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Abstract

We extend the adaptive regression spline model by incorporating saturation, the natural 

requirement that a function extend as a constant outside a certain range. We fit saturating splines to 

data via a convex optimization problem over a space of measures, which we solve using an 

efficient algorithm based on the conditional gradient method. Unlike many existing approaches, 

our algorithm solves the original infinite-dimensional (for splines of degree at least two) 

optimization problem without pre-specified knot locations. We then adapt our algorithm to fit 

generalized additive models with saturating splines as coordinate functions and show that the 

saturation requirement allows our model to simultaneously perform feature selection and nonlinear 

function fitting. Finally, we briefly sketch how the method can be extended to higher order splines 

and to different requirements on the extension outside the data range.
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1. Introduction

Splines—piecewise polynomials with continuity constraints—are widely used to fit data 

(Hastie et al., 2001, §5.1). One issue with piecewise polynomials is that they behave 

erratically beyond their boundary knot points, and (typically) grow without bound outside of 

that range (Hastie et al., 2001, §5.2). This instability makes extrapolation dangerous; 
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practitioners must take care to avoid querying spline models near or outside of the range of 

the training data.

Smoothing spline algorithms (De Boor, 2001; Wahba, 1990; Green and Silverman, 1994) 

ameliorate this problem by fitting natural splines, which reduce to a lower-degree 

polynomial beyond the boundary knots. The most commonly used varieties of smoothing 

splines are cubic smoothing splines (degree-three splines that reduce to linear outside the 

boundary knots) and linear smoothing splines, which extend as constant. The saturating 

splines we propose are closely related to linear smoothing splines.

Smoothing splines use an ℓ2 or quadratic notion of complexity, and hence fit models with a 

predetermined and dense set of knot points (Hastie et al., 2001, §5.4). Adaptive regression 
splines (Mammen and van de Geer, 1997), on the other hand, use an ℓ1-type penalty, which 

can result in a sparse set of adaptively chosen knots. However, adaptive regression splines do 

not reduce to lower degree outside of the range of their largest knots, and hence may suffer 

from instability.

We propose fitting adaptive regression splines with explicit constraints on the degree of the 

spline outside of a certain interval. We call such splines saturating splines. While the 

approach we take can be extended to fitting splines of arbitrary degree with constraints on 

arbitrary derivatives, in this paper we focus on fitting linear splines that are flat (constant) 

outside the data range; we mention the extension to higher degree splines in §8. We show 

that saturating splines inherit the knot-selection property of adaptive regression splines, 

while at the same time behave like natural splines near the boundaries of the data.

We also show a very important benefit of our approach in the context of fitting generalized 

additive models (Hastie and Tibshirani, 1990) with saturating spline coordinate functions: 

the saturation constraint naturally results in variable selection. Not only do we control the 

complexity of each coordinate function through knot selection, but with the saturation 

condition, no knots on a variable means the variable is out of the model. This is not true for 

adaptive splines, since the linear term is unpenalized and hence each variable would always 

be in the model. The lack of feature selection can hurt interpretability and, in certain cases, 

generalization. The saturation constraint we propose precludes linear functions, and in 

concert with the adaptive spline ℓ1 penalty encourages coordinate functions to be identically 

zero. As a result, generalized additive models fit with saturating spline component functions 

often depend on only a few input features.

Like smoothing splines and adaptive regression splines, saturating splines arise as solutions 

to certain natural functional regression problems. We solve the saturating spline fitting 

problem by reformulating it as a convex optimization problem over a space of measures, 

roughly speaking, the second derivative of the fitted function. To the best of our knowledge, 

this approach is novel. We then apply a variant of the classical conditional gradient method 

(Jaggi, 2013.; Boyd et al., 2017) to this problem. At each iteration of our algorithm, an 

atomic measure is produced; moreover, we can uniformly bound the number of atoms, 

which corresponds to the number of knot points in the spline function. (While we 

manipulate atomic measures, we solve the problem over the space of all measures with finite 
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total variation.) In contrast to standard coordinate descent methods, in each iteration of the 

conditional gradient method the weights of two knot points are adjusted. In the fully 

corrective step, we solve a finite-dimensional convex optimization problem with ℓ1 and 

simple linear constraints. Numerical experiments show that the method is extremely 

effective in practice.

Our optimization method can exploit warm starts, i.e., it can use an initial guess for the fitted 

function. This allows us to compute an entire regularization path efficiently, at a cost 

typically just a small multiple of the effort to solve the problem for one value of the 

regularization parameter. Because our algorithm is based on the conditional gradient 

method, we can use the framework of Giesen et al. (2012) to compute a provably ϵ-

suboptimal approximate regularization path. When fitting generalized additive models, the 

regularization path has attractive features: at critical values of the regularization parameter, 

new regressors are brought into (or, occasionally, out of) the model, or new knot points are 

added to (or deleted from) one of the existing coordinate functions. Thus our approach 

combines feature selection and knot point selection.

1.1 Outline

In §2 we introduce a univariate function fitting problem, inspired by the adaptive spline 

estimation problem of Mammen and van de Geer (1997), that includes the additional 

requirement that the fitted function saturate. In §3 we make the connection between our 

function estimation problem and standard adaptive splines, and pose the saturating spline 

fitting problem as a convex optimization problem over measures. In §4 we modify the 

classical conditional gradient method to solve this optimization problem. In §5 we extend 

the optimization problem and algorithm to fit generalized additive models to multivariate 

data. We illustrate the effectiveness of the method with several examples in §7. We discuss 

generalizations to higher-degree splines in §8. Finally, we discuss potential extensions and 

variations in §9. The appendix includes implementation details and proofs.

2. Univariate Function Fitting

We wish to fit a continuous bounded function f : R → R from data (xi, yi) ∈ R × 𝒴, i = 1, 

…, n, xi ∈ [0, 1]. To do this we will choose f to minimize a data mismatch or loss function 

subject to a constraint that encourages regularity in f, and an additional constraint, 

saturation, that we describe below.

The loss is given by

L( f ) = ∑
i = 1

n
ℓ( f (xi), yi),

where ℓ : R × 𝒴 → R is nonnegative, twice differentiable, and strictly convex in its first 

argument. Typical loss functions include ℓ(z, w) = (z − w)2/2 (standard regression, 𝒴 = R), 

or ℓ(z, w) = log(1 + exp −(zw)) (logistic regression, with 𝒴 = {−1, 1}). The loss L is a 
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convex functional of the function f that only depends on the values of f at the data points xi. 

The smaller the loss, the better f fits the given data.

