlinear methods. The three nonlinear/complex methods are: (1) nonlinear
1st order harmonic, (2) linearized 3rd order harmonic, and (3) Savitsky-Golay filter. Here,
I describe the calculation of peak date and quarter period from these alternative methods.

The Savitsky-Golay filter is a third-order polynomial fit over a manually adjusted mov-
ing average window ranging from 5 to 11 points, and is implemented with R’s sgolayfilt()
function. The linearized 3rd order harmonic function is fit over the whole growing season
(of both the first and second crop if present) assuming a frequency equal to 6π/N (units of
yr−1), where N is the number of data points in the timeseries. It is necessary to fit over both
peaks because a 3rd order harmonic contains too many estimated parameters to successfully
fit the roughly 20 satellite observations in a single crop’s EVI profile. Finally, the 1st order
harmonic is fit with R’s nls() nonlinear regression function, with an initial guess of frequency
at 0.15 yr−1. Each function is fit to cloud-filtered, unsmoothed, EVI timeseries.

After fitting each function to the EVI timeseries, phenological parameters are extracted
from the smoothed EVI profile. For all fitting functions, the peak date is set as the date
that fitted EVI reaches its maximum fitted value. The period is extracted from the 1st order
harmonic curve as a simple inversion of the estimated frequency: period = 365/2πω, which
is then divided by 4 to obtain the quarter period. However, because quarter period is not
explicitly calculated in the Savitsky-Golay filter and linearized 3rd order harmonic methods
in TIMESAT, I approximate it as half the distance between (1) the peak day and (2) the
date of minimum fitted EVI to the left of the peak day.



APPENDIX A. SUPPORTING INFORMATION FOR CHAPTER 2 118

When the greenup date is defined as the maximum EVI date minus a numerically es-
timated or fitted quarter period (as with 1st order and linearized 1st order harmonic), its
location is skewed towards the date of the minimum EVI. This indicates that the EVI profile
of soy does not stretch a full harmonic cycle, and the “quarter period” is equal to a quarter
of the fitted harmonic cycle, not a quarter length of the crop cycle itself.

A.2 Planting and harvest dates derived from Planet

Labs images

Planting and harvest dates derived from Planet Labs images are used to assess the pixel
level accuracy and robustness of my estimation method over fields which are known to be
soy. I upload these Planet Labs images to Google Earth Engine, delineate individual fields
by hand, and record the earliest and latest possible planting and harvest dates for each field.
Figure A.1 displays some Planet Labs imagery samples, highlighting planting and harvest
detection and the influence of clouds on data creation. The final dataset is a set of images
depicting the earliest and latest possible planting and harvest dates for soy and, if it exists,
for the second crop. This dataset is used to evaluate the pixel-level accuracy of my estimation
method, in the absence of additional error introduced by the land cover map at the regional
level.
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Figure A.1: Planet Labs images from two locations in Mato Grosso, ranging from the start
of the growing season (September) to the end (June) illustrate the visual cues that were used
to estimate planting and harvest dates for each field. Clouds and cloud shadows impacted
the quality of the estimates. Locations are numbered following Figure 2.3.
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Appendix B

Supporting Information for Chapter 3

A spatially explicit soy crop calendar requires not only a method that estimates planting
and harvest dates at individual pixels, but also a crop cover map that specifies the location
of soy, allowing us to speak about differences in management for the two cropping systems.
In this Supporting Information, I provide details on the classification process.

B.1 Quality control of training points

The classification process begins with quality control and pooling of the crop training points.
Since all training points are, in theory, located over soy and other agriculture, I mask out
any points that fall outside of the Mapbiomas agriculture class. This reduces the risk that
a few misplaced training points at the edge of agricultural patches would bias the classifier.
While there are thousands of training points, the vast majority of them are classed as double
cropped soy (a proportion that’s reflective of the land cover of Mato Grosso in general),
and only a minority are classed as single cropped soy and other agriculture. To increase
the number of training points belonging to these other classes, I pool all crop points from
2003 to 2017 to train a single classifier. This classifier is then used to classify the crop
cover in all years. I choose this pooled approach over the alternative of training separate
classifiers for individual years because it increases the accuracy of the single cropped soy and
other agriculture classes, giving an overall accuracy boost of 3% compared to training and
classifying each year separately. Finally, irrigated pixels do not follow the same phenological
patterns as rainfed pixels, and are masked out to maintain the accuracy of the land cover
classification. Fields that experience high EVI during the dry season are not treated well in
a classifier trained on phenospectral information of rainfed crops.

