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FOREWORD

This report is submitted in partial fulfillment of Contrapt No,
UCX 2231 with the Lawrence Radiation Laboratory, Livermore, California,.
The Investigation was conducted by J. F. Brotchie, Graduate Research
Engineer, under the general supervision and technical responsibility of
J. Penzien, Associate Professor of Civil Engineering, and E. P, Popov,
Professor of Civil Engineering, Department of Civil Engineering, College

of Engineering, University of California, Berkeley, California.



SYNOPSIS

The flexural behavior of thin rotational shells in the elastic and
post-elastic range of stresses is considered. Attention is restricted
to the case of a shell of a linear strain-hardening material, under small
deflections, and loaded in such a way that significant stresses are limited
to a specific zone of the shell,

A spherical shell is considered in particular and for the axi-symmet-
rical case, both the accurate and approximate equations governing displacement
are developed. For the general case of a rotational shell subjected to
unsymmetrical bending, the approximate equations only are presented.

In the case of axi—symmétrical loading, the following four possible
behavior zones are considered: (1) an elastic zone, (2) a zone of
circumferential yielding, (3) a zone of meridional yielding, and (L) a
zone in which yielding occurs in each direction of principal stress.

For unsymmetrical bending, only an elastic zone and a zone of yielding
in both directions of principal stress are included. Solutions are
presented, where possible, in terms of functions already tabulated, and
simplifications are introduced for ready use in design.

The equations presented are further generalized in the axi-symmetrical
case to include the effects of a variation in thickness and a variation

in the elastic modulus of the shell material.,



NOTATTION

Moment per linear unit of middle surface.
Direct force per linear unit of middle surface.
Shear force per linear unit of middle surface.
Direct stress.

Direct strain.

qu.ozz

Curvature increment.

u, vV, w Circunferential, meridional and radial displacements
respectively.

F Auxiliary function.
R, @, © Polar coordinates, Fig. 3.

X, ¢e’ e Conical coordinates, Figs. 4 or 5

95 = w + \F, a complex potential.

A Imaginary constant.
Ty r2 Meridional and circumferential radii.
R Radius of spherical shell.
t Thickness of shell.
E Elastic modulus.
EP Plastic modulus.

E

a . 2

<
[

Poisson's ratio.

Other symbols, used less frequently than these, are defined as they appear.

iii



THEORY

SCOPE:

In the analysis which follows, consideration is restricted to thin
shells of revolution in which displacements under loading are of smaller
- order than the thickness of the shell. Each shell is considered to be
composed of a material having a bi-linear relationship between uniaxial
stress and strain, as shown in Fig, 1., The portion of the curve with
slope Ep represents the post-elastic range of the material, which commences
at the proportional limit cf; and extends to the ultimate stress 0

This range, Cf; to (7;, is here referred to as the strain-hardening range.

In the strain-hardening range, attention is restricted to the case

g s

where the major component of the inelastic strain is produced by bending,

so that the neutral axis is located within the thickness of the shell
and the distribution of stress may be idealized as in Fig. 2. The
behavior of the shell both in the elastic and strain-hardening ranges
will be considered, and structural failure will be assumed to occur when
the maximum stress in the shell increases to the ultimate stress "

The case of a spherical shell under axi-symmetrical bending is
considered in particular, and the equations governing elastic and in-
elastic behavior are developed. In the case where significant deformations
are restricted to a specific zone in the shell, eg. under loading con-
ditions associated with stress concentrations in the shell, these equations
are simplified, thus enabling practical solutions to be obtained. These

simplifications are extended to the case of unsymmetrical bending, and to

the corresponding loading conditions in a non-spherical shell of revolution.



I, SPHERICAL SHELLS

Axi-symmetrical bending - accurate equations

Where bending is symmetrical with respect to a central axis of the
shell, strain-hardening will occur in concentric or co-axial zones. Clearly,
in reality, there will be a gradual transition from one zone to another,
but for the purpose of analysis the material in each zone is considered
to be entirely in one range of stress in each direction,

" Thusy*folr-different zones of behavior are possible. In one, the material
is entirely elasticj in another, strain-hardening occurs in the circumferential
direction only; in the third, strain-hardening occurs only in the meridional
direction, and in the fourth, strain-hardening occurs in both difections
simultaneously.

Each gone mey be considered separately and may be assumed to have
definite boundaries. Within the elastic zone, the stress-strain relationship
of the material is assumed to be linear, while in the strain-hardening zone,
the stress-strain relationship is assﬁmed to be as shown in Fig. 2.

The differential equations which govern the behavior of the shell
are derived from three basic sets of relationéhipsz (1) the equations
of equilibrium, (2) the stress-strain equations, and (3) the equations
relating strain and displacement. Of these, only the stress-strain rela-
tionships differ in each zone. In the limiting case of’pure plasticity;
however, the whole range of plastic strain corresponds to the stress CZ;
and an appropriate criterion* for yield must be substituted for the stress-
strain relationship.

The equilibrium equations for axi-symmetrical bending in a spherical

* eg. that deduced by Tresca, Reference 15.



shell, radially loaded are:

d (N, sin @) - W, cos - sin =0 (la)
@ % o oo f-eing gy -0 \W’

H¢sin¢.+n°sin¢+ (Q¢sin¢)+q_Rsin =0 (1v)
%a(u¢sin¢)-ugcos¢-q¢nsin¢=o (1e)

in which the notation is conventiohal, and is listed in a separate section.
The spherical coordinates R, ¢ and © are shown in Fig. 3.

The strain-displacement relationships, at the middle surfa.cé, are:

€g= 5 G -7, (22)
€o= 3 (veot g-w) ; | (2p)

and curvatures are related to disi)la.cements by

Xy -iﬁ A (3a)
Ao = ig(v“'%) cot ¢ (3b)

The above relationships, Eqns. 1, 2, and 3, are applicable in each
zone, elastic or 1lnelastic, of the sheil. The stress-gtrain relationshilis,
however, are different for each. In the elastic range, the relationship
between stress and strain (from Hooke's law) for biaxial stress is

g - £ e +aej] (1)

i 1-0}2

where i1 and j are the directions of principal s*b,reés (eg. 1, J = ¢, 0).
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Corresponding relationships may be obtained in the strain-hardening range. ‘ “,’
‘The total strain in the post-elastic range will be assumed to be ' |
composed of an elastic component and a purely-plastic component ;of which
the elastic component is directly proportional to stress. The case of
first quadrant bending only will be econsidered, in which bending stresses

are of the same sign, and im which the plastic strains are assumed to occur §
along planes passing thrm:gh the center of the shell. In the llimiting case
of purely plastic yleld, the Tresca yield criterion is thus obeyed.” Hence
where strain-hardening occurs in one @}rection only, for example direction
3 (3 =9 or 8), the relatic;nships between stress and strain (eg. Fig. 1)

may be written (for biaxial stress states) as

e AR T Ry B (5a)
(1] _
Gezlgemma) vqg 52)

in wliich i1 and J are the direetions of principsl stress, as Before; & is
assumed for simplicity to be everywhere the elastic value of Poisson's

. T E : . - ’ .
ratio; and a = 1?. s the ratio of the inelastic and elastic moduli of

elasticity.
Sinilarly, when strain hardening occurs simultaneously in both directions j/
of principal atreu, | E P Tp-Oe G‘, -Te
, | ¢ al a &
Ji- 17{610053] 00; ﬁr- (5)

Thua for thin shells and axi-cyustrieal bending in the elastic range,
 the ntreu-strain equtions lead to the relationships

* see Appendix I.



t/2
N o= [0, a = ;—(e +w€) (7a)
I /2
t/2
M o= ‘ = B ( |
1 G;. z ds _712(1 ) 761”7@ | (70)

in which €., € 5 Xy and X 4 are here the elongations and curvatures of
the middle surface of the shell.

With strain-hardening in direction jJ only, corresponding relationships
are obtained by dividing the stress distribution into its elastic and pm'ely

plastic components as shown in Hg. 2, to give

4/ S | |
Bt v €, |
Ni" rdZ':;é- (&, +aﬂ£)"’yj—1 O: (8a)
“t/2
t/2 | ‘ |
| a- B (6 am€)rnd o | &b
!j- 5 dz--]::? J‘*'Y tf,)+.‘xiag - (8b)
/2
t/2

| 3 it
N Q_zdz-lz(:f”) (Xitanxj) 4.,9[1_{:_?_ ‘ij;, (8¢c)

-t/2



t/2
) 2 2
3 !_ 2€ o.t
= 3y = =8B I ¢
Mj O-j . 2 0z 1_2(1-3,?2) ()Cj +3'X.i) + [l txj ~—
-t/2
(84)
Similarly, for strain-hardening in each direction,
- 2€&
= 8Bt 1
N, = —3 (e, + éej)-& T, J. (9a)
- 2 2
3 2€,” cs’t
-aEt ‘ i ¢
M, = —= (X, + AX) + 1-{ } o (9v)
1 12(1-97) * J Xy

Equations 8 and 9 are based on the restrictive asswmption that the /
component of strain due to bending in the extreme fibres is greater than
that due to the direct force. Hence substituting Egns. 2 and 3 into Equns. T,
membrane forces and moments in the elastic range may be expressed in terms

of displacements viz.

