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The purpose of this study was to evaluate the performance of a commercially avail-
able CyberKnife system with a multileaf collimator (CK-MLC) for stereotactic body 
radiotherapy (SBRT) and standard fractionated intensity-modulated radiotherapy 
(IMRT) applications. Ten prostate and ten intracranial cases were planned for the 
CK-MLC. Half of these cases were compared with clinically approved SBRT plans 
generated for the CyberKnife with circular collimators, and the other half were 
compared with clinically approved standard fractionated IMRT plans generated 
for conventional linacs. The plans were compared on target coverage, conformity, 
homogeneity, dose to organs at risk (OAR), low dose to the surrounding tissue, 
total monitor units (MU), and treatment time. CK-MLC plans generated for the 
SBRT cases achieved more homogeneous dose to the target than the CK plans 
with the circular collimators, for equivalent coverage, conformity, and dose to 
OARs. Total monitor units were reduced by 40% to 70% and treatment time was 
reduced by half. The CK-MLC plans generated for the standard fractionated cases 
achieved prescription isodose lines between 86% and 93%, which was 2%–3% 
below the plans generated for conventional linacs. Compared to standard IMRT 
plans, the total MU were up to three times greater for the prostate (whole pelvis) 
plans and up to 1.4 times greater for the intracranial plans. Average treatment time 
was 25 min for the whole pelvis plans and 19 min for the intracranial cases. The 
CK-MLC system provides significant improvements in treatment time and target 
homogeneity compared to the CK system with circular collimators, while main-
taining high conformity and dose sparing to critical organs. Standard fractionated 
plans for large target volumes (> 100 cm3) were generated that achieved high 
prescription isodose levels. The CK-MLC system provides more efficient SRS and 
SBRT treatments and, in select clinical cases, might be a potential alternative for 
standard fractionated treatments.

PACS numbers: 87.56.nk, 87.56.bd
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I. INTRODUCTION

The CyberKnife (CK) Robotic Radiosurgery System (Accuray Inc., Sunnyvale, CA) is a medical 
device designed for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) 
treatments. It enables the delivery of radiation from multiple beams with stereotactic precision 
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provided by image guidance. Throughout the treatment, target localization is achieved by auto-
matic registration of two orthogonal live X-ray images with a library of digitally reconstructed 
radiographs generated from the patient’s planning CT. Image registration is based on the loca-
tion of gold markers implanted in soft tissue such as prostate, or based on anatomical bony 
landmarks such as the skull or vertebral bodies, or based on the center of mass of lung lesions 
directly.(1,2,3) For tumors that move with respiration (e.g., lung, liver, pancreas), the CyberKnife 
correlates this image registration with continuous reading of external optical markers on the 
patient’s chest to create a prediction model. This prediction model is continuously updated dur-
ing treatment delivery with additional images so as to gradually adapt to changing respiratory 
pattern. This allows the robotic arm to move the beam in synchrony with the tumor as the patient 
breaths normally.(4) Targeting accuracy is within 1 mm for both static targets such as cranial or 
spinal tumors,(5,6,7) as well as dynamic targets such as lung tumors.(7,8) High targeting accuracy 
allows smaller planning target volume (PTV) margins. For example, Xie et al.(9) conclude a 
2 mm margin for prostate cases with fiducial tracking is sufficient when imaged every 30 s, 
and Murphy(10) reports a reduction in margin needed for cranial and spinal radiosurgery from 
4.5 mm to 1.6 mm when using dynamic skull tracking instead of static alignment.

The delivery system consists of a 6 MV linear accelerator mounted on a robotic arm that is 
able to deliver radiation from hundreds of robot positions spaced uniformly around the target. 
The beam size is controlled through either a fixed collimator system or a variable aperture Iris 
collimator (Accuray Inc.), both with the choice of 12 circular beams of diameters ranging from 
5 mm to 60 mm(11,12) or via the newly introduced MLC system. In a typical CK plan, hundreds 
of nonisocentric and noncoplanar circular radiation beams are pointed to the edge of the target, 
creating a highly conformal dose distribution with sharp dose drop-off at its periphery and low 
dose to adjacent organs at risk (OARs).(13) These characteristics make CyberKnife ideal for treat-
ments that require high spatial accuracy and high conformity, such as SRS and SBRT treatments.

