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RESEARCH ARTICLE Open Access

Genome-wide association and genomic
prediction identifies associated loci and
predicts the sensitivity of Tobacco ringspot
virus in soybean plant introductions
Hao-Xun Chang1, Patrick J. Brown1, Alexander E. Lipka1, Leslie L. Domier1,2 and Glen L. Hartman1,2,3*

Abstract

Background: Genome-wide association study (GWAS) is a useful tool for detecting and characterizing traits of
interest including those associated with disease resistance in soybean. The availability of 50,000 single nucleotide
polymorphism (SNP) markers (SoySNP50K iSelect BeadChip; www.soybase.org) on 19,652 soybean and wild soybean
plant introductions (PIs) in the USDA Soybean Germplasm Collection allows for fast and robust identification of loci
associated with a desired phenotype. By using a genome-wide marker set to predict phenotypic values, genomic
prediction for phenotype-unknown but genotype-determined PIs has become possible. The goal of this study was
to describe the genetic architecture associated with sensitivity to Tobacco ringspot virus (TRSV) infection in the
USDA Soybean Germplasm Collection.

Results: TRSV-induced disease sensitivities of the 697 soybean PIs were rated on a one to five scale with plants
rated as one exhibiting mild symptoms and plants rated as five displaying terminal bud necrosis (i.e., bud blight).
The GWAS identified a single locus on soybean chromosome 2 strongly associated with TRSV sensitivity. Cross-
validation showed a correlation of 0.55 (P < 0.01) to TRSV sensitivity without including the most significant SNP
marker from the GWAS as a covariate, which was a better estimation compared to the mean separation by using
significant SNPs. The genomic estimated breeding values for the remaining 18,955 unscreened soybean PIs in the
USDA Soybean Germplasm Collection were obtained using the GAPIT R package. To evaluate the prediction
accuracy, an additional 55 soybean accessions were evaluated for sensitivity to TRSV, which resulted in a correlation
of 0.67 (P < 0.01) between actual and predicted severities.

Conclusion: A single locus responsible for TRSV sensitivity in soybean was identified on chromosome 2. Two
leucine-rich repeat receptor-like kinase genes were located near the locus and may control sensitivity of soybean to
TRSV infection. Furthermore, a comprehensive genomic prediction for TRSV sensitivity for all accessions in the USDA
Soybean Germplasm Collection was completed.
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Genomic prediction, Single nucleotide polymorphism (SNP), Soybean (Glycine max), Tobacco ringspot virus (TRSV)
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Background
Tobacco ringspot virus (TRSV), a single-stranded bipart-
ite RNA virus, is one of the most destructive viral patho-
gens of soybean (Glycine max (L.) Merr.) [1]. Soybean
plants infected with TRSV are generally stunted, leaflets
may be dwarfed and rolled, buds may become brown,
necrotic and brittle, and terminal buds may form a
crook and die. Plants infected at early developmental
stages often produce undeveloped flowers that impact
fertilization resulting in aborted pods and yield losses
ranging from 25 to 100 % [1, 2]. TRSV is transmitted
through infected seeds or by vectors, including the dag-
ger nematode (Xiphinema americanum Cobb), grass-
hoppers (Melanoplus differentialis Thomas), thrips
(Thrips tabaci Lindeman) and tobacco flea beetles (Epi-
trix hirtipennis Melsheimer) [1]. Transmission by seed
and nematodes may be the most common pathways of
infection [3]. TRSV has a broad host range that includes
many plant genera, and has been reported on soybean in
most soybean producing states in the USA and in
Australia, Canada, the People’s Republic of China, and
Russia [1].
There are few options for managing TRSV outbreaks.