B.2 Crop cover classification

Next, I calculate the input data over the quality controlled and pooled training points. The
set of input data used in classification, chosen from a stepwise process described in the
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next section, are pictured in Figure 3.2. To retrieve phenological parameters, I perform the
timeseries analysis from Step 2 (described in Chapter 2) on MODIS-derived EVI assuming
that all pixels are double cropped, giving an estimate of the seasonality and cycle length of
the first and (hypothetical) second crop. Attempting to calculate phenological parameters
for the second crop on a pixel that is in reality single cropped produces phenological dates
that are out of reasonable bounds, an indication that the pixels is, in fact, single cropped.
Phenological information also helps to distinguish soy from crops with very different cycle
lengths and seasonalities. However, phenological information alone may not be enough to
separate soy from other agriculture: in Mato Grosso, it is likely that phenological and sea-
sonality variations within soy varieties are as large as phenological variations among different
crop species. Therefore I use spectral information, retrieved at specific crop developmental
stages, to supplement the phenological information. I use median EVI calculated over 8
day windows surrounding the phenological stages highlighted in Figure 3.2 to separate crop
types based on their physiological properties. I calculate a median EVI over a small time
window instead of interpolating EVI to a specific phenological date in order to decrease the
input data’s sensitivity to noise. Similarly, the input data do not include surface reflectances
between the first and second peak dates because this period is frequently cloudy, causing the
classifier to be overly sensitive to the infill technique and noise.

A Cartesian classifier, chosen over a random forest classifier for its higher overall ac-
curacy, is trained and tested in GEE using the training dataset. Classification accuracies
are calculated using repeated cross-validation in which 30% of the data are randomly re-
moved from the training points and used for testing. Using the phenospectral input dataset
and Cartesian classifier, the crop cover map achieves an overall accuracy of 82.2 +/- 0.5%.
Consumer’s and producer’s accuracies are displayed in Table B.1.

B.3 Input data selection

The set of input data used in classification is selected through a stepwise process. In addition
to the pheno-spectral input dataset that is ultimately used to construct the soy land cover
map, I consider other sets of input information. These fall under two categories: (1) spectral
data reported based on calendar month; and (2) phenological information derived from
timeseries analysis.

The first category, spectral data, consists of 8-day composite surface reflectances for a
set of MODIS bands. I test several spectral band and date range combinations in order
to select a combination that describes the full range of spectral differences among the crop
cover classes without introducing unnecessary information and noise. For example, Figure
B.1a shows that the spectral differences among the three crop classes are negligible during
the dry season and beginning of the wet season, and Figure B.1b shows that bands 1 and
2 (red and NIR) appear most different among the three classes. Of the three spectral band
combinations (Bands 1-7; Bands 1 and 2; and EVI), and two date ranges (all year from Aug
1 to July 31; and wet season from Dec 1 to June 1) tested, the EVI-wet season combination
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produced the highest classification accuracy of 76.7%. All variations of spectral input data
result in relatively low overall accuracy in the mid-70s because they all rely on a constant
crop seasonality over time and space. To resolve this issue while continuing to use only
spectral data would require classifiers specific to each region and year, which complicates
the analysis and requires more training data than are available.

The second category, phenological data, allows more flexibility for crop seasonality by
training the classifier on phenological stages derived from timeseries analysis. The peak EVI
date, crop cycle length, fitted amplitude of the EVI curve, and peak EVI for the first and
second crop are used as the input data, giving an improved classification accuracy of 81%.
However, relying on phenological data alone assumes that crop species have pronounced
differences in crop seasonality and cycle lengths; adding spectral information improves clas-
sification accuracy by allowing the physiological differences among crop species to be con-
sidered during classification. Therefore, I use both phenological and spectral input data
to ensure that the classifier is flexible to variations in cropping seasonality and sensitive to
physiological differences between soy and non-soy crops. Table B.1 summarizes classification
performance for pheno-spectral, phenological, and spectral input data.
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Figure B.1: (a) The majority of the variation among the classes occurs between December
and June. Gray intervals represent standard deviation. (b) The majority of the variation
among the classes is NIR (band 2) and red (band 1) during December to June. This indicates
that EVI, which incorporates NIR and red, is a good multispectral index to separate the
classes. Error bars represent standard deviation.
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Phenospectral input
data