We constrain the function f to be simple by limiting the value of a nonnegative regularization 

functional R. In this paper, we take R to be the total variation of the derivative of f,

R( f ) = TV( f ′)

a convex functional of f . For a twice-differentiable function f, recall that

TV( f ′) = ∫ ∣ f ″(x) ∣ dx, (1)

i.e., the regularization is the ℓ1 norm of the second derivative. (As we review in the following 

section, the modern definition of total variation extends this equality to nondifferentiable 

functions.) The total variation limit we impose on f is R(f) ≤ τ, where τ is a parameter that 

we use to trade off model fit and model regularity. This regularization constraint implicitly 

constrains f to be differentiable almost everywhere, with its derivative having finite total 

variation.

Our model f will be subject to one more constraint, that it saturates (outside the interval [0, 

1]), which means that it is a (possibly different) constant on the two intervals outside [0, 1]: 

f(x) = f(0) for x ≤ 0, and f(x) = f(1) for x ≥ 1. In other words, f extends as a constant outside 

the nominal data range of [0, 1]. In terms of the derivative, this is equivalent to the 

requirement that f′ exists and is zero outside [0, 1].

The fitting problem is then

minimize L( f )
subject to R( f ) ≤ τ,

f ′(x) = 0 for x ∉ [0, 1],
(2)

where τ ≥ 0 is the regularization parameter. The variable to be determined is the function f, 
which is in the vector space of continuous functions with derivatives of finite total variation. 

This fitting problem is an infinite-dimensional convex optimization problem.

In applications the problem (2) is solved for a range of values of τ, which yields the 

regularization path. The final model is selected using a hold-out set or cross-validation. For τ 
= 0, f must be constant and the problem (2) reduces to fitting the best constant to the data. 

As τ increases, f is less constrained, and our fitted model becomes more complex; eventually 

we expect overfitting. For example, in the case of regression, with a loss function that 

satisfies ℓ(u, u) = 0 and data with distinct xi, the fitting function is the piecewise-linear 

function that interpolates the data, for large enough τ.
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3. Splines and Functions of Bounded Variation

In this section we explore the connection between our fitting problem and degree-one 

splines, i.e., piecewise-linear continuous functions, which have the form

f (x) = c + ∑
i = 1

k
wi(x − ti)+, (3)

where (z)+ = max{z, 0}. We assume that the ti are distinct, and refer to them as knot points 

or simply knots. The scalars wi are the weights, and c is the offset. We refer to the function x 
↦ (x − ti)+ as a hinge function, so a degree-one spline is a finite linear combination of 

hinge functions, plus a constant.

3.1 Functions of Bounded Variation

A right-continuous function h : [0, 1] → R is of bounded variation if and only if there exists 

a signed measure μ on [0, 1] with

h(z) = ∫ 1(y ≤ z)dμ(y), (4)

where 1(y ≤ z) = 1 for y ≤ z and 0 otherwise. The measure μ is unique; we can think of it as 

the derivative of h. That is, (4) is essentially the second fundamental theorem of calculus 

with h′ replaced by μ.

We also have TV(h) = ∫ d|μ|. (This is called the total variation of the measure μ.) We will 

denote this using the notation ||μ||1, to emphasize the similarity with the finite-dimensional 

case, or the case when h is differentiable: TV(h) = ||h′||1. When the measure μ is atomic, the 

function h is piecewise constant with jumps at the points in the support of μ.

3.2 Splines and Derivatives with Bounded Variation

Now suppose that f : [0, 1] → R has a right-continuous derivative of bounded variation. 

From (4), with h = f′, and the fundamental theorem of calculus, we have

f (x) = f (0) + ∫
0

x
f ′(z)dz = f (0) + ∫

0

x∫ 1(y ≤ z)dμ(y)dz (5)

= f (0) + ∫ ∫
0

x
1(y ≤ z)dz dμ(y) (6)
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= f (0) + ∫ (x − y)+ dμ(y) . (7)

This shows that any such function is a (possibly infinite) linear combination of hinge 

functions, plus a constant (i.e., f(0)). In this case, the measure μ can be thought of as the 

second derivative of f.

When μ is atomic and supported on a finite set, that is,

μ = ∑
i = 1

K
wiδti

,

f is a degree-one spline of the form (3), with c = f(0). So degree-one splines correspond 

exactly to the case where the measure μ (roughly, the second derivative) has finite support.

We introduce the notation

f μ(x) = ∫
0

x∫ 1(t ≤ z)dμ(t)dz = ∫ (x − t)+ dμ(t) (8)

to denote the function derived from the measure μ. It is, roughly speaking, the double 

integral of the measure μ, or the (potentially infinite) linear combination of hinge functions 

associated with the measure μ. The mapping from μ to fμ is linear, and we have 

TV( f μ′ ) = ∥ μ ∥1. A simple example of fμ, its first derivative f μ′ , and its (atomic measure) 

second derivative μ is shown in Figure 1.

3.3 Fitting Splines by Optimizing Over Measures

Identifying f = c + fμ, we can solve the fitting problem (2) by minimizing over the bounded 

measure μ on [0, 1], and the constant c. The measure μ is the second derivative of f, and the 

constant c corresponds to f(0). The total variation regularization constraint TV(f′) ≤ τ 
corresponds to ||μ||1 ≤ τ. The saturation condition holds by construction for x < 0; to ensure 

that f′(x) = 0 for x > 1, we need

f ′(1) = f ′(0) + ∫0
1

dμ = 0 .

In other words, saturation of f corresponds to μ having total (net) mass zero. Thus (2) can be 

rephrased as
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miniimize L(Exμ + c)
subject to ∥ μ ∥1 ≤ τ,

∫ dμ = 0
(9)

over the bounded measure μ on [0, 1], and c ∈ R. Note the slight abuse of notation here: we 

now (and for the remainder of the paper) consider L as a functional on Rn. In the above, Ex 

is the linear operator that maps μ to the vector (fμ(x1), …, fμ(xn)), given by (8). Ex is clearly 

linear, as it is the integral of the function ψ : R → Rn:

ψ(t) = ((x1 − t)+, …, (xn − t)+)

against μ. We will apply the conditional gradient method directly to this problem.

To gain intuition about the optimization problem (9), we can consider it as a infinite-

dimensional analogue of the standard lasso (Tibshirani, 1994). The lasso is the solution to 

the optimization problem

minimize 1
2 ∥ Aw − y ∥2

2

subject to ∥ w ∥1 ≤ τ .
(10)

Here w is a vector in Rd, and A ∈ R(n,d) is a matrix. Ignoring the constant term c, we see that 

(9) looks very similar to (10), where Ex plays the role of A; indeed, Ex is essentially a matrix 

with n rows and infinitely many columns. Our intuition from the lasso suggests that there 

should be solutions of (9) that are sparse, which here means that μ is atomic. In terms of fμ, 

sparsity means there are solutions of the original functional fitting problem (2) that are 

degree-one splines. This is indeed the case. Theorem 1 shows that there is a solution of (9) 

with μ atomic, supported on no more than n + 2 points; in other words, fμ is a degree-one 

spline with K ≤ n + 2. Moreover, in practice the solution of (9) will exhibit selection, that is, 

it will be supported on far fewer than n + 2 points.

