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ABSTRACT OF THE DISSERTATION 

 

Who gets infected and why: Confronting models  

with data to determine drivers of pathogen susceptibility  

at the individual and population-level 

 

by 

 

Katelyn Marie Gostic 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2019 

Professor James O. Lloyd-Smith, Chair 

   

Host susceptibility is a foundational concept in infectious disease dynamics. Susceptible 

individuals are the fuel that allows outbreaks to grow and spread. Once an epidemic takes hold, 

depletion of susceptible hosts (through new infections) eventually drives the effective 

reproduction number (Reff) below 1*, causing the outbreak to stutter and fade. Eventually, the 

demographic buildup of new susceptible hosts (via new births) creates conditions hospitable to a 

                                                

* Reff is defined as the expected number of new cases caused by a single infectious individual in a partially immune 

population, and is proportional to the fraction of susceptible individuals. When Reff falls below 1, new cases do not 

replace themselves, on average, and the outbreak ceases to grow. 



 

 

iii 

new epidemic cycle. Ultimately, the fraction of the population susceptible to a given pathogen, 

and heterogeneity in individual susceptibility by age, by birth year or by physiological status, 

determine whether a pathogen can spread and persist in a given host population.  

Despite its crucial importance, understanding how host susceptibility is distributed across 

populations is a perennial challenge. Many pathogens of humans and animals have complex 

strain structure, with partial cross-protection acting among a variety of serotypes. Immunity to 

other pathogens may wane over time, or may reduce disease severity without entirely preventing 

infection. For the myriad pathogens with these characteristics, host susceptibility can be difficult 

to model and difficult to measure, even when serological data on antibody titers is available.  

Individual susceptibility is an emergent property of within-host interactions between 

pathogens and immune effectors. The specific immune interactions that determine susceptibility 

are often pathogen-specific, and difficult to observe. However, individual-level data on infection 

outcomes, or population-level epidemiological data are abundant. Statistical analysis of these 

existing data can help identify host-level factors that govern individual susceptibility. In turn 

these insights can be used to improve our understanding of how susceptibility is distributed 

across the population, and predictions of epidemic spread. These inferences can also provide 

clues to the underlying molecular drivers of host immunity against specific pathogens.  

In chapter 1, I compile publicly available data on two avian influenza viruses, H5N1 and 

H7N9, which have each spilled over to cause hundreds of human cases. I perform likelihood-

based model comparison on these data to show that individuals gain exceptionally strong, 

lifelong protection against avian influenza subtypes in the same phylogenetic group as the first 

influenza virus encountered in childhood. These results show that susceptibility varies 
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systematically with birth year, and challenge the long-standing assumption that antigenically 

novel, zoonotic or pandemic influenza viruses escape pre-existing immunity when they spill over 

to cause cases in humans. These results can help explain why certain birth years have been 

spared during past influenza pandemics, and may help improve birth year-specific forecasts of 

future pandemic risk. Further, these results suggest an antigenic basis for naturally-occurring, 

broadly protective influenza immunity. 

In chapter 2, I analyze a large epidemiological surveillance data set to ask whether the 

same patterns of broadly protective childhood immune imprinting shape birth year-specific risk 

from the seasonal influenza viruses that cause wintertime epidemics in humans. Model selection 

shows that seasonal influenza risk from subtypes H1N1 and H3N2 is indeed tied to birth year, 

and shaped by childhood immune imprinting. However, unlike for avian influenza, immune 

cross-protection acts more narrowly. Individuals only gain imprinting protection against seasonal 

influenza viruses of the very same antigenic subtype as the first virus encountered in childhood.  

Together, results from chapters 1 and 2 provide a partial proof of concept for 

development of universal influenza vaccines. Chapter 1 illustrates that the sort of broadly 

protective immune responses that universal vaccines would aim to elicit can already act naturally 

in human populations, and in certain epidemic contexts, already seem to shape population 

susceptibility. But chapter 2 highlights the difficulty of deploying these broadly protective 

immune responses against familiar, high-burden seasonal strains. Taken alongside recent 

immunological evidence, these results suggest that the breadth of immune cross-protection 

against influenza viruses is not fixed, but instead is an emergent property of within-host 

competition between B cell (antibody-producing) clones. On exposure to a familiar, seasonal 
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influenza virus, narrowly-protective B cell clones competitively exclude broadly protective 

clones, and the antibody response provides only narrow immune cross-protection, against a 

single viral subtype. But on exposure to a novel, avian influenza virus, the host may only 

recognize conserved viral epitopes, and more broadly protective B cell clones are transiently 

released from competition. 

In chapter 3, I shift my focus from childhood imprinting history to explore another 

dimension of host susceptibility, the role of physical immune barriers in infection resistance. I 

develop a mechanistic dose-response model to identify factors that limit the spillover of an 

environmentally abundant bacterial pathogen, Leptospira interrogans. Hosts living in 

contaminated environments may be exposed to low doses of Leptospira on a daily basis, yet not 

all become infected. Using data from animal challenge experiments, we show that broken skin is 

most likely necessary for low-dose environmental exposures to cause infection.  

Together, these studies illustrate that heterogeneity in host susceptibility can be linked to 

measurable, underlying drivers. Demographic factors like year of birth, and immune history 

predictably modulate susceptibility to specific influenza virus subtypes. Physiological factors, 

like the presence of wounds and abrasions, predictably modulate susceptibility to 

environmentally persistent bacterial pathogens like Leptospira. By developing models based on 

biological principles and then confronting those models with data, we can identify specific risk 

factors that govern individual susceptibility against specific pathogens. Scaling these insights up 

to the population level can improve our ability to estimate key epidemiological parameters and 

can help guide the distribution of limited treatment or prevention resources during outbreaks.  
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Chapter 1: Potent Protection against H5N1 and H7N9 

Influenza via Childhood Hemagglutinin Imprinting 

ABSTRACT 

Two zoonotic influenza A viruses (IAV) of global concern, H5N1 and H7N9, exhibit 

unexplained differences in age distribution of human cases. Using data from all known human 

cases of these viruses, we show that an individual’s first IAV infection confers lifelong 

protection against severe disease from novel hemagglutinin (HA) subtypes in the same 

phylogenetic group. Statistical modeling shows protective HA imprinting is the crucial 

explanatory factor, providing 75% protection against severe infection and 80% protection against 

death for both H5N1 and H7N9. Our results enable us to predict age distributions of severe 

disease for future pandemics and demonstrate that a novel strain’s pandemic potential increases 

yearly when a group-mismatched HA subtype dominates seasonal influenza circulation. These 

findings open new frontiers for rational pandemic risk assessment. 

 

ONE SENTENCE SUMMARY 

Influenza strains encountered during early childhood provide powerful long-term protection 

against novel HA subtypes of the same phylogenetic group. 
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MAIN TEXT 

 The spillover of novel influenza A viruses (IAV) is a persistent threat to global 

health. H5N1 and H7N9 are particularly concerning avian-origin IAVs, each having caused 

hundreds of severe or fatal human cases (1). Despite commonalities in their reservoir hosts and 

epidemiology, these viruses show puzzling differences in age distribution of observed human 

cases (1,2). Existing explanations, including possible protection against H5N1 among older 

birth-year cohorts exposed to the neuraminidase of H1N1 as children (3,4) or age biases in 

exposure to infected poultry (5–7), cannot fully explain these opposing patterns of severe disease 

and mortality. Another idea is that severity of H5N1 and H7N9 differs by age, leading to case 

ascertainment biases (1), but no explanatory mechanism has been proposed.  

The key antigenic determinants for IAV susceptibility are the virus’s two surface 

glycoproteins, hemagglutinin (HA) and neuraminidase (NA), where different numbered subtypes 

canonically indicate no cross-immunity. However, recent experiments have revealed that 

broadly-protective immune responses can provide cross-immunity between different HA 

subtypes, particularly subtypes in the same phylogenetic group (8–14). (HA group 1 contains 

(human seasonal) subtypes H1, H2 and avian H5, while group 2 contains seasonal H3 and avian 

H7; Fig. 1-1A, Fig. 1-S1). Combining these insights into heterosubtypic immunity with the 

concept of ‘original antigenic sin’ (15) or ‘antigenic seniority’ (16), we hypothesized that 

individuals imprint on the HA group of their first IAV exposure and thereby experience a 

reduced risk of severe disease from novel IAVs within that same phylogenetic group. This 

hypothesis predicts that the 1968 pandemic, which marked the transition from an era of group 1 

HA circulation (1918-1968) to a group 2-dominated one (1968-present) (Fig. 1-1B), caused a 



 

 

3 

major shift in population susceptibility that would explain why H5N1 cases are generally 

detected in younger people than H7N9 (2,17–19). Our analysis of human cases of H5N1 and 

H7N9 revealed strong evidence that childhood HA imprinting indeed provides profound, lifelong 

protection against severe infection and death from these viruses. These findings allowed us to 

develop new approaches for IAV pandemic risk assessment, preparedness and response, but also 

raise possible challenges for future vaccination strategies.  

 
 

 
Figure 1-1: HA groups and reconstruction of 20th century HA imprinting.  

(A) HA groups 1 and 2, and pairwise amino acid similarities in the HA stem region. Darker colored cells 

indicate higher similarity (see Fig. 1-S1). Each within-group subtype pair is more similar (83.2%-97.8%) 

than any between-group pair (75.9%-81.7%). (B) History of seasonal IAV circulation, and (C) estimated 

fraction of each birth cohort in China with initial exposure to each subtype. Estimated patterns in other 

countries (not shown) are identical up to 1977, and very similar thereafter. Pandemic years are marked 

on the horizontal axis. Blue represents group 1 HA viruses, red represents group 2, and grey represents 

naïve children who have not yet experienced an IAV infection. 
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Reconstructing IAV exposure history by birth year 

To investigate whether an individual’s initial childhood exposure to IAV influences later 

susceptibility to H5 and H7 viruses, we estimated the fraction of each birth-year cohort from 

1918 to 2015 with first exposure to H1, H2, or H3 – or the fraction still naïve – for each country 

in our study (China, Egypt, Cambodia, Indonesia, Thailand, Vietnam). We estimated the annual 

probability of IAV infection in children using published age-seroprevalence data (20,21) and 

then rescaled this baseline attack rate to account for year-to-year variability in IAV circulation 

intensity (Supplementary Text).  

One resulting country-specific reconstruction of HA history is depicted in Fig. 1-1C. 

While H3N2 has dominated since 1968, a non-negligible fraction of many birth-year cohorts 

from the 1970s onwards was exposed first to H1N1 viruses, with notable peaks near the re-

emergence of H1N1 in 1977 and the 2009 pandemic. 

 

H5N1 and H7N9 cases track HA imprinting patterns 

Next, we compiled data on all known human cases of H5N1 and H7N9 with reported 

patient age (Fig. 1-2A,B). These data encompass mostly clinically severe and fatal cases; total 

incidence remains unknown. Thus, our analysis focused on the determinants of severe cases. The 

possible existence of many undetected mild cases, as hypothesized for H7N9 (1), is consistent 

with HA imprinting since broadly-protective immune responses are expected to provide partial 

protection (8,14), i.e., reduce severity without preventing infection altogether (4,12,22–25). 

The preponderance of observed H7N9 cases among older cohorts, and H5N1 cases 

among younger cohorts, is clear (Fig. 1-2A,B). These patterns reflect birth year, not age: H5N1 

cases occurred over 19 years from 1997-2015, yet cases from all years exhibit similar 



 

 

5 

dependence on birth year. Analysis of 361 H5N1 cases in Egypt, the one country with many 

cases across the last decade, shows no trend in case birth years through time, while case age 

increased steadily (p=0.0003, Spearman’s correlation; Fig. 1-S2). So, on average, the same birth 

cohorts remained at high risk of severe infection, even as members grew ten years older. 

 

 

 

Figure 1-2: H7N9 and H5N1 observed cases and deaths by birth year. 

Black lines show a priori prediction based on demographic age distribution and reconstructed patterns of 

HA imprinting. (A) 680 H7N9 cases, from China, 2013-2015. (B) 835 H5N1 cases, from Cambodia, China, 

Egypt, Indonesia, Thailand and Vietnam, 1997-2015. (C, D) Case data normalized to demographic age 

distribution from appropriate countries and case observation years. 
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Fig. 1-2C and D depict the case data normalized to demographic age distributions in 

affected countries. (If all birth cohorts had equal risk of severe infection, case incidence would 

be proportional to age distribution.) Bars above the midline thus represent birth years showing 

excess risk, while bars below indicate a shortfall. This normalization highlights two points: first, 

excess incidence and mortality data for H5N1 and H7N9 are near-mirror images of each other. 

Second, the group 1 to group 2 HA transition in 1968 is the key inflection point, with those born 

before the emergence of H3N2 showing protection against severe cases of H5N1 but not H7N9, 

and those born after 1968 showing the opposite pattern. For H7N9 severe case incidence also 

spikes in birth years around 1977 and 2009, when resurgent H1N1 circulation would have caused 

considerable mismatched imprinting. One-sided binomial exact tests showed excess H5N1 

incidence had a lower probability of occurring in cohorts born before 1968 (p<1e-10), while 

excess H7N9 incidence was more probable in these same cohorts (p<1e-9). The same pattern held 

for excess mortality (Supplementary Text). These patterns suggest that the immune system 

imprints on conserved HA epitopes from the first-ever exposure to IAV, resulting in 

heterosubtypic (but within-group) protection against severe infection. 

Even more striking is the tight correspondence of observed H5N1 and H7N9 incidence 

and mortality with a priori predictions based on HA imprinting patterns and demographic age 

distributions (Fig. 1-2). We emphasize that the black lines in Fig. 1-2 are not fitted to the case 

data, but are independent predictions (Fig. 1-1C). Differences between the predictions and data 

are remarkably small—some noise arises from generalization across time and countries (e.g. 

attack rates for the reconstruction came from German data, but focal populations are largely 

Asian), and from small case numbers. Incorporating additional epidemiological factors and 

estimating the protective efficacy of imprinting further improved correspondence between 
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predictions and data (Fig. 1-S3). In contrast, NA imprinting patterns (which fully capture 

patterns of childhood exposure to N1) are a poor fit to H5N1 and H7N9 data from 1957-1968 

cohorts (Fig. 1-S4), and NA-mediated protection is not supported by statistical modeling. 

 

HA imprinting explains age distributions  

To formally assess the HA imprinting hypothesis alongside previous explanations (1,3–7) 

for observed H5N1 and H7N9 age distributions, we developed a set of multinomial models. 

These models related the probability that a case occurred in a given birth cohort to country- and 

year-specific demography, and risk factors including age-based risk of exposure to poultry, age-

based risk of severe disease or case ascertainment, and reconstructed patterns of first exposure 

(and hence potential immunological imprinting) to HA or NA subtypes (Table 1-S1). Model 

comparison showed HA imprinting was the dominant explanatory factor for observed incidence 

and mortality patterns for both H5N1 and H7N9. It was the only tested factor included in all 

plausible models for both viruses (i.e. all models with Akaike weights greater than 4e-5).  

The best models also included age-based risk of severe disease, echoing patterns known 

from seasonal influenza epidemiology. Age-based poultry exposure risk (estimated based on 

contact data from China (6, 7)) was included for H7N9 but not H5N1, perhaps reflecting that 

age-specific poultry exposures vary across the multiple countries affected by H5N1 or that 

humans interact differently with ill (H5N1-infected) versus asymptomatic (H7N9-infected) 

poultry. In models including HA imprinting, NA imprinting never showed any significant effect 

(Table 1-S2). Remarkably, despite differences between the viruses and age cohorts involved, the 

estimated protective effects of HA imprinting were nearly identical for H7N9 and H5N1. In all  
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models, protective HA imprinting reduced the risk of severe infection with H5N1 or H7N9 by 

~75%, and the risk of death by ~80% (Table 1-1, Figs. 1-S5-S7, Table 1-S2).  

 

 

 

Table 1-1: Estimated protection from HA imprinting.  

D=Demography, E=Exposure to poultry, A=High-risk age groups, H=HA imprinting, N=NA imprinting (see 

Methods, Table 1-S1). 

 
 

 

 

  

Factors 
in 

model* 

HA imprinting 
     protection 

 (95% CI) 
AIC Akaike 

weight 

H5N1 

DAH 0.75 (0.65-0.82) 0.00 0.9994 
DEAH 0.83 (0.76-0.88) 15.35 4.65E-4 

DEANH 0.83 (0.73-0.88) 17.32 1.74E-4 
DH 0.80 (0.71-0.85) 69.18 9.50E-16 

DEH 0.87 (0.80-0.90) 103.31 3.69E-23 
DENH 0.86 (0.78-0.90) 105.29 1.37E-23 

H7N9 
 DEAH 0.76 (0.67-0.82) 0.00 1.00 

DAH 0.81 (0.74-0.87) 42.87 4.09E-10 
DEH 0.84 (0.78-0.88) 61.59 4.23E-14 

DENH 0.83 (0.75-0.88) 62.26 3.02E-14 
DH 0.88 (0.84-0.92) 138.40 8.83E-31 
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Antigenic seniority across influenza subtypes 

Most individuals born before the emergence of H3N2 in 1968, and exposed first to group 

1 HA antigens (Fig. 1-1), have also been exposed to H3N2 after 1968—probably multiple times. 

Yet these seasonal group 2 exposures later in life evidently fail to override group 1 HA 

imprinting from childhood (Fig. 1-2). The birth-year specific protection seen for human H5N1 

and H7N9 thus clearly indicates that clinically relevant antigenic seniority—preferential recall of 

immunological reactivities to antigens encountered earlier in life upon later exposure to cross-

reactive antigens (16)—can act across HA subtypes of the same HA group, not just within 

subtypes as often assumed.  

While the precise mechanism underlying antigenic seniority in this context remains to be 

determined, antibodies directed against conserved HA epitopes provide a plausible explanation 

for protection at the level of HA groups. For example, research following the 2009 H1N1 

pandemic drew attention to the fact that primary exposure to a novel IAV can preferentially 

boost broadly-protective antibodies that bind conserved HA head or stem epitopes shared by 

different HA subtypes (8–14), even though immune memory against more variable epitopes on 

the novel HA head may be absent. This absence may in fact enable robust expression of 

otherwise subdominant, broadly-protective responses to conserved epitopes such as those on the 

HA stem (8). In particular, primary exposure to H5N1 or H7N9 can activate HA stem-specific 

reactivities induced by previous infection by H1 or H3, respectively (12,13,26). Indeed, others 

have suggested that heterosubtypic antibodies might attenuate disease from other IAV strains and 

may be imprinted to some degree by childhood exposure, though their serological assays 

provided no ability to detect or predict actual patterns of protection relevant to H5N1 and H7N9 

in human populations (27). 
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Given the immunodominant nature of HA head reactivities (13,14,26,28), conserved HA 

head epitopes shared within, but not between, HA groups (29) may play a role in these patterns 

of protection. Cross-reactive HA-specific CD4+ or CD8+ T cell responses should also be 

investigated, since they too are likely to be disproportionately shared within HA groups (given 

the sequence similarities within each clade) and might be especially capable of facilitating the 

sort of long-term immunity indicated by the data. 

Nevertheless, current data, including the high degree of sequence conservation of stem 

domains within each HA group (Fig. 1-1A, Fig. 1-S1), seem most consistent with a stem-directed 

mechanism for the antigenic seniority acting at the HA-group level (13). Divergence in HA stem 

amino acid sequences within each phylogenetic group is comparable to divergence in globular 

head sequences within a single HA subtype (i.e. the scale at which antigenic seniority is already 

known to act (16); Fig. 1-S1), but stem divergences between the two HA groups are markedly 

higher. Notably, H3 and H7 are as divergent as any pair of group 2 HAs; since H3 childhood 

exposure provides protection against H7 it may thus protect as well or better against the other 

group 2 HAs (H4, H10, H14, H15), but perhaps not at all against more divergent group 1 HAs 

(Fig. 1-S1C). Similarly, the joint consideration of protein sequence conservation patterns (Fig. 1-

1A, Fig. 1-S1) along with immunological and epidemiological data suggests that H1 or H2 

childhood exposure may protect generally against zoonotic group 1—but not group 2—HAs. 

The putative generality in HA imprinting protection patterns for novel HA subtypes other 

than H5N1 or H7N9 is tentatively supported by the preponderance of HA group-mismatched 

childhood exposures among the small number of clinically significant human cases detected to 

date: pooling data from 28 human cases of H5N6, H6N1, H7N7, H9N2, H10N7 and H10N8, age 

patterns are consistent with HA imprinting (p=0.019; see Supplementary Text), but case numbers 
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are insufficient to investigate particular subtypes. Immunological experiments (e.g. using 

chimeric HA proteins (12)) are needed to systematically map HA cross-protection patterns across 

all HA subtypes, both within and between HA groups. 

 

Rational projections of future pandemic risk 

For any new pandemic IAV strain capable of efficient human-to-human transmission, HA 

imprinting patterns would combine with age-based mixing patterns (30–32) to determine the 

epidemiological impacts of the first pandemic wave. We created projections for a putative 

pandemic-capable strain of subtype H5 or H7—such as a gain-of-function strain or a natural 

variant with mutations increasing human-to-human transmissibility. The data on observed H7N9 

and H5N1 cases enabled us to quantify how matched HA imprinting reduces the probability of 

developing a severe infection, but not how matched imprinting affects an individual’s probability 

of acquiring a milder infection or the infectivity of such mild infections. People who become 

infected despite prior immunity likely transmit influenza at reduced rates owing to diminished 

viral titers and viral shedding, as observed in humans and in animal models (4,12,22–25). We 

thus assumed, conservatively, that imprinting does not change the probability of acquiring 

infection upon exposure, but can reduce severity and infectivity in individuals with protective 

HA imprinting. 

Fig. 1-3A illustrates the projected age-structured attack rate of severe cases for 

hypothetical pandemics of H5 or H7 IAV occurring in 2015 in the United Kingdom. The 

projected risk profiles for severe infection are shaped strongly by HA imprinting, including the 

prediction that individuals above 50 years of age (i.e. born well before 1968 and first exposed to 
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a group 1 HA) would experience much lower morbidity than younger age groups in an H5 

pandemic.  

 
Figure 1-3: Projected effects of HA imprinting on future pandemics.  

(A) Attack rate of severe cases, by age group, for hypothetical H5 (blue) and H7 (red) IAV pandemics in 

2015 (R0=2.5, relative infectiousness of imprinting-protected individuals (a)=0.5), assuming UK 

demography and age-structured mixing (Supplementary Text). Lines show the average of 100 simulated 

outcomes, and shaded regions show the central 95%. Three vaccination scenarios explored: vaccination 

of IAV-naïve children could cause dual imprinting to both HA groups (dashed lines), prevent imprinting to 

both groups (dotted lines), or have no effect on imprinting (solid lines). (B) Projected change in Reff, for 
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hypothetical H5 (blue) or H7 (red) IAV with R0=1.2 and a=0.5, if group 1 IAVs make up 100% or 75% of 

seasonal circulation after 2015. 