Phenological input
data

Spectral input data

Phenological
information

Fitted amplitude,
peak date, crop

cycle length, peak
EVI value

Fitted amplitude,
peak date, crop

cycle length, peak
EVI value

None

Spectral
information

Cloud filtered EVI
from MODIS at

phenological stages

None MODIS bands 1-5,
7

Classification
accuracy

82.5 81.8 73.5

Producer’s
accuracy

0.44 (SC soy) 0.44 (SC soy) 0.35 (SC soy)
0.92 (DC soy) 0.92 (DC soy) 0.87 (DC soy)

0.44 (other
agriculture)

0.4 (other
agriculture)

0.3 (other
agriculture)

Consumer’s
accuracy

0.59 (SC soy) 0.58 (SC soy) 0.45 (SC soy)
0.86 (DC soy) 0.86 (DC soy) 0.8 (DC soy)

0.65 (other
agriculture)

0.57 (other
agriculture)

0.35 (other
agriculture)

Insight Phenospectral data
uses the largest

amount of relevant
information, giving

it the highest
accuracy.

Phenological
information alone

produces the largest
jump in accuracy.

Spectral data, when
not aligned with

phenological stages,
produces the lowest

accuracy.

Table B.1: Pheno-spectral input data has higher accuracy than phenological or spectral
input data alone.
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Appendix C

Supporting Information for Chapter 4

This Supporting Information (1) details the model selection process, (2) provides addi-
tional model results, and (3) repeats the the model selection and model results using the
frequency8, CHIRPS onset definition. The frequency8, CHIRPS definition performs best for single
cropped soy for all except the 5th percentile. I show that the conclusions under this alterna-
tive onset definition are similar to those reported for the chosen definition, frequency10, PERSIANN.

C.1 Model selection

Model specification choices such as the observation scale, predictor set, handling of residual
autocorrelation, and model type are made through a series of exploratory regressions. The
sections below describe the model selection steps, and report results using frequency10, PERSIANN

as the onset definition.

C.1.1 Observation scale selection

I first choose the observation scale for the models tested. Four observation levels of planting
date are available: pixel-scale, cell-scale, property-scale, and municipality-scale. In order
of increasing size, pixel-scale planting dates are available at the raw resolution of MODIS,
500 m; cell-scale planting dates correspond to the resolution of onset estimates (5 km or
25 km cells for estimates derived from CHIRPS and PERSIANN, respectively); property-
scale planting dates are aggregated to the level of individual farm properties (average area
of 5 km2); and municipality-scale planting dates are aggregated to the level of individual
municipalities (average area of 3,192 km2). In Chapter 3, I observed high variation in planting
date within farm properties, suggesting the need for field-level observation. However, this is
impossible given the much larger grid size of CHIRPS and PERSIANN (5 km and 25 km)
precipitation data.

I choose the observation scale that appropriately balances noise in the planting date es-
timates (based on R2 of the fitted linear model), leverages the spatial information available
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in onset estimates, and reflects the expectation of the scope at which planting dates respond
to onset. Because, at this point in model selection, I have not yet chosen the model type or
predictors, the R2 is calculated with exploratory pooled OLS regression with the predictors
onset, year, longitude, and latitude. This OLS regression is intended to explore the propor-
tion of variability at each observation scale that can be explained by available predictors; I
do not use the results of the model for prediction or inference.