Theorem 1 Fix x1, …, xn ∈ [0, 1] and f : R → R with f′ (right-continuous) of bounded 
total variation, and f constant outside of [0, 1]. Then there exists a degree-one saturating 
spline f  (with an most n + 2 knots) that matches f on xi with TV( f ′) ≤ TV( f ′).

For the remainder of the paper we will ignore the constant term c. It is not difficult to adapt 

the algorithms we present to handle the constant term, but doing so does add some notational 

complexity. It’s also possible to minimize out c, as it does not affect the regularization term; 

the resulting problem is still convex in w.
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4. The Conditional Gradient Method for Fitting Splines

In this section we outline our algorithm for solving (9) (and therefore also (2)). To that end, 

we briefly review the classical conditional gradient method (Jaggi, 2013.) and the measure-

theoretic version proposed in (Boyd et al., 2017).

The optimization problem we need to solve, (9), (without the constant term c) is

minimize L(Exμ)

subject to ∫ dμ = 0,

∥ μ ∥1 ≤ τ .

(11)

As noted in the last section, (11) is a convex optimization problem over a space of measures. 

We closely follow the approach taken in Boyd et al. (2017) and apply the conditional 

gradient method to this problem directly.

The main benefit of this approach is that we can restrict our attention to atomic measures, 

i.e., μ of the form

μ = ∑
j = 1

K
w jδt j

.

Measures of this form are easily representable in a computer, by simply storing a list of (wj, 
tj) pairs. Theorem 1 ensures that the number of knots we need to store is absolutely bounded, 

i.e., that our algorithm runs in bounded memory. While we manipulate atomic measures, we 

solve the problem (11) over all bounded measures.

One thing to note about finitely-supported atomic measures is that we can easily optimize 

over the weights wj with the knot locations tj fixed, since this corresponds to a finite-

dimensional convex optimization problem amenable to any standard algorithm. Our 

algorithm makes use of this fact, and alternates between adding pairs of knots and 

optimizing over the weights w at each iteration. In this latter step knots can be (and indeed 

eventually must be) removed. In an additional and optional step the knot points can be 

moved continuously within [0, 1], or to neighboring data points. This step is not needed for 

theoretical convergence but can improve convergence and the sparsity of the final solution in 

practice.

4.1 The Conditional Gradient Method

The conditional gradient method (CGM) solves constrained convex optimization problems 

of the form

minimize f (x)
subject to x ∈ 𝒞, (12)
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with variable x ∈ Rd. In the above, it is always assumed that the (convex) function f is 

differentiable. At each iteration of the CGM we form the standard linear approximation to 

the function f at the current iterate xm:

f (x; xm) = f (xm) + f ′(x − xm; xm) .

Here f′(d; x) is the directional derivative of the function f at x in the direction d, defined by

f ′(d; x) =
t 0
lim f (x + td) − f (x)

t .

Our use of the directional derivative here may seem surprising: for differentiable functions 

on Rd, f′(d; x) is always equal to ⟨∇f(x), d⟩. The direct applicability of directional 

derivatives to convex functionals of measures motivates us to prefer the directional 

derivative.

Convexity of f implies that f  is a lower bound on f, that is:

f (x; xm) ≤ f (x) . (13)

In the next step of the CGM, we minimize this first-order approximation over the feasible set 

C:

sm ∈
s ∈ 𝒞

arg min f (s; xm) =
s ∈ 𝒞

arg min f ′(s; xm) .

The point sm is called the conditional gradient of f. Note that sm provides a lower bound on 

f(x⋆):

f (sm; xm) ≤ f (x⋆) .

In particular, we can bound the sub-optimality of the point xm:

f (xm) − f (x⋆) ≤ − f ′(sm − xm; xm) . (14)

One can show (Jaggi, 2013.) that this bound decreases to zero, which means that it can be 

used as a (non-heuristic) termination criterion. After determining sm, there are several 

options for updating xm. In this paper, we will use the fully-corrective variant of the CGM, 

which chooses xm+1 to minimize f over the convex hull of {s1, s2, …, sm}. Note that this last 

step may become computationally intensive as k grows, and indeed limits the applicability 

of the conditional gradient method to problems where this step is computationally feasible. 

One option is to remove previous conditional gradients as soon as they are not selected in 

the minimization step. Caratheodory’s theorem ensures us that the set of previous 
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conditional gradients we need to track is then bounded by d + 1. In practice, however, the 

algorithm is usually terminated well before d + 1 iterations.

Algorithm 1

Fully-corrective conditional gradient method

For m = 1, …

 1. Linearize: f (s; xm) f (xm) + f ′(s − xm; xm).

 2. Minimize: sm ∈ arg mins ∈ 𝒞 f (s; xm).

 3. Update: xm ∈ arg minx ∈ conv(s1, …, sm) f (s)

4.2 Conditional Gradient for Measures

In this subsection, we apply the conditional gradient method to the infinite-dimensional 

problem (11), which we repeat here:

minimize L(Exμ)

subject to ∫ dμ = 0,

∥ μ ∥1 ≤ τ .

(15)

First we’ll show that the conditional gradient, i.e., the measure sm, can be chosen to be 

supported on exactly two points, and is computable in time linear in n. The directional 

derivative of the objective function in the direction of the measure s at the point μ is given by

t 0
lim

L(Ex(μ + ts)) − L(Exμ)
t

=
t 0
lim

L(Exμ + tExs) − L(Exμ)
t

= L′(Exs; Exμ)

= ∇L(Exμ), Exs
Rn .

We can then interchange the inner-product in ⟨∇L(Exμ), Exs⟩ with the integral in Exs = ∫ 
ψ(t) ds(t):

∇L(Exμ), Exs = ∫ ∇L(Exμ), ψ(t) ds(t) . (16)

Let g = ∇L(Exμ) ∈ Rn. Note that in the case ℓ(x, y) = (x − y)2
2 , g is simply the residual Exμ − y 

and ⟨g, ψ(t)⟩ is the correlation between the residual and a single hinge function located at t. 
A conditional gradient is any solution to the following optimization problem
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minimize ∫ g, ψ(t) ds(t)

subject to ∫ ds = 0,

∥ s ∥1 ≤ τ .

(17)

Without the integral constraint, we would expect there to be a solution to (17) that is a single 

point-mass: the objective function is the integral of a scalar-valued function against a 

bounded measure. We’ll show that there is always a solution to (17) that is supported on 

exactly two points. Furthermore, we’ll show that those two points can be computed in time 

linear in n.

First we’ll construct a particular feasible point for (17) and then we’ll show that it achieves 

the optimal value. Let

t+ ∈
t

arg min g, ψ(t) , t− ∈
t

arg min − g, ψ(t) .