Resistance to TRSV has not been described for commer-
cial soybean cultivars, and may not be available based on
the absence of TRSV resistance in a set of 52 lines that
are the ancestors to most North American public culti-
vars [4]. In another study, TRSV resistance was reported
in wild soybean (Glycine soja Siebold & Zucc.) as three
out of 630 plant introductions (PIs) displayed only mild
symptoms when infected by TRSV [5]. No further stud-
ies have been conducted to determine the inheritance of
the potential sources of resistance in G. soja. However,
one study crossed the soybean cultivar Young and
PI416937 and identified a major quantitative trait locus
(QTL) that explained 82 % of the phenotypic variation
of TRSV resistance. This QTL was located on chromo-
some 13 between 25 Mb to 28 Mb between markers
K644_1 and Satt510 based on Williams82 assembly
version 1 (Gmax1.01) [6]. In addition, when Arabidopsis
thaliana (L.) Heynh. was inoculated with TRSV, most
ecotypes were tolerant to TRSV, but some ecotypes,
such as Estland, displayed lethal systemic necrosis [7],
which resembled bud blight of soybean. An allele of
TTR1 (Tolerance to Tobacco ringspot virus 1), which
encodes a protein with Toll/interleukin-1 receptor,
nucleotide-binding site and leucine-rich repeat (TIR-
NB-LRR) domains was reported to control tolerance to
TRSV in A. thaliana [8]. Comparison of protein se-
quence alignments between tolerant and sensitive A.
thaliana ecotypes identified different amino acid resi-
dues in the LRR region between sensitive TTR1 and tol-
erant ttr1 alleles. When the TRSV-tolerant A. thaliana
ecotype Col-0 was transformed with the TTR1 allele

from the sensitive Estland ecotype, the resulting plants
were sensitive to TRSV infection. In contrast, when Col-0
was transformed with TTR1 that contained single amino
acid substitutions at different locations, only L956S and
K1124Q escaped the necrosis symptoms, suggesting that
the leucine (L956) and lysine (K1124) residues in the
TTR1 gene were needed for TRSV sensitivity and for dis-
playing lethal systemic necrosis [8].
The genome-wide association study (GWAS) is a stat-

istical analysis that associates variation across the entire
genome with phenotypes [9, 10]. In the case of soybean,
GWASs have been used to identify loci associated with
agronomic traits [11], abiotic stress [12], and disease re-
sistance including Phytophthora root rot (Phytophthora
sojae Kaufman & Gerdman) [13], Sclerotinia stem rot
(Sclerotinia sclerotiorum (Lib.) de Bary) [14–16], soybean
cyst nematode (Heterodera glycines Ichinohe) [17–19],
and sudden death syndrome (Fusarium virguliforme
Akoi, O’Donnell, Homma &. Lattanzi) [20]. With the
availability of SoySNP50K single nucleotide polymorph-
ism (SNP) markers [21], genomic information for over
19,000 accessions in the USDA Soybean Germplasm
Collection can be utilized to identify genes underlying
many traits, including resistance or tolerance to TRSV.
The goal of this study was to identify regions of the

soybean genome associated with sensitivity to TRSV
infection based on a subset of the PIs in the USDA Soy-
bean Germplasm Collection. For these analyses, 697 soy-
bean PIs were phenotyped TRSV sensitivity and GWAS
was performed, which identified a single locus associated
with sensitivity to TRSV infection. Moreover, we applied
genomic prediction to estimate TRSV sensitivities for the
unscreened 18,955 soybean PIs in the USDA Soybean
Germplasm Collection, and evaluated the accuracy of
genomic prediction. To our knowledge, this work consti-
tutes the first GWAS and genomic prediction study for
TRSV sensitivity in soybean.

Results
Sensitivity of soybean PIs to TRSV infection
All 697 soybean PIs evaluated were susceptible to TRSV
and showed symptoms. At ten days post inoculation,
most soybean plants infected with TRSV were stunted
and displayed a range of foliar symptoms (Fig. 1a). Plants
were separated into sensitivity categories of one to five
based on the severity of their symptoms. Plants that dis-
played terminal necrosis on the first or second trifoliates
were classified as a sensitivity of five or four, respectively
(Fig. 1b, c). Plants classified as sensitivity three had nec-
rotic spots in the first or second trifoliate that generally
started at the leaf margin or had terminal necrosis of
third trifoliates (Fig. 1d). Plants with mosaic foliar symp-
toms on first trifoliates were categorized as sensitivity
two (Fig. 1e) Plants with sensitivities of one were slightly
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stunted with mild chlorosis (Fig. 1f ). More than 50 % of
the PIs were classified as sensitivity four or five, and only
67 PIs were classified as sensitivity one (Fig. 1g).