Figure C.1 shows planting date data aggregated to each of the observation scales consid-
ered. The scale of the onset estimates is the most appropriate observation scale because it
reduces the variance in planting estimates that plague the smaller pixel scale, without elimi-
nating important spatial details by aggregating to the scale of municipalities. Farm property
areas are on the same order of magnitude as those of onset cells, and in theory would be
the most suitable observation scale because planting dates are decided at the property level.
Characteristics of a property, such as household size, property rights, insurance access, risk
tolerance, and access to agricultural credit and equipment may all influence the planting
date. Larger farms are more readily able to access to machinery and seeds, and therefore
less susceptible to delayed planting. However, larger farms may also require more time to
physically plant, which may cancel out the benefit of timely resource access. In Brazil, soy
cropland may reach 10,000 ha in area and require 2 - 4 weeks to complete planting [106].
Additionally, farmers may mix crop varieties in order to distribute the risk of crop failure
(planting early maturing varieties to hedge for a short wet season, and late maturing varieties
for their higher yields), and larger farms may devote more land to experimental fields [68,
23]. These effects may be approximated by property size. However, an exploratory regres-
sion reveals no direct relationship between the size of the farm and farm-averaged planting
dates. The range of planting dates within a property is also uncorrelated with the size of
the property. Additionally, at the property scale, the model explains very little variability
because planting date variability is extremely high - the R2 of an OLS model is 0.25. The
dominant controls on planting date at the farm scale are, therefore, too fine to be captured
by the data. At the municipality scale, much more of the variability is explained in the model
(R2 of 0.47), but the aggregation eliminates much of the meaningful spatial variability in
planting date observations and may hide important relationships that emerge at finer scales.
A highly aggregated observation scale may be unable to capture real local differences in how
growers respond to planting decision drivers.

Onset cells are therefore the most appropriate observation scale for planting dates, with
R2 of 0.56 at the 25 km scale and 0.31 at the 5 km scale. This scale exploits the full spatial
variability of available onset data (the predictor of interest) without introducing unnecessary
variability in the planting observations or eliminating real spatial patterns through over-
aggregation. Because I explore two precipitation datasets of different spatial resolution, the
scale of the onset is either 5 km (for estimates derived from CHIRPS) or 25 km (for estimates
derived from PERSIANN).
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Figure C.1: Planting dates from 2014, aggregated to each of the three observation scales
considered. The property scale map is shown over the area of a single onset cell. The onset
data scale was chosen as most appropriate.

All subsequent modeling choices are made on the basis on the selected observation scale.

C.1.2 Predictor selection

The full set of predictors considered for model selection, each of which is a potential con-
founding factor that may influence the estimated onset sensitivity, are listed below. The
list includes interaction terms, which are denoted with a colon (:) between the interacting
predictors.
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1. Wet season onset. Onset is reported as days after August 1 of planting year, and
calculated using a variety of onset definitions and precipitation datasets.

2. Year

3. Cropping intensity (single or double cropped)

4. Latitude, longitude

5. Region: Mato Grosso was split into four “regions”: central, west, east and south,
according to broad spatial trends in planting date. The boundaries for these regions
were chosen following exploratory analysis and initial regression, which suggested that
the central region has an earlier “baseline” planting date, independent of the onset,
compared to the other three regions. This nonlinear effect is not captured in the
longitude term.

6. Percentile of planting date (5th, 25th, 50th, 75th, 95th percentile of planted pixels
within each observation cell)

7. Onset:cropping intensity

8. Onset:percentile

9. Onset:latitude

10. Onset:longitude

11. Previous year’s onset: Climate information in the previous year may be incorporated
into farmers’ memory, and impact planting date in the subsequent year.

12. Long-term total annual rainfall from 2004 to 2014: This is used as a proxy for spa-
tial patterns in climate that aren’t captured in other geographic predictors (latitude,
longitude, and region).

I use a series of exploratory pooled OLS regressions to select among these predictors
(though the estimated coefficients are not used for predictions or inference). With onset
fixed as one of the predictors in all exploratory regressions, the other possible predictors
are added stepwise to a pooled OLS model based on adjusted R2. The top five predictors
selected are onset, percentile, cropping intensity, year, and region.

The interaction terms onset:percentile and onset:intensity are also statistically significant,
but not among the first five selected. While these interaction terms explain less of planting
date variability, they are interesting to this work because they suggest that cropping intensity
impacts farmers’ sensitivity to onset, and that substantial variation onset sensitivity exists
within each observation cell.

I choose to model single and double cropped soy separately because they they are expected
to behave differently in response to the physical constraints. Though planting date for rainfed
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crops is restricted by wet season onset, it is also restricted at wet season demise by the need to
keep plants from water stress during the grain filling phenological stage. To ensure that the
crop reaches maturity before the end of the wet season, planting cannot occur too late. This
“too late to harvest” threshold is earlier for double cropped fields because the first crop, soy,
must be planted and harvested in time for the second crop, usually corn, to reach maturity
[1]. In contrast, single cropped soy may be planted under a more flexible timeline. Therefore
it’s expected that single and double cropped soy indeed have different levels of sensitivity to
onset, an assumption confirmed by the statistical significance of the onset:intensity term.