However, the use of a large number of circular radiation fields to cover the target has four 
main limitations: 1) the radiation delivery is inefficient and a large number of monitor units 
(MU) are required to deliver the desired dose; 2) the treatment times are long as, for safety 
reasons, the robot travels from one position to the next at a speed of 60–80 mm/s, 1/30th of its 
rated top speed. Treatment time including setup, imaging, beam on, and robot motion is usually 
between 30 min and 1 hr; 3) dose to the target is inhomogeneous, with prescription isodose 
lines typically ranging between 50% and 85% of the maximum dose (while this is desirable for 
most SBRT plans, it limits the application of CK to other treatments); 4) larger target volumes 
are not treated on CyberKnife due to the longer treatment delivery time associated with the 
larger number of beams required and the difficulty in achieving satisfactory target coverage by 
targeting small pencil beams to the edge of the target (dose painting).

The duration of a treatment can be reduced by the application of time-reduction techniques 
aimed at reducing the number of beams and the total MUs.(7,14) In addition, the Iris collimator 
enables the use of multiple beam apertures in a single path traversal. Although these techniques 
are successful in reducing the fraction duration by tens of minutes, total treatment times remain 
long for complex clinical cases due to the inherent limitations of using circular radiation fields. 
A number of feasibility studies have shown that the addition of a MLC to the CyberKnife system 
would reduce treatment time and total monitor units, and improve plan quality.(15,16,17) A MLC 
reduces the number of beams by eliminating the need of dose painting with multiple circular 
radiation fields. The addition of a MLC to the CK system could reduce the MU and treatment 
time, increase target dose homogeneity, and allow the treatment of larger targets.

Previous studies have generated plans for theoretical CK models equipped with MLC, using 
either in-house developed optimization software(17) or treatment planning system for linac-based 
SBRT (Eclipse) combined with manual beam angle selection.(14) Today, a new CK system 
equipped with three interchangeable collimator systems (fixed, Iris, and MLC) is available for 
clinical use. This device has the potential to improve efficiency of SRS and SBRT treatments 
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and to extend the advantages of noncoplanar treatment(18) and real-time tracking(4) to patients 
treated with standard fractionation.

The CK InCise multileaf collimator system (Accuray Inc.) consists of 41 leaf pairs, with a 
thickness of 9 cm and a width of 2.5 mm at 80 cm SAD. The maximum field size is 12 cm in 
the direction of leaf motion and 10 cm in the vertical direction at 80 cm SAD. The leaf motion 
allows 100% over-travel and interdigitation. Intraleaf, interleaf, and leaf tip leakage are all 
specified to be less than 0.5% maximum (0.3% average).(19) Beam parameters were measured 
by the vendor on a prototype machine and used to commission the treatment planning system 
used in this study. For comparison, the clinically approved IMRT plans were generated for the 
Siemens Artiste with the 160 MLC consisting of 80 leaf pairs of 5 mm width and a specified 
maximum leakage of less than 1.5%.(20)

The goal of this study is to provide an initial demonstration of the clinical capabilities of the 
CK-MLC system in the treatment of brain and prostate cancer patients. Figure 1 presents the 
organization of the types of cases included in this study. To the authors’ knowledge, this is the 
first study comparing treatment plans generated for a commercially available CK-MLC system 
to: 1) CK plans generated with circular collimators (fixed or Iris), and 2) standard fractionated 
intensity-modulated radiation therapy (IMRT) plans generated for a standard linac. We chose 
to study brain and prostate SBRT cases because they are some of the most common sites cur-
rently treated with CyberKnife at our institution in addition to lung cases. Currently, the finite 
size pencil beam (FSPB) dose calculation algorithm available for the CK-MLC system does not 
account for changes in the lateral electron scattering fluence due to tissue inhomogeneities.(21)  
This might result in large dose calculation errors in regions with density interfaces. While lung 
tumors are a common treatment site for CK and ones that could benefit from CK-MLC system, 
we did not include any lung cases in this comparison because of errors introduced by tissue 
inhomogeneity. The target volume for brain and prostate cases is surrounded by homogeneous 
tissue and dose calculation is not affected by the presence of tissue inhomogeneities. We chose 
intracranial and whole pelvis IMRT cases to explore the benefit of highly conformal dose dis-
tribution for targets in close proximity to OARs, such as the brain stem and optical chiasm for 
the intracranial cases and the bladder and rectum for the whole pelvis cases. The whole pelvis 
plans, in particular, were chosen to investigate the capabilities of treating large target volumes. 
These cases comprise a diverse set of plans with a wide range of target volumes, proximity to 
OARs, and clinical objectives, providing a broad scope of the capabilities and limitations of 
the CK-MLC system.

