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ABSTRACT 
 
 
 

Using Chemoproteomic and Metabolomic Platforms to Identify Nodal Metabolic 
Pathways Important to Inflammation 

 
 
 

by 
 
 
 

Devon Hunerdosse 
 

Doctor of Philosophy in Endocrinology 
 

University of California, Berkeley 
 

Professor Daniel Nomura, Chair 
 
 
 

There are an increasing number of human pathologies that have been associated with 
altered metabolism, including obesity, diabetes, cancer, atherosclerosis, and 
neurodegenerative diseases.  Most attention on metabolism has been focused on well-
understood metabolic pathways and has largely ignored most of the biochemical 
pathways that operate in physiological and pathophysiological settings.  This is, in part, 
because of the vast landscape of uncharacterized and yet-undiscovered enzymes and 
metabolites that operate in metabolism.  One technology that has arisen to address this 
challenge is activity-based protein profiling (ABPP). ABPP uses activity-based chemical 
probes to broadly assess the functional states of characterized and uncharacterized 
enzymes alike across entire enzyme classes.  ABPP, when coupled with inhibitor 
discovery platforms and functional metabolomic technologies has led to discoveries that 
increase our definition of known biochemical pathways to expand our knowledge of 
metabolism in human health and disease. 
 
Being able to identify key nodal metabolic pathways will undoubtedly lead to new 
therapeutic strategies for combating diseases associated with metabolism.  We are 
particularly interested in studying inflammatory metabolism, because chronic, low-grade 
inflammation is increasingly associated with many human pathologies.  Although there 
are several successfully marketed small molecule anti-inflammatory drugs such as 
cyclooxygenase inhibitors and glucocorticoids, many of these compounds are also 
associated with various adverse cardiovascular or immunosuppressive effects.  Thus, 
identifying novel anti-inflammatory small molecules and their biological targets is critical 
for developing safer and more effective treatment strategies for inflammatory diseases.  
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We conducted a chemical genetics screen to identify small molecules that suppress the 
release of the pro-inflammatory cytokine TNFα from stimulated macrophages.  We have 
used an enzyme class-directed chemical library for our screening efforts to facilitate 
subsequent target identification using ABPP.  Using this strategy, we have found that 
KIAA1363 is a novel target for lowering certain pro-inflammatory cytokines through 
affecting key ether lipid metabolism pathways.  This study highlights the application of 
combining chemical genetics with chemoproteomic and metabolomic approaches 
toward identifying and characterizing anti-inflammatory small molecules and their 
targets. 
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Introduction 
 
Advancements in the genome sequencing effort have revealed a huge number of 
predicted but previously unknown proteins.  Thus, in the post-genomic era, scientists 
are faced with the daunting task of deciphering the biochemical, physiological, and 
pathophysiological functions of the vast landscape of poorly understood or 
uncharacterized enzymes (1,2). The incorporation of these proteins into our incomplete 
knowledge of metabolism is the broad goal of modern proteomic and metabolomic 
technologies. Understanding the biological functions of these uncharacterized enzymes 
will undoubtedly lead to an expansion of our knowledge of metabolic pathways and to 
novel therapeutic targets that can be manipulated to treat metabolic diseases. Indeed, a 
large number of complex human pathologies are associated with dysregulated 
metabolism that now includes obesity, diabetes, cancer, and inflammatory diseases, but 
most research has focused on well-established biochemical or regulatory pathways, 
largely ignoring the majority of poorly understood or uncharacterized networks in 
metabolism (3). Being able to identify key nodal metabolic pathways, not only in the 
well-characterized metabolic realm but also in the undiscovered biochemical networks, 
will undoubtedly lead to new therapeutic strategies for combating diseases associated 
with metabolism.  
 
Powerful proteomic and metabolomic platforms in combination with advancements in 
chemical tools have emerged to address this challenge.  These chemical proteomic 
(chemoproteomic) and metabolomic technologies can be incorporated into an integrated 
workflow to identify and characterize previously unannotated enzymes in complex 
physiology and disease and to develop potent and selective small molecule chemical 
inhibitors for these enzymes.  This chapter focuses on such chemical approaches that 
have emerged to investigate metabolism to provide insights into enzyme and metabolite 
functions in complex physiological or pathophysiological settings. 
 
Broad Profiling of Enzyme Activities 
 
Traditional systems-level approaches for studying gene expression, like microarray and 
high throughput RNAi, have led to significant advancements in our understanding of 
physiological and pathophysiological processes alike (4,5).  One notable shortcoming in 
such genomic technologies is the reliance on survey and manipulation of gene 
expression to assume protein function, and as a result, post-translational control of 
protein activity often goes unaccounted for.  These technologies do not provide 
information on the functional state of enzymes in complex living systems.  The last 
decade has seen the emergence of powerful chemoproteomic and mass spectrometry-
based approaches that facilitate the assessment of enzyme activities or protein hyper-
reactivities en masse. 
 
One such chemoproteomic platform is called activity-based protein profiling (ABPP), 
which uses active-site directed chemical probes to assess enzyme activities in complex 
biological samples (6–8).  An activity-based probe consists of a chemical reactive group 
that covalently reacts with the active sites of enzymes, coupled to an analytical handle 
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to read-out enzyme activities by SDS/PAGE and fluorescence (e.g. probes coupled to 
rhodamine) (gel-based ABPP) or enrichment and mass spectrometry-based proteomic 
platforms (e.g. probes coupled to biotin) (ABPP-Multidimensional Protein Identification 
Technology (ABPP-MudPIT)) (Figure 1-1) (7,8). Thus, these probes facilitate the 
detection and enrichment of entire families of enzymes that are united by common 
catalytic mechanisms (e.g., kinases, phosphatases, proteases, histone deacetylases, 
and hydrolases) (6,7).  Also in recent years, activity-based probes have been developed 
for other types of enzymes such as glycoside hydrolase enzymes, ATP-binding 
enzymes, caspases, and cysteine proteases (Table 1-1).  Unique to ABPP platforms is 
the ability of these probes to assess the functional state of uncharacterized enzymes in 
the proteome, since the chemical probes react with the active sites based on reactivity 
and not on the state of functional annotation. ABPP also enables the detection of 
changes in enzyme activities that occur without changes in abundance at the mRNA or 
protein level and facilitates the functional assessment of very low abundance enzymes, 
which can be enriched with activity-based probes for subsequent proteomic analysis (9). 
Additionally, native proteomes are compatible with ABPP, eliminating the need to 
recombinantly overexpress, knockdown, or mutate enzymes of interest in living systems 
to elucidate their biological role. 
 
Two analytical platforms for exploring activity-labeled proteomes are commonly used.  
The first, gel-based ABPP, involves the separation of probe-labeled proteomes by SDS-
PAGE followed by in-gel fluorescence scanning which facilitates the rapid comparative 
analysis of multiple proteomes in parallel (Figure 1-1 A).  This platform, of course, does 
not reveal the identities of labeled enzymes.  To overcome this limitation, researchers 
have established liquid chromatography/mass spectrometry (LC/MS)-based ABPP, in 
which biotinylated probe-labeled enzymes are first enriched with avidin, subjected to on-
bead tryptic digest, then resolved, identified, and quantified by multidimensional MS (9) 
(Figure 1-1 B). 
 