GWAS to identify QTL associated with sensitivity to TRSV
The Bayesian information criterion (BIC)-based model
selection procedure [22] indicated that no principal
components (PCs) were required to control for popula-
tion structure in the GWAS model (Table 1). This result
underscored our findings that the principal component
analysis did not detect distinct subpopulations among
the selected 697 soybean PIs (Fig. 2a). Therefore, no PC
was included, but a heatmap of the kinship matrix with

genetic relatedness among the 697 soybean PIs (Fig. 2b)
was included in the mixed linear model for GWAS.
Since the observed and expected P-values differed sub-
stantially only for a few SNPs, the quantile-quantile
(QQ) plot supported the appropriateness of the GWAS
model (Fig. 3a). The GWAS identified a single locus as-
sociated with TRSV sensitivity that exceeded the
Bonferroni-corrected α = 0.05 threshold on chromosome
2 (Fig. 3b). Four SNPs in this region were significant at a
1 % false discovery rate (FDR). Individually, these SNPs
accounted for 3 to 4 % of the variance in the GWAS
model. Although most of the significant SNPs were
located within a genomic region on chromosome 2, one
SNP on chromosome 8 was significantly associated with
TRSV sensitivity at 5 % FDR (Table 2). To confirm and
detect other potential minor signals, the GWAS was
reran with the most significant SNP on chromosome 2
(ss715581043) included as a covariate. The resulting
QQ-plot showed that the observed P-values followed the
expected P-values (Fig. 3c), and no additional SNPs
identified at 5 % FDR (Fig. 3d). The result indicated that
fixation of ss715581043 as a covariate explained most of
the genetic contribution to the overall phenotypic vari-
ation and suggested only one locus on chromosome 2

Fig. 1 Sensitivity of soybean accessions to TRSV infection. a Decision tree for determining TRSV sensitivities one to five. b Red arrows indicate
necrotic reactions on different trifoliates. When the first trifoliate became necrotic, plants were rated with a sensitivity of five. c Necrosis of the
second trifoliate at the bud stage typifies sensitivity four. d Plants that had necrotic spots on first trifoliate leaves belonged to sensitivity three.
e Plants in sensitivity two displayed clear mosaic symptoms on the first trifoliate. f Plants in sensitivity one were stunted with chlorosis. g The
distribution of TRSV sensitivity on 697 soybean accessions

Table 1 Bayesian information criterion (BIC)-based model
selection. The model with the largest BIC value is optimal

Principal components BIC log(Likelihood Function)

0 −1125.50 −1115.68

1 −1128.76 −1115.67

2 −1131.94 −1115.58

3 −1133.62 −1113.98

4 −1136.89 −1113.98

5 −1140.16 −1113.97
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was responsible for TRSV sensitivity in soybean. The four
SNPs displaying peak associations with TRSV sensitivity in
the initial GWAS defined a genomic region of approxi-
mately 130 kb between 12,089,749 bp to 12,219,313 bp on
chromosome 2 (Table 2). Within this region, there were
two candidate genes (Glyma02g13460 and Glyma02g13470)
that may be involved in plant defense responses. Both en-
code leucine-rich repeat receptor-like kinases (LRR-RLKs)
(Table 3).

Genomic prediction
Because a single genomic region on chromosome 2 associ-
ated with TRSV sensitivity, the mean separation of TRSV
sensitivity at each of the four most significantly associated
SNPs were tested to determine if marker-assisted selection
would aid in breeding for reduced sensitivity to TRSV
infection. The results suggested strong overlaps in these
distributions (Fig. 4a), and the correlation between geno-
types of each SNP to the rated TRSV sensitivity resulted
in low significant (P > 0.01) correlations (r = 0.15, r = 0.14,
r = −0.14, r = −0.15 for the first, second, third, and fourth
SNPs, respectively). We then tested if genomic selection
would provide a better prediction and applied GAPIT
and rrBLUP to perform cross-validation [23, 24]. The
results of the five-fold cross-validation without a
covariate in the model resulted in significant correla-
tions (r = 0.54) for both GAPIT and rrBLUP. When the
most significant SNP, ss715581043, was fixed as a
covariate in the model, the correlation coefficient was