N¢ = foz_) %‘ [%-w+')(vcot¢-—w)-: (10a)
N, = (3;2) kl- [vcotﬁ-w-ﬁ%(%-w)j {10b)
o[ a aw aw ]
= =D (v+g) + ¥+ cot ¢ (10c)
PTELATE T 5% 1.0,k
2 [ aw d aw, | et
= = v o n lod
M, = —( +a)ct¢+ @'(V+W)J> (104)

Substituting Eqns. 2 and 3 into Eqns. 8 and letting i = @, j = 6, gives
the corresponding relationships for the case of circumferential strain-hardening

(only):
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Et 1 [av ] 2AR (v cot F-w)F ¢
N, = = -w+ aw (
4 s T K wtaw (veot §-w)| + - +g%) ot - (11a)
aBt 1 , 2R(v cot g-w)Ce
N - SUR o [N ] 2
o (1-332) B _v cot P-w ) = +?) ot 2 (11v)
D
M, = - [?1 (v + LX) 4 av(v + L5y ot¢:|
PR Eﬁ ) g’ © ) (11c)
‘R 2R(v cot g - w) _Q’.c_t_
t(v + 7) cot @ L
aD.
%--f[(v*%)cot¢+»%(v+%)] 120)
114

+ 1. 2R(v cot @ - w) ‘s
/’\ {t(v * 7) cot @ L

h D.

Similarly setting 1 = O and J = @ in Eqns. 8, expressions for the case

of meridional strain-hardening (only) are ohtained:

_aBt 1[av ., 23(7 -w) Oc
N¢ -———-1_@2 % [Eﬁ - Av cot B - w):l (v " 7 (12a)
232( - W) 0 e
Gl : (12b)

Et 1 dv
Ny = —>% vecot B - w + av( -w)]+
° 1w ’ﬁ[ P RS

¢ ? [ ﬁ-a) + »(w%%) cot ¢] + [1 - iRd(7 ‘ W)} Jo"’ (12¢)

(3P
- ! (v+¥) cot g+ar d (v | + 3 | 2R (—ﬁ - W) i Gctz
T ? "ap P "'ap d (d‘h—ﬂ L

‘ (12d)
For strain-hardening in each direction, substituting Eqns. 2 and 3 into

Eqns. 9 gives



aEt l d ‘
N -w+R (veot §-w) |+ (13a)
Bt ]
(1-4°) AR
akt 1 dv ] 4 2R(v cot # - w) Oc
Ng = —> & td-w+d (53 -w (13b)
© (1-R°) R[VCO ! ap W_ (v+7)cot¢
aD | d
M¢ ?[_6 v+?)+3(v+7)cot¢
R(ET - W) ¢ g
+]1- g—’j — < (13¢)
te -(V“E-a) L

[(v+ )cot¢+b-¢ (v +%)]

2| @ £2
o 1. {2R(v cot § - w) c (13d)
te(v + 7) cot ¢

" It then remains to eliminate the shear term Q from Egqns. 1, so that
Eqns. 10, 11, 12, and 13 may each be substituted in turn, to give (in each

case) two simultaneous differential equations in W and v.

Eliminating Q¢ from Eqns. la and 1b ‘gives

2
1 a d 1 -
R—m d¢ ¢ sin ¢) __SJ_.W az (NO cos ¢) + -R- (N¢ + NQ) + q 0
| (ha)
and eliminating Q¢ from Eqns. 1b and lc gives
1 1~ 4 1
M s1n¢)-——-——-- (M, cos @) += (N, +#N) +q=0
Ez_sinﬂ d¢ g R’ sing B © RYP e

(1v)
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Hence substituting Eqns. 10 into Eqns. 1L gives the two equations
in v and w, which govern the behavior of the shell in the elastic range.
_Alﬁernativély, if Eqns. 11 are substituted into Eqns. 1, the equations
which govern the behavior in the circumferential strain hardening range
result, Similarly if Eqns. 12 and 13 are in turn substituted into Eqgns.
1h,b the corresponding equations for the cases of meridional strain-hardening
and strain-hardening in both directions, are obtained.

Firstly, however, Egqns. 10, 11, 12, and 13 may be written in the

generalized form

Nﬂ = b(v! - w) + d(H) +R [c(v cot § - w) + e(w)

Ng =f(vecotfd-w)+ g(v;:‘tﬁm ¢) +3|:h(v' - W) +1(HT)

' 2
M’¢=k(v' +wl!) # (E-{H} J

: 2 27]
4 [m(v + w') cot g4+ r{l- éila(rv-rcz?)ﬁc;t%% } (15¢)

= ntr s w) con g ep | 2 - {Blren S o

: 2R(v! = w). 32 (
+3 | qlv' #w'') + 541~ N CUEE L] (154d)

in which primes denote differentiation with respect to @.
Substituting Eqns. 15 into Eqns. 1, and omitting, for simplicity,

any remaining terms with coefficient 4, there results:

b(v''t= w't) 4 2cot Bb(v!'' = w') - cot f.f(v' cot B -+ cosec’ g -w)
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(v' At ) (v tygayt ! lwn_vlwiv_w! ! l-’wwiv.pvlwl 1)
l|)3

+2f(vcot @ - w) + d ,
(v? +w

d2(v"+w"')(v"w AR AR YT R PRV EVE DU A RPN R L PO Wlll)

(V' +W'|)3
+ 2d cot £ (v''w + v!Ty'! - yly! = ylg!!! - oylyl! 4 oyt !t)
(V' +W||)2 .

| -gecot @ (v + w)(v'w' tan g - w sec® ¢) - (V'+W")(v - w tan @)

(v +wt)?

yoglovtanf g

v +w!

(16a)

(vt 4 w7) + 2k cot B (v1! A wttt) - k(vt 4 wtt)
—ncot (v cot - v cosec B+ w'! cot @ - w' cosec® §)
+ncot @ (v+w')+bR(v' -w) +fR (v cot # - w)
+1_[_ SRZ{%(W' Sw) - +w~')§2
; £2 S (v! + w'1)?

v! = w % (vlll_w!l) 2(v"-w')(v" *wvn)

N CL :,.Wll) ' +w'') ° (v! +w“)2

_ (,v' -w)(v"' + gV ) . 2(vl - W)(v" +W|n)2
(VI +w||)2 (vl +Wll)3 ,

168° b ew [ aw) Wt s
- = cot @ (VY,,‘;::){(X' +wv‘f') = = +.w")2 }

t

1+{2R(V'-w) 2]
PR a0 I
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{2R( -7 tan ¢)} 2
+ pill- t(v +w')

B _chtﬂ{(v'wmnmg(v' - w' tan § - w sec’ @)

(V+Wi) (v+wlj

(v - wtan @) (v' + w'') N dR[v'-w]

(V*W')z v # i ?

v - wtan @ 2
+ gR[ p—a— ] ==..qR

The remaining constants b, 4, f, g, k, L , n, and p have different
values in each zone of the shell:

In the elastic zone,

Et

b=fe —Eb , d=g=0
@ - )R
D .
ksnz-T 9 (ﬂp:O 3
R

for strain-hardening in the circumferential direction only,

Et

A R d=0
(1 -a¥)Rr



for strain-hardening in the meridional direction only,

aEt
b = ‘ d=2R (c
(1-av2)R ’
Et
£ = (1-a¥)R ’ g=0
LoD ’ g - Oet?
EZ— I
D.

and for strain-hardening in both directions simultaneously,

b=f= aEZ , d=g=200¢
(14)R .
2
aD Tet
k'n=-R7 s ‘e‘p:T .

However where the equations thus obtained for the elastic case are
linear, the equations for the three strain-hardening cases are non-linear

and their solutions are virtually intractable.
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Axi-symmetrical bending - approximate equations

(a) Spherical coordinates.

Even in the elastic case, it is convenient in practice to introduce

approximations in order to reduce the general equations to a usable form.

Some degree of simplification (of these equations) was introduced by H.

Reissner (3) and Meissner (L) but not sufficient to allow their use for

design calculations. Approximate solutions for shallow shells (¢‘(.g),

in the elastic range, has been developed by E. Reissner (5) and Geckeler

(6), and apply with increasing accuracy as §#—>0. Other solutions by

Geckeler (7) and Hetenyi (8), and others (9, 10, 12, 13, 1) increase

. L
in accuracy as @— 5 .

For present purposes, a solution of a slightly different type is

desirable. The class of problem to be considered in particular is that

of a loading which produces stress concentrations in the shell but for

which significant deformations are limited to a specific zone. The case

of a loaded insert or fitting in the shell is included herein.

In this class of problem, the effect on curvature of meridional

displacement v, and its derivatives, is of smaller order than the effect

of the derivatives of radial displacement w.

Thus moments may be expressed
MM——————”’ v/ ’

in terms of w and @ only, with little loss in accuracy.

———

Hence in the elastic range, we may write

= _D d2w dw
M¢ - Eg [j EBE‘* ¥ cot @ aa:]

=y}

2
- _D dw dw
MQ -3 l:cot¢aa-+v£-2-]

—

(17a)

(17b)

Similarly if the term containing Q¢ in Egn. la is of smaller order (}bb

than the terms containing the direct forces N¢ and‘Ng, it is convenient |



to introduce a stress function F such that

ﬂb . (18a)

dF

1.2 g
ozt % Al
(18b)

and

p(1/2),(1/2)

o [12(1-@2)] (78]

g

The function F may be shown to approximately satisfy Eqn. la. Its signif-

e ——— e ——
icance will be more apparent in the case of unsymmetrical bending where
there are additional expressions to be satisfied. The parameter L is
sometimes referred to as the radius of relative stiffness of the shell
and serves to make the operators on F dimensionless. QAA/l
. . . f:ﬁ77
Substituting Eqns. 17 and 18 into Eqn. 1lLb, and modifying the co-

—_— ]

efficients of the first and second derivatives of w, as suggested by

Mushtari and Vlasov (2L), gives

N R 2 2

Vviem VF-g (19a)
or

L g R®

Vw-E—t-(N¢+NO) ’%%‘ (19b)

L 2 2 2 L2 d2 dq
where V=2 Y  ; and v = 55 (;BQ + cot Eﬁ)’ which is Laplace's
operation in (dimensionless) spherical coordinates.
A second equation in w and F is obtained from the relevant equation
of compatibility which, from Eqns. 2, may be shown (Reference 1) to be

of the form



Iy

2
1l d
in. in &, - €))
E Vw+m{_7 8 ﬁﬁ +W(S g o ¢]
(20)