ABPP has been previously used to identify many dysregulated enzyme activities that 
underlie human diseases or enzyme activities that can be used for industrial 
applications. There are numerous successful examples of ABPP platforms used to 
identify unique and novel metabolic enzymes that drive cancer pathogenesis that may 
represent promising targets for cancer therapy. Using the serine hydrolase-directed 
fluorophosphonate (FP) activity-based probe, Cravatt, Nomura, and colleagues have 
shown enzyme activities such as KIAA1363 and monoacylglycerol lipase (MGLL) as 
upregulated in aggressive human cancer cells and primary human tumors and were 
critical nodal enzymes in driving malignant and tumorigenic features of cancer (10,11). 
These probes have also been used to identify the enzymes urokinase (uPA) and tissue 
plasminogen activator (tPA), as highly secreted enzymes in aggressive human breast 
cancer cells (12,13). Quigley and colleagues showed that active extracellular uPA, but 
not total uPA levels, were upregulated in high-intravasating variants of human 
fibrosacroma HT-1080 cells and that blocking uPA inhibited invasion in vitro and 
intravasation and metastasis in vivo (14), indicating increased proteolytic processes 
contribute to cancer pathogenicity. Using the serine hydrolase probe, Cheresh and 
colleagues profiled primary human ductal adenocarcinomas and identified 
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retinoblastoma-binding protein 9 (RBBP9) as a tumor-associated serine hydrolase that 
promotes anchorage-independent growth in vitro as well as pancreatic carcinogenesis 
in vivo through overcoming TGF-b-mediated antiproliferative signaling by reducing 
Smad2/3 phosphorylation (15). 
 
ABPP has also been used to identify nodal or dysregulated enzyme activities in bacteria 
or in viral infections. Pezacki used ABPP to identify carboxylesterase 1 (CES1) as an 
upregulated enzyme activity in hepatitis C virus (HCV)-infected hepatoma cells that was 
also critical in maintaining viral replication (16). The same group used a non-directed 
phenyl sulfonate ester probe to target a broad range of enzyme families and showed 
that HCV infection led to dysregulation of several protein activities that may be relevant 
to HCV replication (17). Wright and colleagues recently used a cysteine-reactive 
sulfonate ester probe and the serine hydrolase probe to identify several dysregulated 
enzyme activities in Aspergillus fumigatus, the primary pathogen causing the 
devastating pulmonary disease Invasive Aspergillosis (18). The same group also 
developed activity-based probes for cellulose degrading enzymes in Clostridium 
thermocellum which may have applications in biofuel development (19). 
 
ABPP has also been used to identify important enzymes involved in the development of 
insulin resistance and the metabolic syndrome. Wright and colleagues developed a 
chemical probe for ATP-binding proteins by incorporating reactive acyl phosphate 
moieties that directly acylate the lysine e-amino residues of ATP-binding proteins such 
as ATPases, kinases, and nucleotide-binding proteins.  This probe facilitated the 
identification of altered citric acid cycle enzymes, oxidative phosphorylation, and lipid 
metabolism enzymes in mitochondria isolated from the skeletal muscle of high-fat diet 
fed mice (20). Cravatt and Barglow used an a-chloroacetamide dipeptide probe library 
and serine hydrolase probes to profile enzyme activities in obese ob/ob mice and 
identified multiple dysregulated metabolic activities including fatty acid synthase, 
hydroxypyruvate reductase, MGLL, malic enzyme, and liver carboxylesterase (21).   
 
ABPP platforms have also been successfully used as imaging agents for imaging 
dysregulated metabolism in cancer cells. Bogyo and colleagues have developed a suite 
of chemical probes for cysteine proteases and caspases and have successfully used 
these probes for in vivo imaging of tumors whose formation, growth, and invasiveness 
are promoted by activation of cathepsins (22–28). These probes can potentially be used 
in the clinic to define tumor margins, diagnose tumor grade, assess drug-target 
occupancy, and monitor tumor apoptosis in vivo. Cravatt and colleagues also developed 
an imaging probe for the cancer-associated serine hydrolase KIAA1363 to provide 
temporal and spatial tracking of KIAA1363 in aggressive human cancer cells (29). 
 
There have also been pioneering efforts to perform high-throughput screening (HTS) of 
enzyme activity assays to facilitate the identification and characterization of enzymes 
with desired enzyme activities or for inhibitor discovery efforts (to be covered below). 
ABPP is amenable to HTS strategies using fluorescent-tagged activity-based probes 
and fluorescence polarization (fluopol) screening (30). Siuzdak and Northen have also 
developed innovative HTS enzyme activity assays based on a Nanostructure-Initiator 
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Mass Spectrometry (NIMS). NIMS offers superior resolution and sensitivity to MALDI 
and allows for spatially defined mass analysis of peptide microarrays, single cells, or 
even tissues (Northen et al., 2007). The NIMS-based enzymatic (Nimzyme) assay 
immobilizes enzyme substrates on a “soft” (noncovalent) mass spectrometry surface by 
fluorous-phase interactions and enzyme products are then detected by 
desorption/ionization.  This technique allows surface washing steps to reduce signal 
suppression in complex biological samples, is sensitive to very low abundance enzymes 
(500 femptograms), and works with a wide range of pHs and temperatures (31). 
While there are natural or artificial substrate assays that can be performed to assess the 
activities of enzymes by color or by indirectly measuring product formation by a coupled 
assay or biosensor, these assays are only applicable to a narrow range of biochemical 
transformations for which methods have been developed. Mass spectrometry-based 
assays are more universal but often require lengthy chromatographic separations, 
reducing throughput. Northen and colleagues have further advanced this platform by 
combining the NIMs technology with acoustic printing to speed up the liquid-liquid 
handling process to make this approach even faster (32). Nimzyme is a NIMS-based 
analytical method that detects enzyme activities in complex biological mixtures, 
circumvents time-intensive chromatographic separations by in situ fluorous affinity 
purification. In combination with acoustic sample deposition, Nimzyme assays are 
amenable to HTS approaches for optimizing conditions for enzyme activities (e.g. 
temperature, time, pH, buffer conditions) or testing a library of mutated or evolved 
enzymes for new functionalities. 
 
Using this approach Suizdak, Northen, and colleagues were able to identify and directly 
characterize b-1,4-galactosidase activity directly from complex proteomes from a 
thermophilic microbial community lysate (31). They also applied the Ninzyme 
technology coupled with acoustic printing to characterize glycosyl hydrolases (32). 
Recently, Cheng et al used the NIMs assay in the thermophilic cellulolytic actinomycete 
Thermobispora bispora to identify optimal growth conditions to maximize b-glucosidase 
production towards discovering and characterizing enzymes from environmental 
microbes for industrial and biofuel applications.   
 
Collectively, approaches like ABPP and NIMS are modern technologies that expand our 
ability to identify and characterize important enzyme activities on a much broader or 
faster scale to identify important metabolic enzymes in diseases or in industrial 
applications. 
 