reduced for GAPIT (r = 0.48) but not rrBLUP (r = 0.54)
(Fig. 4b). These results indicated that genomic prediction
without including a covariate might provide a better esti-
mate for the unscreened soybean accessions in the USDA
Soybean Germplasm Collection. We subsequently con-
ducted genomic prediction by splitting the unscreened
18,955 soybean PIs into 85 groups to increase computa-
tional speed and acquired an average BLUP for each of
the 18,955 soybean PIs. The BLUPs of the unscreened
soybean PIs was sigmoidal with continuous values while
the BLUP of the training subpopulations were centered
around − 2.5,−1.5,−0.5, 0.5, and 1.5 that corresponded to
genomic estimated breeding values (GEBVs) of one to five,
respectively (Fig. 5a). The distribution of BLUPs and
GEBVs for the 18,955 unscreened soybean PIs suggested
none was close to PIs in the TRSV sensitivity one from the
training population (Fig. 5a; Additional file 1: Table S1).
We then phenotyped an additional 55 PIs selected from
the predicted GEBV distribution for sensitivity to TRSV in
order to evaluate the accuracy of genomic prediction
(Fig. 5a). The GEBV showed that the TRSV sensitivities of
the 55 PIs: 19 PIs with TRSV sensitivities of two (1.5 ≤
GEBV < 2.5), 15 PIs with TRSV sensitivities of three (2.5 ≤
GEBV < 3.5), 13 PIs with TRSV sensitivities of four (3.5 ≤
GEBV < 4.5), and 8 PIs with TRSV sensitivities of five
(GEBV ≥ 4.5). The rated TRSV sensitivity was correlated
(r = 0.67, P < 0.001) to GEBVs obtained from both
GAPIT and rrBLUP (Fig. 5b). However, the accuracy of
genomic prediction tended to be divergent in the lower

Fig. 2 Principal component and kinship analyses of soybean genetic data. a The first three principal components of the 30,697 SNPs used in the
genome-wide association study (GWAS) indicates little population structure among the 697 tested accessions. The different colors of dots indicate
differing TRSV sensitivity values. b A heatmap of the kinship matrix of the 697 soybean accessions calculated from the same 30,697 SNPs used in
the GWAS suggests low levels of relatedness among the 697 individuals
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ratings but more reliable toward the higher sensitivity
ratings. That is, most plants with predicted sensitivity
ratings of five and four had actual sensitivity ratings of
five and four, but accessions with a predicted sensitivity
rating of two had actual sensitivity ratings that ranged
from one to four (Table 4).

Discussion
In this study, 697 of the 19,652 soybean PIs in the
USDA Soybean Germplasm Collection were evaluated
for their responses to TRSV inoculation. Although no
TRSV-immune accessions were observed, 43 % of the
accessions did not display bud blight, the most severe

Fig. 3 QQ-plots and Manhattan plots for TRSV sensitivities. a QQ-plot from the initial GWAS scan. Most P-values were similar to the expected diagonal
in the QQ-plot, which indicates the appropriateness of the GWAS model. b A single QTL that exceeded genome-wide significance was identified on
chromosome 2. Red line indicates Bonferroni-corrected threshold with an experimental type I error rate at 0.05. Significant SNPs at a false discovery rate of
1 % are highlighted in green. c QQ-plot from a second GWAS scan using a model that included the peak SNP from the initial GWAS scan (ss715581043) as
a covariate. d The Manhattan plot with one covariate in the GWAS model identified no additional significant genomic signals

Table 2 Top-ten SNPs in the genome-wide association study without any peak SNP covariates