Define

s⋆ = τ
2δt+

− τ
2δt−

.

The objective value achieved by s⋆ is

o⋆ = τ
2( g, ψ(t+) − g, ψ(t−) ) .

We’ll show that either any measure s that is feasible for (17) has objective value bounded 

below by o⋆ or μ is optimal for (11). Let s be any feasible measure for (17). Decompose s 
into the difference of two mutually singular non-negative measures: s = s+ − s−. Then as s is 

feasible we have ∥ s+ ∥1 = ∥ s− ∥1 ≤ τ
2 . The objective value achieved by s can be bounded 

below as follows

∫ g, ψ(t) ds(t) = ∫ g, ψ(t) ds+(t) + ∫ − g, ψ(t) ds−(t)

≥ ∥ s+ ∥1 t
min g, ψ(t) + ∥ s− ∥1 t

min − g, ψ(t)

≥ ∥ s+ ∥1 t
min g, ψ(t) +

t
min − g, ψ(t) .

Suppose (mint⟨g, ψ(t)⟩ + mint −⟨g, ψ(t)⟩) ≥ 0. Then the argument above implies s⋆ = 0 is a 

conditional gradient for (11), and thus (14) implies μ is optimal. Otherwise we have
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t
min g, ψ(t) +

t
min − g, ψ(t) < 0,

which implies

∥ s+ ∥1 t
min g, ψ(t) +

t
min − g, ψ(t) ≥ τ

2 t
min g, ψ(t) +

t
min − g, ψ(t) = o⋆ .

This proves the assertion.

Note that finding t− and t+ involves two separate optimization problems over [0, 1] instead of 

one over [0, 1] × [0, 1]. These problems are readily solved by gridding, though in this case 

they can be solved exactly in time linear in n if we have access to a sorted vector of the data 

points xi. To see this, we expand the objective function for t+ above,

t+ = 0 ≤ t ≤ 1
arg min ∑

i = 1

n
gi(xi − t)+ t

arg min ∑
i: xi ≥ t

gi(xi − t) .

If xi are sorted, we can compute the minimizer between each pair of consecutive data points 

exactly, since this is simply computing the minimizer of a linear functional over an interval. 

Thus in a single pass over the data we can compute the global minimizer exactly.

Immediately after computing t− and t+ we can use (14) to bound the suboptimality of μ by

L(Exμ) − L(Exμ⋆) ≤ − ∫ g, ψ(t) d(s⋆ − μ)(t) .

With this choice of conditional gradient, the fully-corrective step is a finite-dimensional 

convex problem. Fixing the knot locations encountered as conditional gradients so far, t1, …, 

t2k, we can do at least as well as the fully-corrective algorithm by solving the following 

optimization problem:

minimize L(Exμ)

subject to ∫ dμ = 0,

∥ μ ∥1 ≤ τ,
supp(μ) ⊂ {t1, …, t2k} .

(18)

This is equivalent to the following optimization problem in R2k :
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minimize L(Σ jw jExδt j
)

subject to 1Tw = 0,
∥ w ∥1 ≤ τ .

(19)

We can solve this using any of a number of existing algorithms (Boyd et al., 2011; den Berg 

and Friedlander, 2011). In our implementation we use the conditional gradient method with 

line-search for simplicity.

By warm starting with an increasing sequence of τ’s, we can efficiently compute an 

approximate regularization path. Indeed we can even provide a provably ϵ-suboptimal path 

using the approach of Giesen et al. (2012).

4.3 Convergence

As in the case of ADCG (Boyd et al., 2017) convergence follows immediately from the 

conditional gradient method proof in general Banach spaces (Dunn and Harshbarger, 1978; 

Demyanov and Rubinov, 1973; Jaggi, 2013.). The convergence of the conditional gradient 

method depends on a curvature parameter Cf. Cf is a constant such that the following 

inequality is satisfied for all x, s ∈ 𝒮 and η ∈ (0, 1):

f (x + η(s − x)) ≤ f (x) + η f ′(s − x; x) +
C f
2 η2 .

For our purposes f : Rn → R is simply L and S = {Exμ : ||μ||1 ≤ τ, ∫ dμ = 0}. A simple 

sufficient condition for Cf to be finite is that f is differentiable with Lipschitz gradient. If Cf 

is finite, the conditional gradient method converges (in terms of function value) at a rate of at 

least 1/m where m is the iteration counter.

5. Generalized Additive Models

One natural application of univariate splines is fitting generalized additive models (Hastie 

and Tibshirani, 1990) to multivariate data: (xi, yi) ∈ RD × 𝒴, i = 1, …, n. That is, fitting a 

function of the form

f (x) = ∑
d = 1

D
f d(x[d])

where each fd is a simple function from R to R (here x[d] is the d-th coordinate of the vector 

x). We can mimic our approach in the scalar case with the following optimization problem:
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minimize L( f )
subject to ΣdR( f d) ≤ τ,

f d′ (x) = 0 ∀x ∉ [0, 1], d .
(20)

Here R is the same regularizer used in the scalar case, namely

R(g) = TV(g′) ≃ ∥ g″ ∥1 .

As in the scalar case, one can show that there is always an optimal f with each coordinate 

function fd a degree-one saturating spline.

This allows us to rephrase (20) as an optimization problem over measures. The only change 

from the scalar case is that the measure is over the set {1, …, D} × [0, 1]—each knot is now 

attached to a particular coordinate. In other words, we search for a function of the following 

form:

f μ(x) = ∫ (x[d] − t)+dμ(d, t) .

We again have equality between the ℓ1 norm of μ and the regularization term:

∑
d

R(( f μ)d) = ∥ μ ∥1

The analogue of (11) is then

minimize L(Exμ)

subject to ∫ 1(d = d ) dμ(d, t) = 0, ∀d

∥ μ ∥1 ≤ τ .

(21)

The conditional gradient algorithm from the scalar case generalizes immediately to fitting 

generalized additive models—the only difference is that we now need to find a pair of knots 

for the same coordinate. This involves solving d pairs of nonconvex optimization problems 

over [0, 1]—again this can be done by gridding or by sorting the training data.

Saturating splines gain an additional advantage over standard adaptive splines when fitting 

generalized additive models. The addition of the saturation constraint (that fd be constant 

outside of [0, 1]) naturally leads to variable selection when fitting generalized additive 

models. What we mean by variable selection is that the functions fd are often exactly 0. This 

is because the saturation constraint means that linear coordinate functions no longer escape 

the regularization (indeed, they are impossible). This is very different from the standard 

adaptive spline setup without the saturation constraint. In that case, linear functions, i.e., 

Boyd et al. Page 14

J Mach Learn Res. Author manuscript; available in PMC 2019 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fd(x[d]) = wx[d] completely escape the regularization, and as a result are essentially always 

included in the model. Linear functions are not free with saturation constraints (in fact, 

outside of the function 0, they are not feasible). When we solve (21) we simultaneously fit 

nonlinear coordinate functions while doing variable selection.