 

Fig. 1. This study considers 10 SBRT plans and 10 conventional IMRT plans. Five prostate and five brain cases where 
chosen for the SBRT comparison between CK with circular collimators (fixed and Iris) and CK with the MLC collima-
tor. Five whole pelvis and five intracranial cases were chosen for the standard fractionated IMRT plans, comparing the 
CK-MLC to plans generated for conventional linacs.
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II. MATERIALS AND METHODS

A.  Patients
In this study, we included a total of 20 patients (10 brain and 10 prostate) treated at our institu-
tion. Half of these cases were SBRT plans, previously treated on CK, while the remaining half 
were IMRT plans generated in Pinnacle (Philips Healthcare, Andover, MA) for a Siemens linear 
accelerator (Siemens AG, Erlangen, Germany) with standard fractionation of 1.8 to 2 Gy per 
fraction. We selected a variety of clinical cases, to test the capability of the CK-MLC under 
different conditions.

The details for each case are summarized in Table 1. Five were prostate cases with planning 
target volumes (PTV) ranging from 33 to 85 cm3 treated on CK with SBRT. Five were brain 
lesions with PTVs ranging between 7 and 70 cm3 treated on CK with SBRT. Case 9 consisted 
of a 69 cm3 planning target volume, with a simultaneous integrated boost to a 50 cm3 gross 
tumor volume (GTV). Five cases included the prostate plus lymph nodes and seminal vesicles 
originally planned in Pinnacle for IMRT. Four of the five cases had target volumes between 
425 and 500 cm3, while Case 15 had a larger target volume of 760 cm3 due to more extensive 
nodal volume included in the PTV. The last five cases were intracranial tumors with PTVs 
ranging between 45 and 220 cm3 planned in Pinnacle for IMRT. All of the Pinnacle plans were 
step-and-shoot plans with seven to nine fields. 

B.  Planning strategy and evaluation
The CK-MLC plans were generated using a treatment planning system provided by Accuray 
(MultiPlan 5.0; Accuray Inc, Sunnyvale, CA). The beam model used in this system is based on 
beam parameters measured from a prototype machine at Accuray. Plans were optimized using 
the sequential optimization method.(22,23) We limited the number of starting robot positions to 
60 for most cases. 

Table 1. Summary of cases included in this study. All cases presented here had a single PTV, except Case 7 which 
had three separate PTVs, Case 18 which had a boost volume within the larger PTV. Case 9 was a large brain metastasis 
which had a higher prescription to the CTV and lower prescription to the PTV. The diameter presented here is the 
maximum of the sup/inf, ant/post, and left/right dimensions.

    Diameter PTV Rx
 Case # Site Modality (cm)  (cm3) (Gy) Fractions

 1 Prostate SBRT 5.5 56.8 38 4
 2 Prostate SBRT 5.9 84.48 38 4
 3 Prostate SBRT 5.0 42.02 38 4
 4 Prostate SBRT 4.3 33.27 19 2
 5 Prostate SBRT 5.9 78 19 2
 6 Brain mets SBRT 4.2 36.15 25 5
 7 Brain mets SBRT 4, 2, 1.8 29.5 24 3
 8 Brain mets SBRT 2.2 7.37 18 1
 9 Brain mets SBRT 4.7 49.7 / 68.8 20 / 15 5
 10 Brain mets SBRT 3.5 25.18 10 1
 11 Whole Pelvis IMRT 14.1 463.82 45 25
 12 Whole Pelvis IMRT 13.9 426.25 45 25
 13 Whole Pelvis IMRT 13.2 428.43 45 25
 14 Whole Pelvis IMRT 13.7 490.24 45 25
 15 Whole Pelvis IMRT 18.3 760.23 45 25
 16 Intracranial IMRT 8.3 218.61 59.4 33
 17  Intracranial IMRT 6.4 52.36 50.4 28
 18 Intracranial IMRT 10 80.5 / 176.8 40.5 / 35 15
 19 Intracranial IMRT 5.6 46.92 60 30
 20 Intracranial IMRT 6.6 106.66 50.4 28
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The tracking capability of CK allows for target margins reduction compared to conventional 
linacs without stereotactic imaging and motion tracking. However, in our study, GTV/CTV 
to PTV margins were kept the same between the two plans in order to focus on the difference 
between the treatment machines and planning software. PTV margins of 2 mm were used for 
the SBRT cases, and 5 mm for the standard fractionated plans.