Similar projections for China and Vietnam reveal the influence of demographic 

differences between countries (Fig. 1-S8). The qualitative patterns in projected age impacts are 

robust to a wide range of assumptions about how seasonal influenza vaccination might affect 

imprinting (Fig. 1-3A), and to the assumed infectivity of mild cases arising in individuals with 

protective HA imprinting (Fig. 1-S8A). 

Projections for pandemics occurring a decade from now highlight predictable shifts in 

severe disease risk patterns as the imprinted population ages, with the key pivot point around 

birth years near 1968 shifted to older ages (Fig. 1-S8). Impacts in the youngest age groups would 

depend on patterns of IAV circulation in the coming decade. All pandemic projections that 

account for HA imprinting exhibit markedly lower severe attack rates than projections assuming 

no imprinting protection (Fig. 1-3A, Fig. 1-S8). Total attack rates (including mild and subclinical 

cases) would be higher and more evenly distributed across age groups than the severe attack 

rates shown here.  

Over any prolonged period when IAV circulation is dominated by one HA group, 

imprinting generates growing herd immunity against zoonotic IAV strains from that group. 

Conversely, zoonotic strains from the mismatched HA group benefit from the rising proportion 

of humans without protection. So long as mild cases arising in people with group-matched 

imprinting contribute any less to transmission than unprotected cases, or if some fraction of 

infection events is prevented by imprinting-derived immunity, imprinting will alter the 

transmissibility of zoonotic IAV strains in the human population. This is summarized by the 

effective reproductive number, Reff, which quantifies transmission in a partially immune 
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population (Fig. 1-3B). Crucially, a zoonotic strain that is initially subcritical (i.e. with Reff < 1 

and therefore unable to spread sustainably) could—due solely to susceptibility changes in the 

human population—emerge as supercritical, and hence as a pandemic threat, if the mismatched 

HA group dominates IAV circulation for a sufficient period (Fig. 1-3B).  

Our work implies that we have never seen a true ‘virgin soil’ influenza pandemic, and 

that all prior estimates of R0 for pandemic IAVs are systematic underestimates since they do not 

account for protection induced by HA imprinting. Conversely, we see that imprinting raises the 

threshold R0 necessary for a novel subtype to invade. Interestingly, the co-circulation of group 1 

and 2 HAs since 1977 has balanced herd immunity in a way that increases the inherent 

transmissibility needed for a novel subtype from either HA group to invade. As a generality, Reff 

for zoonotic influenza strains will change through time depending on seasonal influenza patterns 

and demographic background, and the magnitude of change will depend on the infectivity of 

imprinting-protected cases (Fig. 1-S9).  

 

DISCUSSION 

Our findings show that major patterns in zoonotic IAV epidemiology, previously 

attributed to patient age, are in fact driven by birth year. IAV strains circulating during an 

individual’s childhood confer long-term protection against novel HA subtypes from the same 

phylogenetic group. Hence, antigenic seniority extends across IAV subtypes, introducing 

previously unrecognized generational structure to influenza epidemiology. These immune 

imprinting effects have implications for public health and highlight that influenza virulence 
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represents a joint phenotype between virus and host—even for strains not yet adapted to the 

human population. 

These findings support the hypothesis that the unusually high mortality in young adults 

during the 1918 H1N1 (group 1) pandemic may have arisen primarily from mismatched H3 

(group 2) imprinting in the cohort born between ~1880 and 1900 (19). This same cohort was 

strongly affected during the (group 1) 1957 pandemic (33); yet they suffered no excess mortality 

when they were even older, during the (group 2) 1968 pandemic (34). The possibility that 

mismatched HA imprinting currently contributes to the greater health impacts of seasonal H3N2 

(relative to H1N1) in today’s older age classes is worth investigating. And a diagnostic assay to 

determine whether an individual was imprinted on a group 1 or group 2 HA may be useful for 

individualized clinical care and vaccine design strategies, both for pandemic and seasonal IAVs.  

Our findings raise questions about whether seasonal influenza vaccination might boost 

broadly-protective anti-HA responses (27) or alter imprinting from natural infection in IAV-

naïve children. By exposing IAV-naïve children simultaneously to group 1 (H1N1) and group 2 

(H3N2) antigens, vaccination might confer dual imprinting to both HA groups, or prevent strong 

imprinting against either HA group—or it could have no effect beyond delaying the age of 

imprinting via the first natural infection. Our sensitivity analyses demonstrated that, given the 

low IAV vaccination coverage in H5N1- and H7N9-affected countries, none of these effects 

would change our study’s conclusions (Fig. S7). However, to properly inform early childhood 

vaccine policy, future research must determine which, if any, of these effects occur. 

HA group imprinting also might complicate ‘universal’ vaccination approaches targeting 

conserved HA epitopes. Our findings indicate potent, long-lasting cross-protection between 

subtypes, putatively based on such responses. However, universal vaccination may have to 
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outperform natural infection in its ability to induce broad immunity in the face of previous 

imprinting. The persistence of group 1 imprinting in older adults, despite decades of natural 

exposure to H3N2 after 1968 (Fig. 2), and the relative weakness of group 2 anti-HA stem 

reactivities in these older cohorts (11), suggest HA exposures later in life do not readily alter 

broadly-protective responses in individuals already imprinted to a particular HA group. To be 

effective, would bivalent (group 1 and group 2 HA stem) universal vaccines need to be delivered 

to infants prior to natural IAV infection? Or, might universal vaccines even impair natural, long-

term protection of the sort we have detected against H5N1/H7N9 if received prior to an 

individual’s first natural IAV infection?  

Our findings are consistent with the known potential for repeated infection by seasonal 

IAV subtypes. Group-matched imprinting, like other broadly-protective IAV immune responses, 

is expected to protect against severe disease but not necessarily against infection (8,12,14). This 

parallels the reduced severity observed for repeat infections with seasonal strains (22,23,25). 

Furthermore, re-exposure to a seasonal subtype typically elicits memory responses against the 

immunodominant HA head, which mask subdominant broadly-protective responses involved in 

group-level imprinting (26). 

For any country with suitable contact and demographic data, the methods shown here can 

provide rolling estimates of which age groups would be at highest risk for severe disease, should 

particular novel HA subtypes emerge. Such projections could guide cohort- or region-specific 

prevention, preparation, or control. Quantitative projections of changes in Reff, and hence 

pandemic risk, will require further research into the protection arising from matched imprinting: 

is some fraction of cases prevented entirely, and by what factor is infectivity reduced in mild 

cases arising in protected individuals?  
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Our findings show that emergence risk cannot be considered in isolation, even for ‘novel’ 

pathogens that have not circulated in humans before. These pathogens are commonly assumed to 

have a blank slate of immunologically naïve humans to infect, but cross-protection from related 

pathogens can generate substantial population immunity. When this community of related 

pathogens undergoes major shifts, as during influenza pandemics, the landscape of population 

immunity changes accordingly. Thus emergence of novel pathogens can be governed by bottom-

up control, with population immunity acting in an important and predictable manner to modulate 

the widely-recognized effects of virological and ecological risk factors. This perspective opens 

new frontiers for quantitative and mechanistic analysis of emergence risk. 

 

MATERIALS AND METHODS 

Case data 

We compiled data describing all reported human cases of H7N9 (2013-Nov. 2015) and 

H5N1 (1997-Nov. 2015) influenza. We obtained case data from three previously published 

H5N1 line lists, one spanning 1997 (35) and the other spanning Sept. 2006-Aug. 2010 (36). We 

obtained data from one H7N9 line list spanning Jan.-Sept. 2013 (37). For all other cases, we 

compiled original line lists using reports from the WHO as our primary resource and the Hong 

Kong Centre for Health Protection as a secondary resource. We incorporated additional cases or 

case details from Flu Trackers (https://flutrackers.com/forum/). Our newly compiled line lists are 

available as supplementary data files within the published version of this article (DOI: 

10.1126/science.aag1322). Hyperlinks to information sources for each case are provided within.  
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We included confirmed, suspected and probable cases in our final analysis, but verified that 

our results are robust to the exclusion of unconfirmed cases (Fig. 1-S7). We excluded cases for 

which patient age was not reported. Our H7N9 database contained 686 confirmed, suspected or 

probable cases, which were reported between April 1, 2013 and Nov. 13, 2015. All occurred in 

China. We excluded 6 cases for which patient age was not available, and used the remaining 680 

cases, including 132 deaths, in our analysis (676 were confirmed and 4 were suspected or 

probable). In the same time period, WHO reported 681 confirmed cases of H7N9, so at most we 

are missing information on 5 confirmed cases (or fewer if some of these cases were included 

among our suspected and probable cases). 

In total, our H5N1 database contained 927 confirmed, suspected or probable cases. These 

cases were reported in the 1997 Hong Kong outbreak, or in any country globally between Feb. 

19, 2003 and Nov. 13, 2015. Over 94% of H5N1 cases occurred in Cambodia, China, Egypt, 

Indonesia, Thailand, and Vietnam, so we focused on these six countries and excluded 54 cases 

that occurred elsewhere. From the remaining 873 cases, we excluded an additional 38 cases for 

which patient age was not reported. Thus, we analyzed a total of 835 H5N1 cases, including 440 

deaths (755 were confirmed and 80 were suspected or probable). In the same time period, WHO 

reported 823 confirmed cases of H5N1 in our study’s six countries of interest, so at most we are 

missing information on 68 confirmed cases. Most of these additional confirmed cases were 

included in aggregate reports of H5N1 cases that lacked any accompanying details, making it 

impossible to determine whether case details reported elsewhere should be linked to WHO-

confirmed case reports. Thus, it is possible that some of these WHO-confirmed cases were 

included in our database (based on information from Flu Trackers or other sources), but were 

listed as suspected or probable.  
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Mild or asymptomatic cases of both infections may not be ascertained (1), so our results 

should be interpreted only as predictors of severe, symptomatic infection. We used simulated 

data to verify that our study’s core findings should be robust to case ascertainment biases (see 

Supplementary Text, section 7). 

 

Normalization of data to demographic age distribution 

If all birth years were at equal risk of severe infection, we would expect the observed age 

distribution of cases to be proportional to the demographic age distribution. To examine excess 

incidence of severe infection or death, relative to this demographic null expectation, we 

normalized the observed data to the demographic age distribution (Fig. 1-2C, D). We tabulated 

the observed and expected number of cases occurring in each birth year, i, for each country, c, in 

each case observation year, y. To determine birth year, we subtracted case age from the year in 

which case onset occurred. To estimate the expected number of cases in each birth year, Expyci 

we used the following formula: 

 𝐸𝑥𝑝$%& = 𝐷$%&𝐼*+,-.,$%  

   (1-1) 

Here Dyci describes the fraction of the total population, in country c, year y, that belongs to 

birth year i. ITotal,yc describes the total number of cases or fatalities that occurred in year y, 

country c.  

Finally, we defined normalized values within each birth year, Ni, as the unweighted sum, 

across all possible country-years, of differences between observed and expected numbers of 

cases or fatalities: 
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 𝑁& = ∑ ∑ (𝑂𝑏𝑠$%& − 𝐸𝑥𝑝$%&% )$   

  (1-2) 

Model formulation 

We used multinomial models to describe the probability distribution of H5N1 or H7N9 

cases or fatalities across birth years. The multinomial distribution requires a set of parameters, 

pyci, which described the probability that an infection observed in year y, country c, occurred in 

birth cohort i. Within each model, a unique combination of factors, including age-based risk of 

severe infection, poultry exposure risk, HA imprinting, and NA imprinting, determined pyci. For 

each virus (H5N1 and H7N9), we fitted models independently for each case outcome (infection 

or death).  

For each candidate model, we computed maximum likelihood parameter estimates to 

quantify the effects of relevant explanatory factors on birth-cohort risk (Table 1-S1). Parameters 

Hm and Nm described the relative risk of severe infection or mortality for those with protective 

HA or NA imprinting, while parameters Ac and Ae described relative risk for young children (<5 

years old) and the elderly (>65 years old).  

We performed model comparison using AIC to determine which combination of factors best 

explained observed distributions of H5N1 or H7N9 incidence or mortality across birth years. We 

calculated Akaike weights, wz, which can be interpreted as the proportional evidence in support 

of model z as the best of all models tested. Weights are calculated using the expression, 𝑤9 =

	 ;
<=∆?@ABC D

∑ ;<
=∆?@AB

C D
B

(38). In many cases, when we added NA imprinting to models already considering 

HA imprinting, the maximum likelihood estimate of the Nm parameter was 1. In these cases, NA 
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imprinting had no effect, and the new, more complex model became identical to the simpler 

model. We excluded these degenerate models from Akaike weight calculations. 

 

Factors tested 

Demography (D) 

If all individuals were at equal risk of infection, regardless of birth year, the number of 

cases occurring in a given birth year would be proportional to the fraction of the population born 

in that year, as given by the country’s demographic age distribution. Thus, for every country, c, 

and case observation year, y, a vector, Dyc, described the demographic age distribution and 

served as the null predictor of infection risk in each birth cohort. Vector Dyc was normalized to 

sum to 1, so that each element described the fraction of the population born in a particular year. 

Using the US Census Bureau’s International Database (39), we obtained publicly available 

demographic data for each country and year of case observation. Demography was included as a 

factor in every model tested (Supplementary Text). 

 

Exposure to poultry (E)  

Though limited human-to-human transmission is thought to occur, the majority of H7N9 

and H5N1 infections are caused by spillover from infected poultry (2, 6).To build models 

incorporating age-based patterns of exposure to poultry (E), we obtained published data from six 

surveys conducted in provinces that have experienced at least five cases of H5N1 or H7N9. 

These data were collected in three cities, Guangzhou, Shanghai and Shenzhen, and two non-

urban locations, subrural Guangzhou and Xiuning, in China (6, 7). Note that we included data 
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from two independent surveys conducted in urban Guangzhou, for a total of six survey data sets. 

No poultry exposure data were available for other affected countries. 

Although poultry exposure patterns vary by location, even within China, large reported 

uncertainties and geographic constraints on the available data prohibited a statistically valid 

effort to match cases with geographically specific exposure patterns. Instead we computed an 

average exposure rate for each birth cohort and year of H5N1 or H7N9 case observation, as 

follows. Each survey reported poultry exposure rates by age group. We used these values to 

assign each birth cohort an age-specific poultry exposure rate, based on their ages in each 

possible year of case observation. If exposure rates were not reported explicitly for young 

children, we substituted the rate reported for the youngest available age group. We then 

normalized across birth cohorts to determine the proportional risk of exposure at each survey 

location. Normalization ensured that survey locations reporting higher overall rates of exposure 

did not disproportionately influence model inputs. Finally, for each birth year, we took the 

average proportional exposure rate across all six poultry exposure surveys. These normalized 

exposure scores are shown in Fig. 1-S10 B. 

 

Age-based risk of severe infection (A) 

A basic principle of influenza epidemiology is that children under 5 and elderly adults over 

65 are high-risk groups for severe influenza infection (40-42). These groups may be more 

susceptible to severe influenza infections, or may seek healthcare at an increased rate, leading to 

case-ascertainment biases. Models including the age-based risk factor (A) introduced two 

parameters that allowed each high-risk age group to experience increased risk of severe infection 

relative to adults and children ages 5-64. Parameter Ac quantified the relative risk of young 
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children, while parameter Ae quantified the relative risk of the elderly (Table 1-S1). Both 

parameters are constrained take a minimum value of 1 so as to represent elevated risk of severe 

infection. 

For mortality analyses, we noted that case-fatality rates are not always elevated in children, 

despite their elevated risk of severe infection (41). Thus, for mortality analyses we relaxed the 

constraint on parameter Ac, allowing the data to inform whether young children exhibit increased 

(Ac > 1) or decreased (Ac < 1) risk of death from H7N9 or H5N1 infections, relative to the 

general population. 

 

Hemagglutinin imprinting (H) 

Models that considered hemagglutinin imprinting (H) divided the population into two 

exposure groups: those with group-matched first IAV exposures (protective HA imprinting), and 

all others (non-protective HA imprinting or naïve children). We calculated the fraction of each 

birth cohort with first exposure to either HA group using methods described below (see 

Reconstructing immune imprinting patterns). We initially separated naïve children from adults 

with non-protective HA imprinting, but our results consistently indicated no difference in risk 

between these groups (results not shown), leading us to combine naïve children and mismatched 

HA imprinting into a single reference group. 

Hemagglutinin imprinting models introduced a single parameter, Hm, which allowed the 

group with protective HA imprinting to experience decreased risk relative to all others in the 

population.  
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Neuraminidase imprinting (N) 

As for HA imprinting, models that considered NA imprinting divided the population into 

two groups: one with matched (protective) first IAV exposures, and a reference group that 

included all others. Models containing factor N introduced one parameter, Nm, which allowed the 

group with protective NA imprinting to experience decreased risk. Two phylogenetic groups 

have been identified for NA, as for HA. We are not aware of experimental evidence of cross-

protection between NA subtypes within the same phylogenetic group (without which NA history 

could not explain incidence patterns for H7N9, since N9 is not known to have circulated in the 

human population). However, given that N9 and N2 fall in the same NA group, we considered 

the possibility that imprinting on N2 might be protective against N9. H5N1 is clearly matched to 

seasonal H1N1, as they share the N1 subtype—so this analysis fully captures patterns of first 

exposure to N1, which have been proposed previously as a driver of H5N1’s infection age 

distribution (3, 4). 

  

Models tested 

We tested models that considered all possible combinations of the above four factors, as 

well as demographic age structure. Our full set of 16 models included: D, DE, DA, DH, DN, 

DNH, DAH, DAN, DANH, DEA, DEH, DEN, DEAH, DEAN, DENH, and DEANH. For each 

model, we fit relevant parameters to the appropriate data before performing model comparison. 

We repeated each model analysis using both incidence and mortality data for H7N9 and H5N1. 

See Supplementary Text for model equations and likelihood functions. 
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Reconstructing immune imprinting patterns 

To inform hemagglutinin and neuraminidase imprinting models, we estimated the fraction 

of each birth cohort with first IAV exposure to seasonal subtypes H1N1, H2N2 or H3N2, and the 

fraction that remained naïve. We first used a truncated geometric model to estimate the baseline 

probability that first IAV infection occurs at a given age. Because age-seroprevalence studies 

report that 98-100% of children have been infected with IAV by age 12 (20, 21, 43), we set 12 as 

the maximum possible age of first infection. Let 𝜀&F be the probability that an individual with 

birth year i has his or her first IAV infection in calendar year j. Then: 

 𝜀&F =
(GH-)I=J-

∑ (GH-)I=J-KLMC
NOK

  

   

   (1-3) 

where a is the annual probability of infection (the baseline annual attack rate on 

seronegative children), and j takes values from i to i+12. Using published age-seroprevalence 

data (20, 21), the maximum likelihood estimate for a was 0.28 (95% CI 0.26-0.30), consistent 

with other IAV attack rates estimated in children (43-45).  

To account for variability in the annual attack rate between years, we compiled an index of 

IAV circulation intensity from 1918-2015 (Supplementary Text). We defined the scaled annual 

attack rate as am = aIm, where m is the calendar year, Im represents that year’s intensity score and 

a represents the baseline annual attack rate estimated above.  

Finally, we modified equation 3 to account for variable annual attack rates and the 

possibility that some children have not yet been exposed:	 
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  𝜀&F|$ = Q

-I
RJ|S

		𝑖 = 𝑗

V∏ (GH-X)
I=M
XOJ Y-I

RJ|S
		𝑖 < 𝑗 ≤ 𝑖 + 12

_   

  

    (1-4) 

Here, 𝜀&F|$ is the probability that individuals in birth cohort i experienced their first 

infection in calendar year j, given that H5N1 or H7N9 case observation occurs in year y. Note 

that because birth cohorts are very large, the fraction of birth cohort i with first exposure in year j 

converges to probability 𝜀&F|$. The expression, -I
RJ|S

 represents the probability of infection in the 

first year of life (at age 0), and the expression, 
V∏ (GH-X)

I=M
XOJ Y-I

RJ|S
 represents the probability of 

infection at ages 1-12. The normalizing factor, 𝑁&|$, reflects the assumption that all individuals 

have had their first infection by age 12, and is used to ensure that all relevant probabilities for an 

age group sum to 1. It is taken as: 

  	𝑁&|$ = `𝑎& +	∑ b∏ (1 − 𝑎c)
FHG
cd& e𝑎F&fGg

Fd&fG 𝑦 ≥ 𝑖 + 12
1 		𝑦 < 𝑖 + 12

j    

    (1-5) 

When the birth cohort is older than 12 in the year of observation, 𝑁&|$ always falls within 

the range (0.98-1.00) and minimally affects the final outcome. For birth cohorts that are younger 

than 12 at the year of observation (y<i+12), normalization is not appropriate because some 

individuals in the age group have not had their first exposure; in these instances we set 𝑁&|$ = 1 

and calculate the naïve fraction as the complement of the cumulative probability of first exposure 

(equation 7). 
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Finally, we combined the age of first infection probabilities with seasonal circulation 

patterns to determine the fraction of age group i with first exposure to subtype S in year j and 

country c (𝑤k,&|$,%). We scaled 𝜀&F|$ by the fraction 𝑓m|F,% of circulating IAVs belonging to 

subtype S (where S could represent H1N1, H3N2 or H2N2): 

   𝑤k,&|$,% = ∑ 𝑓m|F,%𝜀&F|$
$
Fd&    

   (1-6) 

For birth cohorts younger than 12 in the year of case observation (y<i+12), a portion of the 

cohort had not yet experienced a first IAV exposure. The fraction of cohort i that remained naïve 

in year y was given by: 

   𝑤n,&|$,% = 1 − ∑ 𝜀&F|$
$
Fd& 	  

   (1-7) 

Values of 𝑓m|F,%	were determined by IAV circulation history, and for all j, 𝑓oGRG|F,% +

𝑓ogRg|F,% + 𝑓opRg|F,% = 1. Prior to 1977, a single IAV subtype circulated each year, and pandemic 

years marked circulation of a new seasonal subtype. Thus, in years 1918-1976, 𝑓k|F,% was set 

equal to 1 for the circulating subtype, and 0 for all other subtypes. 