Chemoproteomics for Developing Selective Small Molecule Inhibitors for 
Metabolic Enzymes 
 
ABPP is, no doubt, a powerful technology for the discovery of novel, uncharacterized, or 
dysregulated enzyme activity within proteomes.  Selective tools with which to perturb 
enzyme activity are required to determine the biochemical functions of these enzymes 
in (patho)physiology.  Traditional genetic approaches to overexpress, knockout, or 
mutate enzymes in living systems have shed light on countless biochemical processes 
but often fail due to organismal death or toxicity, increased compensatory pathways, or 
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the inability to gain temporal control over protein function.  Small molecule chemical 
inhibitors offer superior tools to assess enzyme function, because they facilitate 
spatiotemporal control over functionality without changes in protein expression. 
 
Thus, the development of chemical tools to interrogate metabolic enzymes of interest is 
invaluable for both further investigating their underlying biology and developing small 
molecules for drug development. Important to the generation of chemical tools is the 
ability to validate the selectivity and efficacy of the small molecule to not only make 
certain that the follow-up biology is due to on-target effects, but also to ensure safety of 
the molecule for follow-up clinical development.   
 
ABPP has emerged as a powerful platform for developing potent and selective small 
molecule inhibitors for both characterized and uncharacterized enzymes, which have in-
turn been used to better understand metabolic pathways in living systems (8,33)(Figure 
1-2). Because activity-based probes bind to the active sites of enzymes, inhibitors can 
be competed against probe binding, facilitating a competitive platform for inhibitor 
discovery (8,34,35). Furthermore, because the activity-based probes assess enzyme 
activities of large numbers of enzymes, the selectivity of the small molecules can be 
tested across entire enzyme class(es). Thus, this competitive ABPP approach can be 
utilized to develop potent and selective inhibitors for any enzyme, regardless of its state 
of annotation, if there is a cognate activity-based probe for the enzyme of interest. 
 Selectivity of covalent inhibitors can be further tested across the entire proteome by 
developing a small molecule mimic of the lead compound that incorporates a 
bioorthogonal handle (e.g. alkyne and azide) (36–38). This probe can then be reacted 
with complex proteomes, subjected to click chemistry to append an analytical handle 
(e.g. biotin or fluorophore) and analyzed by mass-spectrometry or in-gel fluorescence to 
identify on-target engagement as well as any off-targets.   
 
This competitive ABPP platform can be employed in a medium-throughput gel-based 
format with fluorescent activity-based probes (competitive gel-based ABPP), a lower 
throughput but more in-depth mass-spectrometry-based proteomics format with biotin-
tagged activity-based probes (competitive ABPP-MudPIT), or an HTS format using 
fluorescence polarization (competitive fluopol-ABPP) (Figure 1-3) and fluorescent 
activity-based probes against large compound libraries (8,33). 
 
Competitive ABPP screening platforms have lead to the discovery and development of 
many potent and selective enzyme inhibitors that have been used for in-depth biological 
characterization of enzymes physiological and pathophysiological settings as well as to 
ascertain the potential of these enzymes and their inhibitors as therapeutic targets and 
therapeutics, respectively (36,38–42). 
 
Competitive ABPP platforms have particularly benefited the pharmacological targeting 
of the endogenous cannabinoid (“endocannabinoid”) system (43,44). The 
endocannabinoid system consists of two endogenous signaling lipids, 2-
arachidonoylglycerol (2-AG) and anandamide which bind to cannabinoid receptors to 
modulate responses in pain, inflammation, and mood (44–46). Targeting 
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endocannabinoid degradation and synthesis have been put forth as promising 
therapeutic strategies for combating a variety of pathologies. Many of these enzymes, 
such as the 2-AG hydrolyzing enzyme MGLL, anandamide hydrolyzing enzyme fatty 
acid amide hydrolase (FAAH), and the 2-AG biosynthetic enzyme diacylglycerol lipase 
(DAGL), all belong to the serine hydrolase enzyme class (44). Inhibitor discovery for the 
serine hydrolase superfamily of enzymes has benefitted from chemical libraries of 
electrophilic carbamate and triazole urea scaffolds that specifically target the 
nucleophilic catalytic mechanism of serine hydrolases (34,35,47).  Screening of serine-
hydrolase directed chemical libraries, coupled with traditional medicinal chemistry 
efforts, has facilitated the discovery of potent, selective, and in vivo-active inhibitors for 
many potential therapeutic serine hydrolase targets (43). 
 
MGLL inhibitors found through a competitive ABPP screen of a structurally diverse 
carbamate library and subsequent medicinal chemistry efforts generated the carbamate 
JZL184 as the first potent, selective, and in vivo active MGLL inhibitor (39).  JZL184 has 
been used extensively to characterize the biochemical function of MGLL using 
metabolomic technologies (discussed below), and to implicate this enzyme as a 
therapeutic target for cancer, inflammation and inflammatory diseases, 
neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, anxiety, 
and pain (11,39,45,48–50). Many generations of inhibitors for FAAH have been 
developed and tested for their selectivity using competitive ABPP platforms to elucidate 
the role of FAAH as the primary degrading enzyme for the endogenous cannabinoid 
signaling lipid anandamide and the utility of FAAH inhibitors in combating pain and 
inflammation through heightening anandamide signaling (41,51). FAAH inhibitors are 
now in clinical trials for treatment of pain and inflammation. DAGL inhibitors were also 
developed using competitive ABPP platforms and used to show that the DAGL pathway 
is an important pathway for generation of arachidonic acid precursor pools for 
eicosanoid synthesis in macrophages to modulate inflammatory responses (52).  Gel-
based and MudPIT-based competitive ABPP have been used to develop many more 
inhibitors for various characterized and uncharacterized enzymes that may eventually 
have therapeutic potential, including the cancer-associated serine hydrolase KIAA1363, 
acyl peptide hydrolase, alpha/beta hydrolase domain-containing protein 11 (ABHD11), 
and platelet activating factor acetylhydrolase 2 (PAFAH2) (42,47). Fluopol-ABPP has 
been used several times to identify inhibitors for many other metabolic enzymes that 
have therapeutic potential including the potential anti-cancer targets protein methyl 
esterase 1 (PME1) and RBBP9 and the anti-inflammatory target protein arginine 
deaminase 4 (PAD4) (30,36,53).   
 