6. Prior and Related Work

Smoothing splines also have an interpretation as the solution of an infinite-dimensional 

optimization problem (Hastie et al., 2001, §5.4). In fact, (degree-one) smoothing splines 

solve

minimize L( f )
subject to R( f ) ≤ τ,

(22)

where

R( f ) = ∫ f ′(x)2dx .

The solution to (22) is also a degree-one natural spline that saturates outside of [0, 1]. 

However, the solutions to (22) and (2) are very different. Roughly, (22) is analogous to ridge 

regression, while (2) is analogous to the lasso. That is, (22) fits functions with as many knots 

as datapoints, while (2) often fits splines with very few knots.

Another type of spline, that is adaptive but does not saturate, are adaptive regression splines 

(Mammen and van de Geer, 1997). These splines also arise as solutions to a functional 

regression problem:

minimize L( f )
subject to R( f ) ≤ τ,

(23)

where

R( f ) = TV( f ′(x)) .

Note that this is (2) without the saturation constraint. Algorithms for solving (23) (for 

degree-one splines) are based on an extension of Theorem 1, that shows there is a solution to 

(23) which is actually supported on the data points xi. Hence a lasso algorithm can be used 

to find the solution. This also suggests a very simple method to solve our problem (9): we 

fix the n knot points to be the values of the data xi, and solve the finite-dimensional convex 

optimization problem to find the weights. While simple coordinate-descent methods like 

GLMNet (Friedman et al., 2010) will not immediately work because of the saturation 

constraint, they could be modified to handle the constraint.
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This method does work, but can be much slower than ours since in practice the number of 

knots is typically much smaller than n for useful values of the regularization parameter τ, 

and the finite-dimensional problem with n basis functions is very poorly conditioned. With 

that said, the algorithm we propose—for the piecewise linear case—can be interpreted as a 

forward active set method for the finite dimensional problem, where we avoid explicitly 

evaluating all basis functions. One advantage of our measure-theoretic approach is that it 

immediately generalizes to higher-degree splines, where the support of μ need not be on data 

points, as we will see in §9. In this case (9) is truly infinite-dimensional, yet our algorithm 

can still be directly applied.

Trend filtering is a nonparametric function estimation technique, first introduced by Kim et 

al. (2009), that is very similar to adaptive splines. Indeed, as discussed by Tibshirani (2014), 

the trend filtering estimate in the constant or piecewise-linear case is exactly the same as the 

adaptive spline estimate. Trend filtering is increasingly popular as it admits extremely 

efficient, robust algorithms (Tibshirani, 2014; Ramdas and Tibshirani, 2015). Indeed, some 

of these algorithms (especially those adapted to fit GAMs, Petersen, Witten, and Simon 

(2015)) may be adapted to efficiently fit saturating trend filter estimates, which would 

benefit from the feature selection properties of saturating splines and the computational 

efficiency of trend filtering.

There are a number of methods for fitting generalized additive models with spline 

component functions. One approach (Lin and Zhang, 2006) is to use the group-lasso version 

of (6):

R( f ) = ∑
d

∫ f d′ (x)2dx .

Extending this idea, Chouldechova and Hastie (2015) use an overlap group-lasso that 

facilitates selection between zero, linear and nonlinear terms. The differences between these 

approaches and ours are analogous to the differences between the standard group-lasso and 

the lasso. While both do feature selection, the penalty functional (6) does not do knot-

selection within each coordinate function.

One very similar approach to fitting splines that does not require knot selection (but does not 

incorporate saturation) is discussed by Rosset et al. (2007).

7. Examples

In all examples we affinely preprocess the data so that all training features lie in [0, 1], and 

apply the same transformation to the test features (which thus may have values outside of [0, 

1]). All plots are in terms of the standardized features. For the bone density and abalone data 

sets we select τ to minimize error on the validation sets. For the Spam and ALS data sets we 

use cross-validation to estimate τ. We hold out a random subset of size 100 from the training 

set and train on the remaining data. For each random validation/train split we estimate τ to 

minimize hold-out error and take our final estimate of τ as the mean over 50 trials.
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7.1 Bone Density

We start with a simple univariate data set from (Hastie et al., 2001, §5.4). The response 

variable for this data set is the change in spinal bone density between two doctor visits for 

female adolescents as a function of age. There are 259 data points, of which we hold out 120 

for validation, leaving 139 data points to which we fit a saturating spine. We start with the 

square loss.

The results are shown in figure 3, for three values of the regularization parameter τ . The 

scattered points are the training data, the solid line is the saturating spline fit by our 

algorithm. The figure demonstrates the clear link between τ and the complexity of the 

optimized spline. Out-of-sample validation suggests setting τ ≃ 3.34, which achieves a 

validation RMSE of 0.036.

To demonstrate that our proposed method works with more general loss functions, we add 

30 simulated outliers to the training set and fit with the pseudo-Huber loss (Charbonnier et 

al., 1997), a smooth approximation to the Huber loss function given by

lδ(u) = δ 1 + u2
δ − 1 ,

where δ > 0 is a parameter that interpolates between the absolute value loss and the squared 

loss. For our experiment we take δ = 0.0015; roughly speaking, the transition between 

square and linear loss occurs around δ = 0.039. The results are shown in figure 4. These 

plots demonstrate that our algorithm can fit losses other than the square loss, and confirms 

that the pseudo-Huber loss is far more robust to outliers than the basic square loss function. 

Indeed, on the validation set the least-squares fit achieves a minimum RMSE of 0.096, while 

the pseudo-Huber fit achieves 0.038, only slightly worse than the fit obtained before the 

outliers were added to the training data. While this one-dimensional problem is very easy, it 

shows one advantage of the adaptive spline penalty over smoothing splines: the optimal 

model has only 5 knot points.

7.2 Abalone

We fit a generalized additive model with saturating spline coordinate functions to the 

Abalone data set from the UCI Machine Learning Repository (Lichman, 2013). The data 

consists of 4177 observations of 8 features of abalone along with the target variable, the age 

of the abalone. We hold out 400 data points as a validation set, leaving 3777 data points to fit 

the model. The first feature (labeled sex) has three values: Male, Female, and Juvenile, 

which are coded with values 0, 1, 2; the other 7 are (directly) real numbers. The task is to 

estimate the age of the abalone from the features.