Similarly, I choose to model each percentile of planting date separately because the sta-
tistically significant onset:percentile term indicates that fields planted earlier (5th percentile)
are more reactive to onset than fields planted later (95th percentile). Separate models for
each percentile will characterize their varying degrees of sensitivity.

In the final model specification, I explore ten versions of the planting date as the depen-
dent variable: a combination of two cropping intensities and five percentiles. These separate
models will quantify the differences in onset sensitivity for each intensity and percentile.

All subsequent modeling choices are made on the basis of the selected observation scale
and predictor set. All five predictors were used in the OLSpooled and random forest spec-
ifications; however, in the OLSFE specification, the location-based predictor (region) was
eliminated because spatial information is subsumed within the fixed effects term.

C.1.3 Autocorrelation of residuals

Independent residuals are an important assumption for OLSpooled and OLSFE models. Resid-
uals that are spatially or temporally autocorrelated violates this independence assumption
and produce a form of pseudo-replication, causing the p-values associated with the estimated
coefficients to be artificially small and elevating the risk of inferring a statistically significant
coefficient where there is none. A model whose dependent variable (planting date) has an
intrinsic autocorrelation structure that cannot be captured in the predictors must explicitly
account for that autocorrelation.

I quantify the temporal autocorrelation of the residuals using the Durbin-Watson test
with Bonferroni correction, and the spatial autocorrelation with Moran’s I. While no residuals
are temporally autocorrelated for models of all cropping intensities and percentiles, they
were spatially autocorrelated for OLSpooled in all years, intensities and percentiles. Moran’s
I statistics ranged from 0.247 to 0.156, corresponding to p-values of 0.002 to 0.038. Spatial
autocorrelation was not found for OLSFE residuals for any years, intensities and percentiles,
with Moran’s I of -0.038 to 0.023, corresponding to p-values of 0.629 to 0.386.
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Figure C.2: Sampled planting dates for DC soy in 2014 based on different sampling grid
positions.

To eliminate spatial autocorrelation in OLSpooled residuals, I sample the observations with
a sampling grid so that spatially adjacent observations are never included in one model. The
size of the intervals was chosen to: (1) avoid spatial autocorrelation in the residual, while
(2) maximizing prediction accuracy in new years and locations, (3) maximizing the percent
of total data used in each model, (4) minimizing the coefficients’ sensitivity to sampling grid
position. Figure C.2 shows examples of sampling grid locations tested.

The process of spatial sampling creates additional uncertainty that’s associated with the
location of the sampling grid, which affects the specific data points that are selected for the
model. To account for this uncertainty, I offset the grid by 25 km increments in the latitude
and longitude directions. I fit a separate model for each position of the sampling grid, and
report the uncertainty in estimated coefficients due to both the sampling grid position and
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the standard error of the individual estimates. Figure C.3 shows the four criteria that were
used to select a sampling grid size for double cropped soy at 25th percentile, where error bars
represent uncertainty due to sampling grid position. Because the observations chosen from
the sampling grid depends on the location of the sampling grid itself, I choose the interval
length that meets the four criteria for all possible shifts of the sampling grid position.

I select a sampling grid size of 75 km, an interval large enough to eliminate of spatial
autocorrelation, but small enough to maximize the percent of total data points used in each
model and therefore improve model consistency under changing sampling grid locations. Its
high prediction accuracy is insensitive to sampling grid location, and its onset coefficients
are insensitive to sampling grid location.

Figure C.3: The optimal sampling grid size is 75 km for the 25 km observation scale. As
grid size increases, residual autocorrelation declines but uncertainty due to the sampling grid
location increases. Results for double cropped soy at 25th percentile are shown here.

The final choice of model type is made on the basis of the selected observation scale,
predictors, and autocorrelation handling.
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C.1.4 Model type selection

I explore three model types: (1) pooled ordinary least squares regression (OLSpooled), (2)
OLS regression with fixed effects (OLSFE), and (3) random forest.

OLSpooled and OLSFE models attempt to fit the response variable (planting date) as a
linear function of the predictor variables, providing estimates of the intercept and slopes
(coefficients). OLSFE regression extends OLSpooled to control for unobserved explanatory
variables that are constant over time but variable over space.