The dose-volume constraints and objectives for the PTV and the OARs were based on dose-
volume parameters in clinically approved plans. For the SBRT prostate cases, heterogeneous 
dose distributions are often acceptable if the urethra is spared and the hot spot is located in the 
lobe. Hence, tight constraints on the maximum dose to the PTV were not used in either the 
CK-MLC or the circular collimator plans. Maximum DVH objectives were applied to the bladder 
and rectum to limit the volume of either OAR receiving 75% of the prescription dose. We used 
the method described in Descovich et al.(24) to determine the optimal V75% for each patient 
anatomy. Both the circular and MLC SBRT plans used this for the maximum DVH objective 
as a starting point. For the SBRT brain cases, conformity was prioritized over homogeneity. 
Differently than for standard fractionated IMRT cases, dose heterogeneity inside the target 
is often desirable in SBRT cases. The minimum MU per beam were adjusted to keep at least 
2 MU per beam per fraction. To justify this minimum MU cutoff, we measured the linearity of 
2 MU beams with respect to 200 MU beams on our CK VSI system using the 60 mm cone at 
1.5 cm depth and find agreement to be better than 1%. 

Segments shapes are created by the planning system during optimization. The user has the 
option to specify whether to use eroded shapes, perimeter shapes, and/or random shapes, and 
can specify MLC leaf margin and justification (leading edge, trailing edge, or middle). Figure 2 
shows examples of each of these. Eroded shapes are some fraction of the entire PTV from a 
beams eye view, perimeter shapes are a narrow fields around the perimeter of the PTV, and 
random shapes are random, as the name implies, within the PTV determined by the planning 
system. A new feature in this version of the planning system is to allow beams that exit, but do 
not enter, through OARs. We used all of these shapes for our plans.

We evaluate plan quality based on target coverage, homogeneity, conformity, dose to critical 
organs, low dose to surrounding tissue (R50%), and plan efficiency (total MU and treatment 
time). We enforced target coverage to be greater than or equal to 95% for all the SBRT plans. 
Homogeneity was quantified by the prescription isodose, given as a percentage of the maximum 
dose (Dmax). The new conformity index is an extension of the standard conformity index that 
reflects how tightly the prescription dose overlaps the target volume. We use the same definition 
as MultiPlan, described by Nakamura:(25)

 nCI = PTV * PIV / TIV2 (1)

where TIV is the tumor isodose volume and PIV is the prescription isodose volume. This defini-
tion is the inverse of that used by Paddick(26) and van’t Riet et al.(27) Low dose to surrounding 

Fig. 2. The planning system automatically derives MLC shapes during the optimization process. The user has the option 
to use eroded, perimeter, and/or random shapes. Examples of each of these are shown here with an eroded shape on the 
left, a perimeter shape in the center, and a random shape on the right.
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tissue was quantified using R50%, the ratio of the volume receiving 50% of the prescribed 
dose to the PTV:

 R50% = V50%/PTV (2) 

The estimated treatment time is based on measurements performed by Accuray on a prototype 
machine and takes into account the number of robot positions, the robot speed traveling from 
one position to another (60–80 mm/s), the number of beam angles and MLC segments, the time 
to adjust the beam angles and to position the leaves which are done in parallel (2 s), the number 
of monitor units, and the dose rate (1000 MU/min). The imaging acquisitions are also taken into 
account based on imaging frequency. For comparison, the dose rate for the conventional linac 
was 300 MU/min. Treatment times presented here do not include setup time for either modality.