Combining Eqns. 7, 18, and 20 gives the result:

YF-Eyowso o ()
or |

2 Et 2
Vv (Mg ¥) +p= 7 w=0 | | (21b)

Following the example of Reissner (5) for a shallow shell, if Egn.
19a is added to )\ times Eqn. 2la where |

7\:1%—5
there results
L 2 2 - } o
ve -1 vg8 -F | | (22)
where _¢'IV+)\F,

Alternatively, Eqns. 19a and 2le might kave been differently combined
to give separate equations in w and F, viz:

6 2 g2 2

Y ¥+ V v g V a (23a)
6. 2 | | o '
VFEsHVF-aR g {230)

A further useful relationahip may be obtained by returning to Eqns.
21. Where loads and significant radial displacements do not extend to W
the outer boundary of the shell, i.e. w and its derivatives with i-espec C/
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to @ approach zero as @ increases, the sum of the direct forces will ,;7,77

also approach zero (from Eqn. 1b), and it may be demonstrated that Eqn.
o~

! (
<§E;9herefore requires that

2
\v/ F‘%—Ew=0 (2La)

or

Et
+
Ng*Ng* g v

0 (2Lb)

Substituting Eqn. 2Lka into Ehn. 19a gives

L 2

- g

V ¥*+v =g (25)
For the class of problem to be éonsidered, namely that of a system

of loads producing a stress concentration in the shell, and in which

significant deformations are limited to a specific zone, Egms. 19 through

25 are reasonably accurate for any range of latitude in the shell. 1

However, in these equations the operator V is expressed in dimensionless
polar coordinates, i.e. in the coordinates of the surface of the shell,
(Fig. 3), and for practical analysis these (spherical coordinates) are

not so readily manipulated. Thus a simpler coordinate surface is desirable.

(b) Conical coordinates
, e ——

Where stresses are significant only in a specific zone of the
shell, it is convenient to introduce a simpler system of coordinates which
correspond as closely as possible to the spherical coordinates over the
zone considered.

A conical coordinate surface appears to be most suited to this
purpose, (Fig. L). The ‘angle of the cone is chosen to suit the zone to

be analyzed, and greatest accuracy is likely to be obtained if the cone
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is tangent to the sphere at or near the ordinate ¢e of the stress con-
centration. Points on the surface of the sphere within the zone may then
be considered to be projected onto the cone.

The conical coordinates are x, measiwred along the generator of the

cone (Fig. i) and 8, as for the sphere. If points on the surface of the

: R
sphere are projected linearly onto the cone so that Xe =% =1 (¢e -¢1),

Fig. L, then x is given by
R
X &7 (tan Qfe + @ - ¢e) (26)

This projection may apparently be used for all values of ¢e'
Alternatively if ¢e (but not necessarily @) is restricted to a shallow
zone, say ¢e (g s points on the sphere may be projected vertically onto

the cone (Fig, 5) and in this case x is given by

R sin
X221 Cos @ (27)
e
2
The operator Y/ in each case is
2 = d2 L 4 -]; -d_—
V 23 *1 &
dx
and moments may be expressed in the form:
M, o= - 2 93.‘.!+q;_1.$‘_"‘. | (28a)
g L2 dx2 x dx
M .03 léﬂ+.¢£‘i (28b)
° 2| x & 2
dx

In the case where x is given by Eqn. 27, the approximation is made

2
in Eqns. 28 that c_o_s_2_£5____, 1, and this provides a restriction on the

cos ¢e ,
v
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range of @ and ¢e considered.

Further, direct forces are related to the stress function F by

N¢ c-; d_x_ (29&)
2

Ny =.d_§ (29b)
dx

and if compatibility is here expressed by the equation

Q€ ) N
a ,29% 1
SEC s w0 0 (30)

A L

d.€¢ .
dx

21
N et

R =0, it reduces to the corresponding relationship for the plane stress

then equations 19 through 25 result as before. Deduction of Eqn. 30

(and similarly Eqn. 20) was facilitated by the fact that in the case

problem, and in the case ¢e = 0 it reduces to the relationship obtained

by Reissner (5) for a shallow shell.

L

The homogeneous parts of Eqns. 23, in conical coordinates with x
given by Eqn. 27, were also obtained in a previous report, (1), using a
different method of derivation.

For the special case of ¢e = 0, the conical coordinate surface

R sin ¢f
——= and

Egns. 22 and 23 reduce to those of Reissner for a shallow shell. Similarly

reduces to a plane. In this case Eqn. 27 reduces to x

for § = 0, Eqn. 26 reduces to x = %2 and Eqns. 22 and 23 are equivalent
e

to those derived by Geckeler (6) for a shallow shell. For the case

¢e = g the cone becomes a cylinder. Here tan ¢e =0 and it is con-

venient to introduce a new variable y such that
R R
y =X - 7 tan ¢e = Ef(¢ - ¢e)

In this case terms containing % or powers of % vanish, and the equations
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reduce to the approximate solution proposed by Geckeler (7) for a deeper
shell.

Bijlaard (13) shows that Reissner's equation for deflection in a
shallow shell may also be reduced to the form of Eqn. 25. In discussing
Reissner's solution, Bijlaard compares the effect of direct forces in
the shallow shell to the effect of an elastic foundation on a plate.

The component of the membrane forces in the z direction is 1 (N¢ + Ng)

R
and from Eqn. 2Lb

%(N¢+N) i;“ﬂm
in which the constant k may be considered as the equivalent modulus of the
elastic foundation. Thus from Egns. 2L and 25, it is evident that the
above analogy may be extended to the larger values of @ considered herein,
provided only a specific ‘zone of the shell is deformed. This analogy
of the elastic foundation is a useful one in understanding the post-
elastic behavior of the shell.

In the inelastic range of stresses, further approximations are V//
required if solutions in a usable form are to be obtained. Attention
here will be restricted to the case where, in the zone considered, the
strains due to direct forces are small in comparison with the strains v///
produced in the extreme fibres by bending stresses. In this restricted
case, the effect of meridional displacement v and middle surface strain
€§¢ on the moments may be neglected.

Considering firstly the case of strain hardening in the circumfer-

ential direction only, My and My thus reduij/;o _ ngwx‘lE)
wLd A‘
2

/C-\ P o

B / 2 . -—r".' g% &

- - d w l d—w b Y P v‘,) . \J

/ M¢ 2 }: dx2 + a1x| dxl + Af Mc gﬁ';t& " ;V\is (31a)
! Y . J
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aD ‘ 2
1 1l dw dw_ .
M, = - = + o + M (31b)
e L12 {:xl dxl ) l2 ] c

| . . m R1/21_,1/2
in which x) = -L; (tan ¢e + 0 - ﬁe) o fl‘%g‘gg J L]_ 5[12(1_%’2)]1& 5
2
nd M = (]';:t
a c T .

tion only, moments are given by

. 27

- D) T g%y + 1989 | 4y W}y (32a)

M¢ I'].E dx§ x, dx, c
L ]
D i 2
1 1 dw dw
M, = — = = + af ]th (32p)
e 1.12 | % dx, dx? c

For strain-hardening in each direction simultaneously with

_R R sin . .
xs7 (tan ¢e + 0 - ¢e) or T - as in the elastic z¢ne, there
results
ab [ d®w , 10w
M¢=—2- — V[ N (33a)
1? | ax
M =22 - 1 dw 4“5—--.6‘2W + M (33b)
(4] L2 x dx dx2 c

Thus in the case of circumferential strain-hardening, Eqns. 1hb and

31 may be combined to give /j Yo M5

iv , 2 LR a L a ' T a ! 2 4. R - gk
wot—wW - =W+ -—-x 3 W x—3 W tan® @ T (N¢+Ng) LEt
! s (3L)

where primes here, and from here on, denote differentiation with respect

o)
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to x (or x.l). Eqn. 34 is derived using the value of ‘x defined in Eqn.

27 assuming —é—?—-—» 1, For the value of x given in Eqn., 26, slight C"“‘“‘
aceds .

differences in the terms containing the lower order derivatives of w 7 /7
uiil occur.

Similarly for meridional strain-hardening, substituting Eqn. 32
into Eqn. 1ib gives

iv c2 "'t 3 st 1 8 3 V. o, R 2
v + oy - ——— & w - w t.an"ﬁ-r (N N)‘%’%{
% 2 3 3 akt fg

1 1 1 (35)

For strain-hardening in each direction simultaneously, the corre-
sponding equation, from Eqns. 1hb and 33 is

2
iv 2 "1t 1 ¢v 1 V1 gf_l__
W tEW W tNpw - w tan? g - E(N +N)' (36)
x x ;3 ;3 e

For thin shells, where conscentrations of stress occur and aigniﬂ;\
deformations are restricted to a specific zone--or shallow segment, the M

effect of the varicus derivatives of w degreases with their order, amd | 4«
th§ approximation -:-5 w tan® g —» 0, (or that similar terms approach aﬁ'u/y 3
zero depending on the definition of x) may be introduced. The same J |
approximation was introduced in the elastic range. /’/’

Thus for strain-hardening in the ¢ircumferential direction only,
Eqn. 34 reduces to

b 2
Vo v-m 0yen)-F- | (7)
in which Vhw-wi'+-2-w“'=a w“'l" w‘.,
c x, ;?_ ;j'.