Cross-validation suggests we choose τ ≃ 200, which achieves a validation set RMSE of 

2.131. Because the number of features is low, we can plot the entire generalized additive 

model. Each plot shows one coordinate function fd for d = 1, … , 8 as a function of the 

standardized feature in [0, 1]. The coordinate functions are shown for three values of τ, with 

the middle one corresponding to the value that minimizes cross-validation RMSE. When a 
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coordinate function is zero, which means that the feature is not used in the model, it is 

shown in blue. We can see that in the case of strong regularization (τ = 20), several 

coordinates are not used; for the best model (τ = 200), all features are used, with a few 

having only a small effect. It is interesting to see how the sex factors into the optimal model. 

It is neutral on Male or Female, but subtracts a small fixed amount from its age prediction 

for a Juvenile abalone.

This data set is small enough that we can compare against standard adaptive splines fit using 

a coarse grid of [0, 1]. For this experiment, we fit a GAM with standard adaptive spline 

component functions using GLMNET (Friedman et al., 2010). The standard adaptive GAM 

fit, which does no variable selection, achieves a validation set RMSE of 2.137, not 

significantly worse than the saturating spline model. Our algorithm, however, selects many 

fewer knot points. The increased number of knots when fitting with GLMNET is perhaps 

due to the poor conditioning of the gridded problem.

7.3 Spam

We consider the problem of classifying email into spam/not spam, with a data set taken from 

ESL (Hastie et al., 2001). The data set consists of 57 word-frequency features from 4601 

email messages, along with their labels as spam or not spam. Following the approach in ESL 

(Hastie et al., 2001) we log-transform the features and use the standard train/validation split, 

with a training set of size 3065, and test set with 1536 samples. We fit a saturating spline 

generalized additive model with standard logistic loss.

Figure 6 shows the validation error versus the regularization parameter τ . Cross-validation 

suggests the choice τ ≃ 1100. To show the benefit of nonlinear coordinate functions, we also 

include the best validation error achieved using a linear model (fit using GLMNet Friedman, 

Hastie, and Tibshirani (2010)).

With regularization parameter τ = 500, the model selects 55 of the 57 features. We note that 

our saturating spline generalized additive model modestly outperforms many methods from 

ESL (Hastie et al., 2001); for example, smoothing splines yield 5.3% error, while our model 

has an error rate well below 5%. Figure 7 shows (some of) the coordinate functions for the 

model with τ = 500. The coordinate functions use very few knots, making them readily 

interpretable.

For comparison, we fit a GAM with standard adaptive spline coordinate functions. To do so, 

we grid each dimension with 20 knots and solve the resulting finite-dimensional problem 

with GLMNET (Friedman et al., 2010). Note that adaptive splines do not penalize linear 

functions, so there is no feature selection. Adaptive splines achieve a minimum error of 

4.8%, significantly worse than saturating splines.

7.4 ALS

Using this data set we try to predict the rate of progression of ALS (amyotrophic lateral 

sclerosis) in medical patients, as measured by the rate of change in their functional rating 

score, a measurement of functional impairment. The data set is split into a training set of 

1197 examples and a validation set of 625 additional patients. Each datapoint has dimension 
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369. We fit a generalized additive model with saturating spline component functions to the 

data using a least-squares objective function. Following (Efron and Hastie, 2016, §17.2), we 

measure performance using mean-squared error.

We estimate the optimal value of τ using cross validation with a hold-out size of 100 

examples and 50 samples; this procedure suggests τ = 13. Figure 8 shows the validation 

error versus the regularization parameter τ ; the value of τ selected by cross validation 

achives low error. On the same plot, we also show the results from Efron and Hastie (2016) 

using boosted regression trees and random forests. The optimal saturating spline GAM 

model selects only 50 out of the 369 features, in contrast to boosted regression trees, which 

use 267. The saturating spline GAM model performs comparably to boosted regression trees 

and random forests. This is surprising as the saturating spline GAM has no interaction terms. 

It also uses substantially fewer features, further improving interpretability.

Again we fit a GAM with standard adaptive spline coordinate functions (using GLMNET) to 

show the advantage of saturation. The standard adaptive spline fit achieves an MSE of 0.547, 

substantially worse than any other model. We speculate that this is because the unpenalized 

linear functions lead to immediate overfitting. Indeed, removing the unpenalized linear 

functions and fitting a model with only hinges gives very similar performance to the 

saturating spline fit, suggesting that the main advantage of saturation for this application is 

the removal of the unpenalized linear functions.

Practical advantages of saturating splines—These experiments show that saturating 

splines achieve competitive performance on small classification and regression data sets. In 

addition, the experiments demonstrate that saturating splines exhibit both knot selection and 

feature selection—in the context of fitting GAMs. While it is no surprise that saturating 

splines select fewer knots than smoothing splines (which choose a fully-dense set of knots), 

it is somewhat surprising that our algorithm selects fewer knots than even adaptive splines fit 

with GLMNET. Finally, the Spam and ALS data sets demonstrate a major advantage of 

saturating splines over adaptive splines: they simultaneously perform non-linear coordinate 

function fitting and feature selection. This aids in generalization performance and 

interpretability. In particular, for the ALS data set saturating spline GAMs achieve half the 

test MSE of adaptive spline GAMs by selecting only 50 of 369 available features.

8. Higher-degree Splines

In the majority of this paper we focused on the functional regression problem (2), with a 

total variation constraint on the first derivative and a saturation constraint on the zeroth 

derivative (the function itself). In this section, we consider constraints on higher order 

derivatives, which lead to solutions that are splines of higher degrees.

minimize L( f )
subject to TV( f (k)) ≤ τ,

f (k − j)(x) = 0, ∀x ∉ [0, 1] .
(24)
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We consider the family of nonparametric function estimation problems indexed by 0 ≤ j ≤ k. 

This is the analogue of the functional regression problem (2) with a total variation constraint 

on the k-th derivative and a saturation constraint on the (k − j)-th derivative. The saturating 

spline case from the rest the paper is the special case of (24) with k = 1, j = 0. Widely used 

cubic natural splines correspond to k = 3, j = 1. Note that unlike natural splines, which are 

only defined for some values of j and k, there are no constraints on j and k.

We now show that higher-degree saturating splines solve (24) in general. As f(k) is of 

bounded TV, there exists a measure μ s.t. f(k)(x) = ∫ 1(t ≤ x) dμ(t). Then we have

f (k − j)(x) = ∫ ⋯∫ f (k)(x)dx…dx

= ∫ ⋯∫ ∫ 1(t ≤ x)dμ(t)dx…dx

= j!∫ (x − t)+
j dμ(t) + ∑

l = 0

j − 1
wlx

l

for some wl. In the above, all iterated integrals take place j times.

Note that the constraint that f(k−j)(x) = 0 for all x < 0 implies that the polynomial term, 

∑l = 0
j − 1wlx

l is identically zero. So, we have

f (k − j)(x) = j!∫ (x − t)+
j dμ(t) .