Thus, competitive ABPP platforms are powerful approaches for developing small 
molecule inhibitors for both characterized and uncharacterized metabolic enzymes, 
which can be used for expanding our knowledge of metabolism in (patho)physiology, 
but also to develop chemical tools for subsequent translational development. While 
NIMS has not yet been used for HTS discovery of enzyme inhibitors, NIMS would also 
be an attractive strategy for small molecule inhibitor development using mass-
spectrometry as the read-out, instead of fluorescence polarization. 
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Metabolomic Approaches to Define and Map Biochemical Pathways 
 
Modern technologies, such as ABPP and NIMS to assay the activities of enzymes and 
develop small molecule enzyme inhibitors are powerful strategies that allow us to more 
broadly assess metabolism beyond well-understood and characterized biochemical 
pathways. These technologies can then be combined with advanced targeted and 
untargeted mass spectrometry-based metabolomic approaches to define the 
endogenous substrate/product relationships as well as the larger metabolic networks 
controlled by metabolic enzymes. Targeted metabolomics approaches consist of 
targeting for specific masses and associated parent and fragment ion mass-to-charge 
ratios (m/z) using mass-spectrometry allowing for the quantification of several hundred 
known metabolites (Figure 1-4). However, the metabolome is highly physicochemically 
diverse and likely consists of many metabolites whose structures are yet unknown. 
Thus, untargeted metabolomic profiling platforms, such as discovery metabolite profiling 
(DMP) (Figure 1-5), have arisen to capture a much wider metabolomic landscape 
(7,54–56). While untargeted metabolomics likely still does not capture the entirety of the 
metabolome, this approach broadly scans detectable ions across a large m/z range 
using mass-spectrometry platforms and the resulting large datasets are processed by 
bioinformatic tools to align, integrate, and compare all m/z ion intensities between 
different biological samples and identify differentially changing ions. 
 
There are several examples of how targeted and DMP-based metabolomics have been 
successfully applied to discover novel functions of previously characterized enzymes or 
uncovering the role of completely uncharacterized enzymes, towards understanding the 
roles of these enzymes in normal physiology and disease. Using these platforms to 
profile differentially changed metabolites in FAAH-deficient mice, FAAH was found to 
not only regulate the levels of N-acylethanolamine (NAE), but also N-acyltaurine (NAT) 
lipid species. While it was known that FAAH regulated arachidonoyl NAE (anandamide) 
and its action upon cannabinoid receptors and cannabinoid-mediated antinociceptive 
phenotypes, DMP led to the discovery that FAAH also regulates NAT levels, which 
activate TRP ion channels giving rise to unique physiological actions mediated by FAAH 
(57,58). 
 
Chiang et al. had found that the uncharacterized enzyme KIAA1363 was upregulated 
across multiple types of aggressive human cancer cells. However, the role of this 
enzyme was completely unknown. Using DMP, Chiang et al. discovered that this 
enzyme deacetylates the ether lipid 2-acetyl monoalkylglycerol ether (2-acetyl MAGe) to 
produce MAGe and subsequently the tumor-promoting lipid lysophosphatidic acid-ether 
(LPAe) to fuel aggressive features of cancer cells (59). Selective KIAA1363 inhibitors, 
developed through competitive ABPP platforms, have been used to lower MAGE and 
LPAe, to suppress cancer cell motility and tumorigenesis. 
 
In another example, targeted metabolomics and DMP were also essential in 
establishing MGLL as a nodal enzyme that not only controls 2-AG and other 
monoacylglycerols, but also the arachidonic acid pool that generates pro-inflammatory 
prostaglandins in certain tissues such as brain, liver, and lung (48). While this enzyme 
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was known to regulate monoacylglycerols, metabolomics led to the unique discovery 
that this enzyme feeds into the pathway that generates arachidonic acid for the 
synthesis of pro-inflammatory eicosanoids. This biochemical understanding of MGLL 
function has in-turn led to the discovery that MGLL inhibitors show potent anti-
inflammatory effects and neuroprotection against Parkinson’s and Alzheimer’s disease 
as well as inflammatory tissue injury in liver and lung (60–63).   
 
Metabolomics also led to the discovery that MGLL plays a distinct and unique role in 
aggressive cancer cells in regulating fatty acid levels and a fatty acid network enriched 
in protumorigenic signaling lipids that drive cancer pathogenicity (10). These findings 
were unexpected since MGLL does not play a major role in regulating cancer cell free 
fatty acid levels, and represents a retasked (patho)physiological function of this enzyme 
in malignant cancer cells. These findings led to understanding the mechanism of action 
behind MGLL inhibitors and their anti-tumorigenic and anti-pathogenic function in 
cancer (10,64). 
 
Blankman et al utilized both targeted and DMP-based methods to establish the 
previously uncharacterized enzyme ABHD12 as a lysophasphatidylserine (LPS) 
hydrolase and showed that ABHD12-deficiency leads to elevations in brain levels of 
LPS, which subsequently stimulates toll-like receptor 2 (TLR2) and causes 
neuroinflammation and auditory and motor deficiencies, recapitulating the human 
neurodegenerative condition polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, 
and cataract (PHARC) associated with a loss-of-function ABHD12 mutation (65). 
 
Perhaps one of the most provocative examples of how metabolomics has been used to 
assign a completely altered and unique function to a well-characterized enzyme in 
cancer cells has been in elucidating the role of a mutant form of isocitrate 
dehydrogenase 1 (IDH1) in cancers. IDH1 catalyzes the oxidative decarboxylation of 
isocitrate to α-ketoglutarate with concomitant reduction of NADP+ to NADPH. Multiple 
genome-wide analyses of glioma and acute myeloid leukemia patients had identified an 
arginine 132 to histidine mutation in the active site of IDH1 (66,67). Metabolomic 
profiling revealed that this IDH1 R132 mutant led to the generation of a novel 
oncometabolite 2-hydroxyglurarate (2-HG). Surprisingly, the authors discovered that the 
R132 mutant IDH1 consumed NADPH and reduced a-ketoglutarate to 2-HG (68). These 
studies provided the first evidence for a mutated enzyme in cancer conferring a 
neomorphic function to yield an unforeseen metabolite. Subsequent studies have shown 
that 2-HG has also functions as an epigenetic regulator in cancer, primarily through an 
increase in CpG island methylation (69,70) through acting as a competitive inhibitor of 
a-ketoglutarate dependent demethylases (71). 
 
In yet another example of how cancer cells rewire their metabolism to fuel their 
pathogenicity, Ulanovskaya et al. discovered that nicotinamide N-methyltransferase 
(NNMT), which catalyzes the transfer of the methyl group of S-adenosyl-methionine 
(SAM) to nicotinamide, was overexpressed in a variety of tumors. Using metabolomics, 
the authors showed that NNMT overexpression led to a build up of the stable metabolic 
product 1-methylnicotinamide, revealing a mechanism by which cancer cells consume 
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methyl units from SAM and ultimately alter the epigenetic potential of the cell.  This 
included both hypomethylation of histones and cancer related proteins and increased 
expression of protumorigenic genes (72). SAM metabolism was also found to be 
coupled to threonine, which provides a large fraction of cellular glycine and acetyl-
coenzyme A needed for SAM synthesis.  Depletion of threonine from the culture 
medium of mouse embryonic stem cells decreased SAM accumulation resulting in 
decreased histone 3 lysine 4 methylation and ultimately slowed growth and increased 
differentiation (73). 
 