Similarly, for meridional strain-hardening, Eqn. 35 reduces to
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a V% v (N¢ + Ng) %E_ (38)
h iv 2 Tt 11 1 ]
where V WEW +  —— - —— F o—
x 2 3
1 axl axl

For strain-hardening in both directions, Eqn. 36 reduces to

L 2
-B -3t
a V w-gp (Ny+N) =g (39)
where
h i-v- 2 111 1 1? 1 )
VY w=sw o+ IV - W + = W, as in the elastic range.
x X

It will be noted that the stress function F, as defined in Egns. 29,
is still applicable as it was determined from the equilibrium equations
only. Substituting Eqns. 29 into Egns. 37, 38, and 39 in turn gives:

for circumferential strain-hardening, g
L 2 2 M‘c
R _ R
V, wrgg V Frag 4 (40)
for meridional strain-hardening,
a V. w+ R V F=aq= (L1)
m Et 1%

and for strain-hardening in both directions,

I 2 2
an+%€ VF=°-%E (L2)

A second relationship between F and w in each zone is obtained from

the compatibility Egn. 30, as in the elastic range. For this purpose
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&V) vy oY
L \‘,‘:\/L} S‘ . \h '
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a gimplified relationship betweeﬁ‘ﬂ and €. (1, J = f, ©) is desirable,

i
and the two following alternative relationships will be considered: /)
(1) The relationships expressed in Eqns. 8 and 9 for the respective o
zones will be assumed, except that the term é%i»(or Eii) in each, will .
j i

be taken as constant. Since this term is thus eliminated from the final
differential equation, the assumption will give best results when the
ratio =3 is either nearly constant or is negligible in the range of
[} considgréd; (2) As an alternative relationship, Eqn. 7 will be assumed
to be applicable to each zone of the shell, i.e., the direét forces will
be assumed to remain proportional to the total strains. |

These two relationships will generally provide an upper and lower
bound to the actual behavior. (In an exceptional case ﬁﬁéfe they do not

act as bounds, they will at least indicate the degree of approximation

involved.)

Case (1). Thus for circumferential strain-hardening, combining Eqns.
29 and 30 with the modified Eqns. 8, where in this case 1 = @, J = 0,
results in a

\
. F- E%E V w =\O , (43)

For meridional strain-hardening, combining Equns. 29 and 30 with the
nodifiédquns. 8 where i = Gglj = @, gives '

ob g2
V r-2Vw=o ()

For strain-hardening in each direction, eombining ths. 29 and 30 with

 the modified Bqns. § gives



23

L 2
VF-%EVw=O (L5)

Each of Eqns. L3, Ll, and L5 may now be combined respectively with Eqns.
4O, 41, and 42 in different ways to provide relationships in the inelastic
range, corresponding to the relationships of Egqns. 22 and 23 for the
elastic range.

Thus for circumferential strain-hardening, different combinations

of Eqns. 4O and L3 lead to

'V eV PRy (162)

Vchvchﬁwa V2 V2F=RqV2q (46b)
or

vch B, -1 v ¢1=%§_2 (ko)

_ R
where ¢1Ew+)‘1F and Al:im .

For meridional strain-hardening, Eqns. L1 and LL may be combined

to give
N N 2 2 g2 l
a‘Zn Vm w+ VY wveg Vm q (L7a)
L L 2 2 2
a9 V F+V V F=RV q (L7b)
or h
2 2
Vm ﬁl _ia1/2 \v4 ¢-l = %E (L7¢)

where §1§W+)‘1F and Xlsigim o
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For strain-hardening in both directions simultaneously, Eqns. 42 and

L5 combine to give

6 2 R2 2

Vu+tr Vw=0gg V «q (L48a)

6 2

V F+ YV F =Rg (L48b)
or

L 2 2

V §,-1V &% (18e)
where ziw+)\2F and 7\2515%-5 o

2 L

The above equations, operators V , V; s and so on can again be

derived in spherical instead of conical coordinates.

Case (II) If, alternatively, the direct forces are assumed to remain
proportional to the total strains, Eqns. 21 are applicable to each zone
of the shell., Combining Eqn. 2la with Eqns. 4O, L1, and L2 in turn,
enables three more groups of equations, corresponding to Eqns. liba and b,
L47a and b, and 48a and b, to be obtained:

i.e. for circumferential strain-hardening,

2 N2 g2 2

Vv V, w+r V v=g V a (L9a)
kL L 2 2 2

v V% F*V VF=RYV q (Lob)

for meridional strain-hardening

2 L 2 R2 2
aV Vm w+Vw=§€Vq (50a)
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L L N 2
aV V, F+ V F=R V gq (50b)

and for strain-hardening in each direction

6 2 R2 2

aV w+ Vw=-E—;€V a (51a)
6 2

aV F+ V F=Rq (51b)

There is no corresponding complex relationship in this case.
Further, if significant radial displacements do not extend to the
outer boundary of the shell, Eqn. 21b again leads to Eqns. 2L, Hence

for circumferential strain-hardening, combining Eqns. 24b and LO gives

L 2
vc; w+w=%%— (52a)

2 2
V V. F+ V F=Rq (52b)

For meridional strain-hardening, from Eqns. 2Lb and L1,

L 2

an W+w=%§_ (53a)
2 L 2

aV V F+ V F=pgg (53b)

and for strain-hardening in each direction, Eqns. 2ib and L2 combine

to give
N 2
a vV owrw=% (5ha)

6 2
ay F+ ¥ F=Rq (5Lb)



26

The behavior of the shell in the elastic and post-elastic ranges
is conveniently considered by comparing Eqns. 25, 52a, 53a, and 5ha.
From inspection these equations, which govern deflection in the various
zones of the shell, are seen to differ only in the differential operator
contained in the first term of each. A similar difference is noted
between Eqns. 22, L6, L7, and L48. In considering the effect of this,
it is convenient to recall the analogy between the behavior of an elastic
shell and an elastic plate on an elastic foundation.

Hence in Eqn. 25 the first term §7h W, represents the effect of
flexure or bending in the shell or in an elastic plate. The second
term represents the effect of membrane action in the shell which cérre-
sponds to the effect of the reaction of the elastic foundation on the
plate. The third term is a constant times the normal loading intensity
ineach case. Similar relationships are found in the inelastic range.
Eqn. 52a for eircumferential strain-hardening in the shell is again
equivalent to the equation for tangential strain-hardening in a plate
on an elastic foundation; the first term once more represents the effect
of bending in the plate or shell, this time in the inelastic range.
Similarly, Equations 53a for meridional straithardening is equivalent
to the equation for radial strain-hardening in a plate on an elastiec
foundation. Equation 5ha for strain-hardening in each direction is
also applicable to an elastically supported plate,

The difference involved in each case between these equations (Case
II) for a shell and the corresponding equations for a plate on an elastic
foundation is only in the constant parameters involved, and thus the
solutions obtained for the latter case are also applicable to the shell.

For the case q = 0, these solutions are presented in a previous report

(Reference 2).
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Thus, the solution for each of Eqns. 25, 524, 53'a,- 'an'd Sha may be

expressed in the form

W=Wh

Nt

+ W I i : (e
P : el

where LY is the solution to the homogeneous part of the equation and
ﬁp is the particular inb;egral, representing the efféct of the loading
term.

Thus, for &n elastic plate, from Eqn. 25, w is given by
w, = Re [Al I, (x)i) + A, Ho(l) (=i )] (56)

where A, and A2 are ébmplex constants and Jo( ) and Ho(l)( ) are zero
order Bessei functions of tﬁe first and third kinds respe‘étiw?elyo
The solution may alternatively be expressed in terms of the Bessel-

Kelvin functions, ber, bei, ker, and kei, since
ber x = Re J_ (={i) » bei x = -Im J (=1 ) (57a, b)

kerx'--g-InHo(l) =) , keix=--g-ﬂello(1) (xfx )
‘ (57c, d)
The functions Iy (xf ) and H o(l) (x| ) and their derivatives with
respect to x are tabulated in Reference 1,% (Ho(l) ( )) in Ref. 20, Ber x
bei x, ker x, and kei x are tabulated in References 19, 21, and 22, Of
these, the tables in Reference 19 are the most comprehensive.

For circumferential strain-hardening, from Eqn. S2a,
wh=ClR1+0232+0333+0thsGkRk (58)

where C, are the real constants, and Rk are four independent series

k

solutions, viz:
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R1 = 1+
i [_1]% | o
n=l,8 n(n-2) [(11)%a ] «(1b)(0-6) [(n-5)-a] ...ke2.(3%-2)
(59a)
R2 = x2 +
= (n-2)
z [-l]n & T 5 "xn 5
#=6,10 n(n-2) [(-1)? - 8] —oemenibll(52 - 2)
(59b)
1/2
R3 = x1+a +
S o
-] . ) )
i B 2 1/2 /2, . 1/2.
n=5+a1/2,9+al/2 n(n-2) [}n-l) -a] eeo (8427 Y (342 C) (4422 )y
| (59¢)
1/2
R’-& = x-8 -
i [—1](n-1+al/2)/’* L
2 1/2 2 2
n=g-a'/2, 9-a/2 n(n-2) [(n-1)’a]---- (5-a"%)(3-a"/%) (s-2a™ 2l

(594)
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The above Series are independent except where a = 0, 1, he The
special case a = 1 is that of a purely elastic plate, and the solution
is given in Eqn. Ll. Where a = 0O, the plate is purely plastic (zero
rate of hardening) and the solution is given in the previous report (Refer-
ence 2).

Similarly, for meridional strain-hardening, from Eqn. 53a,

Wh=0131+0282*c333+cu3h“Cksk (60)

where Sk are the four independent series solutions which may be obtained

by substituting % for a in R, Eqns. 59, providing x in this case is

given by
N N Rsinf . R .
T I T, T L et

The functions Rk and their first three derivatives with respect
to x are tabulated in Reference 2. The tables are calcglated for a =
1/, 1/2, 3/h, 2 and L, for values of x in the range O é x €10, The
tables, therefore, also give Sk for the reciprocal values of a, i.e.
for a = ly, 2, /3, 1/2, and 1/L, so that in effect both R, and S, are
tabulated.

For strain-hardening in each direction, the solution for W, from
Eqn. Sha is again given by Eqn. 56 provided a new value X for x is

introduced.