SNP (ss_id) Chromosome Position MAF P-value R2 of Model without SNP R2 of model with SNP FDR-adjusted P-value

ss715581043 2 12,089,749 0.416 1.68 × 10−9 0.22 0.26 5.16 × 10−5

ss715581049 2 12,190,975 0.415 1.23 × 10−8 0.22 0.26 1.31 × 10−4

ss715581051 2 12,206,518 0.422 1.28 × 10−8 0.22 0.26 1.31 × 10−4

ss715581052 2 12,219,313 0.480 4.60 × 10−7 0.22 0.25 3.53 × 10−3

ss715581033 2 11,974,580 0.493 3.76 × 10−6 0.22 0.24 2.31 × 10−2

ss715581062 2 12,327,212 0.453 4.90 × 10−6 0.22 0.24 2.43 × 10−2

ss715581054 2 12,235,906 0.481 5.54 × 10−6 0.22 0.24 2.43 × 10−2

ss715601789 8 40,952,506 0.473 1.22 × 10−5 0.22 0.24 4.30 × 10−2

ss715581036 2 12,036,555 0.430 1.26 × 10−5 0.22 0.24 4.30 × 10−2

ss715601747 8 40,684,679 0.433 4.07 × 10−5 0.22 0.24 1.19 × 10−1
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symptom. A GWAS identified a single genomic region
on chromosome 2 strongly associated with TRSV sen-
sitivity using the unified mixed linear model [25] in
the GAPIT package [24], which identified a 130 kb
chromosome 2 interval that contains Glyma02g13460
and Glyma02g13470, two candidate LRR-RLK genes.

Genes of the LRR-RLK type are well known for their
involvement in pathogen-associated molecular pattern
(PAMP)-triggered immunity (PTI). Classical examples
are the ligand-dependent receptor Flagellin Sensing2
(FLS2) that recognizes bacterial flagellin and EF-TU
Receptor (EFR) that recognizes EF-TU. After recognizing

Table 3 Genes between 12,089,749 bp to 12,206,518 bp on soybean chromosome 2a

Gene ID Position (start..end) Annotation

Glyma.02 g121600 12,084,714..12,089,043 K-box region and MADS box transcription factor

Glyma.02 g121700 12,093,068..12,095,722 RING/U-box Zinc finger, C3HC4 typeprotein

Glyma.02 g121800 12,106,073..12,107,969 Adenine nucleotide alpha hydrolases-like superfamily protein

Glyma.02 g121900 12,112,034..12,115,054 Leucine-rich repeat (Malectin-like) protein kinase family protein

Glyma.02 g122000 12,115,287..12,118,397 Leucine-rich repeat (Malectin-like) protein kinase family protein

Glyma.02 g122100 12,134,374..12,137,612 Heavy metal transport/detoxification superfamily protein

Glyma.02 g122200 12,141,974..12,149,160 Chaperone DnaJ-domain superfamily protein

Glyma.02 g122300 12,143,960..12,145,950 Putative unknown protein

Glyma.02 g122400 12,150,906..12,151,220 Putative unknown protein

Glyma.02 g122500 12,158,735..12,163,084 ACT domain repeat 4

Glyma.02 g122600 12,195,454..12,196,275 FRS (FAR1 Related Sequences) transcription factor family
aGene ID, position, and annotation were based on soybean genome assembly version Glyma.Wm82.a2 (Glyma2.0)

Fig. 4 Mean separation by significant SNPs and cross-validation by GAPIT and rrBLUP. a Distribution of TRSV sensitivity by each significant SNP
genotype showed strong overlap between the sensitivity scales. b Five-fold cross-validation with or without the most significant SNP, ss715581043, as
the covariate. Cross-validation was evaluated by GAPIT and rrBLUP. In general, the correlation of training and validating population dropped slightly
when the covariate was included in the model for both GAPIT and rrBLUP
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the extracellular PAMP, another RLK co-receptor (BRI1-
Associated receptor Kinase1/Somatic Embryogenesis
Receptor-like Kinase3) forms a complex with FLS2 or
EFR and activates downstream PTI defense responses
[26]. One of the LRR-RLK genes from A. thaliana,
ERECTA, is particularly interesting for its involvement
in developmental processes in multiple tissue types, in-
cluding aerial organs, epidermal tissue, pedicels, and
floral primordia, as well as its function in controlling
resistance against the bacterial pathogen Ralstonia
solanacearum (Smith) Yabuuchi [27], fungal pathogen
Plectosphaerella cucumerina (Lindf.) Arx and oomycete
pathogen Pythium irregular Buisman [28]. It has been
proposed that ERECTA-dependent resistance against
necrotrophic P. cucumerina is linked to regulation plant
cell wall biosynthesis [29].
In addition to ERECTA that is associated with bacter-