Metabolomic technologies have also been used to study the metabolic effects of viral 
infection of host cells to provide energy for viral replication.  Viral infections are not 
typically considered metabolic diseases, however viral replication requires massive 
metabolic demands from the host cell (74).  Therefore, infection of adult humans with 
viruses like herpes simplex virus-1 (HSV-1) or human cytomegalovirus (HCMV) can 
have profound effects on host cell metabolism and are major causes of human 
diseases.  Metabolomic analysis of HSV-1 infected fibroblasts revealed a shift in central 
carbon metabolism toward the production of pyrimidine nucleotide metabolites.  HCMV 
infected cells showed enhanced glycolytic flux and TCA cycle to fuel fatty acid 
biosynthesis (75).  Furthermore, reducing the expression of a single metabolic enzyme, 
argininosuccinate synthetase (AS1), was sufficient to mimic these HSV-1 induced 
metabolomic changes to improve viral replication (76).  These metabolomic approaches 
can point to potential new sites for antiviral therapy (77).   
 
In summary, targeted and untargeted metabolomic platforms have been successfully 
and repeatedly used to identify novel functions to previously well-characterized 
enzymes or to uncharacterized enzymes, which has led to understanding how these 
enzymes function in regulating metabolism in normal physiology or dysregulated 
metabolism in diseases such as cancer, neurodegenerative diseases, tissue injury, and 
infection. 
 
Conclusions 
 
Collectively, we have reviewed how chemical proteomic strategies such as ABPP and 
metabolomic platforms have arisen to undertake the daunting task of demystifying the 
undiscovered and uncharacterized aspects of metabolism in (patho)physiological 
settings, towards identifying unique and nodal metabolic pathways that can be targeted 
for disease therapy or other commercial applications. We also show how the ABPP 
platform has been used to develop potent and selective small molecule inhibitors for 
even previously uncharacterized enzymes, giving rise to chemical tools to further 
interrogate enzyme function as well as translational development of enzyme inhibitors 
for disease therapy.  
 
The integration of these technologies, such as ABPP, NIMS, and metabolomic profiling 
platforms with traditional sequencing and quantitative proteomics approaches will be 
critical moving forward towards gaining a more complete understanding of how altered 
enzymatic pathways cause alterations in metabolites which, in turn, may regulate 
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protein function, signaling pathways, or other aspects of metabolism to fuel disease 
pathogenesis. While these technological platforms can certainly be advanced and 
improved to increase throughput, improve sensitivity, increase metabolic coverage, and 
quicken the process of uncovering novel metabolite and PTM structures, it is no longer 
necessary for scientists to remain focused on well-understood metabolic pathways. With 
the increasing sophistication of these modern approaches, we should actively and 
systematically mine the largely uncharacterized metabolic landscape for unique and 
novel metabolic networks that can be effectively targeted to treat human diseases. 
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CHAPTER TWO 
 
 
 

Chemical Genetics and Chemoproteomics to Identify Novel Anti-Inflammatory Small 
Molecules and their Targets 
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Introduction 
 
Inflammation is normal defense mechanism against infection or tissue injury. However, 
chronic or non-resolving inflammation can lead to a wide range of pathologies including 
cancer, neurodegenerative diseases, and diabetes (78–81). Many biochemical 
pathways have been implicated in driving or suppressing the inflammatory response. 
Examples include pro-inflammatory prostaglandins and anti-inflammatory resolvins, 
glucocorticoids, and endocannabinoid signaling molecules (82–85). These metabolites 
are controlled by their biosynthesizing and degrading enzymes, and exerting control 
over these biochemical pathways holds great promise for the treatment of inflammation 
and associated complex diseases. A prominent example is the non-steroidal anti- 
inflammatory drugs (NSAIDs) (e.g. aspirin and ibuprofen) that target cyclooxygenases 
(COXs) and are clinically used for pain, inflammation, and arthritis, but have been 
shown in mouse models to be protective against neurodegenerative diseases, diabetes, 
and cancer (79,86–90). However, many of these agents also show negative effects that 
prevent long-term usage that would be necessary for these complex diseases (e.g. 
cardiovascular or gastrointestinal side effects with COX inhibitors) (90). It is therefore 
critical to gain a deeper understanding into the metabolic pathways that underlie 
inflammation.  
 
Chemical genetics represents a powerful approach towards discovery of novel and 
effective small molecules for treatment of complex diseases (91). Unlike the traditional, 
target-based screen that relies on a predefined, sometimes poorly validated target, a 
chemical genetics-based phenotypic screen efficiently interrogates entire metabolic or 
molecular signaling pathways in an unbiased manner for the most drug- sensitive node. 
However, the single most significant impediment associated with this approach is the 
identification of the targets of the efficacious small molecules (91). To address this 
challenge, we have combined a chemical genetic screen for identifying pro-  
inflammatory cytokine lowering small molecules with chemoproteomic and metabolomic 
platforms to enable straightforward identification of lead compounds, their targets, and 
their mechanisms.  
 
Here, we performed a chemical genetics screen using a serine hydrolase- directed 
inhibitor library in macrophages to discover new anti-inflammatory small molecules. We 
coupled this with a functional chemoproteomics platform to identify their biological 
targets and used metabolomic approaches to characterize the mechanism of anti-
inflammatory action. Using this pipeline, we have identified that the serine hydrolase 
KIAA1363 is a novel anti-inflammatory target and that KIAA1363-selective inhibitors 
lower key pro-inflammatory cytokines through modulating ether lipid signaling pathways.  
 
Chemical Genetics Screen for Serine Hydrolase Inhibitors that Lower TNFα 
Release in Macrophages Reveals a Lead Anti-Inflammatory Compound 
  
For our chemical genetics screening strategy, we chose to focus on a small- molecule 
library directed towards the serine hydrolase superfamily, since several members of this 
enzyme class have previously been implicated in inflammation, including PLA2G4A, 
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MGLL, and PLA2G7 (92). Serine hydrolases make up a large class of metabolic 
enzymes, which include lipases, esterases, hydrolases, proteases, and peptidases that 
serve vital (patho)physiological functions in numerous biological processes (92). 
Previous studies have shown that the carbamate, phosphonate, and triazole urea 
chemotypes are optimal for covalent inhibition of serine hydrolases (Figure 2-1) 
(35,43,47). With diversification of substituents, many studies have shown that selectivity 
can be attained for specific members of serine hydrolase class (35,40,42,43,47).  
 
We screened a library of 120 compounds to identify small molecules that inhibited 
lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNFα) secretion  
from the THP1 human monocyte cell line (Figure 2-2; Table 2-1). This compound 
library consisted of carbamates, phosphonates, and triazole ureas obtained from the 
Cravatt and Casida laboratories from previous studies as well as several newly 
synthesized compounds (35,47,93–95). Among the compounds tested, we identified 12 
inhibitors that lowered LPS-induced TNFα secretion in THP1 cells by >50 % (Figure 2-
3). While we used THP1 cells for our initial screening efforts, this cell line may not be 
representative of primary macrophages. We thus performed a counterscreen to identify 
those inhibitors that also lowered LPS-induced TNFα secretion from primary mouse 
bone marrow-derived macrophages (BMDMs). While most of the 12 initial leads 
significantly lowered TNFα levels, only two of the compounds showed >50 % decreases 
in LPS-stimulated TNFα secretion in this cell type: WWL107 and WWL115 (Figure 2-4). 
To eliminate any compounds that may be lowering TNFα due to cytotoxicity, we also 
performed a cell survival counterscreen and found that WWL107 significantly impaired 
cell viability, leaving WWL115 as our lead compound for further study (Figure 2-5). We 
show that WWL115 lowers LPS-induced TNFα release in BMDMs in a dose-dependent 
manner (Figure 2-6). 
 