Dose to the bladder, rectum, brainstem, and chiasm was quantified by the generalized equiva-
lent uniform dose (gEUD). gEUD is a concept for summarizing the entire DVH in a single 
metric, defined as the dose which would have the same biological effect if delivered uniformly 
to the entire volume. It is defined as 

 gEUD = (Σk
j=1 vj * dj

1/n)n1

V
 (3)

where V is the total volume of the OAR, vj is the volume receiving dose dj , and n is the volume 
effect parameter which quantifies the degree to which the organ is serial or parallel.(28) Here 
we use the formalism  n = 1/a, where “a” was the original volume effect parameter used by 
Niemierko.(29,30) An entirely serial organ is represented by n = 0 and gEUD approaches Dmax. For 
an entirely parallel organ, n = 1 and gEUD approaches the mean dose. We use the volume effect 
parameters referenced in Luxton et al.(28) originally derived by others:(31,32) nbladder = 0.5, nrectum = 
0.12, nbrainstem = 0.16, and nchiasm = 0.25. The values presented here were derived by exporting 
the DVH as a table of values and computing them directly using the gEUD equation above.

Each of the metrics used to assess plan quality were averaged among the five plans in each 
group. The standard deviation and the p-values (two-tailed Student’s t-test) were computed 
between the two comparison arms. Despite the small sample size in each group, there were 
statistically significant differences observed between the two arms.

 
III. RESULTS 

A.  SBRT cases
Results for the SBRT prostate and brain cases are summarized in Table 2. For both prostate and 
brain cases, the MLC plans were prescribed to high isodose levels. The nCI was statistically 
equivalent on average for both sites (p = 0.67 and p = 0.59, for prostate and brain, respec-
tively). gEUD to the bladder was 25% lower on average with the MLC (p = 0.005). gEUD to 
the rectum was statistically equivalent between both modalities (p = 0.17). The gEUD to the 
optical chiasm and brainstem were lower for all MLC plans, except the dose to the chiasm in 
Case 9 was 0.03 Gy higher for the MLC plan, and the dose to the brainstem in Case 10 was 
0.03 Gy higher for the MLC plan. Case 6, in particular, shows a large reduction in dose to the 
chiasm and brainstem: gEUD is reduced from 5.2 Gy to 0.8 Gy for the brain stem and 5.4 Gy 
to 0.16 Gy for the optical chiasm. Figure 3 shows the dose distributions for these plans. There 
are several beams passing through the brain stem and chiasm for the CK plan with circular 
collimators, which was not the case for the CK-MLC plan. MLC planning naturally minimized 
the low dose extension often seen with circular collimators. It should be noted that both plans 
respect the clinical objectives and optimization parameters. We could have removed this low 
dose extension using a shell or a lower MU/beam or a lower dose volume constraint. On  average 
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Table 2. Results from five prostate (top) and five brain (bottom) SBRT cases. Values in italics are from CK plans with 
circular collimator and values in bold are from CK-MLC plans. The average, standard deviation, and p-values for each 
column are given at the bottom of the table.

     Bladder Rectum  Num. Total
 Case Coverage Isodose  gEUD gEUD  of MU Time
 # (%) (%) nCI  (Gy) (Gy) R50% Beams (103) (min)

 1 94.8|95.4 68|75 1.12|1.17 11.6|9.2 19.5|17.9 3.56|3.18 265|118 54.3|31.3 47|26
 2 95.5|95.1 66|69 1.20|1.16 14.1|10.9 20.3|19.8 3.34|3.06 224|79 52.2|36.9 42|23
 3 95.2|95.1 65|67 1.22|1.34 10.1|8.3 19.5|19.8 3.58|3.53 170|58 46.2|26.5 37|19
 4 94.7|96.0 72|72 1.32|1.27 5.5|4.5 10.3|10.2 3.95|3.95 112|50 22.3|17.7 32|21
 5 94.9|95.4 70|74 1.28|1.28 6.1|3.3 9.9|8.8 3.69|3.65 238|67 23.7|12.1 44|20
 Avg 95.0|95.4 68|71 1.23|1.24 9.5|7.2 15.9|15.3 3.63|3.48 202|74 39.7|24.9 40|22
 Std 3.3|0.3 2.9|3.3 0.08|0.08 3.6|3.2 5.3|5.4 0.22|0.37 61|27 15.6|10.0 6|3
 p 0.17 0.048 0.67 0.005 0.17 0.13 .003 0.010 0.001

     Chiasm Brainstem  Num. Total
 Case Coverage Isodose  gEUD gEUD  of MU Time
 # (%) (%) nCI (Gy) (Gy) R50% Beams (103) (min)