For x > 1, we can remove the nonlinearity, that is, for x > 1, f(k−j)(x) is simply the integral of 

a polynomial in x. We can pull terms involving x out of the integral to get a polynomial in x 
whose coefficients are nonzero multiples of the first j moments of μ:

f (k − j)(x) = j! ∑
l = 0

j j
l

x j − k∫ ( − t)kdμ(t) .

Again, we note that as this polynomial is identically zero for infinitely many points, all of 

the coefficients must be zero. In terms of the measure μ, this means:

∫ tldμ(t) = 0 for l = 0, …, j .

This shows that the constraint that the (k − j)-th derivative of f saturate translates to 

constraints on all moments of μ up to the j-th moment.

While the conditional gradient step becomes more complex with the addition of more 

moment constraints, the approach taken in this paper can still be applied to (24) as long as j 
is fairly small—the conditional gradient step for (24) involves a nonconvex optimization 

problem over [0, 1]j+2. This is because we need at least (j + 2) point-masses to satisfy the 

moment constraints. So, fitting quadratic splines that saturate to linear is very easy—in fact 
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the code to do so is essentially identical to that for fitting piecewise linear saturating splines 

splines—but fitting quadratic splines that saturate to constant is slightly more difficult due to 

the additional linear constraint on the measure μ. Unfortunately for larger values of j and k, 

we can no longer hope to find the conditional gradient analytically and must resort to 

recursive gridding or other global optimization algorithms to find the locations of the new 

knots.

9. Variations and Extensions

While saturation is often a natural prior, the approach we take in this paper can also be 

applied to other (convex) variations on (9). For example, we could add the constraint that the 

fitted function is monotone nondecreasing, or takes values in a given interval.

A simple algorithmic extension would be to incorporate nonconvex optimization in the spirit 

of Boyd et al. (2017). At each iteration we adjust the weights of the atomic measure (w), but 

we could also adjust the knot locations (t). The objective in (19) is nonconvex in ti, but we 

can still attempt to find a local minimum. As long as we do not increase the objective 

function the algorithm is still guaranteed to converge (Boyd et al., 2017). In the case of 

degree one splines, we can use the fact that the knot points can, without loss of generality, be 

chosen to be on the data points to make discrete adjustments to the knot locations.

To fit vector-valued functions, for example in multiclass classification, we would need to 

extend (9) to use vector-valued measures. This is the natural measure-theoretic analogue to 

the group-lasso.

In multivariate fitting problems with significant interactions between features generalized 

additive models may underfit. One possible solution is to use single-layer neural networks: 

i.e., learn functions of the form

x ∑
i = 1

K
wi(vi

Tx − ti)+ .

In the above, vi are constrained to lie in the unit ball. Unfortunately, the conditional gradient 

step for networks of this form is NP-hard (Bach, 2017). In many practical applications, 

however, we might expect that the degree of the interaction is bounded. That is, each vi has 

bounded cardinality. If we assume ||vi||0 ≤ 2, i.e., we only fit pairwise interactions, we can 

still apply the conditional gradient method. In this case, the fitting function is a sum of 

functions of pairs of the variables, formed from the basis elements

((cos θ)xp + (sin θ)xq − t)+,

with (continuous) parameters θ and t and (index) parameters p and q (i.e., v = (cos θ)ep + 

(sin θ)eq). (This is practical only if d is small enough.) Such functions capture nonlinear 

relationships between (pairs of) variables.
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10. Conclusion

In this paper we propose a modification of the adaptive spline regression model—namely 

saturation constraints. We show that saturating splines inherit knot-selection from adaptive 

splines, and have a very important quality in the context of generalized additive models: 

feature selection. This allows saturating spline generalized additive models to remain 

interpretable and (crucially) avoid overfitting when applied to multivariate data. We also 

propose a simple, effective algorithm based on the standard conditional gradient method for 

solving the saturating spline estimation problem with arbitrary convex losses. Finally, we 

apply our algorithm to several data sets, demonstrating the simplicity of the resulting 

models.
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Appendix A. Implementation Details

We provide a simple, unoptimized implementation in the Rust language. The runtime of our 

algorithm is dominated by the fully-corrective step, that is, solving the finite-dimensional 

convex optimization problem (19). We solve (19) using a proximal Newton method and the 

standard conditional gradient method with exact linesearch. To be precise, at each iteration, 

we form the second-order approximation to the objective function

f (w) ≃ C + (w − w)T ∇w f (w) + 1
2(w − w)T ∇2 f (w)(w − w)

which we then minimize (over the constraint set) using the standard conditional gradient 

method with (exact) linesearch. Note that this is a Newton step with fixed step-length of 1: 

as in GLMNET (Friedman et al., 2010), we omit a line search in the interest of speed.

We chose to use a proximal Newton method because of its relative simplicity; other standard 

convex optimization algorithms may give much better practical performance, especially 

when the number of data points, n, is extremely large.

Appendix B. Saturating Hinges

In this section we introduce a heuristic for solving an approximation to (9) using existing 

algorithms for the lasso. Here we consider the case where R( f ) = TV( f ′(x)), and hence as 

pointed out in Section 6 the solution is an expansion in piecewise linear splines with knots at 

the unique data points. Let hj be a hinge function at knot tj: hj(x) = (x − tj)+, and suppose we 

have knots t1 < tt < ⋯ < tk. Define f (x) = w0 + ∑ j = 1
k w jh j(x). Given a sample T = {(xi, yi)}1

N, 

solving (9) amounts to solving
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w0, w
minimize ∑

i = 1

N
ℓ(yi, f (xi)) + λ ∥ w ∥1 s . t . f ′(tk) = 0 . (25)

Here we’ve exchanged a constraint on the total variation of TV (f′(x)) with a penalty. The 

condition f′(tk) = 0 is equivalent to ∑ j = 1
k w j = 0. If the points xi are unique, then k = n; 

irrespective t1 = min(xi), tk = max(xi) and by construction the estimate f  is constant beyond 

the data.

Without the gradient condition f′(tk) = 0, solving (25) amounts to a large lasso problem, for 

which efficient software is available. Here our goal is to transform the problem to get rid of 

this constraint. For more generality we do this for an arbitrary set of ordered knots.

Suppose k < n and the right-most knot is inside the range of the data. Consider the following 

formulation. Let sj(x) = hj(x) − hk(x), a “saturating” hinge function. It looks like a piecewise 

linear sigmoid, and goes horizontal at tk (see figure 10).