29

where X, & —pm = R sin § @WR (tang_+g-¢)
| 3 ?71; al/chosﬂfe a’ "L e e

" The péfticular integral 'wp in each case is
2

LS %— . for q constant. (61)

The corresponding solution for F in each zone may be written
F=F +F, | (62)
where: from Eqn. 23D
~ 1l
F, = Re [,Bl I, (xf1 )+ B, Ho( ) (xfi )J +ey te, logx (63a)

2
Fp - ﬂﬁ - x , for q constant | (63b)

in which the constants Be are complex and ¢_ are real;

from Eqn. 52b
phk-dlnl+d2nz+d333¢dhl¥h*d5+d¢6iogxedmlim (6&;).

Fp = Eg x? | for q constant ~ : (6341?)

in which Rl through Rh are given by Eqns. 59, and the constants dm are real;
from Eqn. 53b

ghagi:lsla-dz_sz+d353+dhsh+d5+d619gxadnsn (65a)
R - al/2 % x° for q constant _ (65b)

in which Sl through Sh are given by substitution of -i- for a in Eqns. 59,

as before, and from Eqn. Sib
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F, = Re [Bl I, (x|t ) + B, Ho(l) (xﬁ' )] *cy +ec,logx (66a)

a1/2 5.2
Fp = ——L&- for q constant (66b)
From Eqn. 25, the relationship between the complex constants Ae
and B, in Eqns. 56 and 63, or in the corresponding equations in the

strain-hardening range, is

B =% (67)

where Ie and B o are the conjugates of A  and B,. This will be seen later
in the solution of Case ().

Using the previous expressions derived for moments in terms 6f de-
flection w, and the equilibrium Eqn. lc, moments and shears may now be
expressed in terms of the above éolutions, The direct forces are similarly

determined from Eqns. 29.

In the elastic range, the deflection W, from Eqn. 56 may be written

in the form
w =Re |2 ] (68a)

where 2 = A Jo (i) + A, Ho(l) ( x}1 ). The deflection LS does not
contribute to moments and shears where q is constant. Hence from Egns..

28 the corresponding moments may be written;

nﬁ--%ae_z"hv%z'] (68b)
HO---EERe-%Z""dZ”] (68¢)

and from Eqn. lc the shear-is given by
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Q=+ % Re [12' ] (682)

where primes again denote differentiation with respect to x.

In the case of circumferential strain-hardening only, deflection
W, is given by

Thus from Eqns. 31, the moments are

c.D

%o [R;'m;%] o (é50)
BO- acknl L B-k Vﬂk] : (69b)
11 ,
and from Eqn. lc the shear is
c.D S )
g+ -1 [ayre v 2nys - _,nk] N e
i | -

Similarly for meridional strain-hardening, where

w = C 8 ’ k=1, 2, 3, and L, | (60)

moments and shears are given by

%--acb [sétwv Sk] | | ,. - (70a)
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c.D ~
¥ - - Lk 1 [%S{( + ade{'-’] + Qe (7o)
2
and
aC, D
- - k1 _]_- __.].-_ +_]_-__“‘!
Q ¢ L23 [slt:n + - A axz Sl‘c] sz Hc (700)

and for strain-hardening in each direction, with
w = Re [Z] as before, and (68=)

moments and shears are given by

%--%Re [z” +¢§z':{+nc (71a)

. --.;‘P— 1, e .
HO 2R0 [xz +4 2 ]4-}{0 (71~b)

Q= - ;‘_3. Re [13' ]  (T1e)

The direct forces R¢ and NO in each case, are given by Eqns. 29.
Alternatively, they may be determined from eqnilibriuﬁ -at the section

g = constant, and from Eqn. 2ha, i.e.

R£¢qs;n g cos g'a ¢‘

N¢ = o Q¢ cot @ - : 'Biné p (72a)
and
Nyevs w - By (72b)

The solutions for inelastic bending were presented in terms of
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Case (II) since the functions involved in this case were available in
.tabulated form,

The solutions for Case (I) may again be expressed in series form but
only the solutions for yielding in both directions may be expressed in
terms of functions already tabulated.

The solutions for w and F in Case (I) may be obtained by solving the
complex equation for fg s and it is of interest to compare the solutions
obtained with those of Eqn., 22 for the elastic case.

From Eqn. 22 we obtain

f= éh * gp (73a)

where
. .3/2 (2) (.43/2 -
B= a3, @2 +am B (¥?) 4 a ) logx = AW (730)
and
j; =i R x° fo = constant (73¢)
P EEE r § sta c

HencewaReésae(fh+ ¢p)=Re [Akwk] (Tha)

and

1 1 1 R 2
FsRe[Xiﬁ] Re -.X(_@h+ ?p) =Re[T\Aka] +ﬁ-x
(7Lb)
The functions J_ (xiB/z) and Ho(z) (xi3/2) are the complex conjugate

functions of J (x{1 ) and Ho(l) (xfi ) respectively. (See References

20, 21, 22), i.e.

Re J, (xfT ) =Re 3 (1¥2); my &) =-1Ind m¥2); (15, b)
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Re Ho(l)(x D =58 P@¥?); ma Vi) = - mu Dd?)

(75¢, d)
Thus the solutions for w and F reduce to Eqns. 56 and 63a.

Similarly for Eqn. Lbe,

¢1= Dy, * ¢lp (762)

where
ﬁm-31x1+3212+33x3+3hxh=3kxk (76b)

in which Bk are the complex constants and Xk are given by

ot (76¢)
oo i(n-2)
R oy CEPY ) L 12, ,(13/2 o
2 n‘2,h’6 n(n-2) [(n_])?_a]. (n—2)(n-h) [(n-3)2_a] o..__.h.z'(B -a).
.o i(n-l-:fat]'/z) :  (76d)
X, = Z ) L — -(1+al/2 2 3/2 <P
‘= )y g 202 [(00Pea] -G 2)(1»4,1 7‘)(2-#2&1@.
n=l+a ™’ ", 3+a
| (76e)
S i<n-1+a1/2 3/2_yn
T L ) T B o ai//; L (11/2 172
h (n-2) [ (n-1)%-a] ==-G-a" ) (1-a"2) (226 D)2
n=1-aY/2,3.41/2 n(n [ n- ] -a
- | (76£)
» ) 1/h ' 1 ‘
and x =X, = x]_alﬂ-l s a—q—gﬁ;g or i_g_R (tan ¢e + @ - ¢e) (76g)

The particular solution in this case is

¢1p = i EEEB; %° | (76h)
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hence

w = Re ?1 = 'ReEk ] \ (763)

and
F = Re %1- ¢1 = Re [—%;kak] + Zi%-z-xz (76K)

In the same manner, the solution of Eqn. L7c may be expressed in the form

¢1 = én * qslp ('4f7a)v

where

¢1h"'cljr:L‘”“'zYz"CY"cl4 T, £C T (770)

o |1

in which Y, may be obtained by substituting

X foralnxk, and

| R sin @ R .
x_x3_a1‘ 1/hlisc:s¢ or ;_71;1; (tan ¢e ¢-¢e) (77¢)
and
2 .
By - 1 i < (77d)
Thus

w = Re p 1 - Re [Ok Yk] (77e)

and
1/2

1 - 1 Ra 2
F = Re x ?1 Re [Tf C, rk] * 9—[1——— x (77£)
Similarly, the solution for Egqn. L8c may be expressed as

- @2}1 . iézp (78a)
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where

éh = A W (78b)

R sin

xspoob or Z(tang+f-p) and W is (78¢)

in which Xk

given by Eqn. 73b, and
25 RS 2
2p - 1 Lo X (784)
Thus

w = Re ‘@2 = Re [Ak Wk] (78e)

and
= -1—- = 1—- R 2 '
F = Re )\2@ Re[)?Aka]*ﬂLx (78¢£)
Moments, shears, and direct forces are then obtained by substituting

for w and F in Eqns. 68, 69, 70, 71, and 29.

Unsymmetrical bending

In the case of unsymmetrical bending past the elastic range of
stress, the zones of inelastic behavior are no longer coaxial. Further,
since the directions of yield are the directions of principal stress
and are not necessarily circumferential or meridional, we need only
distinguish between three zones: an elastic zone, a zone in which strain-
hardening occurs in one direction only, and a zone in which strain-hardening
occurs in both directions of the principal stress simultaneously.

Of the three, only the cases of elastic behavior and of strain-
hardening in both directions simultaneously are readily handled. Where

strain-hardening occurs in one direction only, the material properties
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vary, in effect, with the unknown directions of principal stress. The -

broblem is analogous to the case of an orthotropic plate or shell in

which the principal directions of orthotropy vary with the directions

of farincipal stress, and a general solution appears to be intractable.
The equations of equilibrium required in the general case increase

to five, visz:

-% (Nﬁ sin @) ‘+%N¢Q-N9.cos¢-sin¢Q¢-0 (79a)
. _
% '(Nm si.n;/_ys) +?; g + N¢O cos § - sin @ Q=0 (79b)
+ ? ( 'bQ
--aQ¢31n¢)+T+N¢31n¢+Ngs1n¢*qR31n¢=0 (79c)
% (M¢‘sin g) +%—5 Mo = Mg o0 g - Qf sin g=0 - (799)
% (M sin #) +%—+M¢O cos¢—QgRsin¢ = 0 (7%e)

The strains and curvatures may be expressed in terms of circumferential,

meridional, and radial displacements u, v, and w, viz.

é¢ 2 (- (80a)

€, = L(veot g-w+ 22 cosec ) (80b)

'me - % (-%—‘é cosec # + sin % (u cosec #) ) (80c)

X = ;1{-5 d7§ 7) "V}] - (80d)

Ao = 3 7) cot § + cosec2¢%2-g+%%*vcot ¢]‘ (80e)
R e
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1
'X¢9 = —-2-,: % (cosec 525’-a + u)]+ cosec § (-5— - v cos #) -
(80of)
u,v and their derivatives are neglected when compared to w and its derivatives

in further calculations.