For years 1977-2015, when H1N1 and H3N2 have circulated simultaneously, we estimated 

𝑓k|F,% using influenza surveillance data reported by WHO collaborating laboratories (46, 47). For 

each year of interest, we defined relative incidence as follows: 

q+r&,&s;	rt;%&u;nr	+v	rwx,$t;	k
y..	t+r&,&s;	rt;%&u;nr	+v	rwx,$t;	oGRG	+z	opRg

. Whenever possible (1997-2015), we used 

surveillance data from the country of interest (China, Egypt, Cambodia, Indonesia, Thailand or 

Vietnam) to estimate country-specific relative incidence. When fewer than 50 specimens were 
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reported for a given country in a given year, we substituted surveillance data from the same year, 

across all other countries of interest with adequate data. For years in which no surveillance data 

was available from any H5N1 or H7N9 affected country (1977-1996), we substituted 

surveillance data from laboratories in the United States (47). From 1997-2015, the relative 

incidence of H3N2 or H1N1 in the United States was significantly correlated with subtype-

specific relative incidence in our study’s six countries of interest (Pearson’s r = 0.70, p < 0.001), 

suggesting that US data is a reasonable proxy.  

A priori predictions 

The a priori predictions in Fig. 1-2 illustrate how the observed total number of cases would 

be distributed across birth years if individuals with protective HA imprinting never experienced 

severe infection, but risk is otherwise identical for everyone. Thus, the distribution of observed 

cases across birth years was expected to be proportional to the distribution of unprotected 

individuals across birth years (i.e. to the demographic age distribution, after individuals with 

protective HA imprinting had been removed). For each country and year in which cases were 

observed, this a priori prediction is: 

    𝑃$%& =
|S}J~�,J|S,}
∑ |S}J~�,J|S,}J

     

   (1-8) 

Here, Pyci is the fraction of all cases observed in country c, year y predicted to occur in birth 

year i. Dyci represents the demographic age distribution as defined in equation 1. Building from 

equations 6 and 7, wo,i|y,c represents the fraction of each birth cohort with first exposure to a 

subtype in the opposite HA group as the challenge strain, or naïve to IAV. For the predictions 

shown in Figs. 1-2A and B, we scaled Pyci by the number of cases, 𝐼*+,-.,$% observed in year y, 
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country c, and then summed across all affected countries and years: ∑ ∑ b𝐼*+,-.,$%𝑃$%&e%$ . For the 

predictions shown in Figs. 1-2C and D, we subtracted the demographic null expectation (as in 

equations 1 and 2), to obtain the prediction: ∑ ∑ b(𝐼*+,-.,$%𝑃$%&) − 𝐸𝑥𝑝$%&e%$ . 

 

Sensitivity analyses 

We verified that our conclusions are robust to model assumptions by repeating model fitting 

and model comparison on twelve variations of the main model described above (Fig. 1-S7). First, 

to test for robustness against uncertainty on annual intensity of seasonal IAV circulation, we 

repeated all model analyses assuming a constant annual attack rate (aj = a for all years j). Second 

and third, we considered uncertainty on the baseline attack rate, a, by setting this parameter equal 

to its upper and lower 95% confidence bounds. Fourth, we checked for robustness to the 

estimated annual dominance of H1N1 and H3N2 by fixing the relative incidence of each to its 

average from 1977 to 2015 (0.34 for H1N1, 0.66 for H3N2). Fifth and sixth, to generate upper 

and lower bound estimates of either subtype’s seasonal dominance, we increased the observed 

relative incidence of H1N1 or H3N2 by 0.05 for all years from 1977-2015, while simultaneously 

decreasing the relative incidence of the complementary subtype by the same amount. Seventh 

and eighth, we considered two alternate poultry-risk distributions, using data exclusively from 

Urban Shenzhen (6) and Shanghai (7) as data from these surveys respectively reported the 

highest and lowest poultry exposure rates in cohorts born before 1968. Ninth through eleventh, 

although overall influenza vaccine coverage is low in all six countries considered (approaching 

10% in Thailand and <5% elsewhere) (48), we tested whether our analysis is robust to childhood 

vaccination effects. We considered three scenarios, in which vaccination of naïve children could 
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prevent imprinting and leave the child fully susceptible to both HA groups, replace imprinting 

and leave the child protected against both HA groups or delay imprinting via delay of the first 

natural infection. To be conservative, these models considered an upper-bound case for IAV 

vaccination coverage, and assumed childhood coverage levels beyond what is actually achieved 

in H5N1- and H7N9-affected countries (Supplementary Text). Finally, to verify that our results 

were robust to the exclusion of data from probable or suspected cases, we repeated model 

analyses using only laboratory-confirmed cases. 

 

Phylogenetic and amino acid sequence analyses  

We aligned amino acid sequences of representative H1 strains (HA globular head) and 

group 1 and group 2 HA strains (stem domain) in Geneious v9.0.4 (49) (global alignment with 

free end gaps, BLOSUM62 cost matrix). Maximum likelihood phylogenies were estimated in 

RAxML version 7.2.8 (50) using the aligned amino acid sequences and a GAMMA LG protein 

model (rapid hill-climbing algorithm). We generated a heat map of HA stem amino acid 

sequences with percent similarities (BLOSUM62 matrix with threshold 0) calculated in 

Geneious version 9.0.4 (49).  

 

Projections of future pandemics  

We used a discrete-time stochastic model to create projections of the age-specific severe 

attack rates in a hypothetical future H7 or H5 pandemic. We conducted simulations for the 

United Kingdom, China, and Vietnam in 2015 and 2025. For the 2025 simulations, we 

considered two scenarios for seasonal IAV circulation between 2015 and 2025: 25% group 1 and 

75% group 1 circulation. Demography and imprinting patterns for each country and year were 
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obtained as described in Methods (see ‘Normalization to demographic data’ and ‘Reconstructing 

immune imprinting patterns’).  

In the model, individuals with matched imprinting have probability (1 – Hm) of 

experiencing a ‘protected’ course of infection and a probability Hm of experiencing the same 

‘unprotected’ infection as individuals with mismatched imprinting. ‘Protected’ individuals have 

some degree of acquired immune protection and do not experience severe disease; to be 

conservative, we assume that they still become infected but their lower viral loads lead to 

reduced infectiousness relative to their ‘unprotected’ counterparts (mediated by a relative 

infectiousness parameter, a). As discussed in the main text, this assumption mirrors data from 

experimental infections in humans and non-human animals, which show that infections in 

partially-protected individuals exhibit lower viral titers, lower and more short-lived viral 

shedding, and lower rates of transmission than infections in naïve individuals (22, 24, 25). In our 

analyses, we tested values of a spanning from 0.1 to 0.9, representing the full range of possible 

reductions in transmission. We expect that the true value for a given situation would depend on 

specific properties of the focal IAV strain as well as the past strains that generated the imprinted 

responses. 

An ‘unprotected’ infected individual in age group i exposes a total of Xij individuals from 

age group j to the virus, where Xij follows a negative binomial distribution with dispersion 

parameter k = 0.94 (51) and mean Mij. For ‘protected’ infected individuals, the mean number of 

new infections is instead aMij. The matrix M (with entries Mij) is the next generation matrix with 

dominant eigenvalue equal to the pathogen’s basic reproductive number (R0). R0 was set at 2.5 so 

that the effective reproductive number (Reff), which accounts for protection from matched 



 

 

32 

imprinting, was approximately 1.9 at the beginning of the 2015 simulations. This value aligns 

with the Reff calculated at the beginning of previous pandemics (52-56). 

An unscaled next generation matrix M was constructed from data on contact rates between 

age groups. Separate contact matrices giving the relative rates of contacts between individuals in 

different age groups were used for each country. For the UK, we used the matrix of all reported 

physical and non-physical contacts in Great Britain reported by Mossong et al. (30); for China, 

we used data on individual-level contacts reported by Read et al. (31); and for Vietnam, we used 

contact diary data from Horby et al. (individual-level data provided by Peter Horby) (32). We 

converted the China and Vietnam contact data from the reported age bins into the age bins 

needed for simulations by disaggregating the reported data (scaled by demography) into separate 

age years and then reaggregating the data into the appropriate age bins. All elements of this 

matrix were rescaled by a constant factor so that its dominant eigenvalue was equal to the desired 

R0.  

The Xij exposures caused by an infectious individual were assumed to occur after a serial 

interval of T days from the source case, where T was distributed according to a Weibull 

distribution with mean 3.6 (shape = 2.3 and scale = 4.1) (57). Given exposure on day t, the 

probability that an individual in age group j developed the disease was equal to the proportion of 

age group j susceptible on day t.  

Each individual that experienced an ‘unprotected’ course of infection had a chance of 

developing a severe infection. The probability of severe infection is a property of a given viral 

strain (roughly, its virulence) and will vary among scenarios; we chose a baseline value of 0.1, 

and note that different choices for this value simply rescale the results and do not alter any 

qualitative patterns. To account for the elevated risk of severe infection in children (0-4 years) 
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and the elderly (65+), the probability of severe infection in these age groups was multiplied by 

the age-specific risk parameters Ac and Ae. We used consensus parameter estimates for Ac and Ae, 

which should most robustly represent the behavior of pandemic strains that cause large numbers 

of cases in both old and young age groups. To obtain these values, we set Hm at 0.245 (the 

midpoint value from our main analyses; see Table 1-1), constrained Ac and Ae to be identical for 

H5N1 and H7N9, and estimated the parameter values by maximizing the constrained likelihood.  

We used three sets of assumptions to explore how vaccination of naïve children might affect 

imprinting for the 2015 UK simulation. In the first set, we assumed that vaccination had no 

impact on imprinting patterns in the population (this assumption is used in the simulations for all 

other years and countries). In the second set, we assumed that children who were vaccinated 

against seasonal influenza before experiencing their first natural IAV infection obtained full 

imprinting protection against both HA group 1 and 2 IAVs. In the third set, we assumed that 

children who were vaccinated before experiencing their first natural IAV infection were blocked 

from imprinting on either HA group and experienced no imprinting protection.  

Seasonal influenza vaccination was first recommended in the UK for individuals in certain 

high risk groups in the late 1960s (58). Before 2013, influenza vaccination was only 

recommended for children in certain clinical risk groups, and vaccine coverage across all 

children was rarely measured. Beginning in 2013, the UK began a phased introduction of 

influenza vaccination in children, and regular surveys measuring the vaccine coverage rates 

became available (59, 60). For the model, we assumed a linear rate of increase between 1966 and 

2012, assuming 0% coverage in 1966 and using the estimated 13.4% coverage of children aged 

0-2 in 2007 to calibrate the rate of coverage increase between 1966 and 2012 (61). For 2013, 
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2014, and 2015, the maximal coverage values reported in age groups 0-5 were used: these were 

42.6%, 41.3%, and 54.4%, respectively (60, 62).  

One hundred simulations were run for each pandemic scenario. To appropriately represent 

all sources of uncertainty, each simulation was run with independent values of Hm, Ac, and Ae 

drawn from the relevant sampling distributions.  

Projections of Reff (Fig. 1-3B, Fig. 1-S9) were created for the UK, China, and Vietnam, 

assuming that a group 1 HA had constant seasonal dominance of 0%, 25%, 75%, or 100% from 

2015 to 2060. For a given country, seasonal dominance scenario, and year, the fraction of each 

birth-year cohort with first exposure to each HA group was calculated as described in Methods 

(Reconstructing immune imprinting patterns) and used in conjunction with Hm to calculate the 

proportion of each birth-year cohort that would experience a ‘protected’ versus ‘unprotected’ 

course of infection with H5 or H7 IAV. The next generation matrix for a fully naïve population 

M (described in the previous section) was modified to separate ‘protected’ and ‘unprotected’ 

individuals, and account for the reduced infectiousness of ‘protected’ individuals (governed by 

a), and Reff was calculated as the dominant eigenvalue of this matrix. 

 

SUPPLEMENTARY TEXT 

Likelihood Functions 

The probability density function for the multinomial distribution is:  

   𝑃(𝑥G, 𝑥g, … 𝑥n) = 	
n!
∏ �J!

∏ 𝑝&�J  (S1) 
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In our analysis, for a given country in a given year, we considered the multinomial 

probability of observing a certain number of cases or fatalities, xi, in each birth year, i. Each of 

our models assumes different factors may influence pi, the probability that any case has birth 

year i.  

 To find the likelihood of the full data, which comes from several countries in several case 

observation years, we multiply the multinomial probabilities from all relevant countries, c, and 

all relevant years of case observation, y. The full likelihood is: 

   	𝐿 = ∏ ∏ � nS}!
∏�S}J!

∏ 𝑝$%&
�S}J��$   

   (S2) 

 

From equation S2, we obtain the full log likelihood: 

  𝐿 = 	∑ ∑ blog�𝑛$%!� − ∑ log�𝑥$%&!� + ∑ 𝑥$%&log	(𝑝$%&)&& e%$   

  (S3) 

Maximum likelihood estimation was performed in R (version 3.2.0) and the optim() 

function was used to minimize the negative log likelihoods of candidate models. Code for model 

fitting is provided as a supplementary data file within the published version of this article (DOI: 

10.1126/science.aag1322). 

 

 Model equations 

Each model below assumes that a unique combination of five possible factors determine 

pyci, the probability that an infection or death observed in year y, country c, occurred in birth 

cohort i (Methods, Table 1-S1). Demography (D) serves as the null hypothesis for the 
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distribution of cases across birth years, and appears in every model. We assume all additional 

factors act independently. In all models, we normalize the probabilities to ensure ∑ 𝑝$%&
$
&dG�G� =

1. 

 

Demography (D) 

This model assumes incidence in each birth year should be proportional to the fraction of 

the population of country c, year y, born in the year of interest. 

 	𝑝$%& = 𝐷$%&  

   (S4) 

Dyci = Fraction born in year i, of the total population of country c born between 1918 and 

the case observation year (y). 

Demography + exposure (DE) 

This model adds a factor describing poultry exposure risk across age groups. 

  𝑝$%& = 𝐷$%&𝐸$&  

   (S5) 

Eyi = Proportional risk in each birth year cohort, based on the frequency with which 

individuals of a given age (birth year i, in year y) contact poultry. 

 

Demography + age-based risk (DA) 

This model introduces parameters that allow children ages 0-4 or the elderly ages 65+ to 

experience increased risk relative to other children and adults. 
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  𝑝$%& = 𝐷$%&(𝑢%SJ𝐴% + 𝑢;SJ𝐴; + 𝑢-SJ)  

   (S6) 

Group indicators 

• 𝑢%SJ	= Indicator of membership in the age group representing high-risk children, taking 

value 1 for birth year cohorts of age 0-4 in year y, and 0 for all others. 

• 𝑢-SJ = Indicator of membership in the reference age group, taking value 1 for birth year 

cohorts of age 5-64 in year y, and 0 for all others. 

• 𝑢;SJ = Indicator of membership in the high-risk, elderly age group, taking value 1 for 

birth year cohorts of age 65+ in year y, and 0 for all others. 

Parameters 

• Ac = Proportional increase in risk for children ages 0-4, relative to the reference age 

group. 

• Ae = Proportional increase in risk for the elderly, ages 65+, relative to the reference age 

group. 

 

Demography + hemagglutinin imprinting (DH) 

This model introduces parameter Hm, which allows individuals with group-matched first 

hemagglutinin exposures to experience decreased risk relative to all others. 

  𝑝$%& = 𝐷$%&(𝑤u,&|$,%	𝐻u + 𝑤+,&|$,%)  

  (S7) 
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Group indicators  

• 𝑤u,&|$,%= Faction of each birth cohort with protective HA imprinting (group-matched to 

the challenge strain). This group should experience reduced risk under the HA imprinting 

hypothesis. 

• 𝑤+,&|$,% = Fraction of each birth cohort without protective HA imprinting. This group 

includes both IAV-naïve children and all individuals with HA-mismatched first 

exposures. 

Parameters 

• Hm = Proportional risk for individuals with group-matched first hemagglutinin exposures, 

relative to all others. Hm takes values in the range [0, 1], where 0 indicates full protection 

and 1 indicates no additional protection relative to the reference group. 

 

Demography + neuraminidase imprinting (DN) 

This model introduces parameter Nm, which, similarly to the DH model above, allows 

those with group-matched first neuraminidase exposures to experience decreased risk.  

 𝑝$%& = 𝐷$%&(𝑤u,&|$,%𝑁u + 𝑤+,&|$,%)  

  (S8) 

Group indicators  

• 𝑤u,&|$,%= Fraction of each birth cohort with NA imprinting group-matched to the 

challenge strain.  

• 𝑤+,&|$,% = Fraction of each birth cohort without protective NA imprinting.  

Parameters 
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• Nm = proportional reduction in risk for individuals with group-matched first 

hemagglutinin exposures, relative to all others. Nm takes values in the range [0, 1], where 

0 indicates full protection and 1 indicates no additional protection relative to the 

reference group. 

 

Demography + neuraminidase imprinting + hemagglutinin imprinting (DNH) 

This model includes protection from first exposure to a group-matched HA (as in the DH 

model) as well as a group-matched NA (as in the DN model). 

  𝑝$%& = 𝐷$%&(𝐻u𝑁u𝑤uu,&|$,% + 𝐻u𝑤u+,&|$,% + 𝑁u𝑤+u,&|$,% + 𝑤++,&|$,%)   

  (S9) 

 

Group indicators 

• 𝑤uu,&|$,%	= Fraction of each birth cohort with matched imprinting to HA and NA. 

• 𝑤u+,&|$,%	= Fraction of each birth cohort with matched HA imprinting and mismatched 

NA imprinting. 

• 𝑤+u,&|$,%	= Fraction of each birth cohort with mismatched HA imprinting and matched 

NA imprinting. 

• 𝑤++,&|$,%	= Fraction of each birth cohort with mismatched imprinting to HA and NA, or 

that is naïve to IAV infection. 

 

Demography + age-based risk + hemagglutinin imprinting (DAH) 
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This model assumes that demography, age-based risk and HA imprinting determine 

overall risk. 

  𝑝$%& = 𝐷$%&(𝑤u,&|$,%𝐻u + 𝑤+,&|$,%)(𝑢%SJ𝐴% + 𝑢;SJ𝐴; + 𝑢-SJ)  

  (S10) 

Demography + age-based risk + neuraminidase imprinting (DAN) 

This model assumes that demography, age-based risk and neuraminidase imprinting, 

determine overall risk. 

𝑝$%& = 𝐷$%&(𝑤u,&|$,%𝑁u + 𝑤+,&|$,%)(𝑢%SJ𝐴% + 𝑢;SJ𝐴; + 𝑢-SJ)  

  (S11) 

 

Demography + age-based risk + neuraminidase imprinting + hemagglutinin 

imprinting (DANH) 

This model assumes that demography, age-based risk, neuraminidase imprinting and 

hemagglutinin imprinting determine overall risk. 

𝑝$%& = 𝐷$%&�𝐻u𝑁u𝑤uu,&|$,% + 𝐻u𝑤u+,&|$,% + 𝑁u𝑤+u,&|$,% + 𝑤++,&|$,%�(𝑢%SJ𝐴% + 𝑢;SJ𝐴; + 𝑢-SJ)  

   (S12) 

Demography + exposure + age-based risk (DEA) 

This model assumes that demography, exposure frequency and age-based risk determine 

overall risk. 

 	𝑝$%& = 𝐷$%&𝐸$&(𝑢%SJ𝐴% + 𝑢;SJ𝐴; + 𝑢-SJ)   

  (S13) 
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Demography + exposure + hemagglutinin imprinting (DEH) 

This model assumes that demography, exposure frequency and hemagglutinin history 

determine overall risk. 

 𝑝$%& = 𝐷$%&𝐸$&(𝑤u,&|$,%𝐻u + 𝑤+,&|$,%)  

   (S14) 

Demography + exposure + neuraminidase imprinting (DEN) 

This model assumes that demography, exposure frequency and neuraminidase history 

determine overall risk. 

  𝑝$%& = 𝐷$%&𝐸$&(𝑤u,&|$,%𝑁u + 𝑤+,&|$,%)  

  (S15) 

 

Demography + exposure + age-based risk + hemagglutinin imprinting (DEAH) 

This model assumes that demography, exposure frequency, age-based risk and 

hemagglutinin imprinting determine overall risk. 

 𝑝$%& = 𝐷$%&𝐸$&(𝑤u,&|$,%𝐻u + 𝑤+,&|$,%)(𝑢%SJ𝐴% + 𝑢;SJ𝐴; + 𝑢-SJ)   

   (S16) 

Demography + exposure + age-based risk + neuraminidase imprinting (DEAN) 

This model assumes that demography, exposure frequency, age-based risk and 

neuraminidase imprinting determine overall risk.  

 	𝑝$%& = 𝐷$%&𝐸$&�𝑤u,&|$,%𝑁u + 𝑤+,&|$,%� <𝑢%SJ𝐴% + 𝑢;SJ𝐴; + 𝑢-SJD    

  (S17) 
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Demography + exposure + neuraminidase imprinting + hemagglutinin imprinting 

(DENH) 

This model assumes that demography, exposure frequency, hemagglutinin imprinting and 

neuraminidase imprinting determine overall risk. 

 	𝑝$%& = 𝐷$%&𝐸$&(𝐻u𝑁u𝑤uu,&|$,% + 𝐻u𝑤u+,&|$,% + 𝑁u𝑤+u,&|$,% + 𝑤++,&|$,%)    

  (S18) 

 

Demography + exposure + age-based risk + neuraminidase imprinting + 

hemagglutinin imprinting (DEANH) 

This model assumes that demography, exposure frequency, age-based risk, 

neuraminidase imprinting and hemagglutinin imprinting determine overall risk.  

𝑝$%& = 𝐷$%&𝐸$&(𝐻u𝑁u𝑤uu,&|$,% + 𝐻u𝑤u+,&|$,% + 𝑁u𝑤+u,&|$,% + 𝑤++,&|$,%)(𝑢%SJ𝐴% + 𝑢;SJ𝐴;
+ 𝑢-SJ) 

   (S19) 

Reconstructing HA imprinting patterns with vaccination 

When IAV-naïve children receive the seasonal influenza vaccine, the effect on HA 

imprinting in these children is unknown. We chose not to consider childhood vaccination in our 

main analysis, but instead to consider its possible effects via subsequent sensitivity analyses. Our 

rationale for omitting childhood vaccination in our main analysis was based on three main 

arguments.  

First, childhood vaccination coverage is low in all H5N1- and H7N9-affected countries, 

so any effects of childhood vaccination on our results would be small. China and Thailand have 
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recently launched public health initiatives to encourage early childhood influenza vaccination. 

However, even in these countries, recent estimates of childhood vaccine coverage are relatively 

low (and quite variable), ranging from 1% (63) to 30% (64) in Thailand, and from 26% (65) in 

China to <9% (66) in Hong Kong. For all other countries in our study, conservative estimates 

based on the number of vaccine doses purchased (48) show that even in the upper-bound limit 

that all vaccine doses were administered, and were distributed exclusively among children ages 

0-9 years, childhood coverage would remain well below 5% in these countries (details below). 