 6 95.5|96.1 64|82 1.10|1.11 5.43|0.16 5.20|0.81 2.76|2.67 197|30 19.4|5.2 36|15
 7 97.2|95.2 64|78 1.21|1.21 1.74|0.30 6.45|6.14 4.39|3.5 166|45 39.6|12.1 41|20
 8 94.4|94.7 75|75 1.10|1.11 0|0 1.14|0.79 3.40|2.65 193|53 7.3|2.8 34|19
 9 96.0|95.3 80|81 1.10|1.10 5.77|5.80 6.24|5.75 4.36|2.72 75|32 7.1|3.0 14|11
 10 96.8|96.3 70|73 1.08|1.07 0.82|0.05 0.28|0.31 2.73|2.39 172|43 5.2|2.2 29|18
 Avg 96.0|95.5 70.6|77.8 1.12|1.12 4.42|1.52 3.86|2.76 3.53|2.79 161|41 15.7|5.1 31|17
 Std 1.1|0.7 7.0|3.8 0.05|0.05 3.81|2.96 2.93|2.92 0.82|0.42 50|9.5 14.5|4.1 10|4
 p 0.36 0.12 0.59 0.085 0.25 0.05 0.005 0.085 0.056

Fig. 3. CT images with isodose lines for Case 6 show a reduction in dose to the brainstem and chiasm. Several beams pass 
through these OARs for the CK plan with circular collimators (bottom) which was not the case for the CK-MLC plan (top).
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these differences were not statistically significant (p = 0.085 and p = 0.25). R50% is lower for 
the MLC plans for all five brain cases (p = 0.05), and four of the five prostate cases (p = 0.13). 
The MLC plans used 40% fewer MUs on average for the prostate plans (p = 0.01) and 70% 
less MUs for the brain plans (p = 0.085). Treatment times were reduced almost in half for both 
sites (p = 0.001 and p = 0.056). 

The DVH for all 10 prostate and brain SBRT plans were averaged and plotted in Fig. 4. 
Good target coverage was achieved for both modalities in both sites. For the prostate cases, 
the MLC plans were better able to spare the urethra and bladder and, for the brain plans, the 
MLC was better able to spare the brainstem and chiasm. 

B.  IMRT cases
Results for the whole pelvis and intracranial IMRT plans are summarized in Table 3 and in aver-
age DVH plots in Fig. 5. Figure 6 shows the isodose lines for Case 11, with the CK-MLC plan on 
top and the clinically approved IMRT plan on bottom. For the whole pelvis cases, the CK-MLC 
plans achieved an average prescription isodose of 85.8% compared to 89.0% for clinically 
approved conventional linac plans (p = 0.018). For the intracranial cases, the CK-MLC plans 
achieved an average prescription isodose of 91.8% compared to 92.6% for clinically approved 
linac plans (p = 0.29). Coverage was greater than 95% for all plans, except the CK-MLC plan 
for Case 12 was 93.8%. For nine out of ten cases CK-MLC plans resulted in better conformity 
compared to conventional linac plans, though it was not statistically significant for either site 
(p = 0.11 and p = 0.14). The gEUD to the bladder was statistically equivalent (p = 0.58) and 
the difference was within 2 Gy for all whole pelvis plans. The gEUD to the rectum was 4 Gy 
larger for the CK-MLC plan for Case 14 and within 2 Gy for the remaining four cases. The 
differences were not statistically significant (p = 0.8). The difference in gEUD to the chiasm 
and brainstem was less than 4 Gy in all cases and statistically equivalent between the two plan-
ning systems (p = 0.46 and p = 0.29). The low dose conformity metric, R50%, was 25%–30% 
lower, on average, for the CK-MLC plans. This difference was statistically significant for the 
whole pelvis cases (p = 0.0007), but not for the intracranial cases (p = 0.16). The total number 
of beams and MUs for the CK-MLC whole pelvis plans was a factor of 3 greater than for the 
linac plans. For the intracranial cases, the total monitor units were 15,000, on average, for the 
CK-MLC plans compared to 11,000 for the linac plans, a factor of 1.4 larger. The estimated 
treatment time without setup time was 25 min, on average, for the whole pelvis CK-MLC plans, 
compared to 11 min, on average, for the conventional linac plans. Estimated treatment time for 

Fig. 4. Average DVHs for the five prostate (left) and five brain (right) SBRT plans. The solid lines are for the CK-MLC 
plans and the dashed lines are for the CK with circular collimators. The body includes the full external contour of the 
patient’s body, defined by a lower density cutoff of 0.8 g/cm3 and manually adjusted by the user when necessary. We use 
0.8 g/cm3 at UCSF which is slightly below that of adipose tissue (0.9 g/cm3) to ensure we are including the entire body 
within the contour.
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the intracranial cases planned for the CK-MLC were less than 20 min on average, compared 
to 11.5 min for the conventional linac plans. 