Random forest is a machine learning model built on a collection of independently trained
decision trees, whose nodes are split on a randomly chosen subset of predictors. Here, I
train 600 individual trees, with each node split on two randomly chosen predictors. The
decision tree structure allows random forest models to account for complex interactions and
nonlinear relationships between planting date and its predictors, a significant advantage over
OLSpooled and OLSFE. However, OLSpooled and OLSFE provide interpretable coefficients of
how planting date changes with each of the predictors, while random forest operates like a
black box. Due to lack of interpretability, a random forest model with missing predictors
and low prediction accuracy cannot be used to draw conclusions about the onset-planting
date relationship. In contrast, while missing predictors would deter OLSpooled and OLSFE

predictions, the models can still produce interpretable, unbiased estimates the relationship
between onset and planting date if a set of assumptions are met. Random forest models are
unable to produce these generalized insights.

Because the model will be used to predict how growers will change planting date in
response to climate change, predictive ability is an important model selection criterion.
Three prediction accuracy metrics informed the selection of model type: (1) validation RMSE
following a randomized 70%-30% train-test split of the spatiotemporal data; (2) prediction
RMSE at individual locations whose data was eliminated (for all years) from training; and (3)
prediction RMSE during individual years whose data was eliminated (for all locations) from
training. These cross-validation metrics allow me to evaluate the models’ predictive accuracy
not only under standard validation conditions, but also under previously unseen locations
and years. Errors associated with specific years help to define the models’ predictive ability
in early-onset versus late-onset years. High predictive ability in late-onset years is crucial
for estimating how planting date will respond to biophysical climate change. Additionally, I
consider interpretability and robustness to missing predictors.

I test the predictive ability of the OLSpooled, OLSFE and random forest models under
the chosen observation scale of 25 km; the frequency10, PERSIANN onset; and predictor set
of onset, year, region, percentile and cropping intensity. Because the OLSFE specification
includes separate intercepts for each observation, I eliminate the location-based predictors
for the OLSFE model. The prediction accuracy for the ten cropping intensity × percentile
combinations are calculated for all three model types; the OLSpooled specification addition-
ally has varying prediction accuracy depending on the position of the sampling grid. The
prediction accuracy for each model type, summarized for double cropped soy at the 25th
percentile for all sampling grid positions, is reported in Figure C.4.
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The random forest has lower prediction accuracy during new years, a pattern especially
pronounced in 2010, which experienced a much earlier onset than the other years. However,
as shown in Table C.1, the random forest model also performs best for predictions in new
locations. While random forest’s prediction accuracy in new locations improves when it is
trained using more data (by not sampling the onset grid, and using all spatially adjacent
data points for training), more data does not help it predict in new years. The inability of
random forest to predict in new years makes it less relevant for this work.

Random
Forest

(RMSE)

OLSpooled

(RMSE)
OLSFE

(RMSE)
Random
Forest
(Error)

OLSpooled

(Error)
OLSFE

(Error)

Prediction
in new
cells

7.91 +/-
3.56

11.66 +/-
3.11

N/A 2.52 +/-
4.47

7.81 +/-
6.01

N/A

Prediction
in

randomly
selected
test set

13.25 13.57 +/-
0.09

12.61 0.31 -0.08 +/-
0.82

-0.18

Table C.1: Prediction error for each model type, for double cropped soy at 25th percentile.
Standard deviation for eliminated cells represent variation in prediction error across different
eliminated cells, and standard deviation for OLSpooled represent variation in prediction error
for different sampling grid locations. It is not possible to predict in new cells for the FE
specification.
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Figure C.4: Prediction accuracy for double cropped soy at 25th percentile. For OLSpooled

models, error bars include the effect of shifting sampling grid locations.

I choose the OLSFE model because it balances the simple interpretability of OLSpooled

models while accounting for the nonlinear spatial pattern in baseline planting dates. Random
forest models could have captured this spatial nonlinearity, but due to the likely incomplete
set of predictors, they have no predictive advantage over OLSpooled and OLSFE models. While
random forest models predict better under the randomized train-test split scenario, they
perform more poorly during new years and locations compared to OLSpooled and OLSFE

specifications. I choose to prioritize performance accuracy under new years because the
model is used for prediction in Chapter 5. While missing predictors would impact predictive
accuracy for all three model types, the ability of OLSpooled and OLSFE to isolate the effect
of onset on planting date makes it more useful for this work.