Chemoproteomic Analysis of WWL115 Reveals Five Significantly Inhibited Serine 
Hydrolases  
 
Our chemical genetics screen in both THP1 and BMDMs revealed WWL115 as a 
promising lead anti-inflammatory compound. We next wanted to identify the targets of 
WWL115 in BMDMs to determine the serine hydrolase(s) responsible for its 
inflammatory cytokine-lowering effects. To achieve this, we used a chemoproteomic 
strategy termed activity-based protein profiling (ABPP), a technology that uses active 
site-directed chemical probes to directly assess the activities of large numbers of  
enzymes in complex proteomes (7,8,96). Small molecule inhibitors can be competed 
against activity-based probe binding to enzymes thus enabling identification of 
functionally inhibited targets of lead compounds that arise from chemical genetic 
screens (Figure 2-7) (8,97,98). Here, we used a competitive ABPP platform using the 
serine hydrolase activity-based probe, fluorophosphonate-biotin (FP-biotin), to identify 
the serine hydrolase targets inhibited in situ in BMDMs by WWL115. We treated 
BMDMs with vehicle or WWL115 and subsequently labeled cell lysates with FP-biotin, 
followed by avidin-enrichment, trypsinization, and analysis of tryptic peptides by 
Multidimensional Protein Identification Technology (ABPP-MudPIT). Inhibited targets 
manifested as loss of spectral counts compared with vehicle treatment. Among the 36 
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serine hydrolases enriched by our activity-based probe, we found 5 lipases that were 
significantly inhibited by WWL115: KIAA1363, PLA2G15, MGLL, PNPLA6, and LIPE 
(Figure 2-8).  
 
Characterizing KIAA1363 as a novel anti-cytokine target in BMDMs  
 
Among the 5 targets identified for WWL115, KIAA1363 was the most abundant serine 
hydrolase in BMDMs. Chang et al. recently developed a highly selective KIAA1363 
inhibitor JW480 that irreversibly inhibited this enzyme both in situ in cancer cells and in 
vivo in mice (42). To confirm target occupancy and selectivity of this inhibitor in 
macrophages, we treated BMDMs with JW480 and assessed the selectivity of this 
inhibitor by competitive ABPP using both FP-rhodamine and FP-biotin for gel-based 
fluorescence and ABPP-MudPIT analysis, respectively. We confirmed that JW480 was 
highly selective in BMDMs and only inhibited KIAA1363 among all detectable serine 
hydrolase activities (Figure 2-9 and Figure 2-10).  
 
We next tested whether JW480 could recapitulate the TNFα-lowering effects of 
WWL115. We find that JW480 significantly lowers LPS-induced TNFα secretion from 
BMDMs in a dose-responsive manner to levels comparable to those observed with  
WWL115, indicating that KIAA1363 was largely responsible for the anti-TNFα effects of 
this compound (Figure 2-11). We also show that KIAA1363 inhibition by JW480 
selectively impairs certain inflammatory cytokines in addition to TNFα, including 
interleukin-12 (IL12), and granulocyte macrophage colony-stimulating factor (GM-CSF), 
without affecting other inflammatory cytokines such as IL1α, IL6, and granulocyte 
stimulating factor (G-CSF) (Figure 2-12). We also tested the contribution of MGLL using 
the selective MGLL inhibitor JZL184, since MGLL inhibitors have been shown to elicit 
anti-inflammatory effects in specific paradigms. We find that MGLL inhibition by JZL184 
has no effect in lowering LPS- induced TNFα secretion in BMDMs (Figure 2-13).  
 
While we show here that KIAA1363 inhibition is a unique and novel strategy for lowering 
key LPS-induced pro-inflammatory cytokine levels, we cannot rule out the contribution 
of the remaining three targets PLA2G15, PNPLA6, and LIPE. We attempted to 
knockdown the expression of these enzymes using RNA interference approaches, but 
could not achieve sufficient knockdown in BMDMs and there are a lack of selective 
pharmacological tools for interrogating the remaining enzymes (data not shown). 
Nonetheless, LIPE (hormone-sensitive lipase) blockade has been linked to sterility and 
increased adiposity and PNPLA6 (also known as neuropathy target esterase) blockade 
causes peripheral neuropathy and demyelination, thus precluding these enzymes as 
potential therapeutic targets (99,100). PLA2G15 may be of interest since other 
phospholipase A2 enzymes have been shown to be anti-inflammatory targets.  
 
Metabolomic Profiling Reveals Key Anti-Inflammatory Lipids Regulated by 
KIAA1363 in BMDMs  
 
We next used untargeted and targeted liquid chromatography/mass spectrometry 
(LC/MS)-based metabolomic platforms to investigate the mechanism through which  
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KIAA1363 blockade lowered LPS-induced TNFα release from BMDMs. KIAA1363 was 
previously characterized as a serine hydrolase that deacetylates the ether lipid 2-acetyl 
monoalkylglycerol ether (2-acetyl-MAGe or C16:0e/C2:0 MAGe), the penultimate 
precursor in the de novo biosynthesis of platelet activating factor (PAF), to the product 
monoalkylglycerol ether (MAGe) (Figure 2-14) (59,101). Consistent with its role, we 
show that in situ treatment of BMDMs with JW480 inhibits d4-2-acetyl-MAGe hydrolytic 
activity in BMDMs (Figure 2-15).  
 
Since KIAA1363 is a deacetylase of an ether lipid, we focused our metabolomic profiling 
efforts on lipid metabolites. We used single-reaction monitoring (SRM)-based targeted 
approaches to measure >100 lipid metabolites encompassing phospholipids, neutral 
lipids, sphingolipids, ether lipids, fatty acids, and eicosanoids. We also used untargeted 
metabolomic methods to profile the levels of an additional ~6000 ions and used 
XCMSOnline to identify any significantly altered metabolites (Figure 2-16). Combining 
targeted and untargeted metabolomic data (Figure 2-17), we found the levels of 35 
lipids to be significantly changed upon KIAA1363 inhibition with JW480 in BMDMs 
(Figure 2-18).  
 