 

Table 3. Results from five whole pelvis (top) and five intracranial (bottom) IMRT cases. Values in italics are from 
plans generated for a Siemens linac and values in bold are from CK-MLC plans. The average, standard deviation, and 
p-values for each column are given at the bottom of the table.

     Bladder Rectum  Num. Total
 Case Coverage Isodose  gEUD gEUD  of MU Time
 # (%) (%) nCI  (Gy) (Gy) R50% Beams (103) (min)

 11 96.3|95.7 88|86 1.35|1.27 33.7|35.3 32.2|33.7 8.12|5.80 55|157 21.0|72.0 10|25
 12 95.2|93.8 89.6|85 1.52|1.50 34.6|33.6 37.3|33.5 9.58|6.5 53|145 24.0|78.2 17|25
 13 96.9|96.6 90|88 1.60|1.53 31.9|31.3 33.8|34.2 9.8|6.43 57|173 22.3|61.7 16|26
 14 94.5|95.6 88|86 1.73|1.43 31.9|32.9 32.9|36.4 8.47|5.96 59|170 21.7|76.1 4|27
 15 99.0|98.6 90|84 1.58|1.53 31.5|32.0 36.2|36.0 8.66|6.86 56|108 25.6|58.3 10|21
 Avg 96.4|96.4 89.0|85.8 1.56|1.45 32.7|33.0 34.4|34.8 8.93|6.3 56|151 22.9|69.3 11|24.8
 Std 1.75|1.74 1.0|1.5 0.14|0.11 1.3|1.6 2.2|1.3 0.73|0.43 2|26 1.8|8.8 5.2|2.3
 p 0.45 0.018 0.11 0.58 0.8 0.0007 .001 0.0004 0.007

     Chiasm Brainstem  Num. Total
 Case Coverage Isodose  gEUD gEUD  of MU Time
 # (%) (%) nCI (Gy) (Gy) R50% Beams (103) (min)

 16 95.1|97.0 93.5|92 1.15|1.18 53.8|51.7 58.6|58.6 3.14|2.87 50|65 10.8|16.7 15|19
 17 98.4|96.9 93|92 1.29|1.24 52.6|52 40.7|37.3 6.69|3.51 35|61 13.0|15.6 11|18
 18 96.3|95.1 89.7|91 1.21|1.16 30|34 26.2|25.4 2.55|3.14 50|123 13.3|21.9 13|28
 19 96.4|94.8 93.7|91 1.30|1.15 2.2|2.3 0.9|1.3 3.5|2.49 27|39 8.0|10.2 9|15
 20 96.3|95.1 93.2|93 1.14|1.09 45.3|48.9 52.5|52.2 4.67|2.84 50|33 9.6|10.4 9|14
 Avg 96.5|95.8 92.6|91.8 1.22|1.16 36.8|37.8 35.8|35.0 4.11|2.97 42.4|64 11.0|15.0 11.5|19
 Std 1.2|1.1 1.65|0.8 0.07|0.06 21.6|21.1 23.1|22.9 1.64|0.38 10.8|36 2.2|4.9 2.6|5.5
 p 0.33 0.29 0.14 0.46 0.29 0.16 0.21 0.048 0.02

Fig. 5. Average DVHs for the five whole pelvis (left) and five intracranial (right) IMRT plans. The solid lines are for the 
CK-MLC plans and the dashed lines are for the plans generated for a Siemens linac.
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IV. DISCUSSION

In this study we generated treatment plans for 10 prostate and 10 intracranial cases using com-
mercially available treatment planning software for the CK-MLC system. We were able to 
generate hypofractionated SBRT plans that were of equal or better plan quality than clinically 
approved CyberKnife plans using circular collimators. The total monitor units were reduced 
by 40% for the prostate cases and 70% for the brain cases, and treatment time was reduced by 
half. Treatment time slots of 20 to 30 min, including 5 min for setup, would be possible for 
SRS or SBRT treatments on the CK-MLC, alleviating one of the barriers limiting the wider 
adoption of CK treatments.