C.2 Estimated fixed effects

The fixed effects estimated from the final model specification are shown in Figure C.5. There
is a complex spatial pattern in the fixed effects, which indicates earlier baseline planting in
the center of the state and later planting towards the edges. This is a nonlinear pattern that
would not have been captured in OLSpooled with spatial predictors like latitude, longitude,
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and region. The fixed effects capture geographically complex baseline differences in planting
date across space.

Figure C.5: The fixed effects for both single and double cropped soy have a complex spatial
pattern. Here, the OLSFE model specification was run for all observations to allow fixed
effects to be fit for every observation. The 25th percentile of planting (averaged across 2004
to 2014) is shown here, but a similar pattern is observed for other percentiles.

The statistical significance of fixed effect terms is confirmed with an F test for individual
effects, for each intensity and percentile. The test confirms that planting dates are affected by
a time-invariant, location-varying factors which are not captured in simple location indicators
such as latitude, longitude, and region. However, the OLSFE specification still only has an R2

between 0.42 and 0.56 (depending on the intensity and percentile), suggesting the possibility
of spatiotemporally varying predictors not captured in the model.
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C.3 Methods and results under an alternative onset

definition

Chapter 4 and the sections above report the outcome of the exploratory regressions, sta-
tistical tests, and modeled results for the frequency10, PERSIANN onset definition, but similar
results are obtained for all other onset definitions. The choice of onset definition had no
impact on the choice of observation scale, predictor set, and model type. Results for the
onset definition most highly correlated to single cropped soy planted in the 25th percentile
or later, frequency8, CHIRPS, are shown in this section.

C.3.1 Model specification

Predictor set

The R2 of OLSpooled models are 0.34, 0.31, and 0.46 at the property, 5 km cell, and mu-
nicipality scales, respectively. While the R2 for the property and 5 km scales are similar, I
choose the 5 km onset cell as the observation scale because the advantage of using properties
as the scale is unclear: properties vary greatly in size, and there is no relationship between
planting dates and property size. Using the 5 km cell as the observation scale, the same five
predictors (onset, percentile, cropping intensity, year, and region) explain the most variation
in planting dates.

Residual autocorrelation

Spatial autocorrelation of residuals for OLSpooled is present (Moran’s I of 0.28 to 0.35, corre-
sponding to p-value of 0.002) and not present for OLSFE (Moran’s I of -0.04, corresponding
to a p value of 0.79 to 0.95, depending on the intensity and percentile). Temporal autocor-
relation of residuals for OLSpooled and OLSFE was not present, with maximum 0.002 percent
of cells with temporal autocorrelation under Bonferroni correction.

To avoid spatial autocorrelation in OLSpooled, I again sample the data according to a
sampling grid. Because the frequency8, CHIRPS definition is calculated at the higher CHIRPS
resolution of 5 km, I test a finer set of sampling grid sizes compared to the PERSIANN-
derived onset (25 km). Figure C.6 shows that the optimal sampling grid size is 25 km. This
size eliminates autocorrelation in the residuals without the loss of precision that occurs when
the sampling grid size increases.
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Figure C.6: The optimal sampling grid size is 25 km for the 5 km observation scale. Results
for double cropped soy at 25th percentile are shown.

Model type selection

The prediction accuracy for each model type, summarized for double cropped soy at the
25th percentile, is reported in Table C.2 and Figure C.7. The OLSFE model again performs
best for predictions in new years, and was selected as the model type. The F test indicates
statistically significant fixed effects for each intensity and percentile.

C.3.2 Model results

Model evaluation

I confirm that the fitted models (one for each cropping intensity, percentile and sampling
grid location) satisfy the linear regression assumptions. Residual plots confirm that the
residuals have zero mean, not correlated with the fitted value, and are homoscedastic; the QQ
plot confirms that the residuals are normally distributed (Figure C.8); Durbin-Watson and
Moran’s I, reported in Section C.3.1, show that the residuals are not temporally or spatially
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Random
Forest

(RMSE)

OLSpooled

(RMSE)
OLSFE

(RMSE)
Random
Forest
(Error)

OLSpooled

(Error)
OLSFE

(Error)