ial and fungal resistance, nuclear shuttle proteins (NSPs)
from viruses in the Geminiviridae have been reported to
interact with A. thaliana NSP-interacting kinase1
(NIK1), which also belongs to the LRR-RLK protein
family [30]. Unlike TRSV, viruses in the Geminiviridae
have bipartite circular single-stranded DNA genomes
(DNA-A and DNA-B). While DNA-A of Geminiviridae
encode proteins involved in replication, transcription,
and encapsidation, DNA-B encodes two proteins, NSP
and a movement protein. The NSP inhibits the kinase
activity of NIK1 by binding to the kinase active site and
activation loop, which contains an essential threonine resi-
due (T474). NIK1 deletion mutants displayed enhanced
susceptibility to viruses in the Geminiviridae [31], and

ectopic expression of a nonphosphorylatable NIK1 in the
NIK1 deletion mutant failed to rescue the enhanced virus
susceptibility [32]. Blocking of T474 eliminated its kinase
activity and abolished the phosphorylation of a protein
that moves from cytosol to the nucleus when phosphory-
lated, where it interacts with a nucleus-located transcrip-
tion factor to down regulate translation processes that
eventually suppress viral replication [33]. Under the
proposed mechanism, NIK1 serves as a target to NSP for
suppressing host defense responses. The discoveries of
how NIK1 is involved in controlling plant susceptibility to
geminiviruses may underline how one or two soybean
LRR-RLK genes in the chromosome 2 region harboring
peak genomic associations with TRSV sensitivity could
control the disease responses to TRSV. If these two LRR-
RLK genes are confirmed to play a biological role in
regulating TRSV sensitivity, it may imply that these
soybean LRR-RLK are virulence targets for TRSV that
control sensitivity rather than resistance, if the mechanism
of the interactions of soybean LRR-RLK proteins with
TRSV are similar to NIK1 with geminiviruses. Further
studies focused on comparing the protein sequences of the
two LRR-RLK genes from soybean PIs with different
sensitivity levels to TRSV may reveal if any amino acid
polymorphism indeed associate with these levels of sensi-
tivity. In addition, characterization of the putative viral
component(s) and the mechanism of interaction may
improve our understanding on how soybean sensitivity to
TRSV is controlled.
Genomic prediction has become a powerful tool for

rapidly predicting plant phenotypes based on genome-

Fig. 5 Genomic prediction and accuracy evaluation.a BLUP and GEBV for 18,955 unscreened soybean PIs by GAPIT. GAPIT generated a
continuous BLUP value for 18,955 soybean PIs, while BLUP for the training population (with determined TRSV sensitivity) were centered at−2.50
(GEBV 1),−1.50 (GEBV 2),−0.50 (GEBV 3), 0.50 (GEBV 4) and 1.50 (GEBV 5). b Comparison of the TRSV sensitivities of the selected 55 soybean
accessions that were selected from the predicted 18,955 soybean accessions resulted in correlation between 0.63 and 0.67. The evaluations by
GAPIT and rrBLUP had similar results and the inclusion of the most significant SNP, ss715581043, as the covariate reduced the correlation slightly
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wide marker information. This approach has great po-
tential to accelerate plant breeding cycles because it
requires fewer generations of selection compared to
phenotype-based breeding approaches [34]. A recent re-
view on “next generation breeding” illustrated how next
generation sequencing will be used to more quickly im-
prove crop productivity [35]. Multiple genomic predic-
tion models have been developed with similar accuracies
[36], and in our study, we applied the compressed BLUP
approach in the GAPIT R package [24] and the ridge
regression BLUP in the rrBLUP R package [23]. Al-
though a single locus on chromosome 2 was identified
for TRSV sensitivity, our results suggest that genomic
prediction performs better than marker-assisted selec-
tion. We showed that the prediction accuracy among the
additional 55 soybean PIs was close to that obtained
from the cross-validation study of the 697 PIs used for

the GWAS. Moreover, we noticed the prediction was
more accurate and conservative in identifying soybean
accessions that displayed severe necrosis symptoms.
There are several limitations of genomic prediction, and
one of them is the possibility that the phenotype is a
combination of genetic and environmental effects [37].
It has been reported that soybean response to TRSV
may differ by maturity stage [38]. Accordingly, it is
possible that there may be more soybean PIs in the
USDA Soybean Germplasm Collection that have TRSV
sensitivity of one but may have been misjudged by the
genomic prediction.