The relationships between stress and strain again are different for the

different zones of the shell. In the elastic zone,

Et
Ng_ = ;;g (6¢+'b€g) (81a)
N, = fif(eg+aé¢) (81b)

M
Et 0
Yo = (3% b’;ée - ‘g‘ ' (81e)

My = D (X AXg) (81a)-
My, = D (')cQ +a)c¢) (81e)
M = - (10 DNy, - (81f)

-

It is again convenient to introduce a stress function F which in the

general case is defined in conical coordinates by

- .1F 1 L
N¢ -3 % [ 2 2e ~ (B2a)
i e
%
o | (82b)
9 ax?_ :
N“,m_;_. :9 (1 ) o ¢ (82¢)

and is seen to satiéfy-the equilibrium equations 79a and 79b provided
shears are.of smaller order than direct forces and may therefore be

neglected.
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Hence proceeding in the same way as for the symmetrical case, we

again derive the equations

Verkv'r &

X 2
VF-2 7V w=0

L 2 2 2

where YV = {7 + { and | in this case is given by

%6/’“ "

Equations 83 and 8L may again be combined to give

2
V F+ V F=gqR

6 2 g2 2
Vvt V=g V ¢

or alternatively,

v'$ -ivé -ok

where fzw+)&", andl-i%-f

as in the symmetrical case.

H

(83)

(8L)

(85)

(86)

=]

Where radial displacements ¥end to approach zero at the external

boundary of the shell, Equation 79c again requires that

Etw _
N¢+KQ+T-O

(28)
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and from Egn. 83

L 2
Vw+w=g %f s as before. (88)
The ordinate ¢e’ in the case of unsymmetrical bending, tends to have
less significance since the concentration of stress considered need not
occur at a constant @ ordinate around the shell. However, choosing a
value for ¢e in the region of maximum stress again allows the bending

L

term (v w) in Eqn. 88 to more nearly approach the corresponding term
for a plate and thus leads to greater accuracy than that given by the
value ¢e =0,

In the case of strain-hardenimg in each direction, the stress-strain

relationships give

aEt 2€
Ny =B (egrreg) ‘Ef}"'c (89a)
2€

x: o, (89b)

% (89¢)
R

akEt
NO = I.-;é.(eg'&ae‘d)*

 JEt |

9o = zTHy S -
2€)?

M¢ = -aD(DC¢*3')CQ)* E-{-&ng} Mc (894)
2
2 |

My o= -an(xg+»x¢)+ I}-{E{%ﬁ M (89e)

Mg T -1 -M D Ny (89¢)

The procedure for derivation of the differential equations is again

analogous to the symmetrical case.
=X

=— to be effectively constant,
Xo ~

Case (I) Assuming the terms g and
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or negligible, we again obtain the equations

L 2 2

aV welk V Foap | (50)
L 2 |

VF-% Vw=0 (91)

which may be combined as before to give

6 2

V F+ Yy F=a | (92)
6 2 R2 2

V w+ V=gt V a o ‘(93)’

W, 2 2 .
or Vﬁﬁ-i Vﬁ ‘%%‘f ” (9L)
1nwhichﬁ=w+1pﬁ' and xpgi?‘:-t- .

Where displacements and direct. forces tend to apprdach- zero at the

external boundary, Eqn. 91 requires that
. 2Etw | |
Ny + Ny - 0 | (95)

and from Eqn. 90,

4 2 , ‘ ,
Vw+w=-g§—t- | (96)

Case (II). ‘Alternatively, using Eqns. 83 and 90 to relate direct forces to

stresses, we obtain

6 2
ay/ F o+ F=qR - (97)

2

L
ay w-§1+ w=g§- ' (98)
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L 2 2
and ‘7¢ -iafl/zvlé-g_%{ (99)

where @E‘W*)\;F and 7\;51-92—

a Et

Each of the above operators may alternatively be expressed in spherical

coordinates as before, where for unsymmetrical bending

o[22, 1], 2 e
B ;2. :5;’.2 tan 9 59 R sinz¢ 26°

The solutions for w and F in each zone may again be conveniently
determined from the solution for ﬁ o

The solutions for EZS may each be expressed in the form

P - ¢h * ﬁp, (100)

In the elastic range of stresseé, .@.h is given by

< ]
n=0

8in n ©

2 cos @
-V v
+C logx+D + Z | [Cvx +D x ] (101)

n=1 sinn e

where v = n/cos ¢e’ A_ through D_ are complex constants, and Jv( ) and
Hv(z)( ) are bessel functions of order v. Where v is not an integer
Hv(z)( ) is replaced by J-v( ) in the solution. The variable x is defined

by Eqns. 26 or 27 as before. The particular solution ﬁ p is given by

2
ﬁp = i—%{ x° s for q constant. (102)
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Thus from the restrictions previously imposed,

== cos n @ 2
w = Re 55 . Rez [A 5 (3?y +pm (2)(x13/2)] +
vV v'vy . 0 Et
=0 sin n
(103)
. .
r e
= 1 =B ) 3/2 (2),_.3/2,] ¢ "
F Re[?x] 7T ImZ Evav G™%) + BH ) | .
=0 gin n
2.9 cos n O
- R
*eg log x + do + E [cvx Vs dvxv ] ) + %1_ x2 (10L)
' sinn ©
n=1l
where c:v and dV are real constants.
For strain-hardening in each direction, Case (I)
00 cos n @ o
.3/2 2 .3/2 R
w = Re E EVJV (x:1.3/ ) + BvHv( )(x13/ )] . + %-Ef (105)
v sinn 6
o0 / (2) / cos n ©
- _R_ .3/2 2 .3/2
F= aEtIm _E [AVJV (xi )+ BvHv (xi il .
o sinn ©

v sinn @

&= v v cos n o >
+°oIOgX+do+'E c X +dvx *%x \ (106)

Similarly for Case (II), w is again given by Eqn. 105 and F is given by

o0
e
___R E 3/2 (2),..3/2,| c= 1
F 3‘3:72}3t Im [AvJv(xi ) + BvHv (xi ) sinn 06
n=0
(%)
cos n @ 1/2 2
- Ra~/ “x
+ o 10gx+d+:>: c.x ' +dx +Lh_—' (107)
° ° — [v v sinn @
n=1
x R sin @

R
with x =37 = or —7E—(tan¢ +0-0)
al al/h, L cos ¢e a1 L e e
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From Eqns. 80 and 81, moments in the elastic range are given by

2 2
2D [, L 2w, 1 2 w)]

M¢ 12 dx X 99X oo8° ¢e x° 30°

M = _D_ [_]__ dw . 1 32 32W ]

9 2 Lx ¥ 2 g <2 57‘ 5::2

o e [5G 59

cOSeL

and from Egns. 79 and 108 a, b, and ¢ shears are given by

Q¢"'

l"ul o

2
-f%; (y w)

D 2
QO'“W%%(V W)

08
c e

From Eqns. 80 and 89, moments in the strain-hardening range are

given approximately by

2
N P pp— )]
M¢ -I?[ax X X o8 ¢ 2 39
ad 1 dw 1 3% ., 3%
M = = e - Vs M
0" "2 [x ¥E | o ? g7 Yy bx2]+ c

.. (3v) aD ? & 2w
M¢e cos ﬁe FE X o0
and from Eqns. 79 and 109a, b, and c, shears are given by

3 2
—a;(v W)

aD
Q¢ '§

(108a)

(108b)

(108¢)

(1084)

(108e)

(109a)

(109b)

(109¢)

(109d)
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A aD .]_'.b..( 2 ) (109
Qg cos ¢eL3 x DO V W e)

Hence for unsymmetrical bending in the elastic range, with

w, = Re [ Zv] cos n 0 where n = 0, 1, 2 eses00 (110a)
and
= : (1) -
z, = A (x Ji) + BH_ (xﬁ )

Eqn. 108 gives

. 2
D 1 n
M, = - Re [Z" +RA (=2 = —— 7 )J cos n O (110b)
@ L§ v "3 A ¢e 2 v

2
. _D 1 n’ RE
My -P-Re I:iz;--—-?-—-—-g z, * DI :IcosnO (120¢)

cos ¢ex
- (1-#) D 1.t 1 .
M¢G = +C_OE-7; i-zRe n;{-Zv-;?ZV) sin n © (1104)
= D g P 7! (110e)
Q¢ = I.-.F e |i v cos n © 110e
Q = D lge |inz |sinne (110f)
] 3 X v
cos @ L

The corresponding equations in the strain-hardening range are

*Where symmetry occurs about a plane through the poles (@ = 0, m)
only the cosine series is required.

**Smnmation fromn = 0 to n = 60 is here intended.
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‘ . N
W =Re [Zv ]cos n o n=0,1 2, ee0s OO (111a)
as before, and from Eqns. 109
M, =M -‘DRe[Z"+'v(12'- n’ Z2_)cos n © (111b)
g e ;? v XV cos ¢e x>
M, =M -E-ERe[-]-l A -—2———2-“2 z *72"—] cos n © (111c)
c 12 X ¥V cos ¢e x* v v _
: ‘ aD 1 1 ' .
=(1#) ———5Re | n(z2' -2 )| sinn?o (1114)
Hﬁg cos §_ L v x v
9% Re [i z;,] cos n @ (111e)
———-3-—Re in Z sin n 0 ' (111£)
cos ¢ ] | | -

From Eqns. 82 the direct forces in eachcase (for q = 0) are

°o & P "”v“2‘
N¢-E—t1m[ --—Z]cosngd-—z-* Z[Cv(-v-——-z-?)x
x v cos” 0, |
rd (v - n2 ) v-2[cos n & _ (112a)
A 4 é x
cos ¢e
R 1] 2 cosn9+ v(vﬂ.)x
Et v
n=1

+d, v(v-1) x7°2 ] cos n © (112v)
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Z n [Cv ( -v-»l)x"‘r"'2

N¢O E,Enn cos Im ‘ 1 2! --2-:L 2 l sinn 9 +
x n=1

ra, (v1) 72 ] e s (112¢)

cos
e

Boundary cOnditions

The boundaries” to. the various zones of behavior must necessarily
be determined by trial, and in the case of unsymmetrical bending this
will be the most difficult part of the ‘problemo

At the common boundary of two zones, the conditions of continuity
(of deflections, slopes, moments, and shears) are applicable. Other
boundary conditions required to determine the integration constants are:

1. vat a clamped edge, deflection w and slope w' are zero.

2, at a simply supported edge, deflection w and normal moments ‘l'!n
are zero, and

3. at a free edge both normal moments !In and effective normal shears

\' n 8Te Zero, where

Vv = - annt

A Y

The degree of restraint imposed on inplane forces at a boundary
provides further determinative conditions.

In the special case where a = O, i.e. of purely plastic bending,
it is often convenient to consider the zbne of yield to be retractod
to a line, in which case the condition that slope is contiuuous is -

" necessarily replaced by the yield condition

Hn=!{p

or more accurately, by
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v
Mn=Mp[l-(N§)2] (113)

where Mﬁ and Np are respectively the yield capacities for moment and

direct force.

II, ROTATIONAL SHELLS

General Case

The equations for a specific zone in a spherical shell may be
generalized to the case of a specific zone in a general shell of revolu-
tion as follows.

In the elastic range, following Mushtari and Vliasov (Reference 2l)

there results

2
L 2 qR
v 95 -1 V§ Sp = E§ (11ha)
where, in conical coordinates,
2 2 2
= - + 13 + 1 2 (11hp)
V x2 x 9% cos x2 502
2 R 2 2
= __O' + (l B + 1 ' 1
RE AR S vl (ko)
r
2
¥= T, (11L4)
x = JI"—- [rz tan ¢e +5 - Se] (11he)
o

ég s w+\F (11Lf)
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R
X =i (114g)

i =2
Et
Tys Tp = meridional and circumferential radii of curvature respectively

R = radius at g=0
R 1/2 1_'1/2
L = 9 é
° [12(1-v )_] i/h

8 = curve length

(11kh)

Similarly, in the inelastic range for Case (I) as before, stress

and displacements are governed by

b 2 aR 2 L
Vpg-ib‘vgf-c—mg— x=%§i% 4 (115a)

where, for strain-hardening in the circumferential direction only (axi-

symmetrical bending)
L L |
V = V¥ b= a1/2=d, cml (115b)

for strain-hardening in the meridional direction only (axi-symmetrical
bending)
b N '
Vp‘s A s bnal/z, c=a, q = a2 (115b)
andwf@rAstrain-hardening in bath direeticns of principsl stress (axi-

symmetrical or unsymmetrical bending)
V. = \V s b=1 e=a=4d {1154)

The form of the Equativné 1lha and 115a may be inferred from the

corresponding equations for the spherical shell. The first term in each
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represents the plate or inplane effect of bending, and direct fétrces,
and the second the curvature or membrane effect. The third term is the

N
loading term. Thus the effect of plasticity is to modify the V

operator in Eqn. 29 and the effect of the varying curvatures is to
2
modify the operator E? » The constants b, ¢ and d allow for change in

the coefficients due to modifications to the elastic modulus.

Special case

Where the radii ry and r, are constant over the zone considered,

R by
we have ;2 = constant, ;g = constant, and Eqns. 1lha and 115a may be
2 1

readily solved by separation of variables and the method of Frobenius
(25).

Ron-uniform thickness

For shells of varying thickness the equations are developed in the
same manner as for the uniform shell, except that the terms D, D., t,
and tl? must be consideréd as variableao For an_aﬁi—symmetrieal ghell,
f.e0 t = t(f) under axi-symmetrical loading (q = a(B and with the

furthér generalization that E = E(@) the resultant equations are

L b 2 2 R 2 b
Vpl ° sz w+hb Vv ° Va‘ ws= E-E;ﬁ ° sz q (116a)
"L L 2 2 2
Vo « Vi, F*b Vo © Vg F=R >V q (116v)
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Vh=Et lj‘f_(l_de)-ﬁ a4 L 14,
p2 = oo x 42 Bt d—;z x dx ‘Et x &

DsE, ty, R = (D, E, t, R)¢ - o5 and b, ¢, and e are constants.

In the elastic range,

bsc=zesl
for circumferential strain-hardening,

bsesa c=1

-e

for meridional strain-hardening,

Q
L}
'Y
-

®
n
o -

b= 1
a

’

and for strain-hardening in each direction,

bsesl |, cC =a.

III. SIMPLIFICATION FOR DESIGN

In the class of problem considered, that of a stress concentration
in the shell, yielding is normally limited to a relatively narrow zone.
Where the zone considered is narrow, and stresses vary considerably over
. the zone, the lower order derivatives of F and w in Eqns. 1lha and 115a
tend to become less significant and for design calculations may be
neglected. In this way the whole second term in each equation may be

omitted leaving, for Eqn. 1lha
2
L aR
o
Y, 55 - (117)

and for Eqn., 115a
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_ 0
vp ? i cEt (118)

where p and c are defiﬁed in Egns. 115.

The real parts of these equations may be inferred from the analogy
of the plate on an elastic foundation, which may be extended to the
rotational shell. As the width of the zone considered approaches zero,
the reaction, and hence the effect, of the elastic foundation, becomes
of smaller order than the bending term. Hence in Egns. 11lha and 115a,
the second term--describing the effect of the equivalent foundation--
may be neglected.

Thus in the case q = O, over the zone considered, there results for
axi-symmetrj,

In a narrow elastic zone

2 2
= *
W ) *Cy X *cy log x # ¢, x" log x (119a)

Sy

- -D—é 2(1+10)c2 - (1-!))03 l? + chgf log x + 3 +A(2 log x + ].',91
L
0

X

(119b)
D | 1

My o= -5 2(1*0)02 * (1—?)03 Sy 4 chi‘Z log x+ 1 +A(2 logx+ 3
L x

(125¢)

G - - [h c, ;J (1150)

o}
Ng = Cg % Cy L C, (2 log x * 1) (119)
X
Ny = cs-c6:1?¢c,7 (2 log x + 3) (119¢£)

Por circumferential strain-hardening over a narrow zone
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1/2 1/2
2 1+ 1-
w =0y +0C)x +03xa +chxa (120a)
D 1/2 -
My = - 2+ [202(1+a:>) + ¢, (1+a2) (a1 24pa)x 142
1 3
[o]
1/2
s Ch(l-al/ 2y(2al/2 4 pa)x1-2 ] +M (120b)
- in_l_ 2C_(140) + C_(1+ 1/2)(1+ 1/2 14272
My 2 0 5(1ra a’ RA)x
o] /2
1
*'Ch(l'al/ 2y(1-a%/29)x"12 ] 2 (120¢ )
D. | 2c ‘
=1 |2 1 oAty 1
Q -LB[X(I*ra)] (x)Lo M (120d)
e
1/2 1/2
Ng® Oy * Cg (14al/2) 187 4 o (1-a1/2) 7172 (120e)
. 7
1/2 1/2
Ny = 05 + G, (1+a1/ 2) al/ 2 x'l*a - 07 (l-al'/ 2) al/ 2 ;l-a (120f)
For meridional strain-hardening over a narrow one
-1/2 . _=1/2
wE Cl + 02 x2 + 03 £ + Ch xl-a (121a)
aby -1/2,,-1/2 1+a1/2
M¢ =-— 2c2(1w) + C_(1+a ) a +®) x
1, 3
o]
/2., -1/ 1-a"1/2
+ Ch(l-a Y(-a +A) x + Mc (121v)
M. = ?}_ oC (l +R) +C_(1+ '1/2)(1 + R "1/2) "1"'3-1/2
o "2 ]2 3 e a  a x
o]

~1/2
+ Ch(l-a-l/ 2)(%l‘- - 7~Ja-l/ 2) x 128 ] + R Mc (121c)



aD C
-1 2.1 1%
Q¢ _L3 2x(1 a] +LxMc (1214)
. o
-1/2 -1/2
N¢ = 05 *+ Gy (1+a-1/2) x:1+a + C7 (1~a-1/2) x—l-a (121e)
-1/2 -1/2
Ng = C5 + C (1+a-1/2) a-l/2 x-1+a - 07(1-a-1/2) a—l/zx—l-a
(121£)

With strain-hardening in each direction, deflection w is given by Eqn. 119a

i

aD 1
My = - =3 [2(1*0)02 - (1) c, —;2- + Ch{?. log x + 3

L
[e]
(2 log x + 1)}] + M | (122a)
aD 1
M o=-2= |2(R)C, + (1-R)C3 =5 +C, J2 log x + 1 +
(2 [, 0 kv
(2 Log x + 3)}] + M (122b)
aD 1
6= -5 [u S, ;] (122¢)
(o]

and N¢ and Ng are given by Eqns., 119e -and f.
Alternatively direct forces are given by Eqns. 72 in each zone, thus
eliminating the constants C5 through 07.

For unsymmetrical bending in a narrow elastic zone,-with q = 0, from

Egne 117
*

(g; c + c2x2 + G, log x + (.‘.hx2 log x + [Cih F(v) x log x]{

cos ©

sin ©

# This term is necessary for a fourth independent, solution, for the case
v =1, whenn =1 and cos ¢e =1, i.e., ¢e = 0,
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cos n@
v 42 -V -v+2| .
+
[Cnlx YO X *Opx 4 Cyx ] ‘Csin 6

ns= 1, 2, 3 esese OO (123)
n L,v=1
where v = cos B * as before and F(v) = {;O,V 41

e

and moments, shears, and direct forces are given by Eqns. 108 and 82, 1In
a narrow inelastic zone with strain-hardening in each direction, w is again
given by Eqn. 125 and direct forces by Eqns. 82 but moments and shears in
this case are given by Eqn. 109.

As a further, or alternative, simplification where ¢e is small (for

example ¢e<<~% ) it is convenient to introduce the approximation

2 2
<72 s 2,1 2 .17
‘ 'bx2 X °x 235

and hence v = n, in the previous equations.

The variable x is still defined by Eqns. 26 or 27, and the coordinate
system is thus equivalent in effect to a plane polar system with radial
ardinates modified by the inclusion of the terms containing ﬁe.

An advantage of the above solutions (Eqns. 119 through 122) is that
they are in closed form, and are therefore readily evaluated at any point.
Where the zone of yield is particularly narrow (as it may .be when a=0) and
the direction of yield is essentially meridional, the zone mﬁy be considered
to contract in width to a line and may be treated as a boundary condition
(see boundary conditions, also Reference 23), further simplifying the analysis,
This is of special value when 8 = O, and in the unsymmetrical case, |

Where the zone considered is not as narrow as in the cases above, the

equations previously presented (Eqns. 21 through 99) are required, and in
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the case of a spherical shell, their solutions are largely available in
tabulated form, e.g. for axi-symmetrical bending in the elastic zone, the
functions describing deflections, moments, shears, and direct forces are
tabulated in Referencel(and References 19 through 22), and for the inelastic
zone (Case II) equivalent tables are presented in Reference 2. For the
cases of unsymmetrical bending considered, only the lower order Bessel
functions in the solutions presented are directly tabulated (References

19 through 22) but recurrence formulae (Reference 22) allow the higher
order functions, if required, to be expressed in terms of these., For design
ecalculations the effect of these higher order functions may generally be

neglected.

DISCUSSION

Thué equations are presented for the analysis of small displacements in
thin rotational shells, under bending in the elastic and linear-strain-hardening
ranges. Emphasis is given to the casé of stress cééentrations in the shell
and to the solution, for the purpose of design, of stresses in the region of
this concentration. (Outside this region, and for cases other than this, in
which stress concentrations do not occur, the simpler membrane solutions
are normally sufficient.)

In the special case of a spherical shell of uniform thickness, under
axi-symmetrical bending, the differential equations which govern the behavior
of the shell are presented at essentially three different orders of accuraecy.

Theyequations are first presénted in a form which may be considered
exact within the iimits of thin shell and small deflection theory. They are
then reduced to a simpler form to facilitate solution by neglecting certain
lower ordér terms. This restricts their application to a specific zone of

the shell. When this zone is very narrow as it may well be for a zone of
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increased thickness surrounding an opening or fitting in the shell, the
equations may be further reduced by neglecting more terms as deseribed,
resulting in closed form solutions in these zones. (An estimafe of the
order of accuracy of the approximate solutions may be obtained by substitu-
tion into the more accurate equations presented.) For the general case of
a rotational shell and unsymmetrical bending, the two latter (approximate)
forms of solution only are copsidered.

When the zone of yield is extremely narrow, as it may be for the case
of yielding in the meridional or nearly meridional direction only, and
particularly when the ratio %a® of Ep to E is small, a further simplifica-
tion may be introduced by considering the zone of yield to be reduced in
width to a line. It may then be considered merely as a boundar& condition,
as previously noted, which is of special advantage in the unsymmetrical
case.

The solution of a typical design problem, using the equations presented,
is outlined in Example 1. The use of the baéic equations for the direct
design (for t) of narrow zone of increased variable thickness (required to
resist high stress concentrations at the edge of a fitting or opening) is
outlined in Example 2. |

Thus from the equations presented, a range of problems involving the
bending of shells in the post-elastic range may be readily handled, allowing
the design of thinner shells when load capacity is the criterion. Thé mag-
nitude of the material savings thus involved is dependent on the distribu-

“tion of lpéding, the proportions of the shell, and the stress-strain properties
of the shell material, and can be quite considerable in the claés of problem
considered. Thus where weight is a significant factor in design, the utiliza-
tion of the post-elastic range of the material is well justified, and in some

cases, essential,
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Examples:

l. Consider the axi-symmetrical problem of a thin spheriecal shell with é
rigid cylindrical insert, axially loaded into the strain-hardening range
of the shell. It is required to determine the thickness t of the shell
necessary to just carry a load Pu at the center of the énsert; The
ordinate at the insert edge is ¢o and the matgrial prqperties (of the
shell) are denoted by a)s E;, and Ep,.

The reQuired thickness is necessarily determined by tpial. Assum-
ing that radial yielding only occurs prior to failure and that the width
of the yielded zone is very narrow (in the case conside;ed), the deflec-
tion within the yielded zone is given by Eqn. 121a and the cortresponding
moments and shears, by Egqns. 121b through 121d. In the surrounding, and
not so narrow, elastic zone, deflections,-moments, and shears are given
by Eqns. 68. The integration constants contained in the above equations
and the correspoﬁding load Pi are then determined from the boundary
conditions,

e.g. at the insert edge (f = ¢o)’

w! =0

%

Py

"?2nR sin @
0

at the edge of yield, which is assumed to be at § = ¢1 ,

M¢e =M¢p = M
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(in which the subscripts e and p dengte the elastie and inelastic
zones respeetively) and as ¢ becomes large we have the further conditions
w—+0
w!'—=0
Thus P1 and M¢(¢ = ¢o) are determined and compared to Pu and Mﬁ
respectively. By successive approximation ¢1 and tl are adjusted to

give the conditions P, = P_and M, =M .,
1 u ¢° u

Where the thickness is given and the loading capacity is required,
the procedure is slightly simpler, and only @, must necessarily be
determined by trial,---to satisfy the condition M¢O = Mﬁ as before.

In the previous example, a shell of unifogm thickness was considered,
and the shell analysed, using the equations presented to determine the
thickness, t, required. It may be of interest, however, to consider an
alternative approach.

If the thickness t were allowed to vary with @# (i.e. t = t(ﬁf)’
then t may be considered as the dependent variable in the problem, and
may be solved for directly. This process may he termed as direct design
(as distinct from analysis as previously considered), and is of particular
advantage in designing'to resist high stress concentrations around open-
ings or fittings in the shell,

Thus if, in the example previously considered, a very narrow band
immediately surrounding the insert is allowed to vary in thickness, the
behavior of the shell and its ultimate loading capacity may be considerably
improved. The required thickness is determiped by combining with the
equations of equilibrium a suitable behavior criterion for the shell.

(a) For example, if a = Ep . 0, and a condition of pure yield

E
(M¢ = Mb.s Mb(ﬁ) ) is allowed throughout the narrow zone considered,

substituting Mb for M¢ and Mg in Eqn. lc gives:
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and from the loading P1 on the insert (neglecting inplane forces)

!

W =" SmEsn P

Equating these two expressions for Q¢ and integratiﬁg with respect to

@ gives
Pl
Mp = -E-ilogﬁ + Cy
M 1/2 L P, 1/2
and hence t = (—£) = |—=( - 5n log # + Cl)
Op Jp '

in which the constant C1 may be evaluated to give optirmum behavior or
economy in the surrounding, uniform shell., Other behavior criteria may
be similarly met giving different expression for t

(b) eegs if the ratio a of Ep to E is finite, and the insert is
elastic (e.g. a fitting in the shell) and of such proportions that
o—¢ <0 over the narrow zone considered, the design criterion O 0~ G‘u

over this gone might be introduced. Thus neglecting the effect of Poisson's

ratio for simplicity, circumferential moment may be expressed as

= _al 2
Mg Mé I? - w ct
in which
c = (g #+ 3=cr )
'} 2 ¢

and operating with
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g

= (x tz)
M% s for the case where M

also, is in the strain-hardening range. (This must later be ascertained
by substitution.)
Substituting the above expressions for Mﬂ and Mg s and the previous

expression for Q¢ s into Egn. lc as before, results in

av— P

d d 2 2 1
l—’a-x(X‘a'x‘(Xt))-t] -ﬁ

and solving (by integration) this differential equation for t gives C'L* E

1/2 ¢,
’:ﬁ-:—i-logx'fclx'2+0] 7t{ *C]

in which C1 and 02 are arbitrary constants of the integration which may
be determined (from the boundary conditions) to provide optimum behavior
or economy in the remainder of the shell. Other applications of this

procedure are considered in Reference 26.



FIG.1 STRESS-STRAIN RELATIONSHIP
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FI1G.4 PROJECTION OF ZONE OF SHELL QNTO
CONICAL COORDINATE SURFACE -
LINEAR PROJECTION OF MERIDIONAL ORDINATES.
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FIG.5 VERTICAL PROJECTION ONTO
CONICAL COORDINATE SURFACE



FIG. 6 SIGN CONVENTION AND NOTATION
ROTATIONAL SHELL
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Vith the nzswaptions stated for the stress-~strain relationship in tha
inelastic range, the total strains in the principal directions can be

expressed in terms of stresses as
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The requirements for the stress-strain relationship in the inelastic

range are:
'1) Since in the strain hardening range, the material is considered

initially rigid (i.e., rigid strain hardening) then for the initial condition
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2) For the special case a = O, Tresca's yield criterion is to be

satisfied and this requires

1

O'j=0"c==0"p and 6".=Ee]._+'ﬁo'1').

3) For the special case a = 1, and hence (7; = 0, we require Hooke's

law to be obeyed.

These requirements are explicitly met by Eqgns. (A) and (B) if we modify



the last terms in them by letting (1 - aﬁ2) o 1, which is quite justifiable

as always a <1 and &2< <1 ., Hence we have
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