Prediction
in new
cells

11.68 ±
4.91

14.79 ±
3.40

N/A 2.07 ±
4.38

6.67 ±
5.68

N/A

Prediction
in

randomly
selected
test set

14.98 16.02 15.59 -0.24 0.004 -0.20

Table C.2: Prediction error for each model type, for double cropped soy at 25th percentile.
Standard deviation for eliminated cells represent variation in prediction error across different
eliminated cells, and standard deviation for OLSpooled represent variation in prediction error
for different sampling grid locations. It is not possible to predict in new cells for the OLSFE

specification.

autocorrelated; and a correlation matrix shows that the predictors are not multicollinear and
that residuals are exogeneous (Table C.3).

Onset Year Residual

Onset 1 0.033 -1.3x10-3

Year 0.033 1 4x10-5

Residual -1.3x10-3 4x10-5 1

Table C.3: Correlations show that predictors are not multicollinear and that residuals are
exogenous. Results are reported for double cropped soy at 25th percentile.

Robustness and sensitivity tests

Table C.4 shows that the onset coefficient from OLSpooled is robust to the elimination of
known predictors. Even with all predictors but onset eliminated, the onset coefficient changes
by a maximum of 0.06 compared to a model with the full set of known predictors. The OLSFE
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Figure C.7: Prediction accuracy for double cropped soy at 5th percentile. For OLSpooled

models, error bars include the effect of shifting sampling grid locations.

specification is similarly robust when year (the only other predictor) is eliminated: Figure
C.9 shows that the OLSFE specification across all intensities and percentiles is also robust
when year is eliminated.

While these tests cannot guarantee that the onset coefficient is robust to the absence of
unknown predictors, it is encouraging that the residuals are uncorrelated to onset (Table
C.3), suggesting that the onset coefficient is unbiased.

SC onset coefficient DC onset coefficient

FE, all predictors 0.27 0.32
FE, only onset 0.25 0.30

OLS, all predictors 0.26 0.31
OLS, only onset 0.31 0.37

Table C.4: Onset coefficients estimated by OLSpooled. “All predictors” means that onset,
year, latitude, longitude, and region were used. The 25th percentile is modeled here.
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Figure C.8: Residual plots confirm normal, homoscedastic residuals.

Fitted model results

The onset coefficients for the chosen OLSFE specification and onset definitions are sum-
marized in Figure C.10. The error bars represent bootstrapped uncertainties in plant-
ing date estimates and the standard error of individual coefficient estimates. Similar to
the frequency10, PERSIANN definition, the onset coefficient changes with the cropping inten-
sity and planting date percentile. Onset coefficient is higher for soy that is planted early
(double cropped soy and soy in the 5th percentile) compared to soy that is planted later
(single cropped soy and soy in the 95th percentile). Though the spread in onset coeffi-
cients among percentiles for single cropped soy is less obvious for frequency8, CHIRPS than for
frequency10, PERSIANN, the differences in bootstrapped onset coefficients are still statistically
significant.

Additionally, the results indicate that planting date became earlier with each successive
year, independently of the onset. The year coefficients, shown in Figure C.10, are statistically
significant at all cropping intensities and planting percentiles, indicating that the trend to
earlier planting dates affects all soy growers.
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Figure C.9: Onset coefficient is robust to eliminated predictors in both the OLSFE and
OLSpooled specifications. Error bars represent standard error.

Figure C.10 shows that despite uncertainty from errors in planting date data and stan-
dard error of the fitted coefficient, significant differences in the onset coefficient for different
cropping intensities and eliminated predictors can be observed.
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Figure C.10: Onset coefficients appear statistically different among cropping intensities
and percentiles, despite uncertainty. Error bars represent the standard deviation of 1,000
bootstrapped coefficients, reflecting planting date estimation error.
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I use a t-test to determine if the onset coefficients are different among onset definitions,
cropping intensities, and percentiles under uncertainty arising from planting date estimation
error and standard error of the coefficients. The p-values of all unpaired, two-sided t-tests
were below the threshold of 10-15. These tests confirm that the different cropping intensities
and planting percentiles generally have different sensitivities to onset, which can be detected
above the noise in the estimated planting date. While it is clear that single cropping expe-
riences some exceptions to the trend toward decreasing coefficients for later-planted fields,
the magnitude of these exceptions are minor.
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