 Second, early childhood influenza vaccination has only been widely recommended since 

the mid-late 2000’s (64, 67). Thus, the great majority of birth cohorts in our study would not 

have been affected at all. Since our study’s conclusions are driven most strongly by the dramatic 

change from group 1 to group 2 HA imprinting around the 1968 birth year, our conclusions are 

robust to variation in HA imprinting patterns in the very young birth cohorts that could have 

been affected by very recent, moderate increases in early childhood vaccination.  

 Third, for naïve children, single-dose influenza vaccine efficacy is exceptionally low, so 

the coverage estimates stated above strongly overestimate the effective vaccine coverage levels 

relevant to our analysis. IAV-naïve individuals require a series of two vaccine doses for effective 

protection (67, 68). However, in the United States, CDC data shows that only about 60% of 

children aged 6-24 months complete the two-dose course. We have not found equivalent data for 

H5N1- or H7N9-affected countries, but two-dose compliance is unlikely to be drastically better 

than in the US. 

 Given these arguments, we expected that childhood vaccination would have a minimal 

impact on our main findings, no matter how vaccination of IAV-naïve children affects HA 

imprinting at the individual scale. To test this expectation, we performed sensitivity analyses that 
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considered three possible effects of imprinting: 1, vaccination of naïve children could prevent 

imprinting to either HA group, 2, vaccination of naïve children could cause dual imprinting to 

both HA groups or 3, vaccination of naïve children could delay the first natural infection and 

hence delay imprinting. 

 All of these sensitivity analyses required estimates of childhood vaccination coverage and 

efficacy for each country and year. Because reported estimates of childhood vaccine coverage 

vary considerably among studies, we estimated conservative, upper-bound limits on the true 

coverage to test the maximum effect childhood vaccination might have on our findings. We used 

data from Palache et al. (48) to determine the total number of vaccine doses distributed in each 

country of interest over time. For each year, we made the conservative assumption that all doses 

within the country were administered, and distributed uniformly among children ages 0-9. In 

reality, not all doses are administered, and administered doses are actually distributed across all 

age groups, not exclusively in young children. Furthermore, while some naïve children would in 

reality receive two vaccine doses, we estimated upper-bound coverage levels as though all 

children required only one dose. We assumed vaccine efficacy was 60% in all non-pandemic 

years. This upper-bound efficacy estimate reflects that, as discussed above, at most 60% of naïve 

children complete the required two-dose course (67). This efficacy estimate is further 

conservative because even among children that receive two doses, the vaccine will not be 

perfectly protective due to antigenic drift.  

 In our first sensitivity analysis, we assumed that vaccination of IAV-naïve children 

delays the first natural infection, and hence delays imprinting, but does not affect imprinting 

otherwise. To estimate the fraction of each birth cohort with imprinting to particular seasonal 
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subtypes, we incorporated the assumed vaccine-induced delay of imprinting by revising the 

definition of the annual attack rate on children, aj (see equation 4 in Methods):  

 	𝑎F� = �1 − 𝑣F𝑒F�𝑎𝐼F   

   (S20)  

Here vj describes childhood IAV coverage in year j, ej describes IAV vaccine efficacy, a 

represents the baseline attack rate on children and Ij represents the year’s intensity score. With 

these modifications, we estimated vaccine-influenced imprinting patterns and performed model 

analyses as described in the Methods (Reconstructing immune imprinting patterns).  

 In our second and third sensitivity analyses, we assumed vaccination would prevent or 

replace imprinting in IAV-naïve children, so all children vaccinated before their first natural 

infection would either remain fully susceptible to both HA groups, or would simultaneously 

imprint to both groups. Here, it became necessary to keep track of the fraction first exposed via 

natural infection, the fraction first exposed via vaccination, and the fraction that remained naïve 

in the first 12 years after the birth year. We computed these using a recursive approach: 

 𝜀&F′ = 𝑛&,FHG	�1 − 𝑣&𝑒F�𝑎𝐼F    

   (S21) 

 𝜆&F = 𝑛&,FHG	𝑣&𝑒F     

  (S22) 

 𝑛&F = 𝑛&,FHG	(1 − 𝑣&𝑒F)(1 − 𝑎𝐼F)    

   (S23) 

Here, as in equation 3 and 4, 𝜀&F′	represents the fraction of birth cohort i that was first 

naturally infected in year j (prime indicates modification of the main text definition). λij 
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represents the fraction of birth cohort i that was first vaccinated (prior to their first natural 

exposure) in year j. nij represents the fraction of cohort i that remained naïve at the beginning of 

year j, and was thus eligible for first infection or vaccination as year j progressed. In the first year 

of life (when j = i), nii is set to 1, indicating that all newborns are initially naïve. In all subsequent 

years, j, probabilities of first vaccination or natural infection were only applied to the naïve 

fraction of the cohort. Parameters vj, ej, a and Ij are as defined above. 

After calculating relevant raw values of 𝜀&F′	and λij, we applied a normalizing factor, 𝑁&|$′ 

to all 𝜀&F′	and λij. As discussed in equation 4, the normalizing factor reflects the assumption that 

all individuals have their first natural infection or vaccination by age 12, and ensures that all 

relevant probabilities for a birth year sum to 1. It is given by: 

 

 𝑁&|$′ = `	
∑ (𝜀&F + 𝜆&F)&fGg
Fd& 𝑦 ≥ 𝑖 + 12

1 		𝑦 < 𝑖 + 12
j   

  (S24) 

 Finally, in the analysis assuming that vaccination of IAV-naïve children prevents 

imprinting, we always assigned the fraction of each cohort that was vaccinated before the first 

natural infection, ∑ 𝜆&FF , to the mismatched-imprinting group, 𝑤+,&|$,%, as defined in equation 6 

above. In the analysis assuming that vaccination of IAV-naïve children causes dual imprinting, 

we always assigned fraction ∑ 𝜆&FF  to the matched-imprinting group, 𝑤u,&|$,%. Even at the upper 

limits of plausible vaccination coverage rates, our main results remained robust in all three 

sensitivity analyses (Fig. 1-S7).  
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Annual intensity of influenza circulation from 1918-2015 

Before 1977, the annual intensity of influenza circulation (which scales the annual attack 

rate) has minimal influence on imprinting patterns, since the dominant HA group changed only 

once, during the 1968 pandemic. To model the post-1977 era of H3N2 and H1N1 co-circulation, 

when the dominant HA group could change on yearly rather than pandemic timescales, we 

obtained virological surveillance data from WHO collaborating laboratories. These data are 

available from 1977-2015, providing a direct measure of annual IAV incidence. In years prior to 

1977, the best estimates of the annual influenza burden come from pneumonia and influenza 

(P&I) excess mortality data from the United States (69). Thus, to estimate annual IAV intensity, 

we compiled estimates of incidence from virological surveillance data in years 1977-2015, and 

P&I excess mortality data in years 1918-1976. Sensitivity analyses (Fig. 1-S7) confirmed that 

our study’s results are quantitatively and qualitatively robust to uncertainty in the intensity index, 

and the results also remained robust when we replaced the intensity index with a constant value.  

For 1997-2015 we obtained influenza surveillance data from our study’s six countries of 

interest. To shield against local biases in case ascertainment and small sample sizes, we 

aggregated data across all six countries to model annual intensity. We defined raw annual 

incidence as: *+,-.	�y�	t+r&,&s;	rt;%&u;nr	&n	-..	%+wn,z&;r
*+,-.	�y�	rt;%&u;nr	tz+%;rr;�	&n	-..	%+wn,z&;r

. In years when the total number of 

reported specimens processed across all six affected countries was less than 50 (1997, 2000 and 

2001), we substituted surveillance data from the United States. For 1977-1996 we could not find 

influenza surveillance data from countries affected by H5N1 and H7N9. Thus, we also 

substituted data from the United States for this time period (47).  
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 After aggregating influenza surveillance data for all years from 1977-2015, we found that 

the observed annual incidence of influenza has increased predictably over time. A linear 

regression showed that the proportion of positive IAV specimens increased by about 0.0019/year 

(SE = 0.0006, p = 0.005). We assume this trend reflects a steady improvement in case detection 

efficiency, perhaps due to improved diagnostics or more targeted sampling, rather than a true 

increase in the annual influenza incidence proportion. Thus, we used this linear model to define 

yearly, expected incidence values for 1977-2015, and then defined annual circulation intensity as 

the ratio of observed to expected incidence. 

 For 1918-1976, we compiled published estimates of pneumonia and influenza (P&I) 

excess mortality rates, per 100,000 population, for each year (69-74). Because northern 

hemisphere influenza seasons occur in the winter, estimates were not always reported on a 

calendar year basis. Instead, rates were often reported for a defined outbreak period, beginning 

and ending in specified months. In these cases, to adjust to the calendar year basis on which we 

defined birth cohorts, we first determined the fraction of outbreak months occurring within each 

calendar year, and then allocated the appropriate fraction of the season’s total excess mortality to 

either relevant year. By definition, excess mortality takes only non-negative values, but intensity 

values informed by surveillance data could be positive or negative (Fig. 1-S10 A). To verify that 

our results are robust to this discrepancy, we performed a sensitivity analysis in which we shifted 

all P&I scores down by their mean (thus allowing the P&I series to also take positive and 

negative values). This did not change the results of model selection, or notably change the 

maximum likelihood value of parameter Hm. Because we used our intensity time series to inform 

IAV imprinting patterns, we set excess mortality equal to zero in years dominated by type B 
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influenza. In years when types A and B were co-dominant, we attributed half the total reported 

excess mortality to influenza A. 

When verifying the comparability of excess mortality and incidence data, we found that 

the variance in post-1977 intensity estimates (informed by virological surveillance data) was 

greater than the variance in 1918-1976 estimates (informed by excess mortality data). To correct 

this discrepancy, we scaled the variance in the older P&I data set to match the variance of non-

negative values in more recent surveillance-based estimates (thus giving the two series similar 

amplitude). We allowed a maximum intensity score of 2.5, to maintain a reasonable maximum 

annual attack rate of 0.75 or less. The maximum score applied only in years 1918, 1919, 1944 

and 2009, all of which are recognized as years of intense influenza circulation. Annual intensity 

values and corresponding attack rates are shown in Fig. 1-S10. 

 

Country-specific model fits and model selection 

We conducted the full maximum likelihood estimation and model comparison analysis 

for each of the six countries in our study, in isolation. We found that strong support for HA 

imprinting effects was maintained in these country-specific analyses. In the four countries with 

the most cases (China, Egypt, Indonesia and Vietnam, n ≥ 75), the best models all included HA 

imprinting, with estimates of protective efficacy (Hm) very similar to the estimate in the main 

text. In Thailand (n = 28), and Cambodia (n = 57), despite very low numbers of cases, models 

including HA imprinting effects were the second most preferred in model selection, and were 

statistically indistinguishable from the best models, with ΔAIC of 0.45 and 0.47, respectively. 

Country-specific case distributions, model fits and the results of country-specific model 

comparison are shown in Fig. 1-S11. 
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These analyses show that patterns in all countries are qualitatively consistent with core 

findings presented in the main text: in each of the countries, very few H5N1 cases are observed 

in cohorts born before 1968. The major distinction among countries is the difference in number 

of H5N1 cases reported in children (i.e. birth-years since 2005).  Relative to the consensus 

model, excess cases are observed in children in Cambodia and Egypt, but a shortfall of cases in 

children is observed in Indonesia, China and Vietnam.  Country-specific variation in poultry 

contact, access to healthcare, or case reporting for children could explain these differences. 

Variation in imprinting patterns (resulting from different experiences with the 2009 pandemic in 

different regions) could also be at play. While we do not have data to test these potential 

explanations, we note that children are not under-represented for H7N9 in China (the one 

country where we can make a direct comparison), which weighs against the former explanations 

in this one country at least. 

 

Cross-validation analysis 

To verify that our data sets are large enough to produce robust model comparison results, 

and to assess the out-of-sample predictive capability of our models, we performed two-fold 

cross-validation. We performed these analyses for H5N1 and H7N9 data. Each trial consisted of 

the following steps: 

i. Randomly partition the data set (of H5N1 or H7N9 cases) into two equal subsets. 

Designate one half of the data as the training set, and the other half as the test set. 

ii. Fit all 16 models (D, DR, DH, DN, …etc.) to the training set, determining 

maximum-likelihood estimates of all model parameters. Calculate AIC values to 

determine which fitted model performs best on the training set. 
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iii. Find the likelihood of the test data, given all models and their maximum-likelihood 

parameter estimates (determined in step ii, using the training set). Determine which 

model is the best fit to the test data based on likelihood. 

iv. Test for robustness to reduced sample size: Are HA imprinting effects included in 

the best model from step ii, after fitting to a data set of half the size used in the main 

text analysis? Does the best model match the preferred model from the main text?  

v. Test the best model’s performance on out-of-sample data: Does the best model for 

the test data contain HA imprinting effects? Does it match the preferred model from 

the main text?  

vi. Now, switch the subset assignments, so the original test set becomes the new 

training set, and vice versa. Repeat steps ii-v. 

 

We performed 100 cross-validation trials for each of the H5N1 and H7N9 data sets (so 

200 unique training sets were used, see step vi). For H5N1, DRH (the preferred model in the 

main text analysis) remained the best model for 99% of the training sets. The median and central 

95% of Hm estimates were 0.25 (0.17-0.32). For H7N9, DERH (the preferred model in the main 

text analysis) remained the best model for 100% of the training sets. The median and central 

95% of Hm estimates were 0.24 (0.17-0.33). For both H5N1 and H7N9, these Hm values are 

statistically indistinguishable from estimates obtained using the full data set (see Table 1-S2). 

Thus, for both H5N1 and H7N9, our core results are robust to the exclusion of half of our 

available data. 

These same models were also strongly preferred by the test sets—DRH was the best 

model for 92% of H5N1 test sets and DERH was the best model for 97.5% of H7N9 test sets. In 
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all cases, the best model for the test set included HA imprinting effects. Thus, barring major 

changes to the biology or epidemiology of these viruses, the best models presented in the main 

text are suitable for approximate prediction of the birth year distributions of newly arising cases, 

and HA imprinting effects remain an important predictor in all cases. 

 

Robustness to age biases in case ascertainment 

Epidemiological data sets are always subject to possible biases in case ascertainment. As 

discussed above, we introduced age-based risk parameters Ac and Ae to allow for the increased 

risk of severe infection (and associated increase in case ascertainment) for children and the 

elderly, a known pattern from seasonal influenza epidemiology (41). However, other forms of 

age-specific bias might be present in the data sets we analyzed. Given the centrality of age-

related patterns to our findings (insofar as they are connected to birth year), we undertook an 

extreme test of whether our core results are robust to a hypothetical worst-case bias in case 

ascertainment. Specifically, we tested the effect of a hypothetical bias that systematically 

degraded the strongest signal of HA imprinting in the data, i.e. the 1968 shift from group 1 to 

group 2 dominance in seasonal IAV strains. Thus we used simulations to consider scenarios in 

which severe H5N1 cases born before 1968, or severe H7N9 cases born after 1968, had lower 

probabilities of being ascertained, relative to cases in other birth years.  

We note that this is a ‘perfectly bad’ reporting bias, and is based on birth year rather than 

age (and hence would require the bias to drift systematically over nearly two decades, for 

H5N1). Also, we emphasize that our work focuses on the influence of imprinting on severe cases 

of disease, which are much less likely to be subject to reporting bias than mild or subclinical 

cases. A recent review of H5N1 and H7N9 epidemiology by Qin et al (1) did highlight the 
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potential for under-ascertainment of milder cases of H7N9, which are disproportionately found 

in younger individuals (and are often found in the course of cluster investigations, following 

severe index cases).  Crucially, this is exactly the pattern that our findings would predict, since 

younger individuals are more likely to be imprinted on group 2 HA and hence protected from 

severe H7 disease. Qin et al. did not find any evidence of substantial under-ascertainment of 

H5N1 cases, and do not suggest any age bias in reporting.  

 For H5N1, we considered scenarios where severe cases occurring in older, pre-1968 birth 

cohorts were 50%, 33% or 25% as likely to be observed as cases in younger, post-1968 cohorts. 

Thus, we used simulation to add hypothetical unobserved cases into the data set, increasing the 

number of H5N1 cases by a factor of 2, 3 or 4 in the pre-1968 cohorts where these cases are rare 

in the real data. Effectively, this decreased differences in apparent risk between pre- and post-

1968 birth cohorts, systematically diminishing the signature of HA imprinting effects.  

 Similarly, for H7N9, we considered scenarios where severe cases occurring in 

underrepresented, post-1968 birth cohorts were 50%, 33% or 25% as likely to be observed as 

cases occurring in older cohorts. We again used simulation to increase the number of cases in 

underrepresented cohorts by factors of 2, 3 or 4, respectively. 

 The number of cases added to each country-year depended on the number of cases 

observed in the same country-year in underrepresented cohorts for H5N1 (1918-1968), or H7N9 

(1969-2015). This number was multiplied by the factor required to double, triple or quadruple 

the number of cases in these augmented birth cohorts. The probability that an added case was 

assigned to a particular birth year was proportional to the demographic age distribution across 

augmented birth years for the country and year of interest. For each virus and assumed relative 

detection probability, we generated 100 augmented data sets. We performed model fitting and 
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comparison on each augmented data set to determine whether HA imprinting would remain a 

factor in the best model, and to quantify the value of parameter Hm in these best models. 

Representative trials are shown in Fig. 1-S12. 

 We found that both H5N1 and H7N9 were robust to ‘perfectly bad’ age-biased reporting 

at the 50% reporting level: the DAH model remained the selected model in all 100 trials for 

H5N1, with a median Hm parameter estimate of 0.54; similarly, the DEAH model remained the 

selected model in all 100 trials for H7N9, with a median Hm parameter estimate of 0.54. For 

H7N9, even larger, ‘perfectly bad’ biases did not change the core finding. At the 33% and 25% 

levels, model selection still supported HA imprinting in 99% and 85% of trials, respectively 

(though the preferred model switched from DEAH to DAH). For H5N1, at the 33% relative 

detection level, DRH remained the best model in 76% of trials (with a weak Hm parameter 

estimate), but in the remaining 24/100 trials, HA imprinting effects were not included in the best 

model. At 25% relative detection, only 16/100 best models included HA imprinting effects 

In reality, it seems highly unlikely that case ascertainment would depend on birth year 

instead of age, that 1968 would coincidentally act as a key turning point separating some middle-

aged adults from others, or that ascertainment of H5N1 and H7N9 cases would pivot in opposite 

directions around 1968. Furthermore, it seems unlikely that age or birth-year specific differences 

in detection of severe cases (the focus of our study) would differ by a factor of two or more. 

Thus, given the fact that our core results are robust to case ascertainment biases 3-fold or more, 

even with bias parameters specifically designed to degrade the imprinting signal, we are 

confident that plausible biases would not be large enough to challenge our study’s core findings. 
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Binomial exact test for mortality 

One-sided binomial exact tests showed that census-excess H5N1 mortality was 

significantly less likely to occur in cohorts born before 1968 (estimated probability = 0.06, 

CI=0.00-0.19, p < 1e-6). For H7N9, census-excess mortality was significantly more probable in 

the same birth years (estimated probability = 0.94, CI=0.83-1.00, p < 1e-7). As introduced in the 

main text, the same test revealed similar patterns for the incidence of H5N1 (estimated 

probability = 0.00, CI=0.00-0.08, p < 1e-10) and H7N9 (estimated probability = 0.93, CI=0.84-

1.00, p < 1e-9). 

 

Analysis of novel subtypes other than H5N1 and H7N9 

We searched the literature and avian influenza reports for clinically significant human 

cases of zoonotic IAV (other than H5N1 and H7N9) in which the year and country of the case 

was known and the age of the infected individual was reported (n=28). We excluded cases where 

the clinical manifestation was limited to conjunctivitis.  

To examine whether the data were better explained by the Demography (D) or the 

Demography + Hemagglutinin imprinting (DH) model (described in sections 2.1 and 2.4 above), 

we performed a simple-versus-simple hypothesis test using the likelihood ratio as the test 

statistic. The null distribution of the test statistic (the distribution of likelihood ratio values 

generated under the assumption that the D model is true) was approximated using 250,000 

simulated data sets. The quantile score of the true data’s likelihood ratio in this distribution was 

used to generate the p-value reported in the main text.  
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Parameter identifiability 

 We designed our family of multinomial models to allow for elevated risk of 

severe disease in young children and adults, via the parameters Ac and Ae respectively, to ensure 

that we accounted for all known age-related effects before testing our hypothesis of HA 

imprinting. However, a challenge arises in our study because there are very few H5N1 cases 

observed in the elderly, and few H7N9 cases observed in children (see Fig. 1-2A, B). Thus, we 

have little statistical power to discern possible age-based risk effects in those groups. As a 

consequence, our results show elevated risk in age groups where we do see cases (i.e. in children 

for H5N1, and in the elderly for H7N9), but age-specific effects are not detected in age groups 

where cases do not frequently occur (Table 1-S2). This leads to an effect where the age-based 

risk appears to act in concert with HA imprinting. It is thus prudent to consider the possibility 

that the age-based risk parameters (Ac and Ae) and matched-imprinting protection parameter (Hm) 

are not perfectly identifiable. 

 We performed three analyses to verify that our central findings are not 

meaningfully affected by this potential issue with parameter identifiability. First, we plotted two-

dimensional likelihood profiles for the parameter pairs of concern (figures not shown). These 

profiles show only weak positive correlations between the parameters Hm and Ac (for H5N1) and 

Hm and Ae (for H7N9). This indicates that identifiability is not a major concern. Second, from 

these profiles, we computed marginal 95% confidence intervals, and found values only slightly 

different from the univariate confidence intervals reported in Table 1-1 in the main text. For 

H5N1, the univariate CI on Ac was 1.83-2.57, and the marginal CI from the bivariate analysis 

was 1.75-2.65. For H7N9, the univariate CI on Ae was 1.74-2.51, and the marginal CI from the 

bivariate analysis was 1.68-2.58. Again, the small differences between univariate confidence 
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intervals and marginal, bivariate confidence intervals indicate that identifiability is not a major 

issue for these parameters.  

 Third, as a final check, we combined H5N1 and H7N9 data into a single model, and 

constrained parameters Hm, Ac and Ae to take the same values for both viruses (see details above 

in section 7). We then computed the maximum likelihood estimates for all three parameters, 

using the combined data set. The combined data set contained large numbers of cases in both old 

and young age groups, and gave us more power to estimate age-specific risk effects. The 

consensus estimates for Ac (1.78, 95% CI 1.53-2.07) and Ae (1.91, 95% CI 1.64-2.23) were 

statistically indistinguishable from the estimates of Ac (using H5N1 data) and Ae (using H7N9 

data) presented in the main text analysis.  
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Supplementary Figure 1-S1. Phylogenetic and sequence analyses of HA amino acids.  