While we did not observe changes in 2-acetyl MAGe levels, KIAA1363 blockade 
reduced MAGe levels and increased the levels of multiple LPCe (also known as lyso- 
PAF), LPCp, and LPAe species, suggesting that these ether lipid species may be 
downstream metabolic products of 2-acetyl MAGe and PAF, rather than downstream of 
MAGe. Consistent with this premise, d4-2-acetyl-MAGe isotopic incorporation studies in 
BMDMs revealed reduced d4-incorporation into MAGe and increased d4-incorporation 
into LPCe (lyso-PAF) and LPAe (Figure 2-19). These results are in contrast to previous 
studies in cancer cells showing that LPCe and LPAe were downstream of MAGe 
metabolism. We also identified changes in multiple other ether lipid species including 
phosphatidylcholine-plasmalogen (PCp), phosphatidylinositol-ether (PIe), and  
phosphatidylglycerol-ether (PGe), likely due to network wide alterations stemming from 
2-acetyl MAGe or MAGe metabolism. Interestingly, we also observed changes in 
additional lipid metabolism pathways including neutral lipids monoacylglycerols (MAG) 
and diacylglycerols (DAG), free fatty acids (FFA), N-acyl ethanolamines (NAEs), and 
phospholipids phosphatidyl ethanolamine (PE), phosphatidic acids (PA), phosphatidyl 
inositols (PI), lysophosphatidylcholines (LPC), lysophosphatidylethanolamine (LPE), 
and lysophosphatidylserines (LPS), lysophosphatidylinositols (LPI), sphingolipids 
ceramide and sphingosine, indicating that KIAA1363 may directly or indirectly regulate 
broader metabolic pathways in lipid metabolism (Figure 2-18).  
 
We next wanted to determine whether these changes in specific lipid species might be 
driving the TNFα-lowering effects observed upon KIAA1363 inhibition. We screened 
representative lipid species altered by JW480 treatment for TNFα-lowering effects and 
found that LPCe, LPAe, and C20:4 FFA significantly reduced LPS-induced TNFα 
secretion in macrophages (Figure 2-20). While the specific receptor for LPCe is 
unknown, LPAe is known to stimulate LPA receptors and C20:4 FFA is an agonist of the 
peroxisome proliferator-activated receptor-γ (PPARγ) (102,103). We show that the 
TNFα- lowering effects of JW480 are partially reversed by treatment with an LPA 
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receptor antagonist, but not by a PPARγ or PAF receptor antagonist, indicating that 
enhanced LPAe and LPA receptor signaling may be responsible for the JW480 effects 
(Figure 2-21).  
 
Collectively, our results show that KIAA1363 may serve as a unique metabolic node 
between ether lipids and other signaling lipids to drive the inflammatory response in 
macrophages.  
 
Conclusions 
 
Here, we have coupled an enzyme class-directed chemical genetics screen with ABPP 
platforms to identify pro-inflammatory cytokine-lowering compounds and their targets in 
stimulated macrophages. Using this strategy, we identified KIAA1363 and its inhibitors 
as a novel metabolic target that influences LPS-stimulated TNFα release. Through 
metabolomic profiling, we further revealed that KIAA1363 modulates inflammatory 
cytokine release in part through affecting LPAe and potentially other ether lipid 
pathways. This enzyme has also been shown to be important in driving aggressive 
features of cancer cells. KIAA1363 blockade in cancer cells leads to a reduction in the 
levels of LPAe which leads to reduced motility and tumor growth. In cancer cells, LPAe 
is downstream of the KIAA1363 product MAGe, whereas our studies in BMDMs suggest 
that LPAe is downstream of LPCe, a metabolite arising from PAF hydrolysis (59). Thus, 
our data indicate that the KIAA1363-ether lipid pathway may be wired differently in 
these two different contexts. Holly et al. also discovered that KIAA1363 regulates 
platelet aggregation, thrombus growth, RAP1 and PKC activation, ether lipid 
metabolism, and fibrinogen binding to platelets and megakaryocytes (98). Thus, 
KIAA1363 inhibitors potentially possess multiple biological activities through 
manipulating ether lipid signaling pathways and show multiple potential therapeutic 
avenues.  
 
Our study underscores the utility of combining chemical genetics with chemical systems 
biology platforms such as ABPP and functional metabolomic profiling towards 
identifying and characterizing anti-inflammatory small molecules and their targets.  
 
Materials and Methods 
 
Materials. The THP1 cell line was purchased from ATCC. Mouse colony stimulating 
factor (M-CSF) was purchased from Cell Signaling Technologies. d4-PAF was 
purchased from Cayman Chemical. Internal standards and metabolite standards were 
purchased from Sigma, Cayman Chemicals, or Avanti Polar Lipids. The carbamate, 
phosphonate, and triazole urea inhibitors were obtained from Professor Benjamin 
Cravatt at The Scripps Research Institute and Professor John Casida at the University 
of California, Berkeley or were synthesized. The synthesis and characterization of the 
materials obtained from the Cravatt and Casida labs are described previously 
(35,47,93–95). Synthetic methods and characterization of lead compounds that were 
synthesized in our lab are described in Supplemental Methods. The KIAA1363 inhibitor 
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JW480 was purchased from Cayman Chemicals. FP-biotin was synthesized as 
previously described (104).  
 
Cell culture conditions. THP1 cells were cultured in RPMI supplemented with 10% FBS, 
L-glutamine, and β-mercaptoethanol and maintained in a humidified, 37 °C at 5% CO2 
incubator. BMDMs were cultured in DMEM supplemented with 10% FBS, L- glutamine, 
and 20ng/mL M-CSF and maintained in a humidified 37 °C at 8% CO2 incubator.  
 
Isolation of murine bone marrow-derived macrophages. Bone marrow was isolated from 
the femurs and tibias of male C57BL/6 mice (10-12 week) using a mortar and 
pestle in complete media containing DMEM supplemented with 10% FBS, L-glutamine, 
and 20ng/mL M-CSF. Particulate matter was removed by slow-speed centrifugation. 
Bone marrow cells were then pelleted by centrifugation, resuspended, and plated in 
complete media on non-treated plastic. Medium was replaced every 2-3 days. On day 7, 
adherent cells were washed and incubated at 4°C for 20 min. Cells were gently 
scraped, isolated by centrifugation, counted, and plated for experiments.  
 
Cytokine quantification. THP-1 (1 million per well) or BMDMs (100,000-200,000 
cells/well in 24-well plates) were plated. Cells were switched to serum-free media and  
inhibitors, lipids, and/or antagonists added for 1 hour. After stimulation with 100ng/mL 
LPS for 6 hours, media was collected and TNFα levels were quantified by ELISA per the 
manufacturer’s instructions (Qiagen).  
 
Survival assays. Cell survival analysis was performed using the Hoechst 33342 nuclear 
stain (Invitrogen). Briefly, 20,000 were seeded into 96-well plates in a volume of 100µL 
for 0, 24, and 48 hours in the presence of inhibitors in serum-free DMEM. Cells were 
washed, fixed, and stained according to the manufacturer’s protocol. Plates were 
scanned using the fluorescence excitation/emission wavelengths for Hoechst 33342 
(350nm and 461nm, respectively).  
 
d4-2-acetyl MAGe synthesis. d4-C16:0 2-acetyl MAGe was prepared from [d4-C16:0e] 
PAF by incubation with 20 units phospholipase C from Bacillus cereus (Sigma Aldrich) 
in PBS for 45 min at room temperature as described previously (101). Completion of the 
reaction was confirmed by LC/MS. The product was extracted in 2:1 
chloroform:methanol and the organic layer was dried under N2 and resuspended in 2:1 
chloroform:methanol to desired concentration.  
 