Conclusion
TRSV is a potential threat to the soybean industry with
limited resistance to the virus identified. To understand
if additional resistance exists in the USDA Soybean

Table 4 GEBV and actual TRSV sensitivities of 55 soybean plant introductions

Plant introduction GEBVa Actual Sensitivity Plant introduction GEBVa Actual Sensitivity

PI594142 1.72 3 PI092470 3.08 5

PI548527 1.75 4 PI511361 3.09 4

PI634903 1.82 3 PI603327 3.13 3

PI548598 1.87 4 PI468400B 3.38 5

PI603290 1.95 3 PI416864 3.40 5

PI548525 1.97 3 PI548301 3.42 4

PI578479 1.99 4 PI399066 3.46 3

PI602449 1.99 4 PI192871 3.47 5

PI088289 2.00 3 PI417536B 3.49 4

PI088290 2.00 3 PI594418B 4.04 5

PI592933 2.04 3 PI603633 4.09 5

PI594399C 2.06 2 PI594570B 4.12 4

PI092713 2.07 4 PI437207 4.14 5

PI634890 2.16 1 PI587880B 4.16 5

PI518677 2.36 3 PI594837A 4.19 4

PI591503 2.37 3 PI436566 4.21 4

PI547878 2.40 4 PI587554 4.28 5

PI547663 2.41 2 PI594635B 4.29 5

PI091733_1 2.43 4 PI341254 4.44 5

PI507709 2.45 3 PI103080 4.63 5

PI547821 2.48 4 PI603449 4.69 5

PI547531 2.51 4 PI603524 4.69 5

PI060269_2 2.54 2 PI407739 4.81 5

PI408335A 2.96 2 PI253664 4.85 5

PI438501 2.98 2 PI603459 4.85 5

PI399004 3.00 2 PI603451A 4.87 5

PI437607 3.02 4 PI603581 4.89 5

PI592974 3.07 3
aGEBV was an average of 10 predictions performed by GAPIT
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Germplasm Collection, we evaluated 697 soybean acces-
sions for sensitivity to TRSV infection. By performing a
GWAS using the publicly available SoySNP50K marker
set, we identified a novel genomic region on chromo-
some 2 containing two candidate LRR-RLK genes that
may control sensitivity to TRSV. We also assessed the
ability of the SoySNP50K markers to predict TRSV
sensitivity for 18,955 soybean PIs in the USDA Soybean
Germplasm Collection, and high prediction accuracies
were obtained. Our study not only discovered a new
locus for TRSV sensitivity but also demonstrated the
potential of using GWAS and genomic prediction for
genetic analysis with the use of the SoySNP50K
resource.

Methods
Phenotyping and genotyping soybean PIs
Soybean accessions used in this study were obtained
from the USDA Soybean Germplasm Collection (http://
www.ars-grin.gov/npgs/). Soybean plants were grown in
a growth chamber at 25 °C and inoculated with TRSV
using carborundum as an abrasive at the unifoliate stage
around 10 days after sowing. Inoculated plants were kept
in a moist chamber at 25 °C for about 16 h, and
returned to a growth chamber set at 25 °C. Sensitivities
were scored based on a sensitivity scale from one to five
at 10 days after inoculation with one showing the least
amount of symptoms and five showing the strongest
symptoms including bud blight (Fig. 1a). A completely
randomized design was used to test sensitivity of PIs
with a minimum of three plants per trial. There were
three trials completed over time using a different
randomization for each trial. SoySNP50K was down-
loaded from SoyBase (http://www.soybase.org), and split
into 20 profiles based on chromosomes. For each profile
(chromosome), missing SNPs were imputed by BEAGLE
version 3.3.2 [39]. There were overall 42,449 SNPs
available but SNPs with minor allele frequencies below
0.1 were excluded, leaving 30,697 SNPs for GWAS.

GWAS and genomic prediction
Five PCs were used in a BIC-based model selection
procedure that determined how many PCs were needed
to control for population structure in the unified mixed
linear model used for the GWAS. A kinship matrix was
calculated by the VanRaden method using mean and
average cluster algorithm [24]. GWAS was conducted in
GAPIT using the unified mixed linear model including
the kinship matrix but excluding PCs [25]. A total of
697 soybean PIs rated for TRSV symptom sensitivity
were included in the GWAS (Additional file 2: Table
S2). Given the inherent conservativeness of correcting
for multiple testing in a GWAS, two multiple testing
procedures were implemented. The Benjamini-Hochberg

(1995) procedure was used to control the FDR at 1 %,
and the Bonferroni procedure was implemented to
control the experiment-wise type I error rate at 0.05. To
search for any possible minor signals, the most signifi-
cant SNP (ss715581043) was fixed as a covariate.
To determine if marker-assisted selection could pre-

dict TRSV sensitivity, numeric genotypes of each signifi-
cant SNP among the 697 soybean PIs were correlated to
their sensitivity. To determine if genomic selection could
predict TRSV sensitivity, five-fold cross validation, with
or without a covariate in the model, was tested using
GAPIT and rrBLUP. In each five-fold cross-validation,
140 soybean PIs were assigned to a validation popula-
tion, and the remaining 557 soybean PIs were used as
training population to build the model. Each accession
of the 697 soybean PIs was assigned once as the
validation population in a five-fold cross-validation. The
mean of each five-fold cross-validation, which is a
correlation between the BLUPs of validation population
that generated from the training model and the TRSV
sensitivity of validation population, was saved as a result
of a five-fold cross-validation. A total of 100 iterations of
five-fold cross-validation were conducted with the 697
soybean PIs randomized in order for each run. The same
five-folds were used to assess the predictive accuracy of
the genomic prediction models used in GAPIT and
rrBLUP. The mean of the 100 iterations was presented
to represent the results of GAPIT and rrBLUP.
To assess the predictive accuracy of genomic predic-

tion in the remaining 18,955 unscreened soybean PIs in
the USDA Soybean Germplasm Collection (Additional
file 1: Table S1), these PIs were randomly divided into 85
groups with 223 PIs per group to reduce computational
time. To predict GEBVs for the unscreened groups, the
genotypes of each group were combined to the geno-
types of the 697 screened PIs to fit a genomic prediction
model in GAPIT; thus 85 independent genomic predic-
tion models were fitted to acquire one GEBV for each of
the 18,955 PIs. A total of ten runs for each of the 18,955
unscreened soybean PIs were conducted and the mean
was used to represent the GEBV for each of the PIs. To
approximate the genomic prediction accuracy, a total of
55 soybean PIs were selected from the 18,955 un-
screened soybean accessions and phenotyped for their
actual TRSV sensitivities following the methods de-
scribed above. Cross-validation was conducted as de-
scribed above to obtain a mean correlation between
predicted GEBV and actual sensitivities of these 55
accessions, which was regarded as the prediction accur-
acy for genomic prediction.

Availability of data and materials
The original genotypic data (SNPs) used in this study
are available on SoyBase (http://www.soybase.org); the
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original phenotypic data for association mapping and gen-
omic prediction are available in supplementary Table 1; and
the analyzing tools, GAPIT and rrBLUP, are available on
developer’s website (http://www.maizegenetics.net/#!gapit/
cmkv) and R CRAN website (https://cran.r-project.org/
web/packages/rrBLUP/), respectively.

Additional files

Additional file 1: Table S1. LUP and GEBV of unscreened 18,955 USDA
Soybean Germplasm Collection. (XLSX 890 kb)

Additional file 2: Table S2. T RSV sensitivities of 697 soybean PIs that
used for GWAS. (XLSX 45 kb)
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