We were able to generate standard fractionated IMRT-like plans with high prescription iso-
dose values (86% on average for the whole pelvis and 92% for the intracranial cases). These 
prescription isodose values are much higher than is commonly achieved in CK plans using 
circular collimators and are within 2%–3% of the IMRT plans generated for a conventional 
linac. Other metrics of plan quality, including conformity and dose to critical organs, were 
equivalent between both modalities. The large number of noncoplanar beams resulted in lower 
R50% for the CK plans, at the cost of more MUs and longer treatment times. The larger number 
of MUs contributes to a higher integral dose to the patient and needs to be carefully evaluated 
on a case-by-case basis. Even with the longer treatment time, four of the five intracranial IMRT 
plans generate on CK-MLC had estimated treatment times under 20 min. 

The large target volumes for both the whole pelvis (426 cm3 to 760 cm3) and the intracranial 
(47 cm3 to 177 cm3) cases demonstrate the ability to treat large tumors with the CK-MLC system. 
However, the plan quality (primarily target dose homogeneity) and treatment efficiency drop 
when the maximum size of the 2D projection of the target in the beams eye view is larger than 
the maximum field size of the MLC (10 cm by 12 cm), which was the case for the whole pelvis 
plans (13.2 cm to 18 cm). These plans required more beams to cover the entire PTV resulting 
in plans with higher monitor units. The intracranial plans used 64 segments on average (range 
33 to 123), while the whole pelvis plans used 151 segments on average (range 110–173). This 
explains the larger discrepancy in total monitor units and treatment time between the CK-MLC 
plans and the linac plans for the whole pelvis cases than for the intracranial plans. The impact on 
treatment time and monitor units for cases with PTV larger than the MLC field size (> 10 cm), 

Fig. 6. CT images are shown with isodose lines for Case 11. The top row of images corresponds to the CK-MLC plan and 
the bottom row of images corresponds to the clinically approved IMRT plan. Isodose lines are shown for 54, 45, 33.75, 
22.5, 10, and 5 Gy for a prescription of 45 Gy in 25 fractions.
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but smaller than the whole pelvis plans included here, was not evaluated in this study. It is 
reasonable to expect the impact to be proportional to the size of the PTV, somewhere between 
the whole pelvis and intracranial plans evaluated here.

The mechanical accuracy and intrafraction tracking capabilities of the CyberKnife would 
allow smaller PTV margins and, as a consequence, would necessarily result in lower dose to 
the surrounding tissue and reduced treatment time than is presented here. For example, Maund 
et al.(33) find the probability for rectal toxicity greater than grade 2 decreases from 2.1% to 1.4% 
for a reduction of PTV margin reduction of 5 mm to 3 mm. We chose to use the same PTVs for 
the CK-MLC plans to focus on the capabilities of the treatment machine and planning system 
and not on the benefits derived from reduced margins.

 
V. CONCLUSIONS

The 10 SBRT plans demonstrate superior performance for the CK-MLC compared to the 
CyberKnife with circular collimators. A more uniform dose distribution was achieved across the 
target for equivalent target coverage and conformity. Dose to several important critical organs 
and to the surrounding tissue was equivalent or reduced for the CK-MLC plans. And finally, 
the total MUs were reduced by 40% to 70%, and treatment times were reduced by half. The 
CK-MLC was also able to produce standard fractionated treatment plans prescribed to high 
isodose lines, while maintaining high conformity, sufficient target coverage, sparing of the 
adjacent critical organs, and low dose to the surrounding tissue. The total monitor units were 
up to three times greater for the CK-MLC based plans compared to the linac plans for volume 
larger than the CK-MLC maximum field size. Treatment times were 19 min, on average, for 
the standard fractionated intracranial cases planned with the CK-MLC and 25 min, on aver-
age, for the whole pelvis cases. The CK-MLC system provides more efficient SRS and SBRT 
treatments and, in select clinical cases, might be a potential alternative for standard fractionated 
treatments at centers with only a CK system or as a redundancy to conventional linacs in the 
event of extended downtime.
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