(A) Maximum likelihood phylogenetic tree of H1 HA globular head amino acid sequences. (B) HA stem 

domain amino acid tree. Both trees are drawn at the same scale. (C) Heat map showing pairwise 

similarities between HA stem domain amino acid sequences (same strains as in plot B). The number in 

each cell is the percent similarity (BLOSUM62 cost matrix) for the relevant pair of sequences, with darker 

colors indicating higher similarity. Pairwise comparisons for H5 and H7 versus H1, H2, and H3 (the 

variants that have circulated in human populations since 1918) are depicted in red. Each HA subtype’s 

stem domain is more similar to the other subtypes within its group than to any subtype in the opposing 

group, consistent with the observed imprinting pattern operating within, but not between, HA groups. 
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Supplementary Figure 1-S2. Trends in age and birth year of H5N1 cases over time. 

 For 361 H5N1 cases observed in Egypt from 2006-2015, (A) Spearman’s rank correlation showed a 

significant positive association (p = 0.0003, one-sided test) between patient age and year of case 

observation. Points are jittered around the case observation year, and a least-squares trend line is 

shown. (B) Using the same test, no significant association was found for patient birth year. In support of 

the HA imprinting hypothesis, these results show that birth year is a more consistent predictor of severe 

infection risk than age-specific risk factors. 
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Supplementary Figure 1-S3. Model fits to observed data.  

H7N9 and H5N1 data (bars) are shown with predictions from the best model fit (bold line). For 

comparison with Fig. 1-2, a priori predictions based on demography and HA imprinting alone (thin line) 

are also shown.  
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Supplementary Figure 1-S4. Comparison of NA and HA imprinting hypotheses to data.  

(A) H7N9. (B) H5N1. Bars show incidence (light colors) and mortality (dark colors) normalized to 

demography as in Figure 1-2C, D. Overlaid lines show the a priori prediction based on HA imprinting 

(dashed line) or NA imprinting (solid line). During the period from 1957 to 1968 the NA imprinting 

prediction clearly fails to match observed incidence of excess severe infection or death from H7N9 or 

H5N1. Moreover, our modeling analysis indicates HA imprinting, not NA imprinting, is the dominant effect 

driving H5N1 and H7N9 severity patterns (see Table 1-S2). 
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Supplementary Figure 1-S5. Parameter estimates for all models of H5N1 and H7N9 incidence.  

Maximum likelihood estimates and 95% likelihood profile CIs for parameters (with the 95% threshold 

determined using likelihood ratios) (A) Hm (B) Nm (C) Ac and (D) Ae, as fit to H5N1 (blue) and H7N9 (red) 

incidence data. Parameters and model abbreviations are described in Table 1-S1, and Methods. 

Demography, D, is included in all models. Additional tested factors include poultry exposure risk, E, age-

based risk of severe morbidity in children and the elderly, A, NA imprinting, N, and HA imprinting, H. 

Dashed lines indicate boundary values imposed on parameters. Models are listed from top to bottom in 
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order of decreasing model support, as fit to H5N1 data. Bar plots at right show Akaike weights, and the 

best model is shown with a filled symbol and bold line; all preferred models have definitive statistical 

support with Akaike weights > 0.99 (Table 1-S2). In some cases, the MLE for parameter Nm was 1, 

indicating no NA imprinting effect, and the model with added factor N was identical to the model 

containing all the same factors except N. These degenerate models are represented with X’s, and were 

excluded from Akaike weight calculations.  
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Supplementary Figure 1-S6. Parameter estimates for all models of H5N1 and H7N9 mortality.  

Maximum likelihood estimates and 95% likelihood profile CIs for parameters (A) Hm (B) Nm (C) Ac and (D) 

Ae, as fit to H5N1 (blue) and H7N9 (red) mortality data. Parameters and model abbreviations are 

described in Table 1-S1, and Methods. Formatting is as in Fig. 1-S5. For H7N9, which is less pathogenic 

in birds and humans than H5N1, DEAH is the definitive preferred model for both infection and mortality, 

with Akaike weights > 0.99 in both cases. However, for H5N1, which is more pathogenic in birds and 

humans, no single mortality model is definitively preferred. Rather, we found some statistical support 

(Akaike weights > 0.05) for all mortality models that include HA imprinting (Table 1-S2). 
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Supplementary Figure 1-S7. Sensitivity analyses.  

We tested the robustness of Hm parameter estimates (Table 1-S1) and model selection results for twelve 

variations on our standard model formulation (Methods). (A) Maximum likelihood estimates and 95% 

likelihood profile CIs for parameter Hm, as fit to incidence data using the best incidence model for each 

subtype (DAH for H5N1, in blue, and DEAH for H7N9, in red). Dashed lines show 95% CIs on Hm 

estimates from the preferred model, as presented in the main text analysis. (B) Akaike weights for models 

DAH (H5N1, blue) and DEAH (H7N9, red). These models remain strongly supported throughout all 

sensitivity analyses, with Akaike weights > 0.98 in all cases but one. The lowest Akaike weight was 0.92. 
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Supplementary Figure 1-S8. Projected age-structured severe attack rates during hypothetical 

future H5 (blue) and H7 (red) IAV pandemics.  

Simulations assume country-specific demography and age-structured mixing, HA imprinting, and age-

based risk groups (Supplementary Text). Colored lines show the average, and shaded regions include 

95% of 100 simulated outcomes. For comparison, the severe attack rate in an IAV pandemic with no HA 

imprinting is also shown (black). All simulations use R0 = 2.5. (A) Illustration of how changing the 

infectiousness of partially protected individuals (a), relative to unprotected individuals, affects the age-

structured severe attack rate in a 2015 UK IAV pandemic. (B-D) Results for three countries in 2015 and 

2025 when a=0.5. Two scenarios are considered for seasonal influenza circulation between 2015 and 

2025: 25% group 1 IAV and 75% group 1 IAV. 
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Supplementary Figure 1-S9. Projections of Reff through time.  

(A) Projections of Reff for an H7 IAV with R0 = 1.2 under different assumptions regarding the 

infectiousness of protected individuals (a). Projections are in the UK assuming 100% group 1 seasonal 

circulation after 2015. (B-E) Projections of how the Reff for a hypothetical H5 (blue) and H7 (red) IAV with 

R0 = 1.2 and a=0.5 would change through time in the UK (solid line), China (dashed line), and Vietnam 

(dotted line) under four different post-2015 seasonal group 1 IAV circulation scenarios. Although general 

trends are consistent across countries, different demographic age structures and mixing patterns result in 

notable differences in the exact Reff trajectory of each country. 
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Supplementary Figure 1-S10. Model inputs. 

 (A) Index representing annual intensity of seasonal influenza circulation from 1918-2015. Right axis 

shows scaled annual attack rates on naïve children, which correspond to the intensity scores at left. As 

described in Supplementary Text, section 4, this index modulates the annual attack rate on children in 

reconstructions of HA and NA imprinting patterns. Blue points spanning 1918-1976 represent pneumonia 

& influenza excess mortality data, and hence are restricted to non-negative values. (B) Index of poultry 

exposure frequency by age group in humans, described in Methods. This index informs factor E in model 

comparison. 
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Supplementary Figure 1-S11. Country-specific model fits and model comparison results.  

(A-F) Birth year distribution of cases from the country of interest (bars) with overlaid predictions from the 

best model fit to country-specific data (red), or fit to all data (blue). (G) Results of model comparison and 

maximum likelihood estimation for country-specific data. For Cambodia and Thailand, the second best 

models (DRH and DH) included HA imprinting effects, and were statistically indistinguishable from the 

best model with ΔAIC of 0.47 and 0.45. 
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Supplementary Figure 1-S12. Robustness to biased case ascertainment.  

Panels show results of representative simulations showing effects of a worst-case-scenario case 

ascertainment bias based on birth year (as described in Supplementary Text section 7). We increased the 

number of cases observed in underrepresented birth cohorts (1918-1968 for H5N1, 1969-2015 for H7N9) 

by 2-fold (A, D), 3-fold (B, E), or 4-fold (C, F) to systematically degrade the strongest signal of HA 

imprinting in the data. Even with these simulated, ‘perfectly bad’ biases, our core results were robust up 
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to the 3-fold level for H5N1 and the 4-fold level for H7N9. Note that the gap between model predictions 

and observed case numbers for H7N9 for birth years leading up to 1968 (E, F) arises from lags in 

imprinting: many individuals born just before the 1968 pandemic actually did imprint on the group 2 1968 

virus, but were not included in our data augmentation scheme. Because the estimated protective effect of 

imprinting is weakened under 3-fold and 4-fold scenarios, the best fit models in these scenarios do not 

capture the partially protected status of these cohorts. 
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Supplementary Table 1-S1. Summary of model factors and free parameters.  

 

*For models analyzing mortality risk, we changed this constraint to: Ac ≥ 0, allowing the data to indicate 

whether young children were more or less likely to die from their infections than the reference age group 

(see Methods). 
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Supplementary Table 1-S2. Incidence and mortality model results. 

 
 
*Maximum likelihood model was identical to the model including all the same factors except N, and 

excluded from Akaike weight calculations. 

Hm (95% CI) Nm (95% CI) Ac (95% CI) Ae (95% CI) AIC Akaike weight 
H5N1 incidence 

DAH 0.25 (0.18-0.35) 
!

2.16 (1.83-2.57) 1.00 (1.00-1.27) 0 1.00 
DANH* 0.25 (0.18-0.37) 1.00 (0.59-1.00) 2.16 (1.82-2.59) 1.00 (1.00-1.28) 2  DEAH 0.17 (0.12-0.24) 

!
2.39 (2.03-2.84) 1.00 (1.00-1.27) 15.35 4.65E-04 

DEANH 0.17 (0.12-0.27) 0.94 (0.49-1.00) 2.39 (2.03-2.85) 1.00 (1.00-1.32) 17.32 1.74E-04 
DH 0.20 (0.15-0.29) 

! !  69.81 9.50 E-16 
DNH* 0.20 (0.15-0.30) 1.00 (0.58-1.00) 

!  71.18  DAN 
!

0.40 (0.26-0.61) 2.51 (2.13-2.98) 1.00 (1.00-1.17) 73.58 1.05E-16 
DA 

! !
2.62 (2.23-3.11) 1.00 (1.00-1.06) 96.34 1.20E-21 

DEH 0.13 (0.10-0.20)    103.31 3.69E-23 
DENH 0.14 (0.10-0.22) 0.95 (0.48-1.00)   105.29 1.37E-23 
DEAN  0.28 (0.17-0.44) 2.95 (2.51-3.51) 1.00 (1.00-1.18) 136.99 1.79E-30 

DN  0.35 (0.22-0.53)   172.30 3.84E-38 
DEA   3.16 (2.67-3.80) 1.00 (1.00-1.05) 182.33 2.56E-40 

D     203.81 5.52E-45 
DEN  0.23 (0.14-0.37)   269.81 2.57E-59 
DE         331.46 1.06E-72 

H7N9 incidence 
DEAH 0.24 (0.18-0.33) 

!
1.00 (1.00-1.24) 2.08 (1.74-2.51) 0 1.00 

DEANH* 0.24 (0.18-0.34) 1.00 (0.94-1.00) 1.00 (1.00-1.24) 2.08 (1.74-2.51) 2 
!DAH 0.19 (0.13-0.26) 

!
1.00 (1.00-1.12) 2.47 (2.09-2.97) 42.87 4.90E-10 

DANH* 0.19 (0.13-0.26) 1.00 (0.96-1.00) 1.00 (1.00-1.12) 2.47 (2.09-2.97) 44.87 
!DEH 0.16 (0.12-0.22) 

! !  61.59 4.23E-14 
DENH 0.17 (0.12-0.25) 0.89  (0.73-1.00) 

!  62.26 3.02E-14 
DEA 

! !
1.03  (1.00-1.50) 3.48 (2.97-4.14) 106.94 6.00E-24 

DEAN 
!

0.84  (0.63-1.00) 1.00  (1.00-1.42) 3.07 (2.39-4.02) 107.63 4.24E-24 
DH 0.12 (0.08-0.16) 

! !  138.40 8.83E-31 
DNH* 0.12 (0.08-0.17) 1.00  (0.87-1.00) 

!  140.40 
 DA 

!  1.00  (1.00-1.26) 4.58 (3.89-5.43) 193.47 9.72E-43 
DAN  0.90 (0.67-1.00) 1.00  (1.00-1.24) 4.24 (3.29-5.37) 194.97 4.60E-43 
DEN  0.39  (0.32-0.47)   195.62 3.33E-43 
DE     297.51 2.49E-65 
DN  0.36  (0.30-0.43)   344.49 1.57E-75 
D         466.22 5.76E-102 

H5N1 mortality 
DEH 0.11 (0.07-0.19)    0.00 0.48 
DH 0.17 (0.11-0.27)    0.53 0.37 

DENH* 0.11 (0.07-0.20) 1.00 (0.50-1.00)   2.00  
DNH* 0.17 (0.11-0.28) 1.00 (0.56-1.00)   2.53  
DAH 0.17 (0.10-0.27)  0.85 (0.62-1.19) 1.00 (1.00-2.18) 3.41 0.09 

DEAH 0.11 (0.07-0.19)  0.94 (0.68-1.31) 1.00 (1.00-2.18) 3.82 0.07 
DANH* 0.17 (0.10-0.28) 1.00 (0.53-1.00) 0.85 (0.60-1.26) 1.00 (1.00-2.22) 5.41  

DEANH* 0.11 (0.07-0.20) 1.00 (0.45-1.00) 0.94 (0.70-1.36) 1.00 (1.00-2.31) 5.82  
DN  0.33 (0.18-0.57)   69.22 4.44E-16 

DAN  0.33 (0.18-0.57) 1.02 (0.74-1.41) 1.00 (1.00-1.50) 73.21 6.06E-17 
D     87.98 3.76E-20 

DA   1.08 (0.80-1.56) 1.00 (1.00-1.09) 91.72 5.78E-21 
DEN  0.21 (0.11-0.38)   104.04 1.22E-23 

DEAN  0.22 (0.11-0.39) 1.18 (0.86-1.71) 1.00 (1.00-1.59) 106.93 2.88E-24 
DE     143.27 3.69E-32 

DEA     1.31 (0.96-1.86) 1.00 (1.00-1.09) 144.54 1.96E-32 
H7N9 mortality 

DEAH 0.22 (0.10-0.44)  0.00 (0.00-0.36) 3.33 (2.33-4.98) 0 1.00 
DEANH* 0.22 (0.10-0.44) 1.00 (0.69-1.00) 0.00 (0.00-0.36) 3.33 (2.27-4.98) 2  

DAH 0.17 (0.07-0.34)  0.00 (0.00-0.30) 3.88 (2.66-5.57) 12.05 2.41E-03 
DANH* 0.17 (0.07-0.34) 1.00 (0.77-1.00) 0.00 (0.00-0.30) 3.88 (2.66-5.57) 14.05  
DEAN  0.54 (0.30-1.00) 0.00 (0.00-0.36) 3.81 (2.33-6.68) 20.34 3.83E-05 
DEA   0.00 (0.00-0.48) 5.78 (4.10-8.24) 21.45 2.19E-05 
DAN  0.55 (0.30-1.00) 0.00 (0.00-0.30) 4.97 (3.05-8.90) 40.94 1.29E-09 
DA   0.00 (0.00-0.36) 7.51 (5.31-10.67) 42.03 7.47E-10 

DENH 0.16 (0.07-0.36) 0.62 (0.37-1.00)   49.16 2.11E-11 
DEH 0.12 (0.05-0.23)    51.14 7.84E-12 
DEN  0.23 (0.15-0.36)   68.32 1.45E-15 
DH 0.09 (0.04-0.18)    79.85 4.56E-18 

DNH* 0.11 (0.04-0.24) 0.77 (0.46-1.00)   80.60 3.13E-18 
DN  0.22 (0.14-0.34)   110.60 9.62E-25 
DE     116.94 4.03E-26 
D         165.02 1.46E-36 
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Chapter 2: Childhood immune imprinting to influenza A 

shapes birth year-specific risk during seasonal H1N1 and 

H3N2 epidemics 

 
 

ABSTRACT 

Across decades of co-circulation in humans, influenza A subtypes H1N1 and H3N2 have 

caused seasonal epidemics characterized by different age distributions of infection and mortality. 

H3N2 causes the majority of cases in high-risk elderly cohorts, and the majority of overall 

deaths, whereas H1N1 causes incidence shifted towards young and middle-aged adults, and 

fewer deaths. These contrasting age profiles may result from differences in childhood exposure 

to H1N1 and H3N2 or from differences in evolutionary rate between subtypes. Here we analyze 

a large epidemiological surveillance dataset to test whether childhood immune imprinting shapes seasonal 

influenza epidemiology, and if so, whether it acts primarily via immune memory of a particular influenza 

subtype or via broader immune memory that protects across subtypes. We also test the impact of 

evolutionary differences between influenza subtypes on age distributions of infection. Likelihood-based 

model comparison shows that narrow, within-subtype imprinting is the strongest driver of 

seasonal influenza risk. The data do not support a strong effect of evolutionary rate, or of broadly 

protective imprinting that acts across subtypes. Our findings emphasize that childhood exposures 

can imprint a lifelong immunological bias toward particular influenza subtypes, and that these 

cohort-specific biases shape epidemic age distributions. As a result, newer and less “senior” 
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antibody responses acquired later in life do not provide the same strength of protection as 

responses imprinted in childhood.  Finally, we project that the relatively low mortality burden of 

H1N1 may increase in the coming decades, as cohorts that lack H1N1-specific imprinting 

eventually reach old age. 

AUTHOR SUMMARY 

 Influenza viruses of subtype H1N1 and H3N2 both cause seasonal epidemics in 

humans, but with different age-specific impacts. H3N2 causes a greater proportion of cases in 

older adults than H1N1, and more deaths overall. People tend to gain the strongest immune 

memory of influenza viruses encountered in childhood, and so differences in H1N1 and H3N2’s 

age-specific impacts may reflect that individuals born in different eras of influenza circulation 

have been imprinted with different immunological risk profiles.  Another idea is that H3N2 may 

be more able to infect immunologically experienced adults because it evolves slightly faster than 

H1N1, and can more quickly escape immune memory. We analyzed a large epidemiological data 

set and found the clearest signal that birth year-specific differences in childhood immune 

imprinting, not differences in evolutionary rate, explain differences in H1N1 and H3N2’s age-

specific impacts. These results can help epidemiologists understand how epidemic risk from 

specific influenza subtypes is distributed across the population, and predict how population risk 

may shift as differently imprinted birth years grow older. Further, these results provide 

immunological clues to which facets of immune memory become biased in childhood, and then 

later play a strong role in protection during seasonal influenza epidemics.  
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INTRODUCTION 

Childhood influenza exposures leave an immunological imprint, which has reverberating, 

lifelong impacts on immune memory. Foundational work on original antigenic sin (1) and 

antigenic seniority (2) showed that individuals maintain the highest antibody titers against 

influenza strains encountered in childhood. But how these serological patterns map to functional 

immune protection, and shape birth year-specific risk during outbreaks, remains an active area of 

inquiry. One open question is the breadth of cross-protection provided by immune memory 

imprinted by influenza viruses encountered in childhood.  

Many epidemiological studies highlight benefits from imprinting protection; every 

modern influenza pandemic has spared certain birth cohorts, presumably due to cross-protective 

memory primed in childhood (3–9). Recently, we showed that childhood imprinting also protects 

against novel, emerging avian influenza viruses (8,10). Childhood imprinting may additionally 

shape birth year-specific risk from seasonal influenza (11–13), but the importance of broadly 

protective immunity remains unclear in this context.  

Recent studies have highlighted childhood imprinting’s ability to shape multiple layers of 

influenza immune memory, both broad and narrow. Until recently, relatively narrow cross-

protective immunity, which only protects against closely related antigenic variants of the same 

hemagglutinin (HA) subtype, has been considered the norm. Lymphocyte memory of variable 

epitopes on the HA head (i.e. sites at which hemagglutinin antigens of different subtypes show 

limited homology) drives this narrow, within-subtype protection, which is the main mechanism 

of protection from the inactivated influenza vaccine. But protection may also be driven by 

memory of other influenza antigens (e.g. neuraminidase, NA) (14–16), or by immune response to 
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conserved epitopes, many of which are found on the HA stalk (10,17–19). Antibodies that target 

conserved HA epitopes can provide broad protection across multiple HA subtypes in the same 

phylogenetic group (17,19,20), where HA group 1 contains hemagglutinin subtypes H1 and H2, 

while group 2 contains H3 (10,18,21). H1, H2 and H3 are the only HA subtypes that have 

circulated seasonally in humans since 1918.  

Within-subtype cross-protection is known to shape seasonal influenza’s epidemiology 

and evolution (22). But because this type of narrow immunity decays rapidly in the face of 

antigenic drift, it would not be expected to shape cohort-specific protection across an entire 

human lifetime (23,24).  Conversely, broad, HA group-level immune memory arises when 

lymphocytes target conserved HA epitopes, and can play a strong role in defense against 

unfamiliar influenza strains (e.g. novel, avian or pandemic subtypes (10,17,19,20,25,26)). Broad, 

HA group-level responses are not traditionally thought to play a strong role in defense against 

familiar, seasonal influenza subtypes, but could plausibly be deployed against drifted seasonal 

strains whose variable HA epitopes have become unrecognizable. Because the conserved 

antigenic targets involved in broad, HA group-level protection are relatively stable over time, 

they could in theory, facilitate lifelong imprinting-related biases in immune memory (10,26). 

Thus, childhood immune imprinting may determine which birth cohorts are primed for effective 

defense against seasonal strains with conserved HA epitopes characteristic of group 1 or group 2, 

or with variable HA epitopes characteristic of a particular subtype (H1, H2, etc.).  A similar line 

of reasoning may apply to immunity against NA, although much less attention has been paid to 

this antigen. 
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Since 1977, two distinct subtypes of influenza A, H1N1 and H3N2, have circulated 

seasonally in humans, with striking but poorly understood differences in their age-specific 

impact (8,11–13,27). These differences could be associated with childhood imprinting: older 

cohorts were almost certainly exposed to H1N1 in childhood (since it was the only subtype 

circulating in humans from 1918-1957), and now seem to be preferentially protected against 

modern seasonal H1N1 variants (8,11–13). Likewise, younger adults have the highest 

probabilities of childhood imprinting to H3N2, which is consistent with relatively low incidence 

of seasonal H3N2 in these cohorts (Fig. 2-1, 2-2).  Alternatively, differences in the evolutionary 

dynamics of H1N1 and H3N2 could explain the observed age profiles. Subtype H3N2 exhibits 

slightly faster drift in its antigenic phenotype than H1N1, and as a result, H3N2 may be more 

able to escape pre-existing immunity and infect older, immunologically experienced adults, 

whereas H1N1 may be relatively restricted to infecting immunologically naïve children (28).  

We analyzed a large data set on seasonal influenza incidence to test whether cohort 

effects from childhood imprinting primarily act against variable epitopes, only providing cross-

protection against closely related HA or NA variants of the same subtype, or against more 

conserved epitopes, providing broad cross-protection across HA subtypes in the same 

phylogenetic group (Fig. 2-1A-B). We fitted a suite of models to data using maximum likelihood 

and compared models using AIC. In a separate analysis, we considered the hypothesis that 

differences in evolutionary rate of H1N1 and H3N2, rather than imprinting effects, shape 

differences in age distribution. Our results have implications for long-term projections of 

seasonal influenza risk in elderly cohorts (12), who suffer the heaviest burdens of influenza-
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related morbidity and mortality, and whose imprinting status will shift through time as cohorts 

born during different inter-pandemic eras grow older. 

 

THE DATA 

The Arizona Department of Health Services (ADHS) provided a dataset containing 9,510 

seasonal H1N1 and H3N2 cases from their statewide surveillance system. Cases of all ages were 

confirmed to subtype by PCR and/or culture, primarily from virologic testing at the Arizona 

State Public Health Laboratory. A smaller number of positive influenza tests were obtained 

through reporting by other clinical labs, which has been mandatory in Arizona since 2004 (29). 

Cases were observed across 22 years of influenza surveillance, from the 1993-1994 influenza 

season through the 2014-2015 season, although sample sizes increased dramatically after the 

2009 pandemic (Table	2-1). The data included positive test results from patients in hospitals, 

long-term care facilities, correctional facilities, and outpatient clinics, and thus captured a range 

of case severities. 

Following CDC standards, ADHS defines the influenza season as epidemiological week 

40 (around early October) through week 39 of the following year (30). The 2008-2009 and 2009-

2010 influenza seasons spanned the first and second wave, respectively, of the 2009 H1N1 

pandemic. We did not analyze cases observed during this time period, because age distributions 

of infection and molecular drivers of immune memory differed during the 2009 pandemic from 

the normal, drivers of seasonal influenza’s immuno-epidemiology of interest to this study 

(13,17,20).  From the dataset of 9,510 seasonal cases (defined as any case observed outside the 
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2008-2009 or 2009-2010 season), we excluded 58 cases with birth years before 1918 (whose 

imprinting status could not be inferred unambiguously), and one case whose year of birth was 

recorded in error. Ultimately, we analyzed 9,541 cases.  

 

 

 

 

 

Table 2-1. Confirmed cases in surveillance data from Arizona Department of Health Services.  

Data representing the first and second waves of the 2009 H1N1 pandemic (2008-2009 and 2009-2010 

seasons) were excluded. 

Season Confirmed H1N1 Confirmed H3N2 
1993-94 0 101 
1994-95 12 38 
2002-03 71 8 
2003-04 0 71 
2004-05 0 131 
2005-06 1 321 
2006-07 212 28 
2007-08 196 244 
2010-11 472 1204 
2011-12 595 348 
2012-13 80 1578 
2013-14 1475 151 
2014-15 5 2109 
Total 3119 6332 
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THE MODEL 

Reconstructed imprinting patterns 

We reconstructed birth year-specific probabilities of childhood imprinting to H1N1, 

H2N2 or H3N2 using methods described previously (10). These probabilities are based on 

patterns of first childhood exposure to influenza A and reflect historical circulation (Fig.	2-1A). 

Most individuals born between pandemics in 1918 and 1957 experienced a first influenza A virus 

(IAV) infection by H1N1, and middle-aged cohorts born between pandemics in 1957 and 1968 

almost all were first infected by H2N2 (note that because the first influenza exposure may occur 

after the first year of life, individuals born in the years leading up to a pandemic have some 

probability of first infection by the new pandemic subtype, Fig. 2-1A). Ever since its emergence 

in 1968, H3N2 has dominated seasonal circulation in humans, and caused the majority of first 

infections in younger cohorts. However, H1N1 has also caused some seasonal circulation since 

1977, and has imprinted a fraction of all cohorts born since the mid-1970s (Fig. 2-1A).  

Reconstructions assumed children age 0-12 in the year of case observation might not yet 

have been exposed to any influenza virus. Interactions between imprinting and vaccination of 

naïve infants are plausible, but poorly understood (10,31). We did not consider childhood 

vaccination effects here; only a small percentage of individuals in the ADHS data were born at a 

time when healthy infants were routinely vaccinated against influenza. 
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Figure 2-1.  Model and expectations under different imprinting hypotheses.  

(A) Reconstructed, birth year-specific probabilities of imprinting (representative example specific to USA 

for cases observed in 2015). Throughout the manuscript, group 1 HA subtypes are represented in blue 

and group 2 subtypes in red. (B) Expected imprinting protection against H1N1 or H3N2 under the three 

tested models. (C) Cartoon of age-specific risk curve. The shape of this curve is purely hypothetical, but 

each tested model fit a similar step function to data. (D-F) Fraction of each birth year unprotected by their 

childhood imprinting (from A) determines the shape of birth year-specific risk. (G-I) A linear combination of 
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age-specific risk (C), and birth year-specific risk (D-F) give the expected age distribution of H1N1 or H3N2 

cases under each model. 

 

Expected age distributions under alternate imprinting models 

If HA subtype-level imprinting protection shapes seasonal influenza risk, primary 

exposure to HA subtype H1 or H3 in childhood should provide lifelong protection against 

modern variants of the same HA subtype. If imprinting protection acts primarily against specific 

NA subtypes, lifelong protection will be specific to N1 or to N2 (Fig. 2-1B). Alternatively, if 

broad HA group-level imprinting shapes seasonal influenza risk, then cohorts imprinted to HA 

subtype H1 or H2 (both group 1) should be protected against modern, seasonal H1N1 (also group 

1), while only cohorts imprinted to H3 (group 2) would be protected against modern, seasonal 

H3N2 (also group 2) (Fig.	2-1B). Collinearities between the predictions of different imprinting 

models (Fig.	1D-I) were inevitable, given the limited diversity of influenza antigenic subtypes 

circulating in humans over the past century (reflected in Fig. 2-1A). Note that middle-aged 

cohorts, which were first infected by H2N2, are crucial, because they provide the only leverage 

to differentiate between imprinting at the HA subtype, NA subtype or HA group-level level (Fig.	

2-1B).  

Our approach distinguishes between age-specific risk factors of influenza infection 

related to health and social behavior, and birth year-specific effects related to imprinting. 

Specifically, age-specific risk could be influenced by medical factors like age-specific vaccine 

coverage, age-specific risk of severe disease, and immunosenescence, or by behavioral factors 

like age-assorted social mixing, and age-specific healthcare seeking behavior. These factors 



 

 

91 

should have similar impacts on any influenza subtype. In contrast, imprinting effects are 

subtype-specific. Thus, we fit a step function to characterize the shape of age-specific risk of any 

confirmed influenza infection. Simultaneously, we modeled residual, subtype-specific 

differences in risk as a function of birth year, to focus on the possible role of childhood 

imprinting in H1N1 or H3N2 infections. Each tested model used a linear combination of age-

specific risk (Fig.	2-1C) and birth year-specific risk (Fig.	2-1D-F) to generate an expected 

distribution of H1N1 or H3N2 incidence (Fig.	2-1G-I). Note that for a given birth cohort, age-

specific risk changed across progressive years of case observation (as the cohort got older), 

whereas birth year-specific risk was constant over time. 

To test quantitatively whether observed subtype-specific differences in incidence were 

most consistent with imprinting at the HA subtype, NA subtype or HA group level, or with no 

contribution of imprinting, we fitted a suite of models to each data set using a multinomial 

likelihood and then performed model selection using AIC. AIC is used to compare the relative 

strength of statistical support for a set of candidate models, each fitted to the same data, and 

favors parsimonious models that fit the data well (32,33). Technical details are provided in the 

Methods. 

 

Tested models 

We fit a set of four models to the ADHS data set. The simplest model contained only age-

specific risk (abbreviated A), and more complex models added effects from imprinting at the HA 

subtype level (S), at the HA group level (G), or at the NA subtype level (N): abbreviated AS, 

AG, and AN, respectively. The age-specific risk curve took the form of a step function, in which 
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relative risk was fixed to 1 in age bin 0-4, and one free parameter was fit to represent relative risk 

in each of the following 12 age bins: {5-10, 11-17, 18-24, 25-31, 32-38, 39-45, 46-52, 53-59, 60-

66, 67-73, 74-80, 81+}. Within models that contained imprinting effects, two additional free 

parameters described the relative risk of confirmed H1N1 or H3N2 infection, given imprinting 

protection against that seasonal subtype. 

 

Effect of influenza evolutionary rate on age profiles 

We used publicly available data from Nextstrain (34,35), and from one previously 

published study (36), to calculate annual antigenic advance, which we defined as the antigenic 

distance between strains of a given lineage (pre-2009 H1N1, post-2009 H1N1 or H3N2) that 

circulated in consecutive seasons (Methods). The “antigenic distance” between two influenza 

strains is used as a proxy for similarity in antigenic phenotype, and potential for immune cross-

protection. A variety of methods have been developed to estimate antigenic distance using 

serological data, genetic data, or both (35–37). 

To assess the impact of antigenic evolutionary rate on the epidemic age distribution, we 

tested whether the proportion of cases in children increased in seasons associated with large 

antigenic changes. If the rate of antigenic drift is a strong driver of age-specific influenza risk, 

then the fraction of influenza cases observed in children should be negatively related to annual 

antigenic advance (28). In other words, strains that have not changed much antigenically since 

the previous season should be unable to escape pre-existing immunity in immunologically 

experienced adults, and more restricted to causing cases in immunologically naïve children; 

strains that have changed substantially will be less restricted to children.  
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Figure 2-2. Observed age distributions, Arizona.  

Points show fraction of confirmed H1N1 or H3N2 cases observed in each single year of age. Lines show 

a smoothing spline fit to observed distributions. (A) All confirmed cases in the data (aggregate across all 

seasons). (B-G) Age distributions from individual seasons in which both H1N1 and H3N2 circulated 

(seasons with ≥ 50 confirmed cases of each subtype are shown here. See Fig. 2-S1 for all seasons). 
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RESULTS 

Subtype-specific differences in age distribution 

Seasonal H3N2 epidemics usually caused more cases in older cohorts, while H1N1 

caused a greater proportion of cases in young and middle-aged adults (Figs.	2-2,	2-S1,	2-S2). 

These patterns were apparent whether we compared H3N2 epidemic age distributions with those 

caused by the pre-2009 seasonal H1N1 lineage, or with the post-2009 lineage. Observed patterns 

are consistent with the predicted effects of cohort-specific imprinting (Fig.	2-1), and with 

previously reported differences in age distribution of seasonal H1N1 and H3N2 incidence (11–

13,27). See Fig.	2-2	for seasons where H1N1 and H3N2 co-circulated in substantial numbers, 

and Figs.	2-S1,	2-S2 for the entire dataset and alternate smoothing parameters.  

 

Imprinting model selection 

The model containing NA subtype-level imprinting received the most statistical support, 

and the model containing HA subtype-level imprinting was the second most preferred in terms of 

AIC (Fig.	2-3,	Table	2-2). The ADHS data showed a strong preference for NA subtype-level 

imprinting over HA subtype-level imprinting (DAIC=23.42), and effectively no statistical 

support for broad, HA group-level imprinting (DAIC=245.18), or for an absence of imprinting 

effects (DAIC=380.47). Visual assessment of model fits (Fig.	2-3	C-D) confirmed that models 

containing imprinting effects at the narrow, NA or HA subtype levels provided the best fits to 

data. The lack of support for the no-imprinting model supports the hypothesis that imprinting 

from the first exposure shapes lifelong seasonal influenza risk, just as it does avian-origin 
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influenza (10, 12). However, imprinting appears to act more narrowly against seasonal influenza 

than against avian influenza, providing cross protection only to a specific NA or HA subtype, 

instead of broader, HA group-level protection. This result is consistent with the idea that 

immunodominance of variable HA epitopes limits the breadth of immune cross protection 

deployed against familiar, seasonal influenza subtypes (19,20). 

As expected (see Fig.	2-1	G-I), predictions from the two best models were highly 

collinear, except in their risk predictions among middle-aged, H2N2-imprinted cohorts (birth 

years 1957-1968), and some other minor differences arising from normalization across birth-

years.  

 

Fitted risk patterns 

Fitted age-specific risk curves took similar forms in all tested models, with risk 

decreasing rapidly from birth through adolescence, and then decreasing much more slowly until 

the end of life (Fig.	2-2A	shows	the	fitted	curve	from	the	best	model). Estimates of imprinting 

parameters were less than one, indicating some reduction in relative risk of infection (Table 2-2). 

Within the best model, estimated reductions in relative risk from childhood imprinting were 

stronger for H1N1 (0.34, 95% CI 0.29-0.42) than for H3N2 (0.71, 95% CI 0.62-0.82). Table	2-2 

shows parameter estimates and 95% profile confidence intervals from all models fitted.  
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Figure 2-3. Model fits and model selection.  

(A) Fitted effects of age and (B) imprinting from model AN, which provided the best fit to data. (C-D) 

Model fits to observed age distributions of H1N1 (C) and H3N2 (D) cases. Model name abbreviations 

indicate which factors were included: A = age-specific risk, N = NA subtype-level imprinting, S = HA 

subtype-level imprinting, G = HA group-level imprinting. 
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Table 2-2. Maximum likelihood parameter estimates and 95% profile confidence intervals from 

each model fit to ADHS data.  

Model AN AS AG A 
DAIC 0.00 23.42 245.18 380.47 
H1N1 impr. 
protection 0.34 (0.29-0.42) 0.29 (0.24-0.35) 0.67 (0.58-0.78)   
H3N2 impr. 
protection 0.71 (0.62-0.82) 0.9 (0.78- >1) 0.69 (0.6-0.8)   
Ages 0-4 Reference group: Value fixed to 1 
Ages 5-10 0.68 (0.63-0.74) 0.66 (0.61-0.72) 0.66 (0.62-0.72) 0.62 (0.57-0.68) 
Ages 11-17 0.33 (0.30-0.36) 0.31 (0.28-0.34) 0.33 (0.30-0.37) 0.30 (0.28-0.34) 
Ages 18-24 0.38 (0.35-0.42) 0.36 (0.32-0.4) 0.39 (0.35-0.43) 0.35 (0.32-0.39) 
Ages 25-31 0.34 (0.32-0.38) 0.33 (0.30-0.37) 0.34 (0.31-0.38) 0.31 (0.28-0.35) 
Ages 32-38 0.28 (0.26-0.32) 0.26 (0.24-0.3) 0.28 (0.26-0.32) 0.26 (0.24-0.29) 
Ages 39-45 0.23 (0.20-0.27) 0.21 (0.18-0.24) 0.24 (0.22-0.28) 0.21 (0.20-0.24) 
Ages 46-52 0.24 (0.22-0.28) 0.21 (0.19-0.24) 0.24 (0.22-0.28) 0.23 (0.20-0.26) 
Ages 53-59 0.22 (0.20-0.26) 0.20 (0.18-0.23) 0.20 (0.18-0.24) 0.20 (0.18-0.23) 
Ages 60-66 0.21 (0.19-0.24) 0.22 (0.20-0.26) 0.19 (0.16-0.22) 0.18 (0.16-0.21) 
Ages 67-73 0.22 (0.20-0.26) 0.25 (0.22-0.29) 0.20 (0.18-0.23) 0.19 (0.18-0.22) 
Ages 74-80 0.23 (0.20-0.26) 0.25 (0.22-0.3) 0.20 (0.18-0.24) 0.20 (0.18-0.23) 
Ages 81+ 0.15 (0.14-0.18) 0.17 (0.15-0.2) 0.13 (0.12-0.16) 0.13 (0.12-0.15) 
     

All estimated parameters represent the relative risk of confirmed infection, given the factors listed in the 

left-hand column. Model name abbreviations specific which factors were included. A = age-specific risk, N 

= NA subtype-level imprinting, S = HA subtype-level imprinting, G = HA group-level imprinting. 
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Effect of evolutionary rate 

To test for effects of evolutionary rate on epidemic age distribution, we searched for 

decreases in the proportion of cases among children in seasons associated with antigenic novelty, 

when highly drifted strains might be more able to infect immunologically experienced adults. 

Consistent with this expectation, the data showed a slight negative but not significant association 

between annual antigenic advance and the fraction of H3N2 cases observed in children (Fig.	2-

4A). However, note that no clear relationship emerged between antigenic novelty and the 

fraction of cases observed in children and adults older than 10 (Fig. 2-4A). These are the cohorts 

in which epidemiological data show the clearest differences between H1N1 and H3N2’s age-

specific impacts (Fig. 2-2); if rate of antigenic evolution is a dominant driver of age-specific 

differences in  

incidence, we would have expected to see clearer evidence of evolutionary rate effects within 

adults cohorts, not just in the youngest children. The data contained too few influenza seasons 

with sufficient numbers of confirmed H1N1 cases to support meaningful Spearman correlation 

coefficients for either pre-2009 or post-2009 seasonal H1N1 lineages. 

Furthermore, if evolutionary rate is the dominant driver of subtype-specific differences in 

epidemic age distribution, then when subtypes H1N1 and H3N2 show similar degrees of annual 

antigenic advance,  their age distributions of infection should appear more similar. However, the 

data showed that differences in H1N1 and H3N2’s age-specific impacts did not converge when 

lineages showed similar annual advance. When comparing the fraction of cases observed in 

specific age classes, H1N1 data consistently clustered separately from H3N2, with H1N1 
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consistently causing fewer cases at the extremes of age (children 0-10 and elderly adults 71-85), 

but more cases in middle-aged adults, regardless of antigenic novelty (Fig.	2-4A). Smoothed  

 
Figure 2-4. Effect of antigenic advance on age distribution.  

(A) Relationship between annual antigenic advance and the fraction of cases observed in children (0-10), 

or in adult age groups. Each data point represents a single influenza season in which at least 100 

confirmed cases of a given subtype were observed. Blue label shows Spearman correlation between the 

fraction of H3N2 cases observed in each age group and annual antigenic advance. Blue dashes show 

linear trend fitted using lm() in R. (B) Season-specific age distributions of infection, colored by antigenic 

advance since the previous season. 
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density plots showed no clear relationship between annual antigenic advance and age distribution 

(Fig.	2-4B). Overall, the data showed a weak, but not significant signal that incidence may be 

more restricted to young children when antigenic novelty is low, but the data did not show strong 

evidence that the magnitude of annual antigenic drift is a systematic driver of epidemic age 

distribution across the entire population. 

 

DISCUSSION 

We analyzed a large epidemiological surveillance dataset and found that seasonal 

influenza subtypes H1N1 and H3N2 cause different age distributions of infection, confirming 

previously reported patterns (11–13). We analyzed several possible drivers of these differences 

side-by-side, and found greatest support for the hypothesis that immunological imprinting leads 

to lasting protection against the NA or HA subtype of the first influenza strain encountered in 

childhood (11,12). The data did not support strong effects from broader HA group-level 

imprinting, as recently detected for novel zoonotic or pandemic viruses (8,10), or from 

differences in rates of antigenic evolution (28). Our results suggest that the first childhood 

infection leaves a lifelong imprint of immune memory to seasonal influenza, and that this imprint 

is not erased even after decades of exposure to or vaccination against dissimilar influenza 

subtypes. 

As additional evidence that birth year, rather than age, drives subtype-specific differences 

in seasonal influenza risk, we note that H3N2’s impacts have not always been focused in elderly 
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cohorts. When H3N2 first emerged in 1968, it caused little or no excess mortality in the 

elderly, putatively because those who were elderly in 1968 had been exposed, as children or 

young adults, to an H3 virus that had circulated in the late 1800s (6,8). Meanwhile, H1N1-

imprinted cohorts (those ~10-50 years old at the time of the H3N2 pandemic), experienced 

considerable excess mortality in the H3N2 pandemic (6), and continue to experience excess 

H3N2 morbidity and mortality today as elderly adults ((11–13,27), Fig. 2-2). In short, comparing 

data from H3N2’s emergence in 1968 to its seasonal circulation today shows impacts that have 

remained consistent with respect to birth year, but that have shifted with respect to age.  

In model comparison, the data showed the strongest support for effects from childhood 

imprinting to NA. Although NA is not as intensively studied as HA, these results emphasize the 

increasingly recognized importance of both antigens as drivers of protection against seasonal 

influenza (14–16). Realistically, some combination of effects from both HA and NA subtype-

level imprinting probably shape seasonal influenza risk. The models containing NA and HA 

subtype-level imprinting produced very similar fits to data and emerged as the top two models in 

terms of AIC. Unfortunately, collinearities between predictions of the simple, single-antigen 

models considered here arose inevitably from influenza’s limited diversity of circulation in 

humans over the past century. These collinearities prevented us from testing more complicated 

models of combined effects from imprinting to HA and NA, or to other antigens such as internal 

proteins. Because analysis of population-level data can support only a limited scope of inference, 

deeper insights into the respective roles of HA, NA and other influenza antigens as drivers of 

cohort effects will most likely need to come from focused immunological cohort studies in which 

individual histories of influenza infection are known, such as those recently funded by the 
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National Institutes of Health (38). Alternatively, the development of immunological biomarkers 

for diagnosis of imprinting status in individual patients could substantially increase the power of 

epidemiological inference, which (as in this study) currently relies instead on probabilistic 

reconstructions of imprinting histories according to birth year. 

Small sample sizes may have limited our power to detect a statistically significant 

relationship between annual antigenic advance and epidemic age distribution. The data did show 

a weak trend supporting the idea that in seasons where antigenic advance is low, the seasonal 

influenza cases may be more restricted to the youngest, immunologically naïve children (28). 

But the data did not reveal a clear relationship between antigenic advance and the fraction of 

cases occurring in adult age groups, the same age groups where epidemiological data reveals 

distinct subtype-specific differences in incidence proportion. This lack of clear signal is 

consistent with growing recognition that existing methods to map antigenic distance, which rely 

heavily on hemagglutination inhibition (HI) assays performed in laboratory ferrets, do not 

always capture realistic patterns of cross-reactivity in humans (reviewed in 39,40). Further, 

glycosylation of HA can cause antigenic escape in large subsets of the human population, yet 

such posttranslational modifications may be perceived as neutral in existing antigenic maps 

(40,41). Moreover, existing metrics of evolutionary and antigenic advance are based on 

properties of HA (34–36), but our epidemiologic data support an equal if not stronger role of 

NA.  We speculate that a clearer relationship between epidemic age distribution and antigenic 

drift might emerge if antigenic distance measures were able to incorporate cohort-specific 

variation in immune history, and impacts from multiple antigens.  
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While our results provide some valuable new clues about the underlying immune drivers 

of imprinting protection against seasonal influenza, we can only speculate as to the exact 

mechanism. Traditionally, narrow, within-subtype influenza immunity is thought to decay 

quickly in the face of antigenic drift. Signals of rapid drift are largely based on HI data, which 

measures antibody responses to just a handful of immunodominant, variable epitopes found near 

the receptor-binding domain on the HA head. These epitopes accumulate substitutions rapidly, 

and so strains that circulated more than 14 years apart rarely show measurable cross-protective 

HI titers (36). The short timescale of immune memory to variable HA head epitopes stands in 

contrast to patterns observed in our study and others (11–13), where within-subtype immune 

memory imprinted in childhood appears to persist for an entire human lifetime, remaining 

evident even in the oldest cohorts in the data. Thus, we speculate that within-subtype imprinting 

protection arises via different immune mechanisms than the well-studied antibody responses 

measured by the HI assay. 

One possibility is that within-subtype imprinting protection is driven by antibody 

responses to intermediately conserved epitopes, which might remain stable over time, but lack 

structural homology across different HA and NA subtypes. We rule out a strong role from 

antibody responses against the best-studied conserved epitopes (e.g. those on the stalk), which 

tend to provide broader, cross-subtype protection (10,17,19) than supported by model 

comparison. But recent studies show that B cell memory shifts to focus on conserved influenza 

epitopes as we grow older, presumably because a lifetime of exposures to drifted, seasonal H1N1 

or H3N2 variants repeatedly back-boosts memory of unchanged epitopes (23,24). Repeat 
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boosting of intermediately conserved HA or NA antigens could explain the longevity of subtype-

level imprinting protection.  

Another potential explanation supported by recent immunological data (26), is that the 

memory B cell clones developed during the first childhood influenza exposure later adapt via 

somatic hypermutation to “follow” antigenic targets as they drift over time. Thus, the first 

influenza exposure in life may fill a child's memory B cell repertoire with clones that will serve 

in the future, not as final products but as prototypes that can be rapidly and effectively tailored to 

recognize drifted influenza strains of the same subtype. The adaptability of the B cell repertoire 

would not be detectable in traditional HI panels, which are collected using sera from ferrets 

exposed to a single influenza variant, and do not reflect the development of the human B cell 

repertoire across repeated, seasonal influenza exposures. A final possibility is that cellular 

immunity (e.g. CD4+ T cell memory), which would not be captured in serological assays, plays 

an underappreciated role in imprinting protection. 

Signals of imprinting protection are anomalously strong in the current cohort of elderly 

adults, as reflected by higher estimates of imprinting protection to H1N1 than H3N2. For nearly 

four decades from 1918-1957, H1N1 persisted as the only strain circulating in humans. The 

oldest subjects in our data were born slightly after its emergence in 1918, and would not have 

encountered an influenza virus of any subtype but H1N1 until after age 30. Decades of early-life 

exposures to H1N1 variants may have reinforced and expanded the breadth of H1N1-specific 

immune memory in these oldest cohorts. But this strong protection against H1N1 seems to come 

at a cost; even after decades of seasonal H3N2 exposure, and vaccination, older cohorts have 

evidently failed to develop equally strong protection against H3N2. Antigenic similarity between 
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H1N1 strains that circulated earlier in the 20th century (which caused imprinting in older 

cohorts), and modern H1N1 lineages that emerged in 1977 and in 2009, may also have amplified 

the strength and longevity of H1N1 protection (4,42). One additional consideration is that HA 

group 1 antigens appear to induce narrower immune responses than structurally distinct HA 

group 2 antigens, which may be better able to induce cross-group responses (21). Perhaps elderly 

cohorts imprinted to group 1 antigens have been trapped in narrower responses that offer 

exceptional protection against strains similar to that of first exposure but relatively poor 

adaptability to other subtypes.  

Given that cohorts born after 1968 have had much more varied early life exposures to 

both H1N1 and H3N2, it is unclear whether equally strong, subtype-specific biases in protection 

will persist when post-1968 birth cohorts eventually become elderly. Determining the precise 

immune mechanism(s) responsible for subtype-level imprinting is necessary to project long-term 

shifts in influenza-related incidence, and possibly in mortality. The vast majority of influenza-

related deaths occur in adults over age 65, and H3N2 has caused many times the number of 

fatalities in high-risk elderly cohorts as seasonal H1N1, even in the post-2009 pandemic period 

(12,27,43). These patterns may arise because H3N2 is intrinsically more virulent than H1N1, but 

we speculate that imprinting protection, which currently limits the incidence of clinically-

attended H1N1 infection in the elderly, may also explain these differences. In the future, cohorts 

imprinted to H2N2 (born c. 1950-1968) will become elderly, and would expect  protection 

against H3N2 via NA subtype-level imprinting, while HA H2-level imprinting would not be of 

much use against any currently circulating seasonal subtype. If future elderly cohorts continue to 

show strong subtype-specific biases from imprinting, our results would corroborate the idea that 



 

 

106 

mortality from H1N1 may increase in the future (8,12) as protection in the elderly shifts toward 

other subtypes. On the other hand, future generations of elderly adults, especially those born 

after H1N1 and H3N2 began to co-circulate in 1977, may show a greater ability to act as 

immunological generalists, with effective defenses against multiple influenza subtypes. 

One limitation of this study was that we could not model the impact of seasonal influenza 

vaccination explicitly, as the vaccination status of subjects in the ADHS data was unknown. We 

note that the influenza vaccine contains both an H1N1 and H3N2 strain, and so on average, 

influenza vaccination should protect individuals similarly against both subtypes. However, we 

also acknowledge that influenza vaccine effectiveness varies by season, age group, and subtype, 

in ways that are poorly understood and difficult to measure (44). These asynchronous and multi-

dimensional shifts in vaccine effectiveness may contribute to variability in H1N1 and H3N2’s 

age distributions across influenza seasons. 

Another limitation of this study was the low number of confirmed cases available in the 

pre-2009 era.  To separate age-specific risk effects from birth year-specific cohort effects, the 

greatest power will come from large data sets collected continuously over decades, so that 

individual birth cohorts can be followed as they become considerably older. We emphatically 

echo earlier calls (45) for more systematic sharing of single year-of-age in influenza surveillance 

data, standardization of sampling effort, and reporting of age-specific denominators, which could 

substantially boost the scientific community’s ability to link influenza's genetic and antigenic 

properties with epidemiological outcomes. 

Altogether, this analysis confirms that the epidemiological burden of H1N1 and H3N2 is 

shaped by cohort-specific differences in childhood imprinting (8,11,12,46). The finding that such 
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imprinting acts at the HA or NA subtype level informs prediction of the future epidemiological 

impact of specific seasonal subtypes in high-risk elderly cohorts. The lack of support for broader, 

HA group-level imprinting effects emphasizes the consequences of immunodominance of 

influenza’s most variable epitopes, and the difficulty of deploying broadly protective memory B 

cell responses against familiar, seasonal strains. Overall, these findings further our understanding 

of how antigenic seniority shapes cohort-specific risk during epidemics. The fact that elderly 

cohorts show relatively weak immune protection against H3N2, even after living through 

decades of seasonal exposure to or vaccination against H3N2, suggests that antibody responses 

acquired in adulthood do not provide the same strength of immune protection as responses 

primed in childhood. Immunological experiments that consider multiple viral exposures, and 

cohort studies in which individual histories of influenza infection are tracked from birth, promise 

to illuminate how B cell and T cell memory develop across a series of early life exposures. In 

particular, these studies may provide clearer insights than epidemiological data into which 

influenza antigens, epitopes and immune effectors play the greatest role in immune imprinting, 

and how quickly subtype-specific biases become entrenched across the first or the first few 

exposures.  

MATERIALS AND METHODS 

Estimation of age from birth year in ADHS data 

The data contained three variables, influenza season, birth year and confirmed subtype. 

For most cases, birth year was extracted directly from the reported date of birth in patient 

medical records, but age was not known. We estimated patient age at the time case observation 
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using the formula [year of observation]-[birth year]. To ensure that the minimum estimated age 

was 0, the second year in the influenza season of case observation was considered the calendar 

year of observation (e.g. 2013 for the 2012-2013 season).  

 

Splines 

In Figure	2-2, smoothing splines were fit to aid visual interpretation of noisy data. We fit 

splines using the command smooth.spline(x = AGE, y = FRACTIONS, spar = 0.8) in R version 

3.5.0. Variables AGE and FRACTIONS were vectors whose entries represented single years of 

age, and the fraction of cases observed in the corresponding age group. The smoothing parameter 

0.8 was chosen to provide a visually smooth fit. Alternative smoothing parameter choices (0.6 & 

1.0) are shown in Figs.	2-S1,	2-S2. Although the choice of smoothing parameter changed the 

shape of each fitted spline, qualitative differences between splines fitted to H1N1 or H3N2 were 

robust. 

 

Model formulation 

For each unique season in which cases were observed, define p as a vector whose entries 

represent the expected probability that a randomly drawn H1N1 or a randomly drawn H3N2 case 

was observed in an individual of age a. Each model defined, p as a linear combination of age-

specific risk, birth year-specific risk (i.e. imprinting effects). All tested models were nested 

within the equation: 

 𝑝 = 𝐴 ∗ 𝟏oGRG(𝐼oGRG) ∗ 𝟏opRg(𝐼opRg)  

  (2-1) 
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To include risk factors that only modulated risk from one subtype, we included indicator 

functions 1H1N1 and 1H3N2, which took value 1 if p described the expected age distribution of 

H1N1 or H3N2 cases, respectively, and 0 otherwise.  

 

Age-specific risk (A) 

Age-specific risk was defined as a step function, in which relative risk was fixed to value 

1 in an arbitrarily chosen age bin, and then z-1 free parameters, denoted r2 to rz, were fit to 

describe relative risk in all other age bins. Below, 1i  are indicator functions specifying whether 

each vector entry is a member of age bin i. To obtain the predicted fraction of cases observed in 

each single year of age, we normalized the risk distribution so that predicted risk across all age 

groups summed to 1. 

 𝐴 = 𝑛𝑜𝑟𝑚(𝟏G + 𝟏g𝑟g + ⋯𝟏9𝑟9)  

  (2-2) 

 

Imprinting (I)  

An indicator function defined whether a given prediction vector described risk of 

confirmed H1N1 or H3N2 infection. Let fIHxNy be vectors describing the fraction of cases of each 

birth year that were protected against strain HxNy by their childhood imprinting. We defined 

rIHxNy as free parameters describing the risk of confirmed HxNy infection, given imprinting 

protection. Finally, the factor describing the effect of imprinting (I) was defined as: 

 𝐼o�R$ = 𝟏o�R$ ∗ [𝑓�o�R$𝑟�o�R$ + (1 − 𝑓�o�R$)]  (2-3) 
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Likelihood 

We used equations 1-3 to generate predicted case age distributions (p) for each influenza 

season (s) in which cases were observed in the data. Then, the likelihood was obtained as a 

product of multinomial densities across all seasons. If ns represents the total number of cases 

observed in a given season, x0cs,…xmcs each represent the number of cases observed in each single 

year of age/single year of birth, and if p0cs…pmcs each represent entries in the model’s predicted 

age/birth year-distribution of cases, then the likelihood is given by:  

 ℒ = ∏ n£!
�¤£!…�¥£!

𝑝¦r
�¤£ … 𝑝ur

�¥£
r  

  

  (2-4) 

Model fitting and model comparison 

We fit models containing all possible combinations of the above factors to influenza data 

from each season in the data. We simultaneously estimated all free parameter values using the 

optim() function in R. We calculated likelihood profiles and 95% profile confidence intervals for 

each free parameter. Confidence intervals were defined using the method of likelihood ratios 

(32). 

 

Antigenic advance 

We obtained antigenic distance estimates from Nextstrain (nextstrain.org)(34,47), and 

from source data from Figure 3 in Bedford et al. (36). Nextstrain calculates antigenic distance 

using genetic data from GISAID (48), and using methods described by Neher et al. (35). We 

analyzed “CTiter” estimates from Nextstrain, which correspond to Neher et al.’s “tree model” 
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method. We repeated analyses using estimates from the similar “substitution model” method and 

verified that our choice of antigenic distance metric did not meaningfully impact our results 

(results not shown). Datasets from Nextstrain and Bedford et al. both contained redundant 

antigenic distance estimates for the H3N2 lineage, but only Bedford et al. analyzed the pre-2009 

H1N1 lineage, and only Nextstrain data analyzed the post-2009 H1N1 lineage. The antigenic 

distance estimates reported by Bedford et al. were roughly proportional to those reported on 

Nextstrain, but greater in absolute magnitude (35). To enable visualization of all three lineages 

on the same plot axes, we rescaled pre-2009 H1N1 estimates from Bedford et al. using the 

formula dNextstrain = 0.47dBedford. The scaling factor was chosen so that directly-comparable H3N2 

distance estimates obtained using each method spanned the same range (Fig.	2-S3). The 

Nextstrain data files used in this analysis are archived within our analysis code. 
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Supplementary Figure 2-S1. ADHS age distributions, all seasons.  

Supplement to Fig.	2-2 showing observed age distributions from all influenza seasons. Observed case 

fractions (points) were only plotted if 10 or more cases of a given subtype were confirmed, to avoid 

extreme stretching of the y axis. Smoothing splines were only plotted if 50 or more cases of a given 

subtype were observed, as fits to fewer data points would not have been meaningful. 
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Supplementary Figure 2-S2. Alternate smoothing parameters, AZDHS data.  

Supplement to Fig.	2-2, with smoothing parameters chosen to fit splines that are less (A-F), or more (G-L) 

smooth than the splines shown in the main text. Differences between H1N1 and H3N2’s age-specific 

impacts remain evident, especially in the oldest cohorts, regardless of smoothness. 
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Supplementary Figure 2-S3. Comparison of rescaled antigenic distance estimates from the 

Bedford et al., and Nextstrain datasets.  

Points represent average antigenic position of all isolates from a given calendar year. 
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Chapter 3: Mechanistic dose-response modeling of animal 

challenge data shows that intact skin is a crucial barrier to 

leptospiral infection 

ABSTRACT 

Leptospirosis is a widespread and potentially life-threatening zoonotic disease caused by 

spirochetes of the Leptospira genus. Humans become infected primarily via contact with 

environmental reservoirs contaminated by the urine of shedding mammalian hosts. Populations 

in high transmission settings, such as urban slums and subsistence farming communities, are 

exposed to low doses of Leptospira on a daily basis. Under these conditions, numerous factors 

determine whether infection occurs, including the route of exposure and inoculum dose. Skin 

wounds and abrasions are risk factors for leptospirosis, but it is not known whether broken skin 

is necessary for spillover, or if low-dose exposures to intact skin and mucous membranes can 

also cause infection. To establish a quantitative relationship between dose, route, and probability 

of infection, we performed challenge experiments in hamsters and rats, developed mechanistic 

dose-response models representing the spatial dynamics of within-host infection and persistence, 

and fitted models to experimental data. Results show intact skin is a strong barrier against 

infection, and that broken skin is the predominant route by which low-dose environmental 

exposures cause infection. These results identify skin integrity as a bottleneck to spillover of 

Leptospira and underscore the importance of barrier interventions for preventing leptospirosis. 
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BACKGROUND 

 Much of the global burden of zoonotic disease is caused by familiar (and often 

neglected) zoonoses that remain difficult to control [1–3]. In particular, high-burden zoonotic 

pathogens including many zoonotic protozoans and helminths, nontyphoidal Salmonella spp., 

Leptospira spp., and Toxoplasma gondii, are difficult to control because they persist well in 

environmental reservoirs and have ample opportunities for spillover into humans. 

 For environmentally persistent zoonotic pathogens, a complicated suite of factors 

governs spillover risk. Understanding the interplay between these factors is a crucial first step 

toward reducing human incidence. Upstream factors include the level of environmental 

contamination (in turn governed by disease ecology in the animal host population [4]), and 

human exposures to contaminated environments. These upstream factors determine the dose and 

route of exposure, which interact with host physical and immune defenses to determine the 

probability that exposure leads to spillover [1].  Dose-response models quantify the relationship 

between the dose and the probability of infection, illness, or death, for a given route of exposure 

[5–7]. By fitting these models to data from outbreaks or challenge studies, we aim to quantify the 

infectivity of a given pathogen, and the impact of underlying biological factors such as host 

traits, susceptibility or immune factors.    

 Leptospirosis is an emerging and neglected disease caused by spirochetes of the 

genus Leptospira. In severe cases, leptospirosis can cause life-threatening symptoms including 

renal failure, hemorrhage and respiratory distress [8,9]. Leptospirosis is an environmentally-

transmitted zoonosis with a worldwide distribution, but the major burden is in impoverished 

populations [10]. The spirochete can infect most mammalian hosts, and can be shed chronically 
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by asymptomatic carriers [8,11]. Humans become infected after exposure to water or soil 

contaminated by the urine of infected animals, and Norway rats (Rattus norvegicus, hereafter 

referred to as rats) are the primary reservoir species in many urban settings [12,13]. A colony of 

infected rats can shed on the order of one billion leptospires per day [14], but leptospires do not 

persist at high densities in soil and water [15]. Thus, low-dose environmental exposures most 

likely cause the majority of infections. 

Skin wounds have been associated with high risk of leptospirosis in humans [16] and in 

rats [14,17]. In humans, broken skin may directly increase the probability of zoonotic spillover 

by increasing the susceptibility of human hosts [18]. In rats, broken skin may increase the 

probability of zoonotic spillover indirectly by helping maintain high prevalence and shedding in 

a key reservoir species, and in turn, higher levels of environmental contamination [17]. To 

quantify how skin integrity affects the probability of infection, given exposure to a particular 

dose, we conducted experimental infections in hamsters and rats, in which we introduced a range 

of inoculum doses through intact, shaved, or abraded skin, through the conjunctiva, and through 

the traditional intraperitoneal (IP) route. We then developed mechanistic dose-response models 

to quantify the protective effect of intact skin as a physical immune barrier against Leptospira. 

 

METHODS 

Experimental infections 

All animals were infected with a virulent clinical isolate from Brazil [14,19], Leptospira 

interrogans serovar Copenhageni strain Fiocruz L1-130, with 4 and 8 passages in vivo and in 

vitro, respectively. Leptospires were cultivated in liquid Ellinghausen-McCullough-Johnson-
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Harris (EMJH) medium [20] supplemented with 1% rabbit serum. The cultures were kept up to 7 

days at 30°C, reaching a mid-log phase between 4 and 5 days of culture. Bacteria were counted 

in a Petroff-Hausser counting chamber (Fisher Scientific). 

Experimental infections were performed with 3-week-old male Golden Syrian hamsters 

(Envigo). As previously described [21], groups of 3-4 hamsters were inoculated by 

intraperitoneal (IP) or conjunctival routes using different doses of  strain Fiocruz L1-130, 

ranging from 101 to 108 and from 102 to 108 leptospires, respectively. For infections via the 

abraded skin route, groups of 4 hamsters were shaved over their flank one day before 

inoculation. On the day of challenge each animal amongst groups of 4 hamsters was anesthetized 

with isoflurane in an open-drop method, and an approximately 3-4 cm2 area of the flank skin 

patch was abraded by gentle scraping with a surgical scalpel blade enough to damage the 

epidermis stratum corneum, adopting a methodology previously described [19]. A 50 mL volume 

of EMJH with the respective dose of leptospires was inoculated over the abraded area, followed 

by immediate application of a transparent film dressing (Tegaderm, 3M) to cover and keep the 

inoculum in place for 5 minutes. After removing the dressing, the area was gently washed with 

distilled water. A similar procedure was performed in groups of 4 hamsters for the “shaved 

skin”, without the abrading portion, and “intact skin”, without the shaving and abrading. For the 

latter procedure, the inoculum was performed over the fur on the animal flank. 

Experimental infections were also performed using 3-week-old male Wistar rats 

(Envigo). Groups of 2-3 animals were inoculated by IP route or by abraded skin method as 

described above, using a dose range of 101 to 108 leptospires.  
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Hamsters were monitored twice daily, and rats were monitored 3 times per week up to 21-days 

post-infection. Endpoints in hamsters included signs of disease and death (19).  Since infection is 

asymptomatic and causes persistent renal colonization in rats, we used lipL32-based qPCR [14] 

to evaluate presence of leptospiral DNA in their urine, as an endpoint. Surviving animals at the 

end of the experiment or moribund animals presenting with clinical signs of disease were 

immediately sacrificed by inhalation of CO2. LD50 (Lethal Dose, 50%, in hamsters) and CD50 

(Colonization Dose, 50%, in rats) were calculated as described previously [22]. 

 

Mechanistic dose-response model 

Once an infectious organism contacts a potential host (an event we term “exposure” or 

“inoculation”), infection is a multi-step process in which the infectious organism must cross 

physical immune barriers like the skin or mucous membranes (host entry), and then survive 

attacks from innate or adaptive immune effectors within the host (within-host invasion and 

persistence). Established dose-response models, such as the exponential and beta-Poisson models 

[5], treat infection as a one-step process, in which each organism in the inoculum has some 

probability of surviving both steps and contributing to infection.  To study the specific impact of 

intact skin as a physical immune barrier against host entry, we built on established methods to 

develop a two-step dose-response model that treated host entry and within-host invasion and 

persistence as distinct stochastic processes (Figure 3-1).  

First, based on the measured bacterial concentration in the inoculum stock solution, the 

expected number of organisms, d, in each inoculum was known. But the exact number of 

organisms introduced to the host, D0, could have been slightly higher or lower than the expected  
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Figure 3-1. Model of infection process.  

Organisms introduced via intraperitoneal (IP) inoculation bypass the ‘host entry’ process. Quantity d is 

known from the measured concentration of bacteria in the inoculum stock solution. Quantities D0, Dw and 

DI are not observable. The model probabilistically considers all possible values of these unknown 

quantities. 
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quantity d, and was not directly observable. Our models assumed the exact inoculum dose, D0, 

followed a Poisson distribution with mean d.  

Next, we assumed each infectious organism in D0 had an equal and independent 

probability, pc, of crossing physical immune barriers at the site of inoculation, and that Dw 

organisms successfully reached the within-host environment. Then, we assumed organisms that 

successfully entered the host had a second fixed and independent probability, pp, of successfully 

invading and persisting as part of an established infection. DI represented the number of 

organisms that survived both steps and became founders of an active infection. These 

assumptions imply the number of organisms successfully reaching the within-host environment, 

DW, and the number of organisms establishing within the host, DI, were both distributed 

binomially, with P(DW =k)~B(D0,pc) and P(DI=m)~B(DW,pp). We assumed that inoculations via 

the IP route bypassed physical barriers, such that DW=D0. 

Finally, we assumed infection would occur if one or more organisms survived to establish 

and reproduce within the host, i.e. if DI>0. An alternative hypothesis holds that the minimum 

infecting dose might be greater than one, due to a need for cooperation or collective defense 

among pathogenic organisms. However, the single-organism hypothesis has received more 

scientific support than the threshold hypothesis in other systems [5], and infection occurred 

consistently in IP experiments with expected dose, d, of only 10 leptospires, which definitively 

rules out the existence of a high threshold for Leptospira. 
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Likelihood for IP inoculation experiments and estimation of pp 

Data from IP inoculation experiments enabled us to estimate pp independently of the 

other unknown parameter, pc. This step was necessary because parameters pp and pc occur as a 

product in the likelihood and hence are not identifiable (equation 6). The probability of infection 

after IP inoculation with dose d was: 

 𝑃�(𝑑) = ∑ ∑ V�
¨¤;=©

|¤!
Y �ª𝐷¦𝐷�

« 𝑝t
|@�1 − 𝑝t�

|¤H|@�¬
|¤d|@

¬
|@dG   

  (3-1) 

 

The first bracketed factor describes the Poisson probability that the inoculum contained 

exactly D0 organisms, and the second bracketed factor describes the binomial probability that DI 

of D0  organisms survived to initiate infection. Finally, since D0 and DI were not observable, we 

sum across all possible combinations of D0 and DI values at which infection could have occurred. 

The above equation is identical in form to the exponential dose response model, which simplifies 

as described by Haas, Rose & Gerba [5]: 

 𝑃�(𝑑) = 1 − 𝑒H�t­  

  (3-2) 

 

We found maximum likelihood estimate (MLE), and 95% profile confidence interval of 

parameter pp by fitting to data from IP infection trials.  The likelihood was constructed from the 

binomial probability of observing Id infected individuals out of Nd trials at a given dose, d:  
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 ℒ�𝐼�u&n, 𝑁�u&n, … 𝐼�u-�, 𝑁�u-�|𝑝t� = ∏ ª𝑁�𝐼�
« 𝐼q@(�)(1 − 𝐼)GHq@(�)�   

  (3-3) 

 

Likelihood for other routes of inoculation and estimation of pc, basic model 

After estimating pp, we found maximum likelihood estimates of parameter pc for each 

tested route of inoculation. For non-IP routes of inoculation, the probability of infection was 

similar to that in equation 1, but added an extra binomial factor to account for the probability of 

crossing physical immune barriers at the site of inoculation: 

 

𝑃�(𝑑) = ∑ ∑ ∑ V�
¨¤;=©
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¬
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¬
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  (3-4) 

 

We simplified equation 4 using a strategy similar to Haas, Rose and Gerba’s approach to 

simplification of the standard exponential dose-response model [5]. First, the equation can be 

algebraically rearranged as follows: 

 

𝑃�(𝑑) =

∑ ¯��t}t­�
¨@;(=©­}­­)	
|@!
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(¨¤=¨®);=©(M=­})	
(|¤H|®)!

Y∑ ±
<�t}�GHt­�D

¨®=¨@;=©­}(M=­­)

(|®H|@)!
²¬

|®d|@
¬
|¤O|®

¬
|@dG     

   (3-5) 
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Above, each bracketed factor is a Poisson density, with means 𝑑𝑝%𝑝t, 𝑑(1 − 𝑝%), or, 

𝑑𝑝%�1 − 𝑝t�	respectively. The second two Poisson series conveniently sum to 1, and can be 

removed from the equation. The remaining part, ∑ ¯��t}t­�
¨@;(=©­}­­)	
|@!

°¬
|@dG , can be re-written as 

the Poisson probability that DI takes any value other than 0: 

 𝑃�(𝑑) = 1 − 𝑒(H�t}t­)  
  

  (3-6) 

 

We substituted the definition of PI(d) from Equation 6 into the likelihood given in 

Equation 3. We then found maximum likelihood estimates and 95% profile confidence intervals 

of parameter pc by fitting to data from each tested route of inoculation (intact skin, shaved skin, 

abraded skin and conjunctiva).  

 

Likelihood for other routes of inoculation and estimation of a, b, mixture model 

The basic model introduced above assumed the per-leptospire probability of crossing 

physical immune barriers at the site of inoculation, pc, did not vary among individual subjects. 

This assumption was reasonable for inoculation of intact skin or the conjunctiva, in which there 

was minimal potential for random, host-to-host variation in the integrity of physical immune 

barriers. However, even when using a carefully controlled experimental procedure, 

imperceptible, random variation in the depth of abrasions could have caused host-level variation 

in the skin’s resistance to leptospires. We developed a more complex model (referred to as the 
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mixture model) to test whether pc varied meaningfully across hosts with abraded skin. Note that 

the mixture model is a two-step extension of the established Beta-Poisson dose response model 

described in [5]. 

In the basic model, pc took a single, constant value for all hosts, whereas in the mixture 

model, probability pc was treated as a random variable, with values in individual hosts following 

a Beta distribution, i.e. pc~Beta(a, b). Fitted parameters a and b determined the shape of this 

distribution of pc values, and in turn, characterized the shape of host-to-host variability in the 

abraded skin’s resistance to leptospires. Under the mixture model, the dose-specific probability 

of infection was: 

 𝑃�(𝑑) = 1 − ∫ 𝑒�H�t}t­� V(t})
´=M(GHt})µ=M

¶(·,¸)
YG

¦ 𝑑𝑝%  
  

  (3-7) 

 

Above, the bracketed factor is the Beta(a, b) probability density describing the 

distribution of pc values. We integrated across all possible pc values to obtain the total probability 

of infection. The integral in equation 7 was solved numerically using the integrate() function in 

R. 

The mixture model likelihood followed the same definition as in Equation 3, but with 

equation 7 specifying PI(d), and with two free parameters, a and b, replacing the single free 

parameter pc. 
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Code Availability 

All data analysis was performed in R [23], and all code used for data cleaning and import, 

data analysis, parameter estimation, and plotting is freely available at 

https://zenodo.org/badge/latestdoi/171368954. 

 

RESULTS 

Infection experiments 

A summary of the animal experiments is provided in Table 3-1, whereas Table 3-S1 

presents the full data with corresponding values of LD50 and CD50. Our results are consistent 

with previous findings that L. interrogans strain Fiocruz L1-130 has a low LD50 (~10 bacteria) 

(17) when hamsters were infected by the IP route, while the strain had a lower CD50 (~103 

bacteria) than previously reported (104 bacteria) when rats were infected by the IP route [24]. Of 

note, the abraded skin model showed similar results to IP route in hamsters and rats, with LD50 

and CD50 between 102 and 103 leptospires. In contrast, the strain had an LD50 between 106 and 

107 when hamsters were inoculated by the conjunctival route, which was similar to the LD50 

observed when inoculations were administered on shaved intact skin. Furthermore, a high 

infecting inoculum dose (108 bacteria) was required to cause death in hamsters when 

inoculations were administered on un-shaved intact skin. Taken together, those results indicated 

that intact skin is a major barrier against leptospiral infection in both acute hamster and chronic 
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rat animal models for leptospirosis. Moreover, a simple abrasion of the epidermis reduced the 

LD50 by an average factor of 104. 

 

Estimated probabilities of host entry and within-host invasion and persistence 

We used data from IP infection trials to estimate pp, the per-leptospire probability of 

surviving to establish within the host and contribute to infection, given that the organism had 

already survived to cross physical immune barriers at the site of inoculation. The maximum 

likelihood estimates were 0.21 (95% CI 0.12-0.36) in hamsters and 0.07 (95% CI 0.02-0.35) in 

rats (Table 3-2).  
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Table 3-1. Experimental outcomes. 

  Hamsters Rats 
Route Dose n lethality % n colonization % 
Intact skin 104 4 0 0.0    
 106 8 0 0.0    
 107 4 0 0.0    
 108 8 2 25.0    
Shaved skin 104 4 0 0.0    
 106 8 2 25.0    
 107 4 3 75.0    
 108 8 5 62.5    
Abraded skin 101 12 5 41.7 3 0 0.0 
 102 12 8 66.7 5 0 0.0 
 103 12 10 83.3 2 2 100.0 
 104    6 6 100.0 
 106    3 3 100.0 
 108    4 4 100.0 
Conjunctiva 102 4 0 0.0    
 103 4 0 0.0    
 104 8 0 0.0    
 105 12 0 0.0    
 106 24 9 37.5    
 107 20 14 70.0    
 108 36 36 100.0    
Intraperitoneal 101 24 21 87.5 2 1 50 
 5x101 4 4 100.0    
 102 43 43 100.0 6 6 100.0 
 2.5x102 12 12 100.0    
 103 19 19 100.0    
 104 28 28 100.0 3 3 100.0 
 106 16 16 100.0 2 2 100.0 
 108 3 3 100.0 6 6 100.0 
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Table 3-2. Maximum likelihood parameter estimates.  

Route Model Parameter Estimate 95% CI 
 Hamsters 
IP All pp 0.21 0.12 - 0.36 
Intact Basic pc 1.29 E−8  2.14E−9 - 4.17E−8  
Shaved Basic pc 9.54 E−8   4.57E−8 – 1.86E−7 
Abraded Basic pc 0.02  0.01 - 0.04 
 Mixture a 0.24 1.2E-3 – 0.95 
  b 0.40 1.0E-3 – 8.47 
Conjunctival Basic pc 8.43 E−7  5.25E−7 - 1.35E−6  
 Rats 
IP All pp 0.07 0.02 - 0.35 
Abraded Basic pc 0.02 1.4E-3 - 0.03 
 Mixture a No unique solution* 
  b No unique solution* 

*As explained in the Supplementary Text, this maximum likelihood estimate was defined as a 
limit, and did not take a single fixed value. The pair (a=1114.675, b=  50000.00) was used to 
approximate the MLE in Fig. 2B,D and Fig. 3E. 
 
 
 
 
 
 
 
 
 

Next, we estimated pc, the per-leptospire probability of success in host entry. Exact 

estimates and confidence intervals are reported in Table 3-2 and Fig. 3-2. Abraded skin showed 

the weakest resistance to leptospires. The estimated per-leptospire chance of crossing abraded 

skin was about one in fifty, whereas the estimated per-leptospire chances of crossing any intact 

barrier were never better than one in a million (conjunctiva), and for intact skin, about one in 77 

million.  
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Figure 3-2. Fitted parameter values. 

 (A) Maximum likelihood point estimates from the basic model of pp and pc, with 95% profile confidence 

intervals. The left-hand side of the x axis represents probabilities closest to 0 (strongest immune barriers). 

(B) The mixture model returned a fitted distribution of pc values, instead of a single point estimate. The 

distribution fitted to data from hamsters was strongly bimodal. (C) The distribution of pc values fitted to 

data from rats asymptotically approached a Dirac delta function with all density at pc= 0.02, corresponding 

to the estimate from the basic model (Supplementary Text). 
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Impact of host-specific variability in abrasion depth 

Initially, we assumed the per-leptospire probability of crossing the skin or mucosa (pc) 

would be roughly equivalent for all individuals of the same species. Thus, pc took a single, fixed 

value in the basic model, which provided good fits to most experimental data (Fig. 3-3). The one 

notable exception was the basic model’s poor fit to data from experimental inoculation of 

hamsters with abraded skin (Fig. 3-3C).  

We hypothesized that the poor fit could have arisen if individual hamsters in fact showed 

different levels of resistance to leptospires, perhaps due to micro-anatomical differences in the 

depth of their abrasions in the lab. To test this hypothesis, we built a more complicated model 

(the mixture model), which incorporated the possibility of hamster-to-hamster variability in the 

abraded skin’s resistance to leptospires. This mixture model provided a much better fit to the 

data (DAIC=25.47, Fig. 3-3C).  

Within the mixture model, pc did not take a single value. Instead, the model assumed pc 

values followed a probability distribution from the Beta family, whose shape was determined by 

fitted parameters a and b (Table 3-2). This fitted distribution of pc values can be interpreted as 

the distribution of individual hamsters’ resistance to leptospires at abraded skin, with values 

closest to 1 representing the least resistance, (i.e. relatively severe abrasions).  

The distribution of pc values fitted to data from hamsters was bimodal, with the majority 

of density near extreme values 0 (does not cross abraded skin) and 1 (always crosses abraded 

skin) (Fig. 3-2B). The shape of this distribution suggests that even the narrow range of individual 

abrasion severity represented experimentally led to dramatic and measurable variation in the 

integrity of abraded hamster skin.  
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Figure 3-3. Model fits to data.  

Curves represent model predicted probabilities of infection for each route of inoculation by dose, based 

on maximum likelihood estimates. Routes of inoculation and study species: A, hamsters, intact skin, B, 

hamsters, shaved skin, C, hamsters, abraded skin, D, hamsters, conjunctiva, E, rats, abraded skin, F, 

both species, IP inoculation. Points and vertical bars represent experimentally observed infection 

frequencies, and 95% binomial confidence intervals calculated using the Wilson method. 
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In contrast, data collected in rats showed no support for the mixture model over the basic 

model. In fact, when fitted to data from inoculation of abraded rat skin, the mixture model 

asymptotically approached the form of the basic model, with all density in the fitted distribution 

of pc values concentrated in a spike near maximum likelihood point estimate from the basic 

model (Fig. 3-2C, Supplementary Text, Fig. 3-S1). The shape of this distribution suggests there 

was negligible rat-to-rat variability in abraded skin’s resistance to leptospires. 

 

Probabilities of infection given environmental exposure to a known dose 

In natural settings, where hosts are likely to experience repeated, low-dose environ- 

mental exposures to Leptospira, probabilities of infection will depend on the route of exposure, 

as well as the intensity of environmental contamination. A comparison of probabilities of 

infection across various doses and various routes of exposure found that the probability that a 

low-dose exposure (d<105) causes an infection is ³10% only when the exposure occurs via 

abraded skin (Figure 3-4). If exposure occurred via abraded skin, models predicted that an 

inoculum dose of a single leptospire had ³10% probability of causing an infection in hamsters, 

while as few as 50 leptospires had ³10% probability of causing an infection in rats (Figure 3-4). 

In comparison, inoculum doses >105 leptospires were necessary for a conjunctival exposure to 

have a ³10% probability of causing an infection, and even higher doses were necessary given 

exposures at intact skin (Figure 3-4).  
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Figure 3-4. Model-estimated probabilities of infection, and confidence intervals for different routes 

of exposure.  

(A) Estimates for hamsters, and (B) rats. The basic model was used to generate estimates, except for 

abraded skin in hamsters, where the best-fitting mixture model was used. Infection was considered 

possible for estimated probabilities of infection ³ 0.1. Infection was considered almost certain for 

estimated probabilities of infection ³ 0.975. 
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DISCUSSION 

Our results provide experimental evidence that the relationship between broken skin and 

leptospirosis risk is causal, corroborating one previous study [19], and for the first time establish 

a quantitative relationship between dose and infection probability in the presence and absence of 

skin abrasions. Epidemiological studies previously associated broken skin with increased 

leptospirosis risk in humans [16] and in rats [14,17]. We showed the per-leptospire probability of 

crossing physical immune barriers at most sites of inoculation was many orders of magnitude 

lower than the probability that a leptospire establishes infection once it reaches the within-host 

environment. Thus, intact skin and mucous membranes are the primary and crucial line of 

immune defense against Leptospira infection.  

Intact skin showed strong resistance to leptospires. The per-leptospire odds of crossing 

intact skin were about one in 77 million (intact skin pc=1.29E-8, Table 3-2, Fig. 3-2), and a dose 

of 108 leptospires was necessary to cause infection if the inoculum was experimentally 

introduced to intact skin (Table 3-1). For comparison, when physical immune barriers were 

absent (IP inoculation) or damaged (abraded skin), experimentally inoculated hosts became 

infected at doses as low as 10 leptospires. Parameter estimates from mechanistic dose-response 

models suggested that once leptospires cross physical immune barriers at the site of inoculation, 

they have excellent odds (better than one in 15, pp³0.07) of persisting within the host and 

establishing infection. Furthermore, although mucosa is often described as a major point of entry 

for leptospires, our data showed that conjunctival mucosa is still an efficient barrier, emphasizing 

the importance of abrasion for leptospiral transmission. 
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The mixture model, which allowed for individual variation in abraded skin’s resistance to 

leptospires, fit the data from hamsters much better than the basic model. We were surprised to 

detect any measurable signal of individual variation in the resistance of abraded skin, as our 

experimental protocol would have allowed only imperceptible, microanatomical differences in 

abrasion depth across individuals. We suspect that hamsters’ innate sensitivity to leptospirosis 

[25] may have helped magnify the impact of minor differences in abrasion severity. In contrast to 

results from hamsters, we found no signal of variation in the resistance of abraded skin across 

individual rats, a more resistant species (Fig. 3-2C, Supplementary Text). Fewer experimental 

replicates in rats may also have dampened any signal of individual variation. 

Given the innate sensitivity of hamsters, we interpret the signal of microanatomical 

variation in abrasion severity as a model for the impact of real-world variation in the size and 

depth of wounds in more resistant species. Given the bimodal distribution of fitted pc values 

(Figure 3-2B), the immunological impact of wounds does not appear to increase gradually with 

size and depth. Rather, the shape of the fitted distribution is consistent with the idea that some 

physiological threshold (in resistant species, perhaps breaking through the dermis, or damaging 

the microvasculature) distinguishes severe wounds from mild wounds. The fitted pc distribution 

included considerable density near 1, indicating that severe wounds can render skin effectively 

useless as a barrier to infection. Even relatively mild abrasions showed surprisingly little 

resistance to leptospires. About 59% of pc density fell at values greater than 0.1, which 

corresponds to a 10% chance or greater that leptospires successfully crossed abraded skin 

(Figure 3-2B).  



 

 

144 

Overall, these findings have clear implications for the epidemiology of zoonotic spillover 

transmission and the epidemiology and prevention of leptospirosis.  If intact human skin is a 

similarly effective barrier to infection, then exposures at sites of broken skin may cause the 

majority of naturally occurring infections in humans. Leptospira do not survive at high 

concentration in experimentally inoculated soil or water [15] and recent field studies confirmed 

that the leptospiral concentration in environmental sources, although ubiquitous, is relatively low 

[12,13]. Thus, real-world environmental exposures to high doses are likely to be rare.  

We propose that together, low infecting doses in the environment and the effectiveness of 

the intact skin barrier may not only limit the incidence of spillover, but may also limit the 

severity of infection when spillover does occur. Although leptospirosis can cause severe disease 

and death, most human cases are mild or asymptomatic [16,26]. In experimental animal models, 

exposure to higher doses and higher leptospiremia are associated with greater infection severity 

[21]. Thus, we speculate that the relatively high frequency of mild or asymptomatic cases in 

humans may be related to the high frequency of low-dose exposures in natural settings. 

Consistent with this hypothesis, severe cases or outbreaks are associated with floods and natural 

disasters (e.g., [27,28]), during which the risk of high-dose exposures, or overall exposure 

frequency may be elevated [12]. 

These results lend support to existing recommendations that using protective clothing and 

covering wounds and abrasions may dramatically reduce the risk of infection and symptomatic 

disease among people at high risk of Leptospira exposure [16]. Results suggest that covering 

even relatively mild skin abrasions may be beneficial. Follow-up studies should explore how 
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much healing time is required before damaged skin regains the ability to act as an effective 

barrier against infection. 

One limitation of our analysis was that we did not test the impact of repeated or extended 

exposures. In theory, dose-specific probabilities of infection might be lower with repeated, low-

dose exposures if hosts develop adaptive immunity, or up-regulate innate immunity over time 

[29]. Future experiments in rats, a resistant model for Leptospira infection, and a known 

maintenance species in urban settings, could clarify the impact of repeated exposures on dose-

response relationships. 

Practical and ethical constraints limited the number of experimental infections we 

performed, and the range of doses we were able to test. Ideally, the expected doses used in 

experimental infections would have spanned the full range of infection probabilities, from 0 to 1, 

for all tested routes of inoculation. However, our experience with these experiments shows that 

doses lower than 10 leptospires are impractical, and can yield experimental outcomes that are 

highly variable, biased or difficult to reproduce. We suspect this variability arises because with 

an expected dose, d <10, stochastic variation in the actual number of organisms in the inoculum 

has strong impacts on infection outcomes. Furthermore, doses greater than 108 are not relevant to 

the infecting doses found in the environment and responsible for spillover infections. For that 

reason, we made a technical and experimental decision to use 10 and 108 leptospires as standard 

dose limits in our experiments, which in turn made it difficult to characterize the full dose-

response curve for certain routes of infection. However, uncertainty around parameter estimates 

(Fig. 3-2A) and model-predicted probabilities of infection (Fig. 3-4) was lowest in cases where 
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experimental data was available across the full range of infection probabilities (conjunctival 

inoculation in hamsters and abraded skin inoculation in rats). 

Another major assumption of this analysis is that IP inoculation is the physiological 

equivalent of pathogens having penetrated the skin barrier. This assumption was motivated by 

previous work showing that leptospires introduced to abraded skin, or via IP injection enter the 

bloodstream and spread with comparable speed and efficiency [19,21]. But differences in the 

local immune environments, or unmodeled physical barriers such as the peritoneal membrane, 

could lead IP infection data to slightly overestimate, or to slightly underestimate the value of pp 

for other routes of exposure. Hypothetically, a subcutaneous injection experiment could help 

resolve additional details of the pathogen-host interaction. Importantly, our core finding that 

abrasions dramatically decrease the skin’s resistance to leptospires, follows from the relative 

estimates of pc and is robust to this assumption.  

This study analyzed new experimental data with a mechanistic mathematical model to 

quantify dose-infection relationships for Leptospira interrogans, a globally important 

environmentally transmitted zoonotic pathogen. For the first time, our results quantified the 

importance of intact skin and mucous membranes as immune barriers against infection and show 

that wounds or abrasions can increase the risk of infection by many orders of magnitude.  Our 

approach builds on a growing trend in microbial dose-response research, where models 

increasingly aim to incorporate mechanistic details of the within-host infection process [6,29]. It 

also exemplifies the crucial role of the dose-response relationship in shaping zoonotic spillover 

risk [1], and highlights the benefit of dissecting barriers to spillover for guiding disease control 

and prevention measures. 
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