Without the ℓ1 constraint (or when λ = 0) the solution to (25) is equivalent to the solution to 

the problem with the reduced basis g(x) = θ0 + ∑ j = 1
k − 1 θ js j(x):

θ0, θ
minimize ∑

i = 1

N
ℓ(yi, g(xi)) . (26)

This is easy to see. f is an affine expansion in the hj, and hence any nonsingular k × k 
transformation C of the vector of functions h(x) = (h1(x), h2(x), …, hk(x)) spans the same 

space. It is easy to see that with s(x) = CTh(x), and

C =

1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0

−1 −1 ⋯ −1 −1

(27)

that sj(x) are as described (and sk(x) = −hk(x)). Now h(x)Tw = h(x)TCC−1w = s(x)Tθ, with θ 
= C−1w. However, in this case C−1 = C, and hence θj = wj, j = 1, …, k − 1 and 

θk = ∑ j = 1
k w j. In this new basis, imposing the constraint amounts to setting θk = 0, or 

simply deleting the last basis function. So fitting the linear model f subject to f′(tk) = 0 is 

equivalent to fitting the model g without constraints, and in fact the θj = wj, j = 1, …, k − 1.

So in summary, fitting a constrained optimization with the hinge functions is equivalent to 

fitting an unconstrained optimization with the reduced set of saturating hinges. The 

remaining question is does this also work with the penalty λ||w|| as in (25). Not quite, but 
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close. It turns out we are still missing a penalty term λ ∣ ∑ j = 1
k − 1 θ j ∣. Hence the transformed 

problem is

θ0, θ ∈ Rk − 1
minimize ∑

i = 1

N
ℓ(yi, g(xi)) + λ ∥ θ ∥ + λ ∣ Σ j = 1

k − 1θ j ∣ .

If we are willing to ignore this last penalty, we can fit the saturated spline model using a fast 

lasso solver, such as glmnet. By generating such a basis for each variable in a GAM, this 

same approach can be used to fit a saturated GAM regularization path.

The impact is that one could fit a saturated gam model by running say glmnet on the {s} 

bases. An example is given on the spam data in figure 11, where the regularization path was 

computed at a 100 values of λ in seconds. There are of course some caveats.

• If you use all the knots for each of p variables, you end up with a data matrix of 

dimension N × Np, which does not scale too well. So instead one might use a 

smaller grid of knots; e.g., map the variables onto [0, 1], and then use a grid of 

say 50 evenly spaced knots on this grid, including the end knots.

• With a large number of knots, the “variables” are highly correlated, and this can 

cause numerical issues. The main issue we see is that active sets tend to be larger 

than they should be.

Nevertheless, this is an alternative algorithm, which is closer in spirit to the adaptive splines 

algorithm.

Appendix C. Proof of Theorem 1

Theorem 1 Fix x1, …, xn ∈ [0, 1] and f : R → R with f′ (right-continuous) of bounded 
total variation, and f constant outside of [0, 1]. Then there exists a degree-one saturating 
spline f  that matches f on xi with TV( f ′) ≤ TV( f ′).

Proof Without loss of generality, we will assume f(0) = 0. Let τ = TV(f′). As f′ has 

bounded total variation, there exists a measure μ on [0, 1] such that f(x) = fμ:

f (x) = ∫ (x − t)+dμ(t) .

That is, f is a spline with infinitely many knots. The idea is to use Caratheodory’s theorem 

for convex hulls to see that, as we only care about μ in terms of its action on a finite number 

of functions (basically, we only care about the values of f at xi), we can replace μ with a 

measure supported on finitely many points.

To make this idea rigorous, note that the vector

v = ( f (x1), …, f (xn), 0) = ∫ ((x1 − t)+, …, (xn − t)+, 1)dμ(t)
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must lie in convex hull of the (convex) set

C = { ± (τ(x1 − t)+, …, τ(xn − t)+, τ): t ∈ [0, 1]} ⊂ Rn + 1

as ||μ||1 = τ. Caratheodory’s theorem for convex hulls ensures us that v can be represented as 

a convex combination of at most n + 2 points from C. Letting these n + 2 points be 

represented by their indicies, t1, …, tn+2, and their weights α1, …, αn+2 we define wj = αjτ 
to obtain:

f (xi) = ∑
j

w j(xi − t j)+ = f μ(xi)

∑
j

w j = 0 .

Here μ = Σj wjδtj. As Σj|wj| = τ, we have TV( f μ′ ) = ∥ μ ∥1 = τ.
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Figure 1: 
fμ and f μ′  generated by the atomic measure μ( f μ″). The regularization functional, ℓ, is the sum 

of the absolute values of the spikes in μ. Note that the (signed) sum of the spikes in μ is zero: 

that is, ∫ dμ = 0, which implies that fμ saturates.
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Figure 2: 
An illustration of a single iteration of the conditional gradient method on the function f(x) = 

x2 at the point 1
2 . The set 𝒞 is the interval [−0.25, 1.25], indicated by the solid vertical lines. 

The first order approximation f ( ⋅ ; 1
2 ) is plotted as the dotted line tangential to f(x) at 1

2 . The 

conditional gradient sm is the point −0.25.
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Figure 3: 
Saturating splines fit to bone density data (shown as scattered points) for 3 values of the 

regularization parameter τ. Top: τ = 0.31; Middle: τ = 3.34; Bottom: τ = 35.45.
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Figure 4: 
Saturating splines fit to bone density data (shown as scattered points) with simulated outliers 

for square loss function (left) and pseudo-Huber loss function (right), each for the value of τ 
that minimizes RMSE on the test set.
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Figure 5: 
Coordinate functions for saturating spline generalized additive models fit to Abalone data 

for three values of the regularization parameter τ.
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Figure 6: 
Validation error for saturating spline generalized additive model fit to Spam data set versus 

regularization parameter τ.
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Figure 7: 
16 coordinate functions for τ = 500, labeled with the corresponding feature name.
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Figure 8: 
Validation MSE on ALS data set versus regularization parameter τ.
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Figure 9: 
The top two plots show conditional gradients for k = 2 with j = 0 and j = 1 respectively. The 

dashed lines denote the locations of the point masses: when j = 1, the conditional gradient 

consists of three point masses. The bottom plots show the corresponding measures.
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Figure 10: 
Hinges and saturating hinges.
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Figure 11: 
Performance on the spam test data, with 20 knots per variable. Increasing to 50 did not make 

much difference. Minimum error is 0.047.

Boyd et al. Page 37

J Mach Learn Res. Author manuscript; available in PMC 2019 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Outline

	Univariate Function Fitting
	Splines and Functions of Bounded Variation
	Functions of Bounded Variation
	Splines and Derivatives with Bounded Variation
	Fitting Splines by Optimizing Over Measures

	The Conditional Gradient Method for Fitting Splines
	The Conditional Gradient Method

	Algorithm 1
	Conditional Gradient for Measures
	Convergence

	Generalized Additive Models
	Prior and Related Work
	Examples
	Bone Density
	Abalone
	Spam
	ALS
	Practical advantages of saturating splines


	Higher-degree Splines
	Variations and Extensions
	Conclusion
	Appendix A. Implementation Details
	Appendix B. Saturating Hinges
	Appendix C. Proof of Theorem 1
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:



