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ABSTRACT OF THE DISSERTATION

Goodness-of-Fit Tests for Autoregressive Logistic Regression Models
and Generalized Linear Mixed Models

by

Anne Mary Hansen

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, December 2012

Dr. Daniel Jeske, Chairperson

Goodness-of-fit is a very important concept in data analysis, as most statistical models

make some underlying assumptions. When these assumptions are violated, any model

inference can be suspect. Thus, a goodness-of-fit check is necessary in order to trust any

conclusions drawn from the model. Herein we propose two goodness-of-fit tests, one that

addresses autoregressive logistic regression (ALR) models and another that is appropriate

for generalized linear mixed models (GLMMs).

Both GLMMs and ALR models are extensions of generalized linear models, a broad class

of models that includes logistic regression and Poisson regression. ALR models go a step

beyond typical generalized linear models by regressing upon past observations. In contrast,

GLMMs go beyond the scope of generalized linear models by incorporating random effects.

For the ALR model, a chi-square test is proposed and the asymptotic distribution of

the statistic is derived. General guidelines for a two-dimensional, dynamic binning strategy

are provided, which make use of two types of maximum likelihood parameter estimates.

For smaller sample sizes, a bootstrap p-value procedure is discussed. Simulation studies

indicate that the procedure has the correct size and is sensitive to model misspecification.

In particular, the test is very good at detecting the need for an additional lag. An application

to a dataset relating to late-onset Alzheimer’s disease is provided.

For GLMMs, we propose a Cramer-von-Mises omnibus test statistic, which extends

upon a procedure applied to Poisson regression. Here, predictors of the random effects are

plugged into the model to approximate a simpler, generalized linear model. The statistic is

then calculated by making use of a probability integral transformation. Simulation studies
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indicate that the test has good size and power for a Poisson GLMM. Some ideas for future

research are also proposed.

vi



Contents

List of Figures x

List of Tables xi

1 Introduction and Background 1
1.1 Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Goodness-of-fit for Linear Models . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Model Selection and Goodness-of-Fit . . . . . . . . . . . . . . . . . 4

1.3 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Logistic Regression Models . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 General (Nominal) versus Ordinal Logits . . . . . . . . . . . . . . . 9
1.3.3 Goodness-of-Fit Tests for Logistic Regression Models . . . . . . . . . 9
1.3.4 Poisson Regression Models . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.5 Goodness-of-Fit for Poisson Regression Models . . . . . . . . . . . . 10

1.4 Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Fixed versus Random Effects . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Goodness-of-Fit for Linear Mixed Models . . . . . . . . . . . . . . . 14

1.5 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Goodness-of-Fit for Autoregressive Logistic Regression Models 18

2 Autoregressive Logistic Regression 19
2.1 Foundations for ALR: Logistic Regression for Dependent Binary Responses 20

2.1.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Modeling Equally Predictive Observations . . . . . . . . . . . . . . . 22
2.1.3 The Choice of Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Serially Dependent Observations and the Initial Stage Problem . . . 24
2.1.5 Comparing Different Dependencies . . . . . . . . . . . . . . . . . . . 25

2.2 Binary Autoregressive Logistic Regression . . . . . . . . . . . . . . . . . . . 25
2.2.1 Binary ALR Model with D-Lags . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 28
2.2.3 A Bayesian Mixture Model for Finding Parameter Estimates . . . . 28

vii



2.3 Multinomial Autoregressive Logistic Regression . . . . . . . . . . . . . . . . 28
2.3.1 A Multinomial ALR with 1-Lag that takes Three Possible States . . 28
2.3.2 Maximum Likelihood Estimation for a Three State ALR with 1-Lag 30
2.3.3 A General Multinomial ALR Model with D-Lags . . . . . . . . . . . 30
2.3.4 Absorbing States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Current Goodness-of-Fit Diagnostics for ALR Models . . . . . . . . . . . . 31
2.5 Motivating Example: Claudication Paper . . . . . . . . . . . . . . . . . . . 32

2.5.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 A Chi-Square Test for Autoregressive Logistic Regression 34
3.1 A Goodness-of-Fit Statistic that Makes Use of Unique Paths . . . . . . . . 34

3.1.1 Unique Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 The Construction of the Statistic . . . . . . . . . . . . . . . . . . . . 36
3.1.3 Distribution of the Chi-Square Statistic under the Null Hypothesis . 37
3.1.4 A Note on Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Size and Power Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Power Alternative: Subjects have Random Intercepts . . . . . . . . 43
3.2.3 Power Alternative: Omitted Covariate . . . . . . . . . . . . . . . . 44
3.2.4 Power Alternative: Misspecified Lag . . . . . . . . . . . . . . . . . . 45
3.2.5 Bootstrap Correction for Small Sample Sizes . . . . . . . . . . . . . 46
3.2.6 A Computing Aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Extension of the Goodness-of-Fit Procedure to General ALR Models . . . . 48

4 An Application to an Alzheimer’s Disease Study 52
4.1 The Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 The 1-Lag ALR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

II Goodness-of-Fit for Generalized Linear Mixed Models 57

5 Generalized Linear Mixed Models 58
5.1 A General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Markov Chain Monte Carlo (MCMC) Metropolis Algorithm . . . . . 61
5.2.4 Other Methods for Finding ML Estimates . . . . . . . . . . . . . . . 62

5.3 Penalized Quasi-likelihood and Laplace Approximation . . . . . . . . . . . . 62
5.4 Finding Predictors for Random Effects . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Best Predictors (BPs) and Best Linear Predictors (BLPs) . . . . . . 63
5.4.2 Best Linear Unbiased Predictors (BLUPs) and Empirical Best Linear

Unbiased Predictors (eBLUPs) for LMMs . . . . . . . . . . . . . . . 65
5.4.3 Empirical Bayes Prediction . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 A GLMM Example: The Randomized Clinical Trial Model . . . . . . . . . 67
5.6 A GLMM Example: The Spatial Model . . . . . . . . . . . . . . . . . . . . 68

viii



6 Literature Review of Current Goodness-of-Fit Methods for GLMMs 71
6.1 Consequences of a Misspecified GLMM . . . . . . . . . . . . . . . . . . . . . 71
6.2 Formal Goodness-of-Fit Tests for GLMMs . . . . . . . . . . . . . . . . . . . 72

6.2.1 Tests for Model Misspecification using Cumulative Sums . . . . . . 72
6.2.2 Omnibus Goodness-of-Fit Using a Modified Chi-Square Statistic . . 74
6.2.3 Tests for Misspecified Random Effects Distributions . . . . . . . . . 76

6.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 A Cramer-von-Mises Goodness-of-Fit Procedure for GLMMs 77
7.1 The Proposed Goodness-of-Fit Test Statistic . . . . . . . . . . . . . . . . . 77
7.2 Simulation Study: CVM for the RCT Model . . . . . . . . . . . . . . . . . . 81

7.2.1 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.2 Power Alternative: Overdispersed Poisson . . . . . . . . . . . . . . . 83
7.2.3 Power Alternative: Missing Covariate- Gender . . . . . . . . . . . . 83
7.2.4 Power Alternative: Missing Covariate- Over the Counter . . . . . . 84
7.2.5 Power Alternative: Full Interaction Model . . . . . . . . . . . . . . . 85

7.3 Size Study: CVM for the Spatial Model . . . . . . . . . . . . . . . . . . . . 86
7.4 The CVM Test Applied to Other GLMMs . . . . . . . . . . . . . . . . . . . 88

8 Summary and Future Work 91

Bibliography 93

ix



List of Figures

1.1 A Comparison of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Decision Tree for Fixed and Random Effects . . . . . . . . . . . . . . . . . . 14

2.1 Three Possible Response States . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Fifteen Unique Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Possible Paths and Probabilities for the Loma Linda Model . . . . . . . . . 54

5.1 A 4x4 Checkerboard Co-Clustering . . . . . . . . . . . . . . . . . . . . . . . 69

7.1 Toy Example: Two Step Functions . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Toy Example: A Plot of F̃n(t) and Fave(t) . . . . . . . . . . . . . . . . . . . 80
7.3 A Plot of F̃n(t) and Fave(t) for a Continuous Response . . . . . . . . . . . . 90

x



List of Tables

1.1 Some Well-Known GLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Covariates for Regressive Logistic Regression . . . . . . . . . . . . . . . . . 22
2.2 A Schematic Dataset for an ALR Model . . . . . . . . . . . . . . . . . . . . 26
2.3 Dummy Variables for Lags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 A Schematic Dataset from the Cladication Paper . . . . . . . . . . . . . . . 32

3.1 (S, V,W ) Combinations and Path Probabilities . . . . . . . . . . . . . . . . 36
3.2 Row Binning Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Column Binning Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Patient Distributions at Baseline . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Simulation Study Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Size Results for the ALR Model . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Power Results: Random Intercept Alternative . . . . . . . . . . . . . . . . . 44
3.8 Power Results: Omitted Covariate Alternative . . . . . . . . . . . . . . . . 45
3.9 Power Results: Two Lag Alternative . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Initial Row Bins for the Loma Linda Model . . . . . . . . . . . . . . . . . . 55
4.2 Final Binning Structure for the Loma Linda Model . . . . . . . . . . . . . . 56

7.1 Two Poisson PMFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Distributions of V1 and V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Size Results for the RCT GLMM . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Power Results: Negative Binomial Alternative . . . . . . . . . . . . . . . . . 83
7.5 Power Results: Missing Covariate-Gender Alternative . . . . . . . . . . . . 84
7.6 Power Results: Missing Covariate-Over the Counter Alternative . . . . . . . 85
7.7 Power Results: Full Interaction Alternative . . . . . . . . . . . . . . . . . . 85
7.8 Size Results for the Spatial GLMM . . . . . . . . . . . . . . . . . . . . . . . 87

xi



Chapter 1

Introduction and Background

1.1 Goodness-of-Fit

“From the earliest days of statistics, statisticians have begun their analysis by
proposing a distribution for their observations and then, perhaps with some-
what less enthusiasm, have checked on whether this distribution is true ... test
procedures have appeared, and the study of these procedures has come to be
known as goodness-of-fit”(D’Agostino & Stephens, 1986, Preface).

No introductory Statistics course would be complete without a discussion of simple linear

regression, its underlying assumptions, and a goodness-of-fit analysis. In general, goodness-

of-fit is a very important concept in data analysis, as most statistical models make some

underlying distributional assumptions. When these assumptions are violated, any inference

from the models can be biased or in some cases entirely misleading. Thus, a verification

of these assumptions, commonly known as a goodness-of-fit check, is necessary in order to

take a model’s findings seriously. Goodness-of-fit encompasses graphical approaches as well

as formal hypothesis tests of model adequacy.

In the case of linear regression, goodness-of-fit is often resolved by looking at plots

of model residuals. For more complex linear models, such as those that make use of non-

identity link functions or incorporate random effects, goodness-of-fit is still of great concern.

However, how to go about evaluating the fit is often not as obvious as in the case of simpler

models.

This dissertation will focus on assessing the goodness-of-fit for two types of models:

Generalized Linear Mixed Models (GLMMs) and Autoregressive Logistic Regression (ALR)

models. Both of these types of models could be considered extensions of a broad class of
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models called Generalized Linear Models (GLMs). Similarly, GLMs are an extension of

linear models (LMs), in that they “generalize” linear models for data that follow a non-

Gaussian distribution. In contrast, linear mixed models (LMMs) are linear models that

include random effects. Figure 1.1 provides a visual of the relationships between these

model types.

ALR models can be thought of as a special extension of GLMs, since they regress upon

past states but can be treated like a GLM in order to estimate parameters. A GLMM is a

GLM that incorporates random effects.

Although linear models, linear mixed models, and generalized linear models are not the

direct subject of this dissertation, these classes of models lay the groundwork for GLMMs

and ALR Models.

Figure 1.1: A comparison of models.
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No 
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Generalized  
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Generalized 
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1.2 Linear Models

Suppose we have n items of data, Y1, Y2, ..., Yn. McCulloch, Searle and Neuhaus (2008)

describe a linear model equation to be

E[yi] = µi (1.1)
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Equivalently, we might write equation (1.1) using vector notation:

E[Y ] = µ

where

Y =


Y1

Y2
...

Yn

 and µ =


µ1

µ2
...

µn


Both vector notation and standard notation will be used in tandem in this dissertation.

Since Y is data, we can think of it as realized values of some random process. As

such, linear models further assume Y ∼ (µ, V ) implying that Y has a mean µ and an nxn

variance-covariance matrix V , where

V =


v11 v12 ... v1n

v21 v22 ... v2n

... ... ... ...

vn1 vn2 ... vnn


and Cov(Yi, Yi′) = vii′ = vi′i.

Equation (1.1) is extremely general. Note that there are n data values, but µ could

potentially have up to n unique elements, and V might have n(n + 1)/2 unique elements.

In order to estimate µ and V , they must be modeled using less than n parameters. A good

model will specify a µ and V in terms of k parameters (k < n) that are appropriate for the

process under study and have good explanatory power.

In general, µ has the form µ = Xβ and V = σ2In, where X is a matrix of covariate

values, β is a vector of parameters, σ2 is the variance parameter, and In is an n x n identity

matrix. Depending on the context, X is known as a design or covariate matrix. A linear

regression model is the archetype example of a linear model. Let Yi be the response of the ith

subject i = 1, ..., n. Suppose also there are p associated covariates values Xi1, Xi2, ..., Xip.

Then, a linear regression is of the form:

E[Yi] = µi = X ′iβ (1.2)

= β0 + β1Xi1 + · · ·+ βk−1Xip

where β = (β0, β1, ..., βp) is a vector of (p + 1) parameters and Xi = (1, Xi1, Xi2, ..., Xip).

Further, it is assumed that Yi ∼ i.i.d. N(µi = X ′iβ, σ
2). Parameter estimates, β̂ and σ̂2,

3



can be found using the methods of least squares or maximum likelihood estimation. For

linear regression models, parameter estimates have straightforward, closed forms such that

β̂ = (X ′X)−1X ′Y, σ̂2 = MSE =

∑
i(Yi − Ŷi)2

n−#parameters− 1
(1.3)

where Ŷi = X ′iβ̂. Other common linear models include both one-way and two-way Analysis

of Variance (ANOVA) models.

1.2.1 Goodness-of-fit for Linear Models

Goodness-of-fit is focused on testing that the model assumptions are upheld by the

data. For linear regression and other linear models, the main assumption is that Yi ∼
i.i.d. N(µi, σ

2). Normality can be assessed by generating a quantile-quantile (QQ) plot

of the residuals or errors, êi = Yi − Ŷi. The QQ-plot compares the ordered residuals

to quantiles of the standard Normal distribution. Further, model residuals are generally

plotted versus fitted values Ŷi and versus the individual covariates (columns of X) to check

for independence and homogeneity of σ2. There are also numerous, formal hypothesis

tests for normality and constant variance. These include the Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors, and Anderson-Darling tests which can be applied to model residuals

to check for normality (Razali & Wah, 2011), and the Brusch-Pagan and White tests for

heteroscedasticity.

If some of the assumptions are violated, parameter estimates such as those given in (1.3)

may be biased, perhaps extremely so. Further, any confidence intervals or hypothesis tests

about the parameters may be misleading. Thus, it is important to check that the model’s

distributional assumptions are fulfilled.

1.2.2 Model Selection and Goodness-of-Fit

Along with checking goodness-of-fit, a modeler must choose which covariates to include

in the model and what form they will take (e.g. quadratic terms, interactions). This process

is generally known as “model selection” and deals with how to pick the best Xβ. We will

briefly discuss model selection here, as many of the techniques can be applied to more

complicated models (such as GLMMs and ALR models).

An ideal model will be parsimonious (i.e., have few parameters) and have good ex-

planatory power. In the case of linear regression, the coefficient of determination R2 can

4



be calculated, where R2 = 1 −
∑

i ê
2
i /
∑

i(Yi − Ȳ )2. This coefficient describes what per-

centage of variation in the data can be explained by the model. For competing models, R2

values can be directly compared. Further, for nested models, a likelihood ratio test can be

performed to see if incorporating additional variables provides enough explanatory power

to make them worth adding to the model. For non-nested models (as well as nested ones),

Akaike’s (1974) Information Criterion (or AIC) can be used to quickly compare different

models. AIC is defined as

AIC = −2log(likelihood) + 2(# of model parameters).

AIC is essentially twice the negative log likelihood with a penalty for the number of pa-

rameters in the model. A small AIC value is preferable. Thus, models can be compared

side-by-side for the smallest AIC. Similar to AIC, a Bayesian Information Criterion (BIC)

has been developed for comparison between models, where BIC is

BIC = −2log(likelihood) + (# of model parameters)log(n).

Compared to AIC, BIC takes the sample size n into account, and leans less quickly towards

complex models as n increases. For additional details, see Raferty (1986).

One drawback of R2 is that it will generally increase as the number of parameters

increases. Thus, a related measure, adjusted R2, can be calculated (Hocking, 1976) such

that

R2
adj = 1− (n− 1)

(n−# parameters)
(1−R2).

This R2
adj will only increase if a new term enhances the model more than what is expected

just by chance. Other criterion such as Mallow’s Cp and the PRESS statistic can also be

used for choosing between models (Mendenhall & Sincich, 2003).

Goodness-of-fit and model selection are not entirely unrelated concepts. For example,

linear regression residual plots can identify the need for quadratic terms and spot the most

influential covariates. A potential model identified by model selection techniques must also

be checked for goodness-of-fit. Many of the model selection criteria, such as AIC, can

easily be extended to more complex models, as long as those models have a likelihood.

In contrast, goodness-of-fit usually becomes more difficult to test as the complexity of the

model increases.

In some instances where data is not normally distributed, a function of the mean may

instead be modeled as a linear combination of covariates. This function is called a link

function, and the model is called a generalized linear model (GLM).
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1.3 Generalized Linear Models

To construct a GLM, we must make three decisions:

1. What is the distribution of the response data?

2. What function of the mean will be modeled as linear in the predictors? (Link Com-

ponent)

3. What will the covariates be? (Systematic Component)

For linear models such as linear regression, the first two questions are already answered for

us (normal distribution, identity link). For a GLM, assume Yi ∼ independent fYi(·|µi, θ).
The function fYi(·|µi, θ) is a density function with a mean value of µi and θ represents any

nuisance parameters, such as σ2 in the case of the Normal distribution. Then, the general

form of a GLM is given below (McCulloch et al., 2008):

E[Yi] = µi (1.4)

g(µi) = X ′iβ.

where Xi and β are defined as before and g(·) is a known link function. Examples of GLMs

include models such as probit regression, logistic regression, and Poisson regression. In fact,

all linear models could be classified as a special case of GLM with an identity link function.

Table 1.1: Some well-known GLMs.

GLM Response Distribution Model Equation Link Function

Linear Model yi ∼ N(µi, σ
2) E[yi] = µi g(µi) = µi (identity)

Probit yi ∼ Bernoulli(pi) E[yi] = pi g(pi) = Φ−1(pi)

Poisson (regular) yi ∼ Poisson(λi) E[yi] = λi g(λi) = log(λi)

(overdispersed) yi ∼ Neg.Binom.(λi, k) E[yi] = λi g(λi) = log(λi)

Logistic (binary) yi ∼ Bernoulli(pi) E[yi] = pi g(pi) = log pi
1−pi

Parameter estimates for GLMs can be found using maximum likelihood estimation tech-

niques. Generally closed form solutions for β do not exist, however iterative least square

methods (such as the Fisher Scoring or Newton-Raphson method) can quickly zero in on

parameter estimates that maximize the likelihood (Agresti, 2003).

A goodness-of-fit analysis of a GLM would address the adequacy of all three components

of the model. Is the response distribution appropriate? Is the link function correct? Do
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the covariates in the model adequately predict the response? There are a plethora of

goodness-of-fit techniques for generalized linear models. Here, we will focus on a few of the

goodness-of-fit tests for logistic regression and Poisson regression.

1.3.1 Logistic Regression Models

As Table 1.1 indicates, a logistic regression model employs a log odds link function to

relate probability to a linear combination of covariates. Suppose Y1, Y2, ..., Yn take binary

values (0 or 1). For simplicity, we will assume that there is a single covariate Xi for each

subject and that pi = P (Yi = 0|Xi). Then, we can describe a logistic model equation:

log
( pi

1− pi

)
= α+ βXi.

From this equation, we can solve for the individual pi, i.e.,

pi
1− pi

= eα+βXi ⇒ pi = (1− pi)eα+βXi ⇒ pi =
eα+βXi

1 + eα+βXi

where the likelihood is given by

L(α, β) =

n∏
i=1

p1−Yii (1− pi)Yi .

Logistic regression models can also be used for polytomous (i.e., multi-state) observations

that take a finite number of possible states. For example, suppose observations take one of

three states: A, B, or C. As there are now three possible states, two logit equations must

be set up to define the logistic regression. Define piA = P (Yi = A|Xi) and let this be the

reference probability. Note that the choice of reference probability is arbitrary. Then, the

model equations are:

log
(piB
piA

)
= α1 + β1Xi

log
(piC
piA

)
= α2 + β2Xi.

This implies

piB = piAe
α1+β1Xi

piC = piAe
α2+β2Xi

⇒ 1 = piA(1 + eα1+β1Xi + eα2+β2Xi)
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such that

piA =
1

(1 + eα1+β1Xi + eα2+β2Xi)
, piB =

eα1+β1Xi

(1 + eα1+β1Xi + eα2+β2Xi)
,

and

piC =
eα2+β2Xi

(1 + eα1+β1Xi + eα2+β2Xi)

Here, the likelihood is given by

L(λ) =
n∏
i=1

(piA)I[Yi=A](piB)I[Yi=B](piC)I[Yi=C]. (1.5)

where λ = (α1, α2, β1, β2) and I[·] is the indicator function.

Now suppose that A,B, and C are ordinal in nature. It makes sense to perhaps use

cumulative logits. Here we would have

log
( P (Yi = A|Xi)

1− P (Yi = A|Xi)

)
= α1 + βXi

log
( P (Yi ≤ B|Xi)

1− P (Yi ≤ B|Xi)

)
= α2 + βXi.

This implies

P (Yi = A|Xi) =
eα1+βXi

1 + eα1+βXi

P (Yi ≤ B|Xi) =
eα2+βXi

1 + eα2+βXi

Note that there is a common slope β. This is required so that no negative probabilities are

obtained. For instance, suppose the two logits had different slopes, β1 and β2 respectively,

then

P (Yi = B) = P (Yi ≤ B)− P (Yi = A) =
eα2+β2Xi

1 + eα2+β2Xi
− eα2+β1Xi

1 + eα2+β1Xi

which could be negative unless β1 = β2 = β. Along with a common slope, it can be shown

that since P (Yi = B) ≥ 0 this implies that α2 ≥ α1. Thus, ordinal logits require a common

slope and a monotone ordering of the intercepts. Probabilities for each state can be found

via algebra, such that

piA =
eα1+βXi

1 + eα1+βXi
, piB =

eα2+βXi

1 + eα2+βXi
− eα1+βXi

1 + eα1+βXi
, piC =

1

1 + eα2+βXi
.

The likelihood equation is then as given in equation (1.5) where λ = (α1, α2, β).

Logistic regression models can be easily extended to four or more states by increasing

the number of model equations. If observations can take one of K states, then K−1 distinct

logit equations are required.
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1.3.2 General (Nominal) versus Ordinal Logits

If possible states are ordinal in nature, it makes sense to consider using ordinal logits.

The advantage of this is that there are generally fewer parameters when using ordinal

logits. However, the use of ordinal logits requires a common slope and the monotonicity of

the intercepts. This forces what is known as a proportional odds relationship. For example,

if we look at the log odds ratios of a one unit change in X for the 3-state ordinal model, we

observe the following for the two logit equations:

log


P (Yi=A|Xi=1)

1−P (Yi=A|Xi=1)

P (Yi=A|Xi=0)
1−P (Yi=A|Xi=0)

 = (α2 + β)− α2 = β

log


P (Yi≤B|Xi=1)
P (Yi>B|Xi=1)

P (Yi≤B|Xi=0)
P (Yi>B|Xi=0)

 = (α1 + β)− α1 = β.

The log odds ratio of a one unit change in X for both the first and second logit equations

is equal to β. The same cannot be said when using the nominal logits. For example, when

using the nominal logits

log


P (Yi=A|Xi=1)

1−P (Yi=A|Xi=1)

P (Yi=A|Xi=0)
1−P (Yi=A|Xi=0)

 = log

{
1

eα1+β1+eα2+β2
1

eα1+α2

}
= log

{
eα1+α2

eα1+β1 + eα2+β2

}

log


P (Yi≤B|Xi=1)
P (Yi>B|Xi=1)

P (Yi≤B|Xi=0)
P (Yi>B|Xi=0)

 = log

{
1+eα1+β1

eα2+β2
1+eα1
eα2

}
= log

{
eα2 + eα1+α2+β1

eα2+β2 + eα1+α2+β2

}
.

Thus, we have symmetry in the proportional odds when using ordinal logits. If a dataset

is ordinal in nature and a proportional odds relationship is reasonable, then ordinal logits

are a good choice. Additionally, a likelihood ratio test can be performed to assess nominal

versus ordinal logits, since ordinal logits are the most general parameterization and ordinal

logits represent a constrained version of the general model, where α1 ≤ α2 and β1 = β2 = β.

1.3.3 Goodness-of-Fit Tests for Logistic Regression Models

A number of goodness-of-fit tests exist for logistic regression models, such as the well-

known Hosmer-Lemeshow (1980) test, which is available in most software packages and is

appropriate for a binary response variable. This test works by evenly partitioning observa-

tions into at least three, but no more than ten, groups based upon the model’s predicted

probabilities for each outcome (e.g. P (Y = 1)), and then constructing a Pearson chi-square
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statistic across those cells. It has been pointed out that a flaw of the Hosmer-Lemeshow

procedure is that observations with very different covariate patterns may be grouped to-

gether into the same cell. This can be overcome by instead creating one group for each

unique covariate pattern and then constructing the statistic (Tsiatis, 2002). Extensions of

the Hosmer-Lemeshow test have been made to logistic regression with continuous covari-

ates (Pulkstenis & Robinson, 2002), as well as to multinomial logistic regression models

(Fagerland, Hosmer, & Bofin, 2008). Additionally, a tree-based model checking procedure

has also been proposed (Su, 2007) using classification and regression trees (CART), which

can shed light on the source of why a model may not be fitting properly.

1.3.4 Poisson Regression Models

Poisson regression models are a type of GLM that relate a discrete response variable

Y, assumed to have a Poisson distribution, to a linear combination of covariates through

a log-link function. Suppose Y1, Y2, ..., Yn take non-negative, discrete values and that it is

reasonable to think that Yi ∼ Poisson(λi), i = 1, 2, ...n. For simplicity, we can again assume

that there is a single covariate Xi for each subject. Then, a Poisson regression model is

given by

log(λi) = α+ βXi

From this equation, we can solve for the λi such that λi = eα+βXi . The likelihood is then

given by

L(α, β) =

n∏
i

e−λiλYii
Yi!

.

Recall that for the Poisson distribution, the mean and variance are equal. In some circum-

stances, the Poisson distribution is not adequate, as the data may have a variance larger

than its mean. In this case, we can model the observations as Negative Binomial, which

incorporates an additional dispersion parameter.

1.3.5 Goodness-of-Fit for Poisson Regression Models

Agresti (2003) describes a number of goodness-of-fit tests that can be applied to a Pois-

son regression setting to test the appropriateness of the Poisson distribution. A generalized

Pearson χ2 statistic has been used

P =

n∑
i=1

(Yi − λ̂i)2

λ̂i
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which under the null and some regularity conditions has been shown to have a χ2
n−k dis-

tribution where k is the number of parameters. Similarly, a deviance statistic, G2 =

2
∑n

i=1 yilog(yi/λ̂i), has been proposed that also follows a χ2
n−k distribution under the

null. Additionally, a number of tests have been proposed to test for the specific alternative

of overdispersion. One approach is to fit the model to a Negative Binomial distribution,

and then test for the absence of dispersion (Lawless, 1987). Dean and Lawless (1989)

explore a test for overdispersion by fitting data to a mixed model, where v1, ..., vn are

i.i.d. random variables such that given Xi and vi, Yi ∼ Poisson(viµi). Assuming that the

vi’s have first and second moments and that E[vi] = 1 and V ar(vi) = τ , it follows that

V ar(Yi|Xi) = µi + τµ2i . Thus, the Poisson model can be tested against any extra-Poisson

variation via a score test of H0 : τ = 0 versus Ha : τ > 0.

Beyond these tests, an omnibus goodness-of-fit test is proposed for Poisson regression

by Spinelli, Lockhart, and Stephens (2002). This paper is of particular interest because

we have extended this procedure to GLMMs. The authors propose a Cramer-von-Mises

(CVM) test of fit that makes use of a probability integral transformation.

To perform the test, first estimate the model parameters, such that each Yi has an

associated predicted value λ̂i, i = 1, 2, ..., n. Then, make the transformation

Vi = Pi(Yi) where

 Pi(0) = 0

Pi(j) = P (Yi ≤ j − 1) =
∑j−1

k=0
λ̂ki e
−λ̂i

k!

It follows that each Vi has a distribution function, that is, Fi(t) = P (Vi ≤ t), for j = 0, 1, ...,

Fi(t) = Pi(j + 1), Pi(j) ≤ t < Pi(j + 1)

At this point define F̃n(t) as the empirical distribution function (edf) of the set of Vi’s.

Also, define the average of the estimated distribution functions as Fave(t) = n−1
∑n

i=1 Fi(t).

Then, using the edf and the average function, define the residual process

Zn(t) =
√
n{F̃n(t)− Fave(t)}

This residual process Zn(t) is used to calculate the Cramer-von-Mises test statistic:

W 2
n = n

∫ 1

0
Z2
n(t)dt.

Since both F̃n(t) and Fave(t) are step functions, the integral can be evaluated by summing

the squared distances between the functions over the steps.
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If the model has been correctly specified, the W 2
n statistic will follow a distribution

that is a mixture of χ2 random variables, whose coefficients are dependent upon data val-

ues. However, the null distribution can also be obtained via bootstrap simulation. This

Cramer-von-Mises test has also been applied to non-homogeneous Poisson processes (Jeske,

Lockhart, Stephens, & Zhang 2008). We will expand this idea to GLMMs in Chapter 7.

1.4 Linear Mixed Models

A linear model that incorporates one or more random effects is known as a linear mixed

model (LMM). In contrast to a fixed effect (e.g. the β’s in a linear model), a random effect

follows a distribution that is governed by one or more parameters. As before, the observa-

tions of interest are thought to follow a normal distribution, only now the observations are

conditional upon the random effect(s).

Let Yi, Xi, and β be defined as in equation (1.2). A LMM has the following form:

E[Yi|s] = X ′iβ + Zis

where Zi is the ith row of the random effect design matrix Z and s is a nx1 vector of

random effects. Usually, the first and second moments of s are specified or s is assigned a

distribution (generally a multivariate normal) such that

s ∼ (0, D), where E[s] = 0 and V ar(s) = D

Define V ar(Y |s) = R. Then it follows that

Y ∼MVN(Xβ,ZDZ ′ +R).

Let V = ZDZ ′ + R such that Y ∼ MVN(Xβ, V ). Estimating the parameters in a mixed

model is more difficult than in a linear model, since we have β as well as V , which is

composed of unknown parameters in D and R. Suppose that V were known, then we can

estimate β via generalized least squares where,

β̂ = (X ′V −1X)−1X ′V −1y

Of course, V is generally unknown, thus an estimate of V must be used in place of V.

In order to get a reasonable estimate of V , a maximum likelihood (ML) or a restricted
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maximum likelihood (REML) approach is generally taken. The log likelihoods are provided

below:

LML(D,R) = −1

2
log|V | − 1

2
r/V −1r − n

2
log(2π)

LREML(D,R) = −1

2
log|V | − 1

2
log|X ′V −1X| − 1

2
r/V −1r − n− p

2
log(2π)

where r is a vector of residuals where r = y − (X ′V −1X)−1X ′V −1y and p is the rank of

X. Solutions to these equations can be found by a Newton-Raphson approach or by using

the Expectation-Maximization (EM) algorithm, although the Newton-Raphson approach is

generally preferred (Lindstrom & Bates, 1988) and used as the default by most statistical

software such as SAS (SAS, 2012).

While this approach is successful at estimating β and V , it is sometimes useful to predict

the realized values of the random effects s. To obtain a prediction for s, the standard

approach is to solve the mixed model equations (Henderson, 1984):X ′R̂−1X X ′R̂−1Z

Z ′R̂−1 Z ′R̂−1Z + D̂−1

β̂
ŝ

 =

X ′R̂−1y
Z ′R̂−1y

 .
The solutions to these equations are:

β̂ = (X ′V −1X)−1X ′V −1y

ŝ = D̂Z ′V̂ −1(y −Xβ̂).

1.4.1 Fixed versus Random Effects

The distinction between fixed and random effects is very important since the analysis

and interpretation of fixed and random effects is quite different. Fixed effects can be thought

of as levels of a factor that are deliberately chosen to be in a study because they are of

interest. For example, suppose we want to study the taste and texture of loaves of bread

prepared under the same conditions and then baked at 350, 400 and 450 degrees Fahrenheit.

These temperature values were chosen because they are of interest to the researchers and

are fixed effects. In the case of fixed effects, we usually want to make direct comparisons

between different levels of the effect.

In contrast, random effects are thought to be generated by some underlying random

phenomena or process, and the properties of that process (such as the mean or variance)

are of interest. For example, in a study of a new drug, patients might be given the new drug
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(treatment) or a placebo (control) and monitored every week for four weeks. Some patients

will consistently report better results; others will consistently report worse results. Thus,

each individual patient’s inherent status can be thought of as a random effect that comes

from an underlying distribution of patient statuses. This distribution can be described

by parameters. Additionally, the realized values of the random effects may be of interest.

Calculating these values, which are known as predictors, is addressed in Section 5.4.

McCulloch et al. (2008) provides a useful decision tree for fixed and random effects,

which we have recreated in Figure 1.2.

Figure 1.2: A decision tree for fixed and random effects.

Is it reasonable to assume that levels of the 

factor come from a probability distribution? 

No 

Treat factor as fixed.  

Yes 

Treat factor as random.  

Only in the distribution of the 

random effects. 

Estimate parameters of the 

distribution of the random effects.  

Where does interest lie?  

In both the distribution and the 

realized values of the random effects.  

Estimate parameters of the distribution 

of the random effects and calculate 

predictors of realized values of the 

random effects. 

1.4.2 Goodness-of-Fit for Linear Mixed Models

Many of the graphical approaches used for linear models can be modified for mixed

models to check the normality of the error terms. Calvin and Sedransk (1991) offer two

methods for checking the normality assumption of the error terms. The first method consists

of premultiplying the responses Y by the inverse of the estimated variance matrix V̂ of

the response variables. This leads to residuals that are approximately standard normal.
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The second approach makes use of best linear unbiased predictors (BLUPs, discussed in

Section 5.4.1) of the random effects and then computes residuals of the form Y −Xβ̂−Zŝ.
However, these residuals are correlated. A similar approach to the first method is proposed

by Jacqmin-Gadda, Sibillot, Proust, Molina and Thiebaut (2007). They obtain residuals

by multiplying Y − Xβ̂ by the Cholesky square root of the covariance matrix, which can

then used in a QQ-plot to check for normality

Beyond these graphical approaches, formal tests for normality of the response distribu-

tion have been explored. Most approaches attempt to transform the correlated error resid-

uals into uncorrelated residuals, and then apply classical tests for normality (e.g. Shapiro-

Wilk test). For example, Hwang and Wei (2006) apply a transformation to a two-stage

cluster design. This mixed model has the form

Yjk = µj + sj + ejk, j = 1, ...,m, k = 1, ..., nj

where ejk and sj are independent random variables with expected values of zero and vari-

ances σ2e and σ2s , respectively. Assuming normality for the error terms and the random

effects, a transformation on Yjk is constructed that results in uncorrelated normal random

variables. These can then be tested for univariate normality. However, when this test rejects

it is not clear whether the error terms or the random effects are misspecified.

Jiang (2001) also provides an omnibus test of normality for both the random effects and

the error terms. The authors constructs a χ2-like statistic, comparing observed cell counts

to the estimated expected cell counts under the null, which are calculated by plugging in

REML estimators of the fixed effects and variance components. However, the resulting test

statistic does not have an exact χ2 distribution.

Claskens and Hart (2009) focus on assessing the distributional assumption of the random

effects, which are generally assumed to be normally distributed (i.e., H0 : s ∼ Nd(µs,Σs)).

The authors use a semi-nonparametric estimator for the distribution of the random effects

s. The estimator is based upon a Hermite expansion of the unknown density of s around

the standard normal density. First, s is reparameterized, where s = µs+GU and Σs = GG′.

It then becomes sufficient to test if U ∼ Nd(0, I) where I is the identity matrix. The test

statistic is constructed by making use of an Edgeworth expansion of the density of U around

the normal density φ. For the one dimensional case (i.e., d = 1), this looks like

fU (u) = φ(u){1 + k3H3(u) + k4H4(u) + · · · } (1.6)

where k3, k4 are related to the cumulants of U , and the Hermite polynomials satisfy
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Hj(u)φ(u) = (−1)j d
jφ(u)
duj

. For example, H3(u) = u3 − 3u and H4(u) = u4 − 6u2 + 3.

By reordering the terms in the expansion, the infinite series in (1.6) can be approximated

by a semi-nonparametric density,

f̂U,M (u) = P 2
M (u)φ(u) (1.7)

where PM is a d-variable polynomial, such that

PM (u) =
∑
|λ|≤M

aλu
λ

where λ = (λ1, ..., λd), |λ| =
∑d

l=1 λl, u
λ = uλ11 , ..., u

λd
d , and the coefficients aλ ensure that

f̂U,M is equal to 1. The positive integer M is the order of the polynomial. The log-likelihood

function can then be written making use of (1.7). If the random effects have a d-variate

normal distribution, then f(Yi|u, θ)φ(u) = g(U |Yi)g(Yi|θ), where g(Yi|θ) is the marginal

density of Yi under the null and g(u|Yi) is the conditional density of the random effects,

given Yi. Then, the log-likelihood can be written as

n∑
i=1

log g(Yi|θ) +
n∑
i=1

log(Eui|Yi,θ[P
2
M (ui)]) (1.8)

This method offers a closed-form likelihood and ML estimates of the parameters can be

found directly, which now include the fixed effects, variance components, and the polynomial

coefficients of PM . An informal test would let M take the values 0,1, or 2, and calculate the

AIC for each value of M . It the smallest AIC corresponds to M ≥ 1, this indicates that a

more complex distribution is needed for the random effects. The authors also propose some

test statistics that look at the distance between (1.8) and the likelihood under the null.

1.5 Structure of the Dissertation

Thus far, we have provided a brief overview of linear models, generalized linear models

and linear mixed models along with some goodness-of-fit methods. The remainder of the

dissertation is as follows. Part I of the dissertation contains chapters 2-4 and focuses on

goodness-of-fit for Autoregressive Logistic Regression models. Chapter 2 provides some

background on ALR models, ALR goodness-of-fit, and discusses a motivating example.

Chapter 3 proposes a chi-square goodness-of-fit test, complete with a simulation study.

Chapter 4 provides a real life application using a dataset relating to Alzheimer’s disease

from Loma Linda University in Loma Linda, CA
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Part II of the dissertation contains chapters 5-7 and addresses goodness-of-fit for Gen-

eralized Linear Mixed Models. Chapter 5 provides a general description of GLMMs and

discusses the two main examples we will use for our analysis: the Randomized Clinical Trial

model and the Spatial model. Chapter 6 is a review of current goodness-of-fit procedures

for GLMMs. Then, in Chapter 7 we will discuss a Cramer-von-Mises based goodness-of-fit

procedure and related simulation study. Finally, Chapter 8 summarizes this dissertation

and some ideas for future research are examined.
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Part I

Goodness-of-Fit for Autoregressive

Logistic Regression Models
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Chapter 2

Autoregressive Logistic Regression

An autoregressive logistic regression (ALR) model employs a logit link function to relate

a binary (or multi-state) response to a linear combination of covariates and past responses.

The covariates may be fixed or continually measured over time and past responses are

included either by direct plug-in or, when necessary, through the use of dummy variables.

By including past responses, an ALR model can describe the strength of the dependency

between repeated measurements on subjects while controlling for other covariates. As there

are no measured past responses at the first time point(s) in a series, special care must be

taken when handling initial past responses. Although no longer a traditional generalized

linear model (GLM) as described in McCulloch et al. (2008), an ALR model can handle

longitudinal data with a complex covariance structure.

ALR models are a natural extension of what Bonney (1987) describes as “regressive

logistic regression,” or logistic regression for a series of dependent binary responses. Subjects

are assumed to be independent, while the repeated measures upon subjects are thought to

be correlated in some way.

In this chapter we will first discuss logistic regression for dependent binary responses,

which provide a natural segue for ALR models, which will be discussed in the second section.

The third section deals with current goodness-of-fit procedures for ALR models. The final

section discusses a motiving example that will be used to illustrate our goodness-of-fit

procedure.
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2.1 Foundations for ALR: Logistic Regression for Dependent

Binary Responses

Traditional binary logistic regression assumes that the outcome series (Y1, Y2, ..., YJ) are

independent observations from a random process which take the values 0 or 1. However,

suppose that (Y1, Y2, ..., YJ) is a dependent series of observations, such that past observations

are in some way correlated with future observations.

For the case of independent observations, the indexing set j = 1, 2, ..., J is used to

collect the observations together. The order of the observations is not important. For

example, perhaps J independent subjects were observed, so j serves to relate Yj back to

the jth subject. The same cannot be said for dependent observations. Observations can no

longer be treated as interchangeable, as the indexing set provides a fixed, natural ordering

between the observations. Thus, we can think of Yj as being observed at the jth time (or

space) point, before Yj+1 and after Yj−1. Further, we make the assumption that the time

(or distance) between j and j+1 is fixed for all j. Although this assumption can sometimes

be relaxed, it makes the interpretation of model parameters much more straightforward.

As there are many types of dependencies that could exist for a dataset, several different

approaches have been explored to handle this problem, as discussed by Bonney (1987). This

expository paper explores the idea of “regressive” logistic regression, or logistic regression

for a dependent binary series.

Consider a set of J dependent binary variables Y = (Y1, Y2, ..., YJ) where each Yj has

an associated explanatory variable Xj , i = 1, ..., J . Then, the probability of Y given

X = (X1, X2, ..., XJ) can be decomposed as a product of n conditional probabilities:

P (Y |X) = P (Y1, Y2, ..., YJ |X)

= P (Y1|X1)P (Y2|Y1, X2) · · · P (YJ |Y1, Y2, ...., YJ−1, XJ)

A jth logit θj can then be defined:

θj = log
P (Yj = 0|Y1, Y2, ..., Yj−1, Xj)

P (Yj = 1|Y1, Y2, ..., Yj−1, Xj)

where θj is modeled as a linear combination of past states Y1, Y2, ..., Yj−1 and Xj . Describing

the logit in this way creates a regression where the response Yj is binary, but the number of

explanatory variables changes with j, as shown in Table 2.1(a). This issue can be overcome

by instead considering the regression of Yj on {Zj1, Zj2..., Zj,j−1, Xj}, such that Zjk =
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Zjk(Yk) are known linear functions of Y . Although many definitions are possible, Bonney

recommends defining Z in the following manner:

Zjk =

 2Yk − 1, if k < j,

0 if k ≥ j
(2.1)

where j=1, 2, ...J, and k=1, 2, ..., J-1, such that Zjk takes the values -1, 0, or 1. Additional

choices for Z are discussed in Section 2.1.3. Then, the logit can be written

θj = α+ γ1Zj1 + γ2Zj2 + · · ·+ γj−1Zj,j−1 + βXj (2.2)

= α+ γ1Zj1 + γ2Zj2 + · · ·+ γj−1Zj,j−1 + γj0 + · · ·+ γJ−10 + βXj

= α+
J−1∑
k=1

γkZjk + βXj

where α, β and the γ’s are parameters. Table 2.1(a) is now replaced with Table 2.1(b) (or

equivalently, 2.1(c)). Thus, our model has been modified into a univariate logistic regression

for n independent binary observations with the same set of explanatory variables for each

response.

We can also describe model (2.2) using vector notation:

θ = [θ1 θ2 · · · θJ ]′,

λ = [α γ1 γ2 · · · γJ−1 β]′,

and A =


1 Z11 Z12 · · · Z1J−1 X1

2 Z21 Z22 · · · Z2J−1 X2

...

J ZJ1 ZJ2 · · · ZJ,J−1 XJ


such that θ = Aλ.
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Table 2.1: Covariates for regressive logistic regression.

Response Explanatory Variables

(a) Yj Y1 Y2 · · · YJ−1 Xj

Y1 − − · · · − X1

Y2 Y1 − · · · − X2

Y3 Y1 Y2 · · · − X3

...

YJ Y1 Y2 · · · YJ−1 XJ

(b) Yj Y1 Y2 · · · YJ−1 Xj

Y1 0 0 · · · 0 X1

Y2 Z21 0 · · · 0 X2

Y3 Z31 Z32 · · · 0 X3

...

YJ ZJ1 ZJ2 · · · ZJ,J−1 XJ

(c) Yj Y1 Y2 · · · YJ−1 Xj

Y1 Z11 Z12 · · · Z1J−1 X1

Y2 Z21 Z22 · · · Z2J−1 X2

Y3 Z31 Z32 · · · Z2J−1 X3

...

YJ ZJ1 ZJ2 · · · ZJ,J−1 XJ

2.1.1 Maximum Likelihood Estimation

The joint likelihood for model (2.2) is given by

L(λ) =
J∏
j=1

(
1

1 + eθj
)Yj (

eθj

1 + eθj
)1−Yj

where λ = (α, γ1, γ2, ..., γJ−1, β). Note that in its current form, maximum likelihood esti-

mates for the parameters cannot be found as this model is oversaturated (i.e., there are J

observations but J + 1 parameters). However, this “full” model has many smaller, reduced

models that can illustrate a variety of different types of dependencies in the data.

2.1.2 Modeling Equally Predictive Observations

Logistic regression for dependent observations is quite flexible in its ability to specify a

number of different types of dependencies between the observations. For instance, it may

be the case that past states Y1, Y2..., Yj−1 have equal and additive predictive effects on a
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future state Yj , i.e.,

γ1 = γ2 = · · · = γJ−1 = γ.

Let Sm = Z1 +Z2 + · · ·+Zm denote the mth partial sum of the Z’s as defined in (2.1), and

let S0 = 0. Then, a model with equally predictive observations would take the form

θj = α+ γSj−1 + βXj , j = 1, ..., J. (2.3)

The matrices A and λ can be easily modified to reflect this change.

Further, it may be the case that past successes or failures, respectively, have a different

but equally predictive effect on future responses. Define S+
m to be the number of 1’s among

the first m outcomes, likewise let S−m to be the number of 0’s among the first m outcomes,

where S+
0 = S−0 = 0. Then, Sm = S+

m−S−m. A model with equally predictive, but separate,

effects for successes and failures is given by

θj = α+ γ+S+
j−1 + γ−S−j−1 + βXj , j = 1, ..., J.

A regression on just the cumulative sum of preceding successes or failures can be specified

by γ− = 0 or γ+ = 0, respectively. Thus, Z is very useful to specify a great variety of

model relationships. In addition to equally predictive observations, serial correlation can

be described in a logistic regression model for dependent outcomes.

2.1.3 The Choice of Z

Bonney recommends that past states be addressed by the variable Z as defined in (2.1).

Bonney also mentions that other definitions for Z are possible, although the paper does

not provide any. The advantage of Bonney’s Z is that it lends itself to an straightforward

interpretation of the logit equations associated with Model (2.2). For instance, if past state

Yk = 1 (k < j), this increases the odds of Yj = 0 by eγk , while if Yk = 0 the odds are

decreased by eγk . Further, Z can form cumulative sums, which can be used when fitting

models with equally predictive outcomes.

Z should be chosen thoughtfully in order to accurately express the model relationship

of interest. Bonney’s Z is quite flexible to to describe a variety of model relationships.

However, one flaw of the Z’s as currently defined is that there are no Z’s to represent past

states prior to Y1. Further, as there are only two possible states in a binary series, it is not

always necessary to use a transformation on the past states. For instance, when modeling
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serial correlation on a binary series, it makes sense just to plug in the past state rather than

first transforming the past state.

2.1.4 Serially Dependent Observations and the Initial Stage Problem

Serial dependence can also be specified in a logistic regression for dependent observa-

tions. For instance, serial dependence of order 1 implies that future responses are conditional

upon the most recent past response, i.e.,

P (Y |X) =
J∏
j=1

P (Yj |Yj−1, Xj).

This can be represented in the model

θj = α+ γYj−1 + βXj , j = 1, ..., J.

This type of model is also referred to as a 1-lag model, since we include 1 past response in

the model equation. Note that this model does not quite land under the umbrella of model

(2.2) which does not regress upon any past states beyond Y1. Here, we face an issue of how

to deal with the lagged response of the initial observation, which we can call Y0. Before

the first observation Y1, there are no recorded observations. This does not necessarily mean

that Y0 did not exist nor that it does not have predictive power for future observations.

Depending upon the process under study, different approaches can be taken to handle

this “initial stage problem.” In some cases, Y1 can be treated as a given constant. As

such, the likelihood would lose θ1. If cyclic conditions are appropriate, we can replace

P (Y1|Y0, X1) with P (Y1|YJ , X1), adjusting θ1 appropriately. Another approach, which we

recommend, is to set up a tiered system of logits. For a 1-lag model this would look like:

θ1 = α1 + β1X1

θj = α+ γYj−1 + βXj , j = 2, ..., J.

Here, a separate (regular) logistic regression is set up for the first time point. If only one

series of observations is available, it would not be possible to estimate α1 and β1 from

a single observation. However, it is often the case than multiple dependent series are

available, so estimation is possible. For serial dependence of higher orders, we can easily

extend the model by incorporating additional γ parameters in the logits. A model with

serial dependence of order D would include D lags into the model.
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Many specialized patterns of dependence beyond what we have described here are pos-

sible (see Bonney, 1987; Cox, 1970). Modeling dependent binary series using logistic regres-

sion allows for great flexibility to describe the nature of the relationship between dependent

outcomes. Interactions between variables can also be easily specified. More than one X

covariate could be included. This now becomes an issue of variable selection.

2.1.5 Comparing Different Dependencies

A likelihood ratio test can be used to test independence against a specified pattern of

dependence. Note that for any pattern of dependence, independence can be represented by

a reduced model (i.e., ∀γ = 0). For example, in model (2.2) independence corresponds to

γ1 = · · · = γn−1 = 0. In the case of non-nested models, AIC or BIC can be used to compare

different models.

This section has looked at a single series of dependent observations. However, it is often

the case that a group of independent subjects might each have their own series of dependent

observations. This situation is addressed by autoregressive logistic regression models. In

the next section, we will address ALR models with a binary response.

2.2 Binary Autoregressive Logistic Regression

All of the dependencies that are possible for a single series of observations can similarly

be expressed for multiple independent series of dependent observations. Here we will focus

primarily on ALR models with lagged variables.

Define Yij be the response of the ith subject at the jth time point, i = 1, ..., n, j =

1, ..., Ji, where responses are independent between subjects. Thus, we obtain observations

as in Table 2.2.
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Table 2.2: Schematic dataset for an ALR model.

Independent

Subjects Observations

1 Y11, Y12, ..., Y1J1︸ ︷︷ ︸
Dependent Series

2 Y21, Y22, ..., Y2J2︸ ︷︷ ︸
Dependent Series

...
...

n Yn1, Yn2, ..., YnJn︸ ︷︷ ︸
Dependent Series

Suppose also that Yij ∼ Bernoulli(pij) where pij = P (Yij = 0). Then, a binary ALR

model with D lags, D ∈ Z+, can be defined by the following model equation:

log
P (Yij = 0|Yij−1, ..., Yij−D, Xij)

P (Yij = 1|Yij−1, ..., Yij−D, Xij)
= α+Xijβ +

D∑
d=1

γdYij−d

where Xij is a vector of covariates for the ith patient at the jth time point, β is the associated

parameter vector, and α is the intercept parameter. Yij−d represents the past response of

the ith patient at the dth lag, d = 1, ..., D, and γd’s are the associated parameters for each

lag. This model is quite similar to a binary logistic regression model, with the exception of

the
∑D

d=1 γdYij−d term.

For simplicity, from now on we will write

θDij in place of log
P (Yij = 0|Yij−1, ..., Yij−D, Xij)

P (Yij = 1|Yij−1, ..., Yij−D, Xij)

The ij subscript is necessary to reflect that θ is the log odds of probabilities related to

Yij , and the D superscript indicates that the logit is conditional on past observations

Yij−1, Yij−2, ..., Yij−D.

Now suppose D=1, such that only the previous response is taken into account. Then, a

binary ALR model with 1-lag might be given by the following:

θ1ij = α+Xijβ + γ1Yij−1 (2.4)

This logit is conditional on the most recent previous state and γ1 represents the strength of

the dependency between adjacent responses. Here we directly plug in the past responses.

Thus, if Yij−1 = 1 this would indicate an increase in the odds by eγ1 . While if Yij−1 = 0,

essentially eγ1 would not contribute to the odds.
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However, equation (2.4) comes with a caveat in that there are no previously observed

responses before the first time point, i.e., Y10, Y20, ..., Yn0 are all unobserved but used in the

logit equation. Depending upon the process under study, several different approaches are

possible, as discussed in Section 2.1.4. We propose replacing the first logit with a logistic

regression model dependent upon Xij , such that

θi1 = α0 +Xi1β

θ1ij = α1 +Xijβ + γ1Yij−1 for j ≥ 2

where θi1 is a logit conditional only upon Xi1, i.e., θi1 = logit(P (Yi1 = 0|Xi1)).

2.2.1 Binary ALR Model with D-Lags

Similarly, a Binary ALR Model with D-lags can be described using a set of conditional

logits, incorporating as many lags as possible at each subsequent time point. For instance,

at j = 1 no past observations exist to be incorporated. At j = 2 one past observation, Yi1,

can be observed, at j = 3 up to 2 past observations can be observed for each subject, and

so on. Keeping this in mind, logits can be constructed to absorb as much past information

as possible at each subsequent time point.

For example, if D=3 lags, then there would be four distinct logits, one each for j = 1, 2, 3

and one to represent j ≥ 4.

θi1 = α0 +Xijβ

θ1i2 = α1 +Xi2β + γ11Yij−1

θ2i3 = α2 +Xi3β + γ21Yij−1 + γ22Yij−2

θ3ij = α+Xijβ + γ1Yij−1 + γ2Yij−2 + γ3Yij−3 for j ≥ 4

Of course, to incorporate D = 3 lags into a model, some of the subjects must have obser-

vations that cover at least four time points (Ji ≥ 4). A model with D-lags can be written

as:

θij = α0 +Xijβ

θj−1ij = αj−1 +Xijβ +
∑j−1

d=1 γj−1,dYij−d for j = 2, ..., D − 1

θDij = α +Xijβ +
∑D

d=1 γdYij−d for j ≥ D
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2.2.2 Maximum Likelihood Estimation

The likelihood for any of the binary lagged models mentioned is given by:

L(λ) =
n∏
i=1

Ji∏
j=1

( 1

1 + eθ
min{j−1,D}
ij

)Yij( eθ
min{j−1,D}
ij

1 + eθ
min{j−1,D}
ij

)1−Yij
Maximum likelihood estimates can then be found using the usual methods.

2.2.3 A Bayesian Mixture Model for Finding Parameter Estimates

Beyond using the tiered model, Chan (2000) discusses a Bayesian approach of modeling

Yi0 by using a Beta prior. The resulting model is a two-point mixture model such that the

outcome Yi0 = k occurs with probability πk, k = 0, 1 and π0 + π1 = 1. A simulation study

found that the mixture model had more precise parameter estimates, with smaller mean

square errors and relative biases for most of the covariates. The improvement is greatest

for those datasets where patients have been observed for shorter lengths of time.

2.3 Multinomial Autoregressive Logistic Regression

Now suppose Yij can take one of K values (say, 0, 1, ..., K-1) at the jth time point such

that Yij ∼ indep. Multinomial(pij0, ..., pijK−1) and that there is a dependency between

responses for D lags. Much like multinomial logistic regression, we require multiple logits

to represent this relationship. Also, because there are more than two possible past states,

we can no longer directly plug-in past states into the model equations and must use some

dummy variables. To explore these issues, let’s first look at an multinomial ALR with three

possible states and 1-lag.

2.3.1 A Multinomial ALR with 1-Lag that takes Three Possible States

Suppose Yij takes the values 0,1, and 2 and that Yij ∼ indep. Multinomial(pij0, pij1, pij2).

Further, define Zij(d) = [Zij1(d), Zij2(d)], 1 ≤ d ≤ D denote the vectors of dummy vari-

ables that encode the previous d lagged states of the ith subject at their jth visit. Table

2.3 illustrates the case of D=3 lags. To interpret this table, it helps to think of state 0

corresponding to the pair (0,0), state 1 corresponding to (1,0), and state 2 corresponding

to (0,1). Thus, if a past state takes the value 1, then, its dummy variables Zij1 and Zij2

would take the two values in the pair, 1 and 0, respectively.
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Table 2.3: Dummy variables for previous D=3 lagged states.

Time(j) Yij Zij1(1) Zij2(1) Zij1(2) Zij2(2) Zij1(3) Zij2(3)

1 0 - - - - - -

2 1 0 0 - - - -

3 1 1 0 0 0 - -

4 2 1 0 1 0 0 0

5 0 0 1 1 0 1 0

6 2 0 0 0 1 1 0

A multinomial 1-lag ALR model is given by the following equations:

log
( P (Yij = 0|Yij−1)

1− P (Yij = 0|Yij−1)
)

= α0 +Xijβ + γ11Zij1(1) + γ12Zij2(1) (2.5)

log
( P (Yij ≤ 1|Yij−1)

1− P (Yij ≤ 1Yij−1)

)
= α1 +Xijβ + γ11Zij1(1) + γ12Zij2(1)

Note that because we have three possible states, there must be two logit equations.

Here the logits are ordinal, and the parameters are the same in both equations with the

exception of the intercepts. If ordinal logits are not appropriate for the dataset, a nominal

logit model could instead be set up with respect to a reference probability. Here, let’s have

the reference probability be P (Yij = 2).

log
(P (Yij = 0|Yij−1)
P (Yij = 2|Yij−1)

)
= α0 +Xijβ0 + γ11Zij1(1) + γ12Zij2(1)

log
(P (Yij = 1|Yij−1)
P (Yij = 2|Yij−1)

)
= α1 +Xijβ1 + γ11Zij1(1) + γ12Zij2(1)

The choice between ordinal and nominal logits is left to the practitioner. Refer to Section

1.3.1 for further discussion.

Again, we now must confront the issue of how to deal with those previous, unobserved

states. As before, we can set up a tiered set of conditional logits, thus model (2.5) is

rewritten as:

If j = 1, log
(P (Yi1 = 0|Yi1−1)

1− P (Yi1 = 0)

)
= α10 +Xi1β

log
( P (Yi1 ≤ 1)

1− P (Yi1 ≤ 1)

)
= α11 +Xijβ

If j ≥ 2, log
( P (Yij = 0|Yij−1)

1− P (Yij = 0|Yij−1)
)

= α20 +Xijβ + γ11Zij1(1) + γ12Zij2(1)

log
( P (Yij ≤ 1|Yij−1)

1− P (Yij ≤ 1|Yij−1)
)

= α21 +Xijβ + γ11Zij1(1) + γ12Zij2(1).

Using these model equations, we can set up a likelihood equation.
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2.3.2 Maximum Likelihood Estimation for a Three State ALR with 1-Lag

Using the properties of logits, we can obtain probabilities from the logit equations for

the first time point:

pi10 = P (Yi1 = 0|Xi1) =
eα10+Xi1β

1 + eα10+Xi1β

pi11 = P (Yi1 = 1|Xi1) =
eα11+Xi1β

1 + eα11+Xi1β
− eα10+Xi1β

1 + eα10+Xi1β

pi12 = P (Yi1 = 2|Xi1) =
1

1 + eα11+Xi1β

and for all subsequent time points:

pij0 = P (Yij = 0|Yij−1, Xij) =
eα20+Xijβ+γ11Zij1(1)+γ12Zij2(1)

1 + eα20+Xijβ+γ11Zij1(1)+γ12Zij2(1)

pij1 = P (Yij = 1|Yij−1, Xij) =
eα21+Xijβ+γ11Zij1(1)+γ12Zij2(1)

1 + eα21+Xijβ+γ11Zij1(1)+γ12Zij2(1)

− eα20+Xijβ+γ11Zij1(1)+γ12Zij2(1)

1 + eα20+Xijβ+γ11Zij1(1)+γ12Zij2(1)

pij2 = P (Yij = 2|Yij−1, Xij) =
1

1 + eα21+Xijβ+γ11Zij1(1)+γ12Zij2(1)

where P (Yij = 0) + P (Yij = 1) + P (Yij = 2) = 1 for all i, j. Then, a likelihood equation

can be set up:

P (λ) =
n∏
i=1

Ji∏
j=1

(pij0)
I[Yij=0](pij1)

I[Yij=1](pij2)
I[Yij=2]

where λ is a vector of parameters that includes (α10, α11, α20, α21, γ11, γ12) and the β’s and

I[·] is the indicator function.

2.3.3 A General Multinomial ALR Model with D-Lags

An ALR model with three or more states and D-lags can be described by expanding

upon the ideas discussed previously. If observations can take one of K possible states, then

K−1 logits are required at each time point until the logit can be conditioned on all lags. If a

model has D lags, then D+ 1 tiers of logits are needed. So, a multinomial ALR model with

D lags that takes K possible states would require (K − 1)(D + 1) unique logits. Further,

if there are K possible past states, then K − 1 dummy variables representing past states

would need to be incorporated into the model.
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2.3.4 Absorbing States

As subjects move across states over time, it sometimes appropriate to have one (or

more) absorbing states in a model. For example, suppose a response takes three possible

states: 1, 2, or 3, where 1 is an absorbing state, which perhaps corresponds to a subject

dropping out of the study. An illustration of this situation is given in Figure 2.1. Absorbing

states can be included in an ALR model by modifying the logit equations such that

P (being in the aborbing state | previously entering absorbing state) = 1.

Figure 2.1: Three possible response states: 1, 2, or 3, where 1 is an absorbing state.

1 3 2 

2.4 Current Goodness-of-Fit Diagnostics for ALR Models

ALR models are applicable in a number of fields where longitudinal data is abundant (de

Vries, Fidler, Kuipers & Hunick, 1998; Mueller, Voelkle, & Hattrup, 2011; Slud & Kedem,

1994). In particular, ALR models are very useful for modeling chronic disease status, where

patients may fluctuate between certain fixed states over time. However, there are very

few goodness-of-fit diagnostics for autoregressive logistic regression models. A graphical

comparison of observed and predicted marginal probabilities (de Vries et al., 1998) has

been used as a measure of goodness-of-fit for ALR models. Additionally, Slud and Kedem

(1994) have proposed a test for binary ALR models based upon Schoenfeld residuals.

Herein we propose an omnibus goodness-of-fit test for autoregressive logistic regression

models, based upon a Pearson statistic that makes use of patients’ unique paths through

time. We will initially explore this test for a specific ALR model with fixed, binary covari-

ates.
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2.5 Motivating Example: Claudication Paper

Much of our initial inspiration to create a goodness-of-fit procedure came from a 1998

paper “Fitting Multistate Models with Autoregressive Logistic Regression: Supervised Ex-

ercise in Intermittent Claudication” (de Vries et al.). In this paper, an ALR model was

used to analyze patient responses to a walking therapy program used to treat intermittent

claudication, or severe leg pain due to peripheral arterial disease. The model sought to

identify which patient characteristics led to success in the walking program, and conversely,

which characteristics led to a worsening of symptoms and an inability to proceed in the

study. Data was collected from 329 patients over four visits every two months. At each

time point, patients were observed as 1 (moderate improvement in symptoms) or 2 (great

improvement in symptoms). Some patients also dropped out of the study due to an increase

in leg pain, a state denoted by 0. Once a patient dropped out of the study, they could not

return. Thus, we might observe patient responses like the ones in Table 2.4.

Table 2.4: Schematic dataset from the claudication paper.

Visit Subject 1 Subject 2 Subject 3 Subject 4 ... Subject n

1 1 1 2 1 ... 2

2 2 0 2 1 ... 1

3 2 . 1 2 ... 0

4 2 . 1 0 ... .

Other patient variables were recorded at baseline such as age (years), gender, diabetes

status (yes/no), smoking status (yes/no), number of symptomatic limbs (1 to 21), season

(fall, winter, spring, summer), duration of the disease (months), and thigh/ankle brachial

index (ABI, 0 to 1.5). Using Akaike’s information criterion as a basis for comparison between

different ALR models, an autoregressive logistic regression model with two lags and three

covariates (ABI, age, and duration) was selected as the best predictive model. Finally, the

authors provided a graphical goodness-of-fit assessment, plotting as a function of time the

observed and the predicted fraction of patients with a particular response for three disjoint

subsets of the covariates.

Although we were unable to obtain the original data used in the cladication paper,

we have constructed an ALR model that is similar in nature. This model will be used to

illustrate our general approach to goodness-of-fit for ALR models.
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2.5.1 The Model

Suppose we have three response states: -1, 0, and 1, that are ordinal in nature and that

-1 is an absorbing state, which corresponds to dropping out of the study. Thus, subjects

begin the study either in state 0 or 1. Although the numbers used to describe the states are

different from those in the cladication paper, describing them in this way allows a direct

plug-in of the past states, since past states can really only take the values 0 or 1. If there

were K ≥ 3 possible past states, then K−1 dummy variables would be needed for each lag.

Suppose also there are two binary covariates for each subject, Vi and Wi. Let Yit be

the state of the ith patient i = 1, ..., n at the t-th time point, t = 1, ..., Ti, where t = 1

is a “baseline” state and Ti is the number of scheduled visits for the ith patient. Patients

are observed Ti times unless they enter the absorbing state before the Ti-th scheduled visit.

It is also assumed that patients have equally spaced visits and no missed visits. An ALR

model with two lags can be expressed by the following set of logit equations:

If t = 1, logit(P (Yi1 = 0)) = α0 + α1Vi + α2Wi (2.6)

If t = 2, logit(P (Yi2 = −1|Yi1 = yi1)) = β01 + β1Vi + β2Wi + β3yi1

logit(P (Yi2 ≤ 0|Yi1 = yi1)) = β02 + β1Vi + β2Wi + β3yi1

If t ≥ 3, logit(P (Yit = −1|Yit−1 = yit−1, Yit−2 = yit−2))

=

 γ01 + γ1Vi + γ2Wi + γ3yit−1 + γ4yit−2 if {yit−1, yit−2} ∈ {0, 1}
∞ otherwise

logit(P (Yit ≤ 0|Yit−1 = yit−1, Yit−2 = yit−2))

=

 γ02 + γ1Vi + γ2Wi + γ3yit−1 + γ4yit−2 if {yit−1, yit−2} ∈ {0, 1}
∞ otherwise

where β01 ≤ β02 and γ01 ≤ γ02. Here ordinal logits are used, as discussed in Section 1.3.2.

We can do this because our response is ordinal in nature, but this is only recommended if a

proportional odds relationship is reasonable (Agresti, 2003). An advantage of using ordinal

logits is that there are generally fewer parameters versus using nominal logits. For instance,

model (2.6) has a total of 14 parameters. An equivalent nominal logit model would have 21

parameters. Let θ represent the vector of model parameters for t ≥ 2, such that

θ = (β01, β02, β1, β2, β3, γ01, γ02, γ1, γ2, γ3, γ4). (2.7)
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Chapter 3

A Chi-Square Test for

Autoregressive Logistic Regression

The previous chapter described the claudication paper, which provides an example that

will both motivate and highlight our test procedure. Although we were unable to obtain

the original data used in the paper, we have constructed an ALR model that is similar in

nature. This model will be used to illustrate our general approach to goodness-of-fit for

ALR models.

3.1 A Goodness-of-Fit Statistic that Makes Use of Unique

Paths

An omnibus goodness-of-fit procedure will test

Ho: the ALR model is a good fit versus Ha: the ALR model is a poor fit

The construction of an appropriate statistic for this hypothesis and its asymptotic distri-

bution can be described for model (2.6), and is based upon tabulating unique path proba-

bilities. The procedure can be adapted to other ALR models.

3.1.1 Unique Paths

Suppose the number of scheduled visits is Ti = 4 for all subjects in model (2.6). Recall

that there are three ordinal states -1, 0, and 1 where -1 is an absorbing state. Then, for a

34



given start state (i.e., 0 or 1), there are only 15 unique paths a subject might take, as seen

in Figure 3.1. Each subject can follow only one possible path.

Figure 3.1: The number of unique paths is equal to 15 (solid rectangles) given a Start state

when the number of scheduled visits is 4 and there are three possible states: -1, 0, and 1,

where -1 is an absorbing state.

Start: 0 or 1 

-1 

t = 4 

t = 3 

t = 2 

t = 1 

0 1 

-1 0 1 -1 0 1 

-1 0 1 -1 0 1 -1 0 1 -1 0 1 

Although we can model P (Yi1 = 0) (and thus P (Yi1 = 1)) at the first time point, start

state is in some sense conditional, i.e., patients “appear” in the study with some start value,

Si (either 0 or 1). Likewise, patients have some fixed covariate values Vi (0 or 1) and Wi (0

or 1). For our model, there are 2 · 2 · 2 = 8 combinations of S, V, and W . Each combination

represents a cohort of patients with similar baseline characteristics.

Define pθ(u|SVW ) = Pθ(taking the uth path| start state S and covariates V, W),

u = 1, ..., 15, S = 0, 1, V = 0, 1, and W = 0, 1. Thus, there are eight disjoint groups

of patients at baseline and each group has a set of 15 conditional path probabilities, as

illustrated in Table 3.1.
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Table 3.1: All possible (S, V,W ) combinations and associated conditional path probabilities.

Start V W Conditional Probabilities

0 0 0 pθ(1|000), ..., pθ(15|000)

0 0 1 pθ(1|001), ..., pθ(15|001)

0 1 0 pθ(1|010), ..., pθ(15|010)

0 1 1 pθ(1|011), ..., pθ(15|011)

1 0 0 pθ(1|100), ..., pθ(15|100)

1 0 1 pθ(1|101), ..., pθ(15|101)

1 1 0 pθ(1|110), ..., pθ(15|110)

1 1 1 pθ(1|111), ..., pθ(15|111)

These conditional probabilities can be found from the logit equations in model (2.6).

For example, suppose u represents the path S → 0→ 1→ 1. Then,

pθ(u|SVW ) = Pθ(Yi4 = 1, Yi3 = 1, Yi2 = 0|S, V,W )

= Pθ(Yi4 = 1|Yi3 = 1, Yi2 = 0, S, V,W ) · Pθ(Yi3 = 1|Yi2 = 0, S, V,W )

· Pθ(Yi2 = 0|S, V,W )

= Pθ(Yi4 = 1|Yi3 = 1, Yi2 = 0, V,W ) · Pθ(Yi3 = 1|Yi2 = 0, S, V,W )

· Pθ(Yi2 = 0|S, V,W )

=
1

1 + eγ02+γ1V+γ2W+γ3
· 1

1 + eγ02+γ1V+γ2W+γ4S

·
( eβ02+β1V+β2W+β3S

1 + eβ02+β1V+β2W+β3S
− eβ01+β1V+β2W+β3S

1 + eβ01+β1V+β2W+β3S

)
To get an estimate of pθ(u|SVW ), plug in an estimate for the parameters θ̂, giving pθ̂(u|SVW ).

3.1.2 The Construction of the Statistic

Suppose nSVW subjects belong to each (S, V,W ) group. We can construct a chi-square

statistic in the following manner:

1. Estimate the expected counts for each path,

eθ̂(u|SVW ) = nSVW · pθ̂(u|SVW ) (3.1)

2. For each (S, V,W ) sort and bin the 15 expected counts, obtaining bins B1, ..., BKSVW

where the estimated value of the kth bin, k = 1, ...,KSVW is

bθ̂(k|SVW ) = nSVW · sθ̂(k|SVW ) (3.2)
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where

sθ̂(k|SVW ) =

15∑
u=1

Ik{u}pθ̂(u|SVW ) (3.3)

and Ik{u} = 1 if uth path ∈ kth bin, 0 otherwise.

3. After sorting and binning, let

o(k|SVW ) = (# of observed paths out of nSVW in the kth bin) (3.4)

such that

X2
SVW =

KSVW∑
k=1

(o(k|SVW )− bθ̂(k|SVW ))2

bθ̂(k|SVW )
(3.5)

4. Then, the chi-square statistic for the whole dataset is

X2 =
1∑

S=0

1∑
V=0

1∑
W=0

χ2
SVW (3.6)

which under H0 and some regularity conditions will approximately follow a χ2 distri-

bution with degrees of freedom

df =
1∑

S=0

1∑
V=0

1∑
W=0

(KSVW − 1)− (some adjustment for parameter estimation)

.

3.1.3 Distribution of the Chi-Square Statistic under the Null Hypothesis

The chi-square statistic could be constructed by plugging in the standard “raw data”

maximum likelihood parameter estimates, denoted by θ̂RD. These can be found by max-

imizing the joint likelihood, which can be written by expanding upon the definition of

conditional probability:

L(θ) =
n∏
i=1

Li(θ) (3.7)

=
n∏
i=1

Pθ(YiTi = yiTi , ..., Yi2 = yi2|Si, Vi,Wi)

=
n∏
i=1

Pθ(YiTi = yiTi |YiTi−1 = yiTi−1 , YiTi−2 = yiTi−2 , Vi,Wi)

· Pθ(YiTi−1 = yiTi−1 |YiTi−2 = yiTi−2 , YiTi−3 = yiTi−3 , Vi,Wi)

· · · Pθ(Yi2 = yi2|Si, Vi,Wi).
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However, the resulting degrees of freedom is difficult to characterize (Chernoff & Lehmann,

1954). In fact, the general rule that the degrees of freedom is the “number of bins minus

one, minus the number of estimated parameters” applies only when the parameter estimates

are found by maximizing a product of multinomial pmfs based upon the binning structure.

We can solve for these “bin-based” parameter MLEs, denoted by θ̂B, by maximizing the

following:

L(θ) =
1∏

S=0

1∏
V=0

1∏
W=0

KSVW∏
k=1

sθ(k|SVW )o(k|SVW ) (3.8)

−→ θ̂B = (β̂01, β̂02, β̂1, β̂2, β̂3, γ̂01, γ̂02, γ̂1, γ̂2, γ̂3, γ̂4)

Since our statistic is constructed conditional on the start state S, V, and W, we do not need

to estimate the three α parameters associated with t = 1. Thus, for our model the degrees

of freedom is

df =
∑
S

∑
V

∑
W

(KSVW − 1)− 11 (3.9)

only if the bin-based parameter MLEs are plugged in to construct the statistic. Appropri-

ate parameter estimates could also be found by using minimum chi-square estimators or

modified minimum chi-square estimators (Moore, 1986).

Additionally, the bins must be selected in such a way that a positive number of degrees

of freedom is obtained while also upholding some regularity conditions. These require that

the expected counts within each bin must be sufficiently large. Cochran’s chi-square “rule

of thumb” addresses these issues (Cochran, 1954). This rule states that all expected bin

counts must be at least 1, and that at least 80% of the total bins should have an expected

count of 5 or more (i.e., bθ̂(k|SVW ) ≥ 5). If the expected bin counts are not sufficiently

large, the test statistic may not converge to the χ2 distribution. Research has shown that

Cochran’s rule is sometimes too conservative under certain conditions (Moore, 1986). A

general binning strategy is described in the next section.

3.1.4 A Note on Binning

Bins must be constructed in such a way to obtain a positive number of degrees of free-

dom while also upholding the regularity conditions. In the case of an ALR model, there may

not be enough patients in a particular (S,V,W) combination (i.e., nSVW is small) to jus-

tify binning only within that combination. We suggest a two-dimensional binning strategy,
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where “rows” of disjoint covariate patterns are set up with corresponding “columns” of ex-

pected path counts, which are then tabulated. Table 3.1 illustrates such a two-dimensional

table, although unique path probabilities are shown rather than path counts.

Row Binning. For our illustrative model, recall that there are eight distinct rows of

(S, V,W ) and each row has an associated nSVW . First, check if the smallest nSVW exceeds

some row threshold, say 10. This threshold value should be large enough so that small

nSVW can be absorbed, but small enough to not force unnecessary merging between large

cohorts.

If the smallest count nSVW is less than or equal to the row threshold, sort the counts,

then add the two smallest and take the union of their associated (S, V,W ) as a new category.

Then, repeat the process until all categories exceed the threshold. An example is provided

in Table 3.2.

Table 3.2: An example of row binning for n = 200 patients with a row threshold= 10. Once

the rows have been merged, the next step is to bin the expected path counts within each

row.

SVW nSVW SVW nSVW SVW nSVW SVW nSVW

000 5 000 5 000 ∪ 011 12 110 7

001 11 sort 011 7 merge 110 7 sort 001 11

010 15 → 110 7 → 001 11 → 000 ∪ 011 12

011 7 001 11 010 15 010 15

100 62 010 15 111 43 111 43

101 50 111 43 101 50 101 50

110 7 101 50 100 62 100 62

111 43 100 62

SVW nSVW Conditional Probabilities

110 ∪ 001 18 pθ(1|110 ∪ 001), ..., pθ(15|110 ∪ 001)

merge 000 ∪ 011 12 pθ(1|000 ∪ 011), ..., pθ(15|000 ∪ 011)

−→ 010 15 pθ(1|010), ..., pθ(15|010)

111 43 pθ(1|111), ..., pθ(15|111)

101 50 pθ(1|101), ..., pθ(15|101)

100 62 pθ(1|100), ..., pθ(15|100)

39



Note that it is straightforward to solve for the conditional path probabilities (and thus

the estimated counts) given a union of one or more (S,V,W) combinations. For example,

pθ(u|SVW = 000 or SVW = 011) = pθ(u|000 ∪ 011)

=
Pθ(u ∩ (000 ∪ 011))

P (000 ∪ 011)

=
Pθ(u ∩ 000) + Pθ(u ∩ 011)

P (000 ∪ 011)

=
pθ(u|000)n000 + pθ(u|011)n011

n000 + n011
.

Column Binning. Once the rows have been merged (if necessary), we can bin the

expected counts associated with the paths in each row. First, use the raw data MLEs

found by maximizing (3.7) to solve for the expected path counts, i.e., eθ̂RD(u|SVW ) =

nSVW ·pθ̂RD(u|SVW ). Then, sort these expected counts from largest to smallest. Since our

goal is that at least 80% of the bins have an expected value of 5 or more, bin the counts

in such a way that each bθ̂RD(k|SVW ) is greater than or equal to some column cutoff that

reinforces the rule of thumb, say 5 or larger. If the expected count of the first sorted path

is at least 5, it becomes a bin. If the expected count is less than 5, merge it with the next

largest and so on, until the expected bin count equals 5 or more. After creating the first

bin, the next largest expected counts should be merged (if necessary) to get the next bin.

Binning continues in this fashion until all the expected path counts are incorporated into a

bin. An example is given in Table 3.3.

By using the raw data MLEs θ̂RD to construct the bins, we resolve the issue of needing

an a priori binning structure to solve for the bin-based MLEs. However, once the binning

structure is determined, the expected bin counts for the chi-square statistic are calculated

by plugging in the bin-based MLEs θ̂B found by maximizing (3.8), obtaining bθ̂B (k|SVW ).

Under the null hypothesis, this statistic will follow a chi-square distribution with degrees of

freedom described in (3.9).
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Table 3.3: An example of column binning for a particular SVW combination where nSVW =

30 patients, with a column cutoff= 5. The expected count for each path is the product of the

total row count and the predicted conditional path probability, i.e., nSVW · pθ̂RD(u|SVW ).

Here, five bins are generated as observed by the alternating bold/non-bold text in the last

rows of the table.

Path 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Expected Count .50 6 10 .02 1 1 2 .01 1 4 .01 .02 4 .04 .40

sort ↓

Path 3 2 10 13 7 5 5 9 1 15 14 4 12 8 11

Expected Count 10 6 4 4 2 1 1 1 .50 .40 .04 .02 .02 .01 .01

bin ↓

Path 3 2 10 13 7 5 5 9 1 15 14 4 12 8 11

Expected Count 10 6 4 4 2 1 1 1 .50 .40 .04 .02 .02 .01 .01

Both the rows and the columns make use of some minimum threshold or cutoff to

guide the construction of bins. However, the rows employ a bottom-up approach, while the

columns make use of a top-down approach. For the row binning, the bottom-up approach

can quickly identify any smaller rows which need to be merged. Further, this approach

ensures that all row counts will exceed the chosen row threshold. In contrast, the column

binning top-down strategy ensures that most (as opposed to all) of the bins will exceed

the column cutoff value. Such an approach is appropriate since regularity conditions only

require that 80% of expected bin counts exceed the value 5 or larger.

3.2 Size and Power Study

The properties of the proposed X2 statistic are explored in this section for model (2.6).

Let Ti = 4 ∀i, such that all patients are seen for four visits unless they have entered the

absorbing state previously. As before, patients are assumed to have equally spaced visits

with no missed visits. Three sample sizes were selected: n = 200, 400 and 2000. Also, two

distributions of (S, V,W ) combinations, denoted by “Balanced” and “Unbalanced,” were

simulated as shown in Table 3.4. In particular, the Unbalanced case was selected so that

some row merging would have to occur at the smaller sample sizes n = 200 and n = 400,
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where the smallest row combinations contained one and two observations, respectively.

Additionally, three sets of parameter values were chosen to exhibit a range of possible

relationships among the variables, and are denoted by “Mild”, “Moderate”, and “Severe,”

reflecting the expected percent of patients who have dropped out (i.e., entered the absorbing

state) by the fourth visit. The parameter values are provided in Table 3.5. This table also

displays the percent of patients who are expected to have dropped out under the Balanced

and Unbalanced cases. These percentages were found by simulating 5,000 datasets of size

n = 200 and calculating the average percentage of subjects who had entered the absorbing

state by the fourth visit.

Table 3.4: Two distributions of patients at baseline.

Start V W Balanced Unbalanced

0 0 0 .125 .120

0 0 1 .125 .050

0 1 0 .125 .250

0 1 1 .125 .100

1 0 0 .125 .225

1 0 1 .125 .100

1 1 0 .125 .150

1 1 1 .125 .005

Table 3.5: Parameter values for the simulation study and associated dropout rates for the

Balanced and Unbalanced cases by the fourth visit.

Label Parameter Values Expected Dropout

Balanced Unbalanced

Mild β01 = −1.8, β02 = −0.3, β1 = −2.2, β2 = 0.5, β3 = −1.7 21.4% 18.4%

γ01 = −0.4, γ02 = 1.9, γ1 = −2.5, γ2 = −1.2, γ3 = 0.4, γ4 = −1.9

Moderate β01 = −3.2, β02 = −1.7, β1 = 1.5, β2 = 2.5, β3 = −3.1 42.5% 45.2%

γ01 = −2.3, γ02 = −0.3, γ1 = −1.8, γ2 = −1.5, γ3 = −0.5, γ4 = 2.7

Severe β01 = −0.9, β02 = −0.3, β1 = 2.2, β2 = −1.7, β3 = 0.8 86.9% 87.1%

γ01 = 0.8, γ02 = 1.5, γ1 = −0.4, γ2 = 2.1, γ3 = −1.6, γ4 = −0.9

3.2.1 Size

To evaluate the size of our proposed test, 10,000 datasets were generated from model

(2.6) under different conditions using R software version 2.14.2. Then, the raw data MLEs
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θ̂RD were found for each dataset using the optim() function to minimize the negative log of

the joint likelihood given in (3.7).

Using these MLEs to solve for the expected path counts, the binning structure was then

dynamically determined using a row threshold of 10 and a column cutoff of 5. Once the

bins were set, bin-based MLEs θ̂B were found by minimizing the negative log of the joint

multinomial likelihood given in (3.8). These bin-based MLEs were plugged into (3.1)-(3.6)

to calculate the value of the statistic. For each dataset, a p-value was generated based on

the statistic relative to the chi-square distribution with the appropriate degrees of freedom

as given in (3.9).

Table 3.6 displays the proportion of p-values out of 10,000 less than or equal to 0.10,

0.05, and 0.01. It appears that the test statistic has adequate size under all of the different

settings. In some instances, the size is slightly lower than ideal for the 0.10 case, however

since data is being generated from the null hypothesis, this is an acceptable result. Along

with size, three power alternatives were looked at and are discussed in the next sections.

Table 3.6: Proportion of p-values out of 10,000 less than or equal to the listed cutoffs.

n=200 n=400 n=2000

Mild Bal Unb Bal Unb Bal Unb

≤ 0.01 0.015 0.016 0.013 0.011 0.011 0.011

≤ 0.05 0.050 0.049 0.052 0.047 0.054 0.046

≤ 0.10 0.089 0.087 0.099 0.094 0.103 0.091

Moderate Bal Unb Bal Unb Bal Unb

≤ 0.01 0.015 0.013 0.012 0.012 0.010 0.014

≤ 0.05 0.055 0.049 0.052 0.052 0.050 0.054

≤ 0.10 0.104 0.092 0.100 0.101 0.099 0.102

Severe Bal Unb Bal Unb Bal Unb

≤ 0.01 0.012 0.012 0.015 0.012 0.012 0.013

≤ 0.05 0.046 0.042 0.051 0.046 0.051 0.049

≤ 0.10 0.088 0.082 0.101 0.093 0.101 0.096

3.2.2 Power Alternative: Subjects have Random Intercepts

Here, the alternative of subject random intercepts was explored by generating 1,000

datasets from model (2.6) with the additional feature that each patient had a randomly

generated intercept ri ∼ N(0, σ2), for σ = 0.5, 1.0, 1.5, and 2.0. The test statistic and

associated p-value was then calculated using the same procedure as in the size study.
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Table 3.7 displays the percentage of p-values out of 1,000 less than or equal to 0.10, 0.05,

and 0.01 for different values of σ. As the results from all three of the different parameter

sets were quite similar, only the Moderate parameter case is presented in the table. There

are two main patterns present in the table. As expected, the power of the test increases as

sigma increases. Similarly, we also see an improvement in power as sample size increases.

Table 3.7: Percentage of p-values out of 1,000 less than or equal to the listed cutoffs for a

random intercept alternative, moderate parameter case only.

n=200 n=400 n=2000

σ = 0.5 Bal Unb Bal Unb Bal Unb

≤ 0.01 1.3% 1.3% 0.6% 1.3% 2.9% 2.1%

≤ 0.05 5.8% 5.2% 5.1% 5.1% 8.8% 7.0%

≤ 0.10 10.0% 9.7% 11.6% 10.0% 16.0% 13.4%

σ = 1.0 Bal Unb Bal Unb Bal Unb

≤ 0.01 2.4% 0.6% 2.5% 2.9% 36.6% 34.5%

≤ 0.05 7.4% 4.4% 9.1% 10.7% 62.1% 61.3%

≤ 0.10 13.7% 10.4% 14.6% 18.0% 72.4% 73.6%

σ = 1.5 Bal Unb Bal Unb Bal Unb

≤ 0.01 4.3% 2.3% 25.8% 4.8% 98.6% 99.1%

≤ 0.05 9.2% 8.5% 47.8% 14.9% 99.5% 99.9%

≤ 0.10 14.2% 15.8% 61.7% 25.4% 99.8% 100%

σ = 2.0 Bal Unb Bal Unb Bal Unb

≤ 0.01 2.8% 1.2% 16.3% 30.5% 100% 100%

≤ 0.05 9.8% 4.2% 37.0% 53.1% 100% 100%

≤ 0.10 16.8% 8.2% 51.1% 66.2% 100% 100%

3.2.3 Power Alternative: Omitted Covariate

Here, model (2.6) includes an additional baseline binary covariate, Z. Values of Z were

generated either from a Binomial(0.5) or a Binomial(0.75). To describe the effect of this new

covariate, two new parameters β4 and γ5 are included in the logit equations corresponding

to t = 2 and t ≥ 3, respectively. The power study looked at two sets of parameter values:

β4 = 2.5, γ5 = 1.3 and β4 = 0.9, γ5 = −1.8. These values were chosen to reflect different

relationships between the covariate Z and the response.

Table 3.8 displays the percentage of p-values out of 1,000 less than or equal to 0.10, 0.05,

and 0.01 for different values of β4, γ5 and Z distributions. The table displays results from
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the Moderate parameter case only, as results from the Mild and Severe parameter values

were quite similar. As expected, we see a general trend of power increasing as n increases.

Also, power seems to be better for the Binomial(0.5) versus the Binomial(0.75) case. The

test is not good at detecting the missing covariate at the smaller sample sizes.

Table 3.8: Percentage of p-values out of 1,000 less than or equal to the listed cutoffs for a

omitted covariate alternative, moderate parameter case only.

n=200 n=400 n=2000

β4 = 2.5, γ5 = 1.3, Z∼Bin(0.5) Bal Unb Bal Unb Bal Unb

≤ 0.01 1.9% 2.5% 4.0% 1.9% 30.2% 45.1%

≤ 0.05 6.8% 7.2% 11.1% 8.3% 55.4% 68.1%

≤ 0.10 11.7% 12.0% 18.7% 15.3% 68.5% 78.8%

β4 = 2.5, γ5 = 1.3, Z∼Bin(0.75) Bal Unb Bal Unb Bal Unb

≤ 0.01 1.6% 1.2% 1.9% 1.4% 20.1% 28.7%

≤ 0.05 5.5% 5.5% 7.5% 6.1% 41.5% 51.0%

≤ 0.10 10.6% 10.6% 12.8% 12.9% 55.5% 65.5%

β4 = 0.9, γ5 = −1.8, Z∼Bin(0.5) Bal Unb Bal Unb Bal Unb

≤ 0.01 1.1% 1.0% 1.5% 1.7% 29.9% 22.6%

≤ 0.05 4.3% 5.3% 7.9% 7.5% 55.2% 47.8%

≤ 0.10 8.2% 9.7% 12.6% 13.9% 68.3% 62.4%

β4 = 0.9, γ5 = −1.8, Z∼Bin(0.75) Bal Unb Bal Unb Bal Unb

≤ 0.01 1.2% 1.1% 1.4% 1.5% 15.1% 14.8%

≤ 0.05 5.4% 4.4% 4.6% 6.0% 31.4% 31.7%

≤ 0.10 9.8% 8.9% 9.1% 12.2% 45.2% 44.7%

3.2.4 Power Alternative: Misspecified Lag

One of the features of an ALR model is being able to observe to what degree past

responses affect future responses. Here, a simulation was set up to test if the chi-square

statistic could detect a need for an additional lag. This was done by fitting a 1-lag model

to data that was generated from a 2-lag model.

Here, the 1-lag model corresponds to a modified model (2.6), where the logit equations

associated with t ≥ 3 are absent, and the logit equations for t = 2 now correspond to all

time points t ≥ 2. For each of the parameter settings, 1, 000 datasets were generated from

the 2-lag model, which corresponds to model (2.6). Then, raw data MLEs were fit as if a

1-lag model was appropriate and using the same row and column cutoffs as in the size study,
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a binning structure was determined. Using this binning structure, bin-based MLEs were

found corresponding to a 1-lag model. These were plugged into (3.1)-(3.6) to calculate the

chi-square statistic. The degrees of freedom was determined by df =
∑

rows(KSVW −1)−5,

where “rows” indicates a summation over all of the rows that resulted from the binning

strategy. Further, 5 is subtracted since there are only 5 parameters in the 1-lag model.

Table 3.9 displays the percentage of p-values out of 1,000 less than or equal to 0.10, 0.05,

and 0.01. The power is excellent for the larger sample sizes n = 400 and n = 2000, as the

departure is detected 100% of the time. Power is still quite good for n = 200.

Table 3.9: Percentage of p-values out of 1,000 less than or equal to the listed cutoffs for a

2-lag alternative under a 1-lag null.

n=200 n=400 n=2000

Mild Bal Unb Bal Unb Bal Unb

≤ 0.01 86.6% 88.7% 100% 100% 100% 100%

≤ 0.05 95.3% 96.0% 100% 100% 100% 100%

≤ 0.10 97.5% 98.0% 100% 100% 100% 100%

Moderate Bal Unb Bal Unb Bal Unb

≤ 0.01 100% 100% 100% 100% 100% 100%

≤ 0.05 100% 100% 100% 100% 100% 100%

≤ 0.10 100% 100% 100% 100% 100% 100%

Severe Bal Unb Bal Unb Bal Unb

≤ 0.01 71.0% 86.1% 100% 100% 100% 100%

≤ 0.05 87.5% 95.8% 100% 100% 100% 100%

≤ 0.10 92.0% 98.3% 100% 100% 100% 100%

3.2.5 Bootstrap Correction for Small Sample Sizes

The chi-square test for ALR models, like many other goodness-of-fit tests, is primarily a

large sample test. In the simulation study, size began to deteriorate for some of the parame-

ter settings with sample sizes significantly less than 200. For example, 10,000 datasets were

generated using Mild parameters with Balanced covariates for n = 100. Then, under the

same conditions as in the size study, bins were formed and a chi-square statistic calculated.

Of the p-values generated by this procedure, 12.1% of the resulting p-values were less than

0.10, 6.9% were less than 0.05, and 3.1% were less than 0.01. Using the chi-square statistic

under these conditions might lead to an overly high rejection rate.

Further, a sample size could be too small in the sense that using cutoff values of 10 and
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5 results in a negative degrees of freedom. To adjust for this, we recommend lowering the

column cutoff when binning so that a positive degrees of freedom is obtained. Although

the rule of thumb for the chi-square test may be violated, a bootstrap p-value could still

be constructed. Thus, for smaller sample sizes, it is recommended to construct a bootstrap

p-value.

A bootstrap p-value could be found in the following manner:

1. For a proposed ALR model, calculate the chi-square statistic X2 for some choice of

row threshold and column cutoff.

2. Then, using the raw data MLEs θ̂RD from step 1, generate m = 1000 null datasets

from ALR model, treating the MLEs as the true parameter values.

3. Maintain the same binning structure from step 1 and calculate 1000 X2∗ statistics.

4. The bootstrap p-value is then the number of (X2∗ > X2)/m.

As a check of the bootstrap procedure, 1,000 datasets were generated from model (2.6)

for n = 100 patients with Balanced (S, V,W ) and Mild parameters (this is the same case

mentioned previously where size was inflated). For each dataset, m = 1, 000 bootstrap

datasets were generated and a single bootstrap p-value calculated (Steps 2-4). Of this set

of bootstrap p-values, 10.4% were less than 0.10, 4.8% were less than 0.05, and 1.2% were

less than 0.01. Thus, we see an improvement in using the bootstrap p-value.

3.2.6 A Computing Aspect

The vast majority of the computing time required by the simulation study (or to obtain

a bootstrap p-value) is spent on finding parameter estimates, both raw data or bin-based.

The time required to find parameter estimates will also be a concern to the practitioner.

Solving for the raw data MLEs requires a maximization of (3.7), which as written requires

optimizing a function to solve for 11 parameters and takes a fair amount of computing time.

However, due to the tiered model structure, the joint likelihood can be split into two smaller

likelihoods, each of which could then be maximized.

Recall, θ as given in (2.7) represents our vector of model parameters for t ≥ 2. Let

θ2 represent the parameters associated with t = 2, such that θ2 = (β01, β02, β1, β2, β3).

Likewise, let θ3 contain all the γ parameters associated with t ≥ 3, such that θ3 =

(γ01, γ02, γ1, γ2, γ3, γ4). Then, the joint likelihood of θ can be rewritten as a product of
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two independent likelihoods for θ2 and θ3:

L(θ) =

n∏
i=1

Li(θ)

=

n∏
i=1

Pθ(YiTi
= yiTi

, ..., Yi2 = yi2|Si, Vi,Wi)

=

n∏
i=1

Pθ3(YiTi = yiTi |YiTi−1 = yiTi−1 , YiTi−2 = yiTi−2 , Vi,Wi)

· Pθ3(YiTi−1
= yiTi−1

|YiTi−2
= yiTi−2

, YiTi−3
= yiTi−3

, Vi,Wi) · · · Pθ2(Yi2 = yi2|Si, Vi,Wi)

=

n∏
i=1

(
Ti∏
t=3

Pθ3(Yit = yit|Yit−1 = yit−1, Yit−2 = yit−2, Vi,Wi) · Pθ2(Yi2 = yi2|Si, Vi,Wi)

)

=

(
n∏
i=1

Ti∏
t=3

Pθ3(Yit = yit|Yit−1 = yit−1, Yit−2 = yit−2, Vi,Wi)

)(
n∏
i=1

Pθ2(Yi2 = yi2|Si, Vi,Wi)

)

Rather than maximizing L(θ) to obtain 11 parameter estimates, two smaller likelihoods

can instead be maximized solving for 6 and 5 parameters, respectively. This approach

significantly sped up the time of the simulations. For example, on a Toshiba laptop computer

(Dual Core CPU 2.0 GHz, 4.0GB RAM) the time to find the raw data parameter estimates

went from 20 seconds down to 5 seconds when n = 200. While both times seem relatively

small, these would need to be repeated at least 1,000 times when finding a bootstrap p-value

or when evaluating size or power. By saving those 15 seconds, this reduces the simulation

time needed to find raw data MLEs from 5.56 hours down to 1.39 hours, which is a vast

improvement.

3.3 Extension of the Goodness-of-Fit Procedure to General

ALR Models

Thus far, we have provided an omnibus goodness-of-fit test for an ALR model with

fixed, binary covariates and where each patient has been scheduled for an equal number of

visits. However, ALR models are not restricted to having only binary covariates, and could

have multi-state or continuous covariates. Also, the model could incorporate time-varying

covariates. Further, ALR models might be uneven in the sense that the number of scheduled

visits is not the same for all subjects (i.e., Ti vary between subjects). We will briefly address

how the chi-square test might be modified to handle the following situations: 1) multi-state

or continuous covariates, 2) time-varying covariates, and 3) unequal Ti.

48



For an ALR model with a multi-state covariate, rows could be set up making use of all of

the covariate’s possible values. For example, suppose model (2.6) had a multi-state covariate

Vi that takes four possible values: 1, 2, 3, and 4. Then, row bins could be set up based

upon combinations of (S, V,W ) as before, although there would now be 2 · 4 · 2 = 16 unique

rows. Then, binning and calculating the expected path counts could occur as outlined and

the statistic calculated.

Suppose Vi is still a multi-state covariate but with a larger number of possible values,

say 10 possible values. One approach is to proceed as before, although there would now

be 2 · 10 · 2 = 40 disjoint rows. Many of these rows might have very few observations.

Rather than having to merge many rows, Vi might instead be further discretized into a

smaller number of categories. For example, suppose Vi takes the integer values 1 through

10. Define a new variable V ∗i where

V ∗i =


1 if Vi = 1, 2, or 3,

2 if Vi = 4, 5, or 6,

3 if Vi = 7, 8, 9, or 10.

Then, set up the rows based upon values of (S, V ∗,W ). Here there would be 2 · 3 · 2 = 12

rows. Then for a particular subject, path probabilities are constructed given the original V

covariate values along with W and the start state,

pθ(u|SiViWi), for u = 1, ..., U.

Here, the subscript i for the covariates is necessary because path probabilities in the same

row are no longer necessarily identical. Then, expected path counts for the uth path given

a (S, V ∗,W ) row could be found by summing up individual path probabilities

eθ(u|SV ∗W ) =

n∑
i=1

I{i}pθ(u|SiViWi)

where I{i} = 1 if (Si, V
∗
i ,Wi) = (S, V ∗,W ), 0 otherwise. Then, any row merging and

column binning could occur as described before and the statistic calculated.

The case of a continuous covariate could be handled in a similar manner, in that possible

values of the covariate could be discretized into two to four categories when setting up the

rows. For example, a continuous covariate could be split into four categories with category

boundaries at the 25th, 50th, and 75th percentiles. For an ALR model with only continuous

covariates, each variable would have to be discretized in some fashion to form disjoint rows.
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To address time-varying covariates, one possible approach is to calculate the path prob-

abilities conditional on all covariate values over time. For example, suppose model (2.6)

has a time-varying binary covariate Vit, i = 1, ..., n, t = 1, ..., 4 that takes the values 0

or 1 at each time point. Then, row bins could be set up based upon combinations of

(S, V1, V2, V3, V4,W ). This would create a large number of row combinations (64 in fact),

many of which might be sparse. Then, row merging and column binning could occur as

outlined previously and the statistic calculated.

If the sheer number of rows generated by using all of the time-varying covariates is too

overwhelming, row binning could occur just upon the initial covariate values. For example,

suppose Vit is a time-varying binary covariate as before. Rather than starting with 64 rows,

only 6 rows are needed to describe all possible combinations of (S, V1,W ). For a particular

subject Yi, path probabilities are then constructed given all of the covariates, denoted by

pθ(1|SiVi1Vi2Vi3Vi4Wi), ..., pθ(U |SiVi1Vi2Vi3Vi4Wi)

As before, these path probabilities are calculated as a product of conditional probabilities

defined by the logit equations with the appropriate covariate values plugged in. Expected

path counts could be calculated for each unique path u = 1, ..., U by summing up certain

individual path probabilities

eθ(u|SV1W ) =
n∑
i=1

I{i}pθ(u|SiVi1Vi2Vi3Vi4Wi) (3.10)

where I(i) = 1 if (Si, Vi1,Wi) = (S, V1,W ), 0 otherwise. Then, a table with rows given by

combinations of (S, V1,W ) and columns of expected path counts could be created. From

this point, binning and calculating the goodness-of-fit statistic would be straightforward.

A disadvantage of setting up rows based only on initial covariate values is that it reduces

the within row covariate homogeneity. The same could be said when a multi-state or

continuous variable is further discretized to form disjoint rows.

Finally, the test procedure could also be expanded to uneven data sets, where subjects

may have been observed for different numbers of visits. One way to do this might be by

partitioning the subjects into disjoint sets based upon a common Ti, or the number of

scheduled visits. Then, for all subjects with a distinct Ti, a chi-square statistic could be

calculated using the methods previously described. This chi-square statistic can be thought

of as a measure of goodness-of-fit for the model for those subjects who have observations

for Ti time points. These individual chi-square tests could provide insight as to where the
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model breaks down. Then, an overall model goodness-of-fit statistic could be constructed

by summing the individual chi-square statistics.

In the next section, we will evaluate the goodness-of-fit of a 1-lag ALR model for a

relatively small, uneven dataset with time-varying covariates.
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Chapter 4

An Application to an Alzheimer’s

Disease Study

The following dataset was provided by researchers at Loma Linda University in Loma

Linda, CA.

4.1 The Dataset

Over 1200 older adults were screened and an eventual 59 selected to participate in a lon-

gitudinal mental health study of late-onset dementia. Patients began the study classified as

either Normal or as Mildly Cognitively Impaired (MCI) based upon a series of psychological

exams. Patients were evaluated every year for at least three years, and at each evaluation

characterized as either Normal (1) , MCI (0), or as having developed Alzheimer’s disease

(-1). Thus, patients take one of three states: 1, 0, and -1, where -1 could be thought of as

an absorbing state.

At the time of their psychological evaluations, the subjects also underwent a battery

of MRI scans to detect iron content in the brain. At each MRI session, brain images were

taken over 14 regions of interest on both hemispheres, for a total of 28 regions. Two types

of analyses were done on each brain region image.

The first was a phase measurement value provided by an MRI technology called Suscep-

tibility Weighted Imaging (SWI). These values are inversely associated with regional iron

content. Additionally, counts of brain microbleeds (BMBs), were recorded by trained image

readers for each region. Demographic variables such as age, gender, and years of education
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were recorded upon enrollment in the study. Of the 59 patients in the study, 28 made three

scheduled visits, 23 made a maximum of four visits, five patients made a maximum of five

visits, two made at most six visits, and one patient was evaluated seven times. Such uneven

datasets are quite common in many studies, as patient recruitment may occur over many

years. Researchers at Loma Linda hoped to determine if iron buildup in certain regions of

the brain could be used to indicate the progression of late-onset Alzheimer’s disease among

older adults. Additional information about the study can be found in (Kirsch et al., 2009).

4.2 The 1-Lag ALR Model

We found that an ALR model with 1-lag and three covariates best describes the rela-

tionships in the data, as this model had the smallest AIC value among other 1-lag models.

Let Yit be the state of the ith patient at the t-th time point, t = 1, ..., Ti. Agei ranges from

57 to 81 years (s = 7.43). BMBit is the total number of BMBs in the right hemisphere for

the ith patient at the t-th time point, and takes discrete values between 0 and 10 (s = 2.20).

SWIit is an standardized average of four brain region phase values for the ith patient at the

t-th time point, and varies between -4.15 and 2.24 (s = 1.00). Parameter values were fitted

using the optim() function to maximize the likelihood in R and were also verified using proc

logistic in SAS.

The proposed 1-lag ALR model for t ≥ 2 is given by:

logit(P (Yit = −1|Yit−1 = yit−1)) (4.1)

=

 −9.434 + 0.094Agei + 0.192BMBit − 0.940SWIit − 5.175yit−1 if yit−1 ∈ {0, 1}
∞ otherwise

logit(P (Yit ≤ 0|Yit−1 = yit−1))

=

 −5.154 + 0.094Agei + 0.192BMBit − 0.940SWIit − 5.175yit−1 if yit−1 ∈ {0, 1}
∞ otherwise

Figure 4.1 provides a graphical representation of the model’s possible paths and associated

path probabilities for two disparate sets of covariate values, where Ti = 3. Note that for

both sets of covariates, there is a striking difference between progressing from 0 at the start

to -1 by the third time point. In A, the probability is about 0.57, while for B the probability

is about 0.09. If a patient starts in state 1, they are extremely likely to remain there by the

third time point for both sets of covariates.
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Figure 4.1: Possible paths and associated path probabilities for two sets of covariate values,

Ti = 3.

A: Age=80, BMB2 = 1, BMB3 = 3, SWI2 = −0.7, SWI3 = −1.2.

B: Age=65, BMB2 = 0, BMB3 = 1, SWIt = −0.3 ∀t.
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We would like to do a goodness-of-fit test for the model given in (4.1), which has six

parameters. Recall also that the dataset is uneven. However, in this case it is not possible

to apply the chi-square procedure to the data subsetted by a common Ti, since sample sizes

are small. As there are six parameters to estimate, there would not be enough bins to

estimate all of the parameters.

Instead, we can use all 59 patients by testing the goodness-of-fit of the model for just

the first two time points after the initial visit, t = 2 and t = 3. This was done by setting

up rows based upon different combinations of start state (0 or 1) and BMB1, which has

been further discretized into three categories. Recall that BMB1 is the number of brain

microbleeds at t = 1 and takes values from 0 to 10. These possible values were divided

into three categories: 0, 1-2, or 3+. Thus, there are 2 · 3 = 6 disjoint row combinations,

as shown in Table 4.1. Note that this is not the only way rows could have been formed.

Age or SWI variables could have also been incorporated by discretizing their ranges to form
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disjoint categories.

Table 4.1: Initial rows based on start state S and BMB1, which has been further discretized

into three categories.

S BMB1 Count

0 0 18

0 1-2 10

0 3+ 9

1 0 14

1 1-2 5

1 3+ 3

There are seven unique paths a patient might take through t = 3, as shown in Figure

4.1. For each patient, seven conditional path probabilities could be calculated. Binning was

done using a row threshold of 10 and a column cutoff of 4, resulting in a test statistic value

X2 = 8.45. Table 4.2 displays the binning structure used in the calculation of the statistic.

A bootstrap p-value based on 1,000 simulated datasets was found to be 0.291. We can be

confident in the model fit through the first two time points.
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Table 4.2: Row and column bins used in the calculation of the Loma Linda data statistic (X2 = 8.45) are shown in bold. Row

binning was done based upon a row threshold of 10. Column merging used a cutoff of 4, and bins were formed by combining

appropriate eθ̂RD(u|·) . Expected bin counts bθ̂B (k|·) are displayed below each column bin. The observed counts for each bin are

also provided in parentheses.

Row Bins (S,BMB1) Count Column Bins

(1, 3+) ∪ (0,3+) ∪ (1, 1-2) 17 Path 7 Path 1, Path 3 Path 2, Path 4, Path 5, Path 6

4.700 (6) 8.135 (6) 4.163 (5)

(0, 1-2) ∪ (1, 0) 24 Path 7 Path3 Path 1, Path 4, Path 6 Path 2, Path 5

14.008 (15) 5.143 (4) 2.344 (1) 2.505 (4)

(0,0) 18 Path 3 Path 2, Path 4 Path 1, Path 6, Path 7 Path 5

11.283 (9) 3.337 (7) 2.645 (2) 0.735 (0)

Path 1: Start→ −1, Path 2: Start→ 0→ −1, Path 3: Start→ 0→ 0, Path 4: Start→ 0→ 1,

Path 5: Start→ 1→ −1, Path 6: Start→ 1→ 0, Path 7: Start→ 1→ 1
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Part II

Goodness-of-Fit for Generalized

Linear Mixed Models
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Chapter 5

Generalized Linear Mixed Models

A GLM that incorporates random effects is known as a Generalized Linear Mixed Model

(GLMM). This model has four components that must be addressed:

1. What is the distribution of the response data?

2. What function of the mean will be modeled as linear in the predictors? (Link Com-

ponent)

3. What fixed covariates will be included into the model? (Systematic Component)

4. What type of random effects will be included into the model? (Random Component)

By incorporating random effects, GLMMs can model many complex covariance structures.

By using a link function, GLMMs are not restricted to data that follows a normal distribu-

tion. Thus, GLMMs are very flexible and useful models for a variety of datasets.

5.1 A General Model

Under a GLMM framework, the data (conditional on the random effect(s)) are assumed

to be independent observations from a distribution. Thus, let

Yi|si ∼ indep fYi(·|µi, θ)

where as before, µi is the mean value of the distribution and θ represents any nuisance

parameters. Then, a GLMM employs a link function g(·) such that

E[Yi|si] = µi

g(µi) = X ′iβ + Z ′is
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where Z ′i represent a row of a design matrix Z and s is a vector of random effects. As in

the LMM case, we assume that

s ∼ fS(·|D)

with mean 0 and unknown variance D.

5.2 Maximum Likelihood Estimation

Parameter estimates for GLMMs are more difficult to obtain than in GLMs due to the

complex nature of the likelihood function,

L(β,D, θ) =

∫
· · ·
∫ {∏

i

fYi|si(yi)
}
fSi(si)dsi.

This type of likelihood is known as an integrated likelihood. However, several methods have

been developed to find estimates of the parameters such as quadrature and quasi-likelihood

approaches. We will briefly discuss some of these methods here. Of course if the response

distribution conditional on the random effects follows a normal distribution, then linear

mixed model approaches can be used.

5.2.1 Quadrature

Quadrature was first developed as a mathematical technique for evaluating integrals.

Suppose that we have a GLMM with a single independent, normally distributed random

effect, that is si ∼ i.i.d. N(0, σ2s). Then, the likelihood for this model can be written as a

function of the random effects si, such that

L =
∏
i

∫ ∞
−∞

fYi|si(yi)
e−s

2
i /(2σ

2
s)√

2πσ2s
dsi

Thus, the likelihood is a product of one-dimensional integrals of the form∫ ∞
−∞

h(s)
e−s

2/(2σ2
s)√

2πσ2s
ds.

Upon a change of variables s =
√

2σuv, this can be re-written as∫ ∞
−∞

h∗(v)e−v
2
dv (5.1)
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where h∗(·) = h(
√

2σs·)/
√
π. For smooth functions h∗(·) multiplied by e−v

2
, Gauss-Hermite

quadrature is available and approximates the integral (5.1) as a weighted sum:∫ ∞
−∞

h∗(v)e−v
2
dv ≈

d∑
k=1

h∗(xk)wk,

where weights wk and the points of evaluation xk can be calculated by most statistical

software since

xk = ith zero of Hn(x)

wk =
2n−1n!

√
π

n2[Hn−1(xk)]2

where Hn(x) is the Hermite polynomial of degree n. Tables are also available in Abramowitz

and Stegun (1964) along with details about calculating the weights and evaluation points.

By using quadrature of a high enough degree (say, d ≥ 30), accurate approximations of the

likelihood can be calculated.

Numerical quadrature is limited to smooth functions, and is easily applied to models

with a single, independent random effect. Additional random effects (such as an interaction

effect) would increase the dimension of the integral. Gauss-Hermite quadrature is limited

to integrals that can be put into the form of (5.1).

5.2.2 The EM Algorithm

An EM algorithm approach treats the random effects s as if it were missing data, such

that the complete data is w′ = (Y ′, s′). The EM algorithm then proceeds by forming the log-

likelihood of the complete data, calculating its expectation with respect to the conditional

distribution of s|Y and then maximizing with respect to its parameters. The algorithm is

iterative as the expectation of the log-likelihood must be recalculated for the complete data

given a new set of parameter estimates.

To set up the EM algorithm, first note that the distribution of the complete data can

be factored as fY,s = fY |sfs, such that the complete log likelihood is,

logL = logfY |s + logfs

=

n∑
i=1

logfYi|s + logfs
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Note that the parameters β and θ enter only the first part of the log likelihood, and D

enters only through fs. The EM algorithm then takes the following form (McCulloch et al.,

2008):

1. Choose starting values β0, θ0, and D0. Set m=0.

2. Then, perform the following:

a. Calculate βm+1 and θm+1 to maximize E[logfY |s(Y |s, β, θ)|y], where the expec-

tation is evaluated under the mth iteration parameter values.

b. Similarly, calculate Dm+1 to maximize E[logfs(s|D)|y].

c. Set m = m+ 1.

3. If convergence is achieved, declare the current values to be the MLEs; else return to

step # 2 and repeat.

In general, the expectations in step #2 cannot be computed in closed form. However,

this approach can be combined with Monte Carlo approximations, which will obtain the

required expectations. We discuss this in the next section.

5.2.3 Markov Chain Monte Carlo (MCMC) Metropolis Algorithm

A Metropolis algorithm generates a Markov chain sequence of values that eventually

stabilizes to draws from a candidate distribution. To specify a Metropolis algorithm, a

candidate distribution, hs(s), must be selected, from which potential new values are drawn.

An acceptance function gives the probability of accepting a new value (versus keeping a

previous value) is given by

Ak(s
∗, s) = min

{
1,
fs|Y (s∗|y, β, θ,D)hs(s)

fs|Y (s∗|y, β, θ,D)hs(s∗)

}
where s∗ = (s1, s2, ..., sk−1, s

∗
k, sk+1, ..., sq)

′, which is the candidate new value and has all the

entries equal to the previous value except the kth. Looping over k, a sample s is obtained

from the candidate distribution.

In the context of parameter estimation, we can choose hs = fs, and our ratio becomes

fs|Y (s∗|y, β, θ,D)hs(s)

fs|Y (s|y, β, θ,D)hs(s∗)
=

∏n
i=1 fYi|s(yi|s∗, β, θ,D)fs(s

∗|D)fs(s|D)∏n
i=1 fYi|s(yi|s, β, θ,D)fs(s|D)fs(s∗|D)

=

∏n
i=1 fYi|s(yi|s∗, β, θ,D)∏n
i=1 fYi|s(yi|s, β, θ,D)
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which only involves the “GLM” part of the model. This Metropolis step can be incorporated

into the EM algorithm. A Monte Carlo EM (MCEM) algorithm is then given by

1. Choose starting values β0, θ0, and D0. Set m=0.

2. Generate M values, s(1), s(2), ..., s(M), from the conditional distribution of s given Y

using the Metropolis algorithm.

a. Calculate βm+1 and θm+1 to maximize a Monte Carlo estimate of E[logfY |s(Y |s, β, θ)|y],

that is choose values to maximize (1/M)
∑M

k=1 fY |s(Y |s(k), β, θ).

b. Calculate Dm+1 to maximize (1/M)
∑M

k=1 logfs(s
(k)|D).

c. Set m = m+ 1.

3. If convergence is reached, declare the current values to be the MLEs; else return to

step # 2.

This approach is perhaps computationally intensive, but feasible for many GLMM models.

5.2.4 Other Methods for Finding ML Estimates

McCulloch et al. (2008) describes other techniques to obtain ML parameter estimates,

including a Monte Carlo Newton-Raphson method, a stochastic approximation (SA) al-

gorithm, and a simulated maximum likelihood, where simulation is done to maximize the

likelihood directly (as opposed to the log likelihood).

5.3 Penalized Quasi-likelihood and Laplace Approximation

It is sometimes the case that the distribution of the response is not known with certainty

or less restrictive assumptions are desired. Not knowing the distribution makes it impossible

to construct a likelihood. However, it would be useful to have a method that works almost as

well as maximum likelihood but without making specific distributional assumptions. Quasi-

likelihood allows the derivation of a likelihood-like quantity under less specific constraints.

This is done by mimicking the properties of the derivative of the log likelihood (a.k.a. the

score function).

One quasi-likelihood approach makes use of the Laplace approximation, which is based
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upon a second-order Taylor series expansion which takes the form

log

∫
Rq
eh(s)ds ≈ h(s0) +

q

2
log2π − 1

2
log

∣∣∣∣−d2h(s)

dsds′

∣∣∣∣
s=s0

(5.2)

where s0 is the solution to dh(s)/ds = 0. This result can be used to approximate the

log-likelihood of a GLMM

l = log

∫
fY |sfsds

= log

∫
elogfy|s+logfs

= log

∫
eh(s)ds

To construct a Laplace approximation, s0 must be found and an expression for the second

derivative in (5.2) is needed. These can be found via differentiation along with the use of

some clever approximations (see McCulloch et al. for further details). This approximated

likelihood can then be differentiated with respect to β. In the end, we are left with two

equations that must be solved simultaneously to estimate β and s0. Once the β estimates

have been found, another approach must be taken to solve for D, the covariance matrix

of s. Methods for solving these equations are known as penalized quasi-likelihood (PQL)

methods. However, many PQL methods lead to estimates that are asymptotically biased.

5.4 Finding Predictors for Random Effects

Along with finding parameter estimates, it is sometimes of interest to predict the val-

ues of the random effects themselves. We will refer to these values as predictors. Some

authors describe the predicted values of the random effects as “estimators”, but that term

is problematic as it blurs the distinction between estimating fixed and random effects.

For linear mixed models, solving for predictors is outlined in Section 1.4, and makes use

of the mixed model equations.

5.4.1 Best Predictors (BPs) and Best Linear Predictors (BLPs)

To obtain predictors of random effects, we should start by looking at a general prediction

problem. Suppose we would like to estimate w based on y. In the context of GLMMs (and
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LMMs), w is a vector of random effects and y is the available data.y
w

 ∼
µy

µw

 ,

Vyy Vyw

· Vww


The minimum mean square error predictor of w, based upon y, is E[w|y], often referred to

as the Best Predictor (BP) of w. Further, suppose that we wish to use a linear function

of y (i.e., a + b′y) to predict w. The best linear predictor (BLP) of w, based on y is

BLP (w) = µw + V ′ywV
−1
yy (y − µy). Also, it can be shown that the best linear predictor is

identical to the best predictor under normality.

As an example, we will show how to obtain the BLP for the following Beta-Binomial

model given below, i = 1, 2, ...,m, j = 1, 2, ..., ni,

Yij |pi ∼ indep. Bernoulli(pi)

E[Yij |pi] = pi

pi ∼ i.i.d. Beta(α, β)

This model is not a traditional GLMM and is known as a random effects model, since there

are only random effects (and no fixed effects) in the model formulation. However, it will

serve as a tractable example to highlight best linear prediction. Suppose that we want to

find the BLP of the pi, based upon Yi· = (Yi1, Yi2, ..., Yini)
′. Using the formula,

BLP (pi) = E[pi] + Cov(Yi·, pi)
′[V ar(Yi·)]

−1[Yi· − E[Yi·]]

It follows from the Beta distribution that

E[pi] =
α

α+ β
,

V ar(pi) =
αβ

(α+ β)2(α+ β + 1)
.

Then using properties of expectations and variances,

E[Yij ] = E[E[Yij |pi]] = E[pi] =
α

α+ β
,

V ar(Yij) = E[V ar(Yij |pi)] + V ar(E[Yij |pi])

= E[pi(1− pi)] + V ar(pi)

= E[pi]− E[p2i ] + E[p2i ]− E[pi]
2

= E[pi](1− E[pi])

=
α

α+ β

β

α+ β
=

αβ

(α+ β)2
,
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and for j 6= j′,

Cov(Yij , Yij′) = Cov(E[Yij |pi], E[Yij′ |pi]) + E[Cov(Yij , Yij′ |pi)]

= Cov(pi, pi) + 0

= V ar(pi).

The covariance of Yij and pi is also straightforward

Cov(Yij , pi) = Cov(E[Yij |pi], E[pi|pi]) + E[Cov(Yij , pi|pi)]

= Cov(pi, pi) + 0

= V ar(pi).

Now, we can find the best linear predictor of pi, provided we can solve for the inverse of

V ar(Yi·).

BLP (pi) = E[pi] + Cov(Yi·, pi)
′[V ar(Yi·)]

−1[Yi· − E[Yi·]]

=
α

α+ β

+ [V ar(pi) · · ·V ar(pi)]


V ar(Yi1) V ar(pi) · · · V ar(pi)

V ar(pi) V ar(Yi2) · · · V ar(pi)
...

...
...

V ar(pi) V ar(pi) · · · V ar(Yini)



−1 
Yi1 − α

α+β

Yi2 − α
α+β

...

Yini − α
α+β


Although the calculations are a bit tedious, a closed form BLP for this model is possible. Of

course, parameter values such as α and β are generally unknown. Thus, we can obtain the

empirical best linear predictors (or eBLPs) by plugging in ML estimates for the unknown

parameters.

5.4.2 Best Linear Unbiased Predictors (BLUPs) and Empirical Best Lin-

ear Unbiased Predictors (eBLUPs) for LMMs

Now, suppose that µy = Xβ and µw = λ′β for some matrix X, vector λ and parameter

β. y
w

 ∼
Xβ

λ′β

 ,

Vyy Vyw

· Vww


It follows that,

BLP (w) = λ′β + V ′ywV
−1
yy (y −Xβ)
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But suppose β is unknown. Let β̂ denote the generalized least squares estimator of β, i.e.,

β̂ = (X ′V −1X)−1X ′V −1y. It can be shown that the best linear unbiased predictor (BLUP)

of w, based upon y, is

BLUP (w) = λ′β̂ + V ′ywV
−1
yy (y −Xβ̂)

Now suppose that β = β(θ) andVyy Vyw

· Vww

 =

Vyy(θ) Vyw(θ)

· Vww(θ)


Then, the BLUP is

BLUP (w) = λ′β̂(θ) + Vyw(θ)′V −1yy (θ)(y −Xβ̂(θ))

but if θ is unknown, the BLUP cannot be used. However, an empirical best linear predictor

(eBLUP) is

eBLUP (w) = λ′β̂(θ̂) + Vyw(θ̂)′V −1yy (θ̂)(y −Xβ̂(θ̂))

where θ̂ is an estimator based on y of θ. For example, θ̂ could be a ML or REML estimator.

5.4.3 Empirical Bayes Prediction

Another approach to prediction is empirical Bayes prediction. Suppose that Y is our

data, and θ represents all of the model parameters. A Bayesian approach to parameter

estimation assumes that parameters are random variables, with a prior distribution Π(θ).

Then, by properties of conditional probability

f(y, θ) = f(y|θ)Π(θ)

and we can obtain an “updated” distribution of θ called the posterior distribution,

Π(θ|y) =
f(y|θ)Π(θ)

f(y)
=

f(y|θ)Π(θ)∫
f(y|θ)Π(θ)dθ

and the mean of θ|y derived from this density is the Bayes estimator of θ.

Now suppose that Π(θ) and Π(θ|y) involve some parameters φ so that

f(y) =
f(y|θ)Π(θ|φ)

Π(θ|y, φ)

Suppose φ can be estimated as a function of y. Then, E[θ|y] derived from Π(θ|y) with the

estimates of φ substituted in is known as the empirical Bayes estimate of θ.

66



As an example, suppose we have the following model for i = 1, 2, ...,m and j = 1, ..., n

where

Yij |a ∼ indep. Bernoulli(pij)

logit(pij) = µ+ ai

ai ∼ i.i.d.N(0, σ2a)

The log likelihood is given below, which can easily be put into a form appropriate for

quadrature

logL = log
∏
i

∫
fY |ai(Y |ai)fai(ai)dai

=
∑
i

log

∫
e(µ+ai)Yi·−nlog(1+e

µ+ai ) e
−a2i /2σ2

a√
2πσ2a

dai

≈
∑
i

log

(∑
k

e(µ+xk)Yi·−nlog(1+e
µ+xk )wk/

√
π

)
.

Then, the empirical Bayes estimators, which are also the best predicted values, for the

model are

E[ai|Y ] =

∫
aifai|Y (ai|Y )dai

=

∫
aifY |ai(Y |ai)fai(ai)/fY (Y )dai

=

∫
aifY |ai(Y |ai)fai(ai)dai∫
fY |ai(Y |ai)fai(ai)dai

which can also be solved via quadrature.

5.5 A GLMM Example: The Randomized Clinical Trial Model

Suppose Yijk represents the number of recovery days needed for the kth patient in the

ith clinic under the jth treatment arm, where i = 1, 2, ..., I clinics, j = 1, 2 treatments and

k = 1, 2, ..., nij . We can define the following Randomized Clinical Trial (RCT) model as

defined in Li, Jeske and Klein (2011) as follows:

Yijk|si ∼ indep. Poisson(λijk)

log(λijk) = θ + βXj + si

si ∼ N(0, σ2)
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where Xj = 0 if a patient is assigned to the control arm and 1 for patients assigned to the

treatment arm, and si is the random effect for the ith clinic. This random effect implies

that responses from all patients in the ith center have some correlation. The integrated

likelihood for this model can be described:

L(θ, β, σ2) =

I∏
i=1

∫ ∞
−∞

2∏
j=1

nij∏
k=1

e−(θ+βXij+si)(θ + βXij + si)
Yijk

Yijk!

e−s
2
i /2σ

2

√
2πσ2

dsi

=
I∏
i=1

∫ ∞
−∞

( ni1∏
k=1

e−(θ+β+si)(θ + β + si)
Yi1k

Yi1k!

)( ni2∏
k=1

e−(θ+si)(θ + si)
Yi2k

Yi2k!

)e−s2i /2σ2

√
2πσ2

dsi

=

I∏
i=1

∫ ∞
−∞

(e−ni1(θ+β+si)(θ + β + si)
Yi1·∏

k Yi1k!

)(e−ni2(θ+si)(θ + si)
Yi2·∏

k Yi2k!

)e−s2i /2σ2

√
2πσ2

dsi.

We will use this model to highlight our goodness-of-fit ideas.

5.6 A GLMM Example: The Spatial Model

Along with the RCT model, a spatial, co-clustering model has been defined by Zhang

et al. (2012) in relation to estimating pest density in an orchard setting. Co-clustering,

also known as bivariate clustering, has been applied in many settings. Generally, data is

arranged in a matrix of rows and columns, where each cell in the matrix is represented by a

real number. Rather than identifying similar rows and columns independently, co-clustering

seeks to take advantage of underlying dependencies and simultaneously cluster rows and

columns. See Zhang et al. for more information on co-clustering.

Consider an r x c spatial grid, where each point on the grid is a potential sampling

site. These r rows and c columns can be divided into contiguous, disjoint groups like a

checkerboard. A co-clustering with n groups of rows and m groups of columns is represented

in Figure 5.1. Thus, a specific design with n rows and m columns is denoted by (i1, i2 −
i1, ..., in − in−1) x (j1, j2 − j1, ..., jm − jm−1).
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Figure 5.1: A checkerboard co-cluster structure with n = 4 rows and m = 4 columns.

Zhang et al. propose the following GLMM for co-clustering in this checkerboard struc-

ture:

Yj(i)|s indep. ∼ Negative Binomial(θi, κ), i = 1, 2, ..., nm, j = 1, 2, ...., ni;

log(θi) = µ+ si;

s = (s1, s2, ..., snm)′ ∼MVN(0, σ2I),

where Yj(i) is the count number from the jth sampling unit in the ith co-cluster, ni is the

total number of sampling units in the ith co-cluster, θi is the conditional mean of counts

associated with the ith co-cluster, κ is the dispersion parameter, and si is the random effect

associated with each co-cluster.

Note that here we are using what is known as the “Entomologist” parameterization of

the Negative Binomial, which is often used to model pest density. To demonstrate this

parameterization, let X = a discrete, non-negative integer random variables such that X ∼
Negative Binomial(µ, κ) where µ is the mean and κ is known as the dispersion parameter.

The pmf of X is given by

P (X = x) =
Γ(x+ κ)

Γ(x+ 1)Γ(κ)

(
κ

µ+ κ

)κ( µ

µ+ κ

)x
, x = 0, 1, ...

=

(
x+ κ− 1

κ− 1

)(
κ

µ+ κ

)κ( µ

µ+ κ

)x
, x = 0, 1, ...

and EX = µ and V ar(X) = µ(1 +µ/κ). This is in contrast to a typical Negative Binomial,

where X = # of trials before achieving the rth success and X ∼ Negative Binomial(r, p)

where r is the number of successes of interest and p is the probability of success. Here, the
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pmf is given by

P (X = x) =

(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, ...

where EX = r/p and V ar(X) = rp/p2. Additional alternate parameterizations of the

Negative Binomial exist, such as when X = # of failures before observing the rth success,

and the Johnson and Kotz parameterization. We will use the Entomologist parameterization

of the Negative Binomial throughout this dissertation.

Zhang et al.go on to develop a heuristic optimization algorithm to select the best

m x n design that maximizes the likelihood, given by

l(µ, σ2, κ) =
nm∏
i=1

∫ ∞
−∞

 ni∏
j=1

( Γ(Yj(i) + κ)

Γ(Yj(i) + 1)Γ(κ)

)( κ

eµ+si + κ

)κ( eµ+si

eµ+si + κ

)Yj(i) e−s
2
i /2σ

2

√
2πσ2

dsi

We will use this Spatial model, along with the RCT model, to illustrate our goodness of fit

methodology.

GLMMs are becoming increasingly relevant and are extremely useful for modeling com-

plex datasets. With improved computing power, fitting GLMMs is no longer as burdensome

as it once was. Many statistical software packages have methods to fit these models (e.g.

SAS proc glimmix). For GLMMs, we have to correctly specify the response distribution

and regression model, as well as the distribution of the random effects. However, since

GLMMs can be quite complex, it is sometimes difficult to determine if the model fits the

data reasonably. In the next chapter, we will discuss goodness-of-fit GLMMs.
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Chapter 6

Literature Review of Current

Goodness-of-Fit Methods for

GLMMs

A goodness-of-fit analysis for a GLMM could focus on any of the model components

described in Chapter 2. Is the response distribution (conditional on the random effects)

appropriate? Is the link function correct? Are the random effects correctly specified? A

goodness-of-fit test for GLMMs should be able to address at least one of these questions.

There is also a fourth question: are the covariates included in the model appropriate? Often,

this can be answered by model selection techniques, which we will discuss in Section 6.3.

The development of goodness-of-fit procedures for GLMMs is challenging because the

existence of random effects not only complicates any theoretical derivations, but also im-

poses computational challenges. There have been very few omnibus goodness-of-fit tests

developed for GLMMs. An omnibus test is one in which the null hypothesis is fully speci-

fied and there is no alternative. A good omnibus test would have high power to detect any

deviation from the null.

6.1 Consequences of a Misspecified GLMM

A paper by Heagerty and Kurland (2001) explores the consequences of misspecifying

the random effects distribution of a GLMM. The authors generated data from the following
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logistic GLMM:

g(µij) = β0 + β1Xij,1 + β2Xij,2 + β3Xij,1Xij,2 + bij

where bij = σ(ai − λ)/
√
λ and ai ∼ Gamma(λ, 1) for different values of λ. Xij,1 and Xij,2

are indicator variables. They then found the ML estimates for this model via quadrature,

where a Gaussian distribution was assumed for the random effects (i.e., bij ∼ N(0, σ2b ))

The authors found significant bias in the estimators of (β̂0, β̂1, β̂2, σ̂
2
b ). Thus, in a GLMM,

the incorrect specification of the random effects has some negative effects on parameter

estimations. This is in contrast to results for linear mixed models, where Verbeke and

Lesaffre (1997) showed that misspecified random effects can still produce consistent and

asymptotically normal ML parameter estimates under certain settings.

Along with the random effects, a misspecified response distribution or link function can

also lead to biased parameter estimates. In the next section, we will discuss a few formal

goodness-of-fit tests that have been developed from GLMMs.

6.2 Formal Goodness-of-Fit Tests for GLMMs

In contrast to GLMs and LMMs, there have been few formal goodness-of-fit tests de-

veloped for GLMMs. Pan and Lin (2005) have developed a series of goodness-of-fit tests

for GLMMs based upon cumulative sums of residuals, which are targeted towards certain

types of model departures. They also provide an omnibus goodness-of-fit test. Gu (2008)

also provides an omnibus goodness-of-fit test for GLMMs with nested or crossed random

effects, based upon a modified chi-square statistic. In contrast to these omnibus tests, Abad

and Litiere (2010) have developed procedures to evaluate misspecification of the random

effects in GLMMs using model information matrix tests (IMTs). We will briefly discuss

these papers in the following sections.

6.2.1 Tests for Model Misspecification using Cumulative Sums

Cumulative sums (or CUSUMs) are quite commonly used in statistical process control

to detect when a process is out of control. Here, Pan and Lin use specialized cumulative

sums of GLMM residuals to detect certain types of model mispecification. The authors

consider a longitudinal GLMM, where Yij is the response of the ith subject on the jth

occasion, and let Xij and Zij be the p x 1 and q x 1 vectors associated with the fixed and
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random effects, respectively. The GLMM takes the form

g{E[yij |ui]} = X ′ijβ + Z ′ijui i = 1, ..., n; j = 1, ..., ti (6.1)

where g(·) is a known differentiable link function, β is a p x 1 vector of unknown regression

parameters and ui is a q x 1 vector of random effects for the ith subject. Under this model,

the marginal means of yij are given by

E(yij) = E[E(yij |ui)] =

∫
g−1(X ′ijβ + Z ′ijui)fui(ui)dui

Denote these marginal means by mij(θ), where θ is the vector of parameters. Given the

estimates θ̂, the residuals are defined as eij = yij −mij(θ̂).

While these individual residuals could be plotted, such plots are difficult to interpret

since the variability of the residuals is unknown. However, it is possible to aggregate these

residuals in such a way that they follow a known distribution, provided that the GLMM

has been correctly specified.

Here, two cumulative sum processes can be specified:

W (x) = n−1/2
n∑
i=1

ti∑
j=1

I(Xij ≤ x)eij (6.2)

Wg(r) = n−1/2
n∑
i=1

ti∑
j=1

I(m̂ij ≤ r)eij (6.3)

where x = (xi, ..., xp)
′ ∈ Rp. Note that I[·] is the indicator function where I(Xij ≤ x) =

I(X1ij ≤ x1, ..., Xpij ≤ xp). Using these CUSUMs, it is possible to test the goodness-of-fit

of the functional form of the fixed effects, the link function, and the overall mean response

function.

Define H0 as the correct specification of the GLMM model as given in equation (6.1).

Under the null, these cumulative sum process W (x) can be shown to converge in distribution

to zero-mean Gaussian processes. Thus, under the null these processes should fluctuate

around 0. A large value of sup|W (x)| or sup|Wg(r)| would indicate misspecification, and

p-values can be obtained via simulation.

The null distribution of W(x) is unknown, but it can be approximated. Define

Ŵ (x) = n−1/2
n∑
i=1


ti∑
j=1

I(Xij ≤ x)eij + η′(x; θ̂)I−1(θ̂)

Gi
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where (G1, ..., Gn) are i.i.d. standard Normal variables that are independent of the data

(yij , Xij , Zij) and

η′(x; θ̂) = −n−1
n∑
i=1

ti∑
j=1

I(Xij ≤ x)
dmij(θ)

dθ

The conditional distribution of Ŵ (x) given the data (yij , Xij , Zij) is the same in limit as

W (x) under H0 as shown by Pan and Li. Thus, to approximate a null distribution for W (x),

a large number of realizations of Ŵ (x) can be obtained by repeatedly generating a normal

random sample (G1, ..., Gn) while fixing the data (yij , Xij , Zij). Likewise, the distribution

of Wg(r) can be approximated by Ŵ (x), where Ŵg(r) is obtained from Ŵ (x) by replacing

I(Xij ≤ x) with I(m̂ij ≤ r).
To check the functional form of a fixed effect, consider the following CUSUM process:

Wk(x) = n−1/2
n∑
i=1

ti∑
j=1

I(Xkij ≤ x)eij

where x ∈ R. This is a special case of W (x) with xl = ∞ for all l 6= k. Thus, the null

distribution of Wk(x) can also be approximated by the Ŵ process. As for the statistics

given in (6.2) and (6.3), these can be used as checks of the link function and as an overall

omnibus goodness-of-fit test, respectively.

The authors carried out simulation studies to investigate the behavior of the three

CUSUM tests. All three had good size. The functional form test was found to have

excellent power against misspecification of the functional forms of covariates, while the link

function and omnibus tests had reasonable power at the larger sample sizes.

6.2.2 Omnibus Goodness-of-Fit Using a Modified Chi-Square Statistic

Gu (2008) proposes two modified chi-square goodness-of-fit tests for GLMMs with either

nested or crossed random effects. A nested effect is defined as a source of variation that is

nested within a factor. More specifically, factor B is nested within factor A if every level of

B only appears within a level of A. We can observe a nested random effect in the following

GLMM model equation for i = 1, ...,m subjects and j = 1, ..., ni observations on the ith

subject:

g(θij) = µ+ αi + bj(i)

Here, the nested random effect bj(i) contributes to the variance of the main (fixed) effect α.

Gu proposes an omnibus chi-square test, based upon a partitioning of the observed data’s
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sample space into M disjoint cells, E1, ..., EM . The test statistic has the following form:

χ̂2 =
1

m

M∑
k=1

|Nk − gk(θ̂)|2

where Nk are the number of observations in the kth cell, and

gk(θ) = Eθ(Nk)

=
n∑
i=1

ni∑
j=1

pijk(θ)

=
n∑
i=1

ni∑
j=1

P (Yij ∈ Ek).

such that gk(θ̂) is the estimated value with minimum chi-square (MCE) parameter estimates

plugged in (as opposed to ML estimates). Provided the subjects are independent, it can

be shown that the asymptotic distribution of the χ̂2 statistic is a mixture of chi-square

random variables
∑M

k=1 dkZ
2
k where Z1, ..., ZM are i.i.d. standard normal random variables

and d1 ≥ · · · ≥ dM are the eigenvalues of Σ = m−1
∑m

i=1 V ar(Yi). To obtain the critical

value of the statistic, the eigenvalues are replaced with their estimates, and H0 : the model

is a good fit is rejected if χ̂2 exceeds the critical value of
∑M

k=1 d̂kZ
2
k .

The second proposed test is for GLMMs with crossed random effects. Crossed effects

exist independently of each other. For example, in a study about the number of heart

attacks, there might be a random subject effect and a random effect for brand of medical

devices. We can observe a GLMM with crossed random effects in the following model

equation for i = 1, ..., n patients and j = 1, ...,m medical devices.

g(Yij) = µ+ li + gj

For this nested effect GLMM, the proposed test statistic is

χ̂2 =
1√
m3

M∑
k=1

|Nk − Eθ̂Nk|2

where Eθ̂Nk is the expected number of observations in the kth cell plugging in parameter

estimates found by the method of simulated moments (MSM). An asymptotic distribution

is also provided for this statistic. Simulation studies show that both statistics have adequate

size and power against alternatives.
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6.2.3 Tests for Misspecified Random Effects Distributions

One of the key assumptions for GLMMs relates to the distribution of the random effects.

In practice, random effects are often assumed to be normally distributed, as this often im-

proves the tractability of the likelihood function. For LMMs, Verbeke and Lesaffre (1997)

showed that the estimation of fixed effects and variance components is to some extent un-

affected by a misspecified random effects distribution. However, research by Agresti, Caffo

and Strickland (2004) has indicated that the same cannot be said for GLMMs. Further,

Litiere, Alonso, and Molenberghs (2008) showed that variance component estimates were

extremely biased under a misspecified random effects distribution. Abad and Litiere (2010)

propose two diagnostic tests designed to detect GLMM misspecification of the random

effects based upon a modified information matrix test.

6.3 Model Selection

Many model selection techniques, such as AIC, BIC, and likelihood ratio tests (for

nested models), can be easily applied to GLMMs. Many of these techniques are described

in Section 1.2.2. Along with these, Vonesh, Chinchilli, and Pu (1996) have developed a

concordance statistic that is similar in interpretation to the coefficient of determination R2

for linear regression.

76



Chapter 7

A Cramer-von-Mises

Goodness-of-Fit Procedure for

GLMMs

In this chapter, we aim to develop a omnibus goodness-of-fit test procedure for a GLMM.

In Section 1.3.5, a Cramer-von-Mises (CVM) test is described for a Poisson regression

model. We extend this procedure to two GLMMs, the Randomized Clinical Trial model

and the Spatial model. These models have been previously discussed in Sections 5.5 and

5.6, respectively.

The main idea behind extending the test is to treat predictors of random effects as

constants, which are then plugged into the GLMM model equations to approximate a GLM.

Then, using this approximate GLM, the goodness-of-fit test can be performed. A simulation

study is performed for the RCT model along with some discussion about how this procedure

can be applied to other GLMMs.

7.1 The Proposed Goodness-of-Fit Test Statistic

An omnibus goodness-of-fit procedure will test H0 : the GLMM model is a good fit

versus Ha : the GLMM model is a poor fit. For a particular GLMM model, the test

statistic can be calculated in the following manner:

First, fit the model parameters of the GLMM and use these to calculate the estimated

predictors, ŝ. Then, approximate the GLMM with a GLM by substituting in the predictors
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for the random effects. Our model then becomes

g(µi) = x
′
iβ̂ + z

′
i ŝ = x∗

′
i β̂
∗

and µ̂i = g−1(x∗
′
i β̂
∗). Following Spinelli et al. (2002), use µ̂i and make the probability

integral transformation on Yi, call this Vi, where

Vi = Pi(Yi) where

 Pi(0) = 0

Pi(j) = P (Yi ≤ j − 1), for j ≥ 1.
(7.1)

For example, if our proposed distribution was a Poisson (λi) then Pi(j) = P (Yi ≤ j −
1) =

∑j−1
k=0

λ̂ki e
−λ̂i

k! . (If our proposed distribution was a Binomial(1, pi) then pi(0) = 0 and

pi(1) = 1 − p̂i, and so on for any choice of response distribution.) Then, the Vi’s have a

distribution function, that is, Fi(t) = P (Vi ≤ t), is, for j = 0, 1, ...,

Fi(t) = Pi(j + 1), Pi(j) ≤ t < Pi(j + 1)

Suppose F̃n(t) is the edf of the set Vi, and suppose the average of the estimated dis-

tribution functions is Fave(t) = n−1
∑n

i=1 Fi(t). A special case is when t = 0, then

Fave(0) = n−1
∑n

i=1 Fi(0). We can then define the residual process

Zn(t) =
√
n{F̃n(t)− Fave(t)}

This residual process Zn(t) is used to calculate our test statistic:

W 2
n = n

∫ 1

0
Z2
n(t)dt

If the model has been correctly specified, this statistic follows a null distribution that can

be obtained via bootstrap simulation.

The W 2
n test statistic, while written as an integral, can be calculated as a summation

since the functions F̃n(t) and Fave(t) are both step functions. To illustrate this, as well as

to obtain a better understanding of how to construct the statistic, we will look at a toy

example of calculating the test statistic for n = 2 observations.
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A Toy Example. Suppose that we have two observations from a process, Y1 = 0 and

Y2 = 2, that is thought to be best modeled by a Poisson GLMM. After fitting the parameter

values and plugging in the predictors, we obtain the estimates λ̂1 = 1 and λ̂2 = 2. Using

these estimates we can easily tabulate the probability mass functions for both observations,

as listed in Table 7.1.

Table 7.1: PMFs for Y1 ∼ Poisson(λ̂1 = 1) and Y2 ∼ Poisson(λ̂2 = 2).

k 0 1 2 3 4 5 6 7 8 9 ...

P (Y1 = k) 0.368 0.368 0.183 0.061 0.015 0.003 0.001 0.000 0.000 0.000 ...

P (Y2 = k) 0.135 0.271 0.271 0.180 0.090 0.036 0.012 0.003 0.001 0.000 ...

Based on the data, the realized values of V1 = 0 and V2 = 0.406, so the empirical

distribution function F̃n(t) for our toy example has the simple form:

F̃n(t) =

 1
2 0 ≤ t < 0.406

1 0.406 ≤ t ≤ 1

Further, V1 has a distribution function F1(t) and V2 has a distribution function F2(t),

0 ≤ t ≤ 1, and both are step functions that can be tabulated as in Table 7.2.

Table 7.2: The distributions of V1 and V2.

V1 takes values: 0 0.368 0.736 0.920 0.981 0.996 0.999 0.9999 ... 1

w/ prob. 0.368 0.368 0.183 0.061 0.015 0.003 0.001 0.000 ... 0

cum. prob. 0.368 0.736 0.920 0.981 0.996 0.999 0.9999 0.99999 ... 1

V2 takes values: 0 0.135 0.406 0.677 0.857 0.947 0.983 0.995 ... 1

w/ prob. 0.135 0.271 0.271 0.180 0.090 0.036 0.012 0.003 ... 0

cum. prob. 0.135 0.406 0.677 0.857 0.947 0.983 0.995 0.999 ... 1

We have plotted F1(t) and F2(t) in Figure 7.1. From this point, it would be straight-

forward to calculate Fave(t), which would be the average of the two distribution functions.

Both F̃n(t) and Fave(t) are plotted side-by-side in Figure 7.2.
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Figure 7.1: Step Functions F1(t) and F2(t) on the left and right, respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

●

●

●

●

●●●●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
t

●

●

●

●

●

●
●●●

Figure 7.2: Empirical distribution function F̃n(t) (dashed line) and average estimated dis-

tribution function Fave(t) (solid line) for the toy example.
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From Figure 7.2 it is clear that Fave(t) can only take a step each time that an individual

Fi(t) takes a step. The first step is at t = 0. Further, the edf F̃n must take steps up at one

of the existing steps of Fave(t).
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If the null distribution is appropriate, we should expect to see the two step functions

very close to each other. These two lines are not very close to each other since we only

have a sample size of n = 2. However, from this example we can get an idea of how to

construct the statistic, which is based upon the difference in the two functions. It is clear

that the difference between the two functions can be calculated as a summation over values

of t. At some point, the largest Vi will put the value of F̃n = 1, while the average function

will still be increasing in tiny increments indefinitely. However, this distance can be easily

bounded. For example, suppose that t = 0.999 and that F̃n(t) has reached 1 and that

Fave(t) = 0.9998. Then, the remaining distance between the two functions certainly must

be less than (width)(height) = (1−0.999)(1−0.9998) = 0.0000002. In our simulation study

we use a cutoff of 1.0 x 10−6 for the remaining distance.

7.2 Simulation Study: CVM for the RCT Model

We can apply the CVM procedure to the RCT Model discussed in Section 5.5. Recall,

log(λijk) = θ + βXj + si

where Yijk|λijk ∼ Poisson(λijk) and si ∼ iid N(0, σ2) i = 1, ..., I clinics, j = 1, 2 treatments

and k = 1, ...,K patients per clinic x treatment. Xj = 1 for treatment, 0 otherwise.

Data can be generated from this model at any combination of fixed values of I,J,K and

θ, β, σ. We chose design values: I = 10, J = 2, K = 4, 8, or 20 (for a total of 80, 160, or

400 observations). Further, two sets of parameters were selected,

A: θ = 2.5, β = −1.5, and si generated from a N(0, 0.22) and

B: θ = −0.4, β = 2.1, and si generated from a N(0, 0.32).

These parameter values were chosen in order to create datasets that might reasonably reflect

recovery time from a certain procedure/disease.

For the RCT model, we are proposing an omnibus test of

H0 : Yijk|λijk ∼ Poi(λijk).

We can evaluate the performance of the CVM test using the following bootstrap procedure:

1. Generate a vector of random effects s = (s1, ..., sI)
′ for a set of design values.

2. Generate a dataset D from the RCT model for fixed θ, β and I,J,K.
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3. Fit the model parameters via quadrature (glmer() function in R), to obtain θ̂, β̂, σ̂.

4. Using the parameter estimates, obtain predictors for the random effects: ŝ = (ŝ1, ..., ŝI)
′.

Here, we used eBLPs to find our predictors. A closed form equation for the eBLPs is

provided in Li, Jeske, and Klein (2011).

5. Calculate the CVM statistic T using λ̂ijk = exp(θ̂ + β̂Xj + ŝi).

This allows us to obtain a single test statistic value. To get a bootstrap p-value requires

further simulation:

6. Fix the ŝ = (ŝ1, ..., ŝI) as the random effects.

7. Generate m=1000 null datasets for fixed θ̂, β̂ and I,J,K

8. From these datasets, 1000 CVM statistics T ∗s can be calculated.

9. The p-value is the number of (T ∗ > T )/m.

This generates a single bootstrap p-value. To explore the size and power of the test, many

bootstrap p-values need to be generated. The results of our simulation study are in the

next section.

7.2.1 Size

To evaluate the size of the proposed CVM test, 5,000 datasets were generated from the

RCT model under different conditions using R software 2.14.2. Simulation study results

are shown in Table 7.3, for two sets of parameter values (A and B) and for three values

of K=4, 8, and 20. We found that the CVM test procedure is slightly conservative at the

smaller sample sizes. However, as K increases the test has adequate size. Along with size,

four power alternatives are discussed in the next section.

Table 7.3: Proportion of p-values out of 5,000 less than or equal to the listed cutoffs for two

sets of parameter values (A or B) and three values of K.

A K=4 K=8 K=20 B K=4 K=8 K=20

≤ 0.01 0.009 0.008 0.013 ≤ 0.01 0.007 0.007 0.009

≤ 0.05 0.044 0.045 0.052 ≤ 0.05 0.040 0.039 0.048

≤ 0.10 0.092 0.087 0.099 ≤ 0.10 0.084 0.088 0.098
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7.2.2 Power Alternative: Overdispersed Poisson

Here, we generated Yijk values from a Negative Binomial with mean=λijk and variance=λijk+

λ2ijk/κ. The percentage of p-values under the cutoffs are given in Table 7.4. The test proce-

dure appears to have excellent power for this alternative. As expected, the power increases

as κ decreases (i.e., the variance increases).

Table 7.4: Percentage of p-values out of 1,000 less than or equal to the listed cutoffs for the

Negative Binomial alternative.

A, K=4 κ=100 κ=10 κ=8 κ=5 κ=1 κ=0.1

≤ 0.01 0.6% 22.2% 32.7% 65.7% 100% 100%

≤ 0.05 3.1% 41.9% 54.9% 85.7% 100% 100%

≤ 0.10 6.9% 53.8% 66.8% 91.4% 100% 100%

A, K=8 κ=100 κ=10 κ=8 κ=5 κ=1 κ=0.1

≤ 0.01 0.4% 65.8% 81.0% 98.5% 100% 100%

≤ 0.05 4.6% 83.2% 91.9% 99.7% 100% 100%

≤ 0.10 9.0% 90.5% 95.1% 100% 100% 100%

A, K=20 κ=100 κ=10 κ=8 κ=5 κ=1 κ=0.1

≤ 0.01 1.3% 96.6% 100% 100% 100% 100%

≤ 0.05 7.1% 100% 100% 100% 100% 100%

≤ 0.10 14.7% 100% 100% 100% 100% 100%

B, K=4 κ=100 κ=10 κ=8 κ=5 κ=1 κ=0.1

≤ 0.01 0.2% 1.9% 4.0% 9.9% 94.0% 100%

≤ 0.05 4.0% 8.3% 12.3% 25.2% 98.2% 100%

≤ 0.10 9.3% 15.0% 19.7% 37.5% 99.2% 100%

B, K=8 κ=100 κ=10 κ=8 κ=5 κ=1 κ=0.1

≤ 0.01 0.4% 8.0% 15.5% 43.9% 100% 100%

≤ 0.05 3.3% 24.6% 34.8% 65.5% 100% 100%

≤ 0.10 8.2% 37.8% 49.5% 77.1% 100% 100%

B, K=20 κ=100 κ=10 κ=8 κ=5 κ=1 κ=0.1

≤ 0.01 1.9% 43.8% 59.1% 94.7% 100% 100%

≤ 0.05 7.2% 68.6% 81.0% 99.1% 100% 100%

≤ 0.10 12.0% 76.6% 87.2% 99.7% 100% 100%

7.2.3 Power Alternative: Missing Covariate- Gender

For this alternative, we assume that there is a missing variable, say Gender, that has

great explanatory power in the model. To test if our procedure can detect such a missing
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covariate, data was generated from the following model:

log(λijk) = θ + βXj + si + ωVijk

where Vijk ∼ Bernoulli(p = 0.5) for some weight ω, as if the patients have a 50/50 chance

of being male or female. We can fix ω = 0.1, 0.5, or 1. The percentage of p-values less-than-

or-equal-to the cutoffs is given in Table 7.5. Again, we see good power as the strength of

relationship increases.

Table 7.5: Percentage of p-values out of 1,000 less than or equal to the listed cutoffs for the

Missing Covariate-Gender alternative.

A, K=4 ω=0.1 ω=0.5 ω=1 A, K=8 ω=0.1 ω=0.5 ω=1 A, K=20 ω=0.1 ω=0.5 ω=1

≤ 0.01 0.7% 18.1% 100% ≤ 0.01 0.5% 60.4% 100% ≤ 0.01 0.8% 99.5% 100%

≤ 0.05 3.2% 37.0% 100% ≤ 0.01 3.2% 79.6% 100% ≤ 0.01 4.6% 99.8% 100%

≤ 0.10 7.6% 48.4% 100% ≤ 0.01 7.4% 87.1% 100% ≤ 0.01 8.7% 100% 100%

B, K=4 ω=0.1 ω=0.5 ω=1 B, K=8 ω=0.1 ω=0.5 ω=1 B, K=20 ω=0.1 ω=0.5 ω=1

≤ 0.01 0.4% 1.5% 69.1% ≤ 0.01 0.4% 6.9% 100% ≤ 0.01 0.7% 32.2% 100%

≤ 0.05 3.5% 7.6% 83.3% ≤ 0.01 4.2% 21.0% 100% ≤ 0.01 4.4% 57.7% 100%

≤ 0.10 8.9% 14.2% 92.3% ≤ 0.01 8.5% 30.1% 100% ≤ 0.01 8.7% 68.3% 100%

7.2.4 Power Alternative: Missing Covariate- Over the Counter

Here, we again assume there is a missing variable; however this missing covariate can

only vary at a clinic-treatment level. This can be described in the following model:

log(λijk) = θ + βXj + si + ωVij

where Vijk ∼ Bernoulli(p = 0.5) for some weight ω, such that all the patients within each

treatment x clinic receive the same form of treatment, such as over the counter medicine.

We can fix ω = 0.1, 0.5, or 1. Table 7.6 displays the simulation results. Compared to the

Gender alternative, the power is not as strong. However, we do see power improve as the

sample size increases.
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Table 7.6: Percentage of p-values out of 1,000 less than or equal to the listed cutoffs for the

Missing Covariate-Over the Counter alternative.

A, K=4 ω=0.1 ω=0.5 ω=1 A, K=8 ω=0.1 ω=0.5 ω=1 A, K=20 ω=0.1 ω=0.5 ω=1

≤ 0.01 1.1% 1.0% 38.7% ≤ 0.01 0.7% 2.7% 70.8% ≤ 0.01 0.5% 12.3% 93.1%

≤ 0.05 4.2% 5.0% 55.7% ≤ 0.01 4.0% 9.5% 83.4% ≤ 0.01 2.8% 25.8% 95.5%

≤ 0.10 8.9% 10.5% 63.1% ≤ 0.01 8.5% 16.6% 88.0% ≤ 0.01 7.1% 36.4% 96.8%

B, K=4 ω=0.1 ω=0.5 ω=1 B, K=8 ω=0.1 ω=0.5 ω=1 B, K=20 ω=0.1 ω=0.5 ω=1

≤ 0.01 1.3% 1.2% 1.2% ≤ 0.01 0.5% 2.5% 6.2% ≤ 0.01 1.2% 1.0% 21.5%

≤ 0.05 3.6% 3.7% 7.0% ≤ 0.01 2.8% 7.5% 16.5% ≤ 0.01 7.1% 5.8% 36.3%

≤ 0.10 8.6% 8.9% 12.1% ≤ 0.01 7.9% 11.4% 26.4% ≤ 0.01 11.3% 11.8% 46.8%

7.2.5 Power Alternative: Full Interaction Model

For this alternative, we assume that there is an interaction effect present. We generate

data from the following alternative model:

log(λijk) = θ + β0Xj + si + tij

where tij is a random interaction effect between clinic and treatment, i = 1, .., I, j = 1, 2.

The tij ’s are i.i.d. N(0, σ2t ) where σt = 0.01, 0.2 or 0.8. Results are listed in Table 7.7.

Power increase as σt increases. Also, power increases with sample size.

Table 7.7: Percentage of p-values out of 1,000 less than or equal to the listed cutoffs for the

Full Interaction model alternative.

A, K=4 σt=0.01 σt=0.2 σt=0.8 B, K=4 σt=0.01 σt=0.2 σt=0.8

≤ 0.01 0.7% 0.6% 56.6% ≤ 0.01 0.9% 0.2% 8.8%

≤ 0.05 4.1% 3.5% 71.4% ≤ 0.01 4.8% 4.0% 17.3%

≤ 0.10 7.3% 8.4% 77.5% ≤ 0.01 8.5% 8.4% 25.1%

A, K=8 σt=0.01 σt=0.2 σt=0.8 B, K=8 σt=0.01 σt=0.2 σt=0.8

≤ 0.01 0.7% 1.1% 84.1% ≤ 0.01 0.6% 0.7% 23.0 %

≤ 0.05 4.1% 3.8% 90.7% ≤ 0.01 4.3% 3.1% 38.1%

≤ 0.10 10.0% 8.0% 93.3% ≤ 0.01 10.1% 10.3% 42.0%

A, K=20 σt=0.01 σt=0.2 σt=0.8 B, K=20 σt=0.01 σt=0.2 σt=0.8

≤ 0.01 1.0% 2.5% 97.2% ≤ 0.01 1.8% 0.8% 52.2%

≤ 0.05 5.1% 9.1% 98.4% ≤ 0.01 5.8% 6.3% 66.7%

≤ 0.10 10.7% 16.4% 99.2% ≤ 0.01 10.5% 10.2% 73.9%
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7.3 Size Study: CVM for the Spatial Model

We can also apply the CVM procedure to the Spatial model discussed in Section 5.6.

Recall,

Yj(i)|s indep. ∼ Negative Binomial(θi, κ), i = 1, 2, ..., nm, j = 1, 2, ...., ni;

log(θi) = µ+ si;

s = (s1, s2, ..., snm)′ ∼MVN(0, σ2I),

where Yj(i) is the count number from the jth sampling unit in the ith co-cluster, ni is the

total number of sampling units in the ith co-cluster, θi is the conditional mean of counts

associated with the ith co-cluster, κ is the dispersion parameter, and si is the random effect

associated with each co-cluster.

Data can be generated from this model at any combination of fixed values of n, m and

ni and parameters µ, dispersion parameter κ, and σ. We selected m = 4 rows and n = 4

columns, for a total of 4 · 4 = 16 separate co-clusters. For simplicity, we also set ni = 5 or

ni = 10 for all co-clusters. Two sets of parameter values were chosen:

A: µ = 0.5, κ = 2.0, and si generated from a N(0, 12)

B: µ = 1.2, κ = 0.4, and si generated from a N(0, 12)

These parameter values were chosen in order to create datasets that might reasonably reflect

pest density in an orchard.

For this Spatial model, we are proposing an omnibus test of

H0 : Yj(i)|θi ∼ Negative Binomial(θi).

We evaluate the performance of the CVM test using a similar procedure as outlined for the

RCT model. The bootstrap procedure is as follows:

1. Generate a vector of random effects s = (s1, ..., sI)
′ for a given σ.

2. Generate a dataset D from the Spatial model for fixed µ, κ and nm, ni.

3. Fit the model parameters via quadrature (optim() function in R), to obtain µ̂, κ̂, σ̂.

4. Using these parameter estimates, obtain best predictors (BPs) for the random effects:

ŝ = (ŝ1, ..., ŝI)
′, which also requires quadrature.
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5. Calculate the CVM statistic T using θ̂i = exp(µ̂+ ŝi).

This allows us to obtain a single test statistic value. To get a bootstrap p-value requires

further simulation:

6. Fix the ŝ = (ŝ1, ..., ŝI) as the random effects.

7. Generate m=1000 null datasets for fixed µ̂, κ̂ and nm, ni.

8. From these datasets, 1000 CVM statistics T ∗s can be calculated.

9. The p-value is the number of (T ∗ > T )/m.

This generates a single bootstrap p-value. To explore the size or power of the test, many

bootstrap p-values need to be generated.

To evaluate the size of the CVM test, 2,000 datasets were generated from the Spatial

model under different conditions using R software 2.14.2. Size results are shown for two

sets of parameter values in Table 7.8. As in the case of the RCT model, we found the CVM

test to be slightly conservative.

Table 7.8: Proportion of p-values out of 2,000 less than or equal to the listed cutoffs for two

sets of parameter values where ni = 5 or 10.

A , ni = 5 A, ni = 10 B, ni = 5 B, nI = 10

≤ 0.01 0.8% 0.8% 0.7% 0.9%

≤ 0.05 5.1% 4.5% 4.2% 4.8%

≤ 0.10 8.9% 8.6% 9.9% 10.3%

Currently, simulation study has not yet been done to demonstrate power for the Spatial

model. One alternative of interest is a situation where the random effects are correlated with

each other, and that the degree of correlation is proportional to the distance between the

midpoints of each pair of co-clusters. Another alternative of interest is a missing covariate,

such as a spot treatment effect. Here, we could assume that there is a missing binary

explanatory variable that corresponds to a co-cluster being “spot treated” for pests at an

earlier time. Thus, those co-clusters which have been spot treated should experience lower

pest density.
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7.4 The CVM Test Applied to Other GLMMs

We have seen the CVM procedure perform well for the RCT model. The test is based

upon an initial probability integral transformation (PIT) of the data. This property makes

the CVM procedure extremely flexible, since any GLMM response distribution (conditional

on the random effects) can have an associated PIT. We believe this procedure can be applied

to the entire class of GLMMs, provided that reasonable predictors can be obtained for the

random effects in the model. We will begin by discussing appropriate PITs for a variety of

situations.

Recall, in the case of the RCT and Spatial models, the transformation was given by

Vi = Pi(Yi) where

 Pi(0) = 0

Pi(j) = P (Yi ≤ j − 1).

This same transformation would also be appropriate for a logistic GLMM. For example,

suppose we were looking at a logistic GLMM where the response Yi|s takes a multinomial

distribution with four possible values: 0, 1, 2, or 3. Unlike in the case of the Poisson and

Negative Binomial, the multinomial has a finite number of possible values. This actually

slightly simplifies the CVM statistic calculations.

As before, F̃n(t) is the empirical distribution function of the Vi’s and can be calculated

in a straightforward manner. However, the average distribution function Fave(t) will stop

increasing and reach the value of 1 at t = supi|Vi|. Thus, we avoid the problem of an ever

shrinking, right-hand-side gap between the two distributions that we face in the Poisson

and Negative Binomial case.

Although the Poisson distribution can take an infinite number of values, there is a

definite “anchor” value at 0. This features prominently into the definition of Vi, since Vi = 0

if Yi = 0. However, 0 may not always be the anchoring value of the response. Further, there

may not even be an anchoring value. Suppose that a GLMM response distribution takes

possible values from the set of integers. Although this set is countable, there is no smallest

value among them. Consequently, consider placing an artificial anchoring value into the

transformation, as guided by the data. Let Y ∗ < min(Y1, Y2, ..., .Yn) be some value below

the smallest observed value. Then, we can define the PIT in the following manner:

Vi = Pi(Yi) where

 Pi(j) = 0, j ≤ Y ∗

Pi(j) = P (Yi ≤ j − 1), j > Y ∗.
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From this point, the calculation of the statistic is straightforward.

Having such an anchoring value simplifies the calculation of the statistic, however it is

not required. Just as there is an ever shrinking, right-hand-side gap between the edf and

the average function, there will be a similar left-hand-side gap without a defined anchor

value. However, as in the case of the right-hand-side, this distance can be bounded.

Some GLMMs follow continuous distributions. Here, the definition of Vi as described

is not appropriate, since the data no longer takes values that are one unit apart from

each other. Suppose Yi|s are independent realizations from the continuous distribution

fYi(·|µi, θ). A probability integral transformation can be defined such that

Vi =

∫ Yi

−∞
fYi(x|µ̂i, θ̂)dx = F (Yi|µ̂i, θ̂) (7.2)

where F (·) is the distribution function associated with fYi(·) and µ̂i = x′iβ̂ + z′iŝ, where ŝ

are the random predictors.

Then, to construct the CVM statistic for a continuous distribution, first make the PIT

defined in (7.2), transforming Y1, Y2, ..., Yn into V1, V2, ..., Vn. Using the Vi, the edf F̃n(t)

can be constructed. Let F̃n(0) = 0. Note that this will still be a step function.

In contrast, the distributions Fi(t) are no longer step functions since the responses are

continuous. Yet by properties of the PIT given in (7.2) for continuous distributions, the

Vi’s will all have an approximate Uniform(0,1) density under the null. This implies that

Fi(t) = t for 0 ≤ t ≤ 1 and 0 otherwise. Since Fave(t) is an average of these distributions, it

follows that Fave(t) = Fi(t) = t for 0 ≤ t ≤ 1 and 0 otherwise. A hypothetical illustration

of the F̃n(t) and Fave(t) plotted side-by-side is provided in Figure 7.3.

Recall, our statistic W 2
n = n

∫ 1
0 Z

2
n(t)dt where Zn(t) =

√
n{F̃n(t) − Fave(t)}. This

integral of this residual process Z2
n(t) can be calculated as a sum of disjoint integrals.

Suppose that F̃n(t) takes a jump at t1, ..., tm. Then, it follows that∫ 1

0
Z2
n(t)dt =

∫ t1

0
n(0− t)2dt+

∫ t2

t1

n(F̃n(t1)− t)2dt+ · · ·+
∫ 1

tm

n(1− t)2dt

This approach is quite similar to a Kolmogorov-Smirnov test, where a PIT is applied to a

dataset and then tested to see if it could reasonably come from a Uniform distribution.

89



Figure 7.3: A hypothetical empirical distribution function F̃n(t) (dashed line) and average

estimated distribution function Fave(t) (solid line) for a GLMM with a continuous response.
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Chapter 8

Summary and Future Work

Herein we have derived an asymptotically correct chi-square goodness-of-fit test for

ALR models that relies upon the construction unique path probabilities over time. We

have developed a two-dimensional, dynamic binning strategy to obtain cell counts in a

proper way. We have also demonstrated size and power with a simulation study.

The examples provided have made use of ordinal logits, but the test can be easily

extended to ALR models with nominal logits. Further, the procedure can be applied to any

multi-state ALR model with or without an absorbing state (or states), as long as unique

paths can be articulated. We have also provided a real world application to an Alzheimer’s

disease dataset provided by Loma Linda University.

In addition to this, we have presented a Cramer-von-Mises goodness-of-fit test for

GLMMs. We have shown that it performs well for the RCT model, in terms of having

adequate size and detecting misspecification, and looks promising for the Spatial model.

This analysis has opened the door for future research.

Clearly, there is an opportunity to determine the asymptotic distribution of the CVM

statistic for GLMMs. This would add significantly to the usefulness of the test statistic.

Additional simulation study is planned for the Spatial model. Further, the CVM test

procedure should also be compared to other omnibus GLMM goodness-of-fit tests, such as

those proposed by Pan and Lin (2005) or Gu (2008), discussed in Sections 6.2.1 and 6.2.2.

The CVM test uses predictors of random effects to approximate a GLM. This same

approach might also be applied to other goodness-of-fit tests for GLMs, thereby making

them appropriate for GLMMs. Take for example the chi-square test for Poisson regression,

which could be modified for the RCT GLMM. Recall, we have log(λijk) = θ + βXj + si
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where Yijk|λijk ∼ Poisson(λijk) and si ∼ iid N(0, σ2) i = 1, ..., I clinics, j = 1, 2 treatments

and k = 1, ...,K patients per clinic-treatment, and Xj = 1 for treatment 1, 0 otherwise.

For the ij-th clinic-treatment, we can compute a χ2
ij . Let Aij1, Aij2, ..., AijL be a collec-

tion of disjoint sets that cover the positive integers (zero inclusive) and let

pijl = Pλijk{Yijk ∈ Aijl} > 0

where λijk = eθ+βXj+si and where Pλijk is the probability distribution of Poisson(λijk).

Let Zijl = # of Yijk ∈ Aijl. Then, under some regularity conditions, it is clear that

X2
ij =

L∑
l=1

Zijl −Kpijl
Kpijl

−→ χ2
L−1

Then, for the whole dataset, we can get one chi-square statistic by adding up the indepen-

dent chi-squares:

X2 =

I∑
i=1

J∑
j=1

X2
IJ −→ χ2

IJ(L−1)

The above test can be used as an overall test for specific values of θ, β, and the si’s, although

this type of test is probably not very useful.

However, it is reasonable that an omnibus goodness-of-fit test for the RCT GLMM could

be constructed by plugging in estimates θ̂, β̂ along with random predictors ŝi. Some care

would need to be taken in finding the parameter estimates and the predictors, and in forming

the bins. Also, the statistic’s degrees of freedom will have to be adjusted appropriately to

account for the parameter estimation.
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