KIAA1363 activity assays. BMDMs were treated with JW480 (5 µM in DMSO) or DMSO 
for 4 hours. BMDM cell lysates (25 µg) were incubated with d4-2-acetyl MAGe (100µM 
final concentration) for 30 min at room temperature in PBS (200µL total volume). To 
quench the reaction, 1:1 ethyl acetate:hexanes was added (600µL), followed by 
vortexing and addition of internal standards. After centrifugation, the organic layer was 
removed for analysis of d4-MAGe formation by LC/MS.  
 
Lipidomic profiling of macrophages. BMDMs were plated (3x106 cell/well of 6-well plate) 
and allowed to adhere overnight. Cells were washed with PBS and switched to serum-
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free media containing JW480 (5 µM) or DMSO control for 1 hour, then stimulated with 
LPS (100 ng/mL) for 6 hours. Cells were washed with PBS, harvested by scraping, and 
isolated by centrifugation. Cell pellets were flash frozen and stored at -80° until 
extraction.  
 
Nonpolar lipid metabolites were extracted and analyzed by targeted and untargeted 
metabolomic methods using previously described procedures (105,106). 
Briefly, lipid metabolites were extracted in a 2:1:1 chloroform:methanol:PBS with 
addition of internal standards C12:0 dodecylglycerol (10 nmol) and pentadecanoic acid 
(10 nmol). Organic and aqueous layers were separated by centrifugation at 1000xg for 
5 min, and the organic layer collected. The aqueous layer was acidified by the addition 
of 0.1% formic acid followed by the addition of 2mL chloroform, vortexing, and 
centrifugation. 
 
The organic layers were combined, dried under N2, and resuspended in 120 µL 
chloroform. An aliquot (10 µL) was analyzed by single-reaction monitoring (SRM)-based 
LC-MS/MS. LC separation was achieved with a Luna reverse-phase C5 column 
(Phenomenex). Mobile phase A was composed of 95:5 water:methanol, and mobile 
phase B consisted of 60:35:5 isopropanol:methanol:water. Solvent modifiers 0.1% 
formic acid with 5 mM ammonium formate and 0.1% ammonium hydroxide were used to 
assist ion formation and to improve the LC resolution in both positive and negative 
ionization modes, respectively. The flow rate for each run started at 0.1 mL/min for 5 
min, to alleviate backpressure associated with injecting chloroform. The gradient started 
at 0% B and increased linearly to 100% B over the course of 45 min with a flow rate of 
0.4 mL/min, followed by an isocratic gradient of 100% B for 17 min at 0.5 mL/min before 
equilibrating for 8 min at 0% B with a flow rate of 0.5 mL/min.  
 
MS analysis was performed with an electrospray ionization sourse (ESI) on an Agilent 
6430 QQQ LC-MS/MS. Lipid metabolites were quantified by SRM of the precursor to 
product ion transition at associated collision energies as previously described (105,106). 
Quantification was achieved by integrating the area under the peak and expressed as a 
percent of control after normalizing to the internal standard.  
 
ABPP analysis of macrophages. For gel-based ABPP experiments, BMDMs were 
treated with inhibitor (5 µM in DMSO) or DMSO control for 4 hours, harvested by 
scraping, and pelleted by centrifugation. BMDM cell lysate proteomes (50 µg) were 
labeled with FP-rhodamine (2 µM) for 30 min at room temperature, quenched with 4x 
SDS/PAGE loading buffer, heated at 95o C for 5 min, and separated by 10% 
SDS/PAGE as previously described. Gels were scanned using a Typhoon flatbed 
fluorescence scanner (GE Healthcare).  
 
ABPP-MudPIT analysis was performed using previously established methods. BMDMs 
were treated with inhibitor (5 µM in DMSO) or DMSO control for 4 hours, harvested by 
scraping, and pelleted by centrifugation. Briefly, BMDM proteome (1 mg) was labeled 
with FP-biotin (5 µM) in 1 mL PBS for 1 hour, solubilized in 1% Triton-X100 for 1 hour, 
and denatured. Labeled enzymes were enriched using avidin beads, reduced, alkylated, 



	
  
	
  

20 

and trypsinized as previously described (10). Tryptic peptides were loaded on to a 
strong cation exchange/reverse phase capillary column and analyzed by two- 
dimensional LC-LC-MS/MS also known as Multidimensional Protein Identification 
Technology (MudPIT) as previously described (10). Resulting ms2 datafiles were then 
analyzed by Integrated Proteomics Pipeline.  
 
d4-2-acetyl MAGe isotopic labeling. BMDMs (2 x 106 cells) were plated and allowed to 
adhere overnight. Cells were pre-treated in serum free media with JW480 (5 µM in 
DMSO) or DMSO control for 1 hour, then stimulated with LPS (100 ng/ml) and d4-2- 
acetyl MAGe (10 µM) for 15 min. Cells were washed, scraped on ice, and immediately 
extracted in 2:1 chloroform:methanol as described above. Isotopic incorporation was 
detected and quantified using targeted LC/MS using SRM transitions based on 
previously derived optimized transitions of nonisotopic standards.  
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Chemoproteomic and Metabolomic Platforms for Mapping Dysregulated 
Metabolic Pathways in Disease 
 
A large number of complex human pathologies are associated with dysregulated 
metabolism that now includes obesity, diabetes, cancer, and inflammatory diseases, but 
most research has focused on well-established biochemical or regulatory pathways, 
largely ignoring the majority of poorly understood or uncharacterized networks in 
metabolism. Being able to identify key nodal metabolic pathways, not only in the well-
characterized metabolic realm but also in the undiscovered biochemical networks, will 
undoubtedly lead to new therapeutic strategies for combating diseases associated with 
metabolism. Powerful proteomic and metabolomic platforms in combination with 
advancements in chemical tools have emerged to address this challenge.  These 
chemical proteomic (chemoproteomic) and metabolomic technologies can be 
incorporated into an integrated workflow to identify and characterize previously 
unannotated enzymes in complex physiology and disease and to develop potent and 
selective small molecule chemical inhibitors for these enzymes.   

 
The last decade has seen the emergence of powerful chemoproteomic and mass 
spectrometry-based approaches that facilitate the assessment of enzyme activities or 
protein hyper-reactivities on a broad scale.  One such approach is activity-based protein 
profiling (ABPP), which uses active site-directed chemical probes to study enzyme 
activities in biological samples.  In gel-based ABPP, probe-labeled proteomes are 
separated by SDS-PAGE followed by in-gel fluorescence, which facilitates comparative 
analysis of multiple proteomes in parallel. To uncover the identity of the labeled 
enzymes, a biotinylated probe in combination with LC/MS-based ABPP can be used. 
Recently, several pioneering efforts to adapt this technology to more high-throughput 
platforms have been made, including fluorescence polarization (fluopol) screening and 
the NIMS-based enzymatic (Nimzyme) assay. These modern technologies expand our 
ability to identify and characterize important enzyme activities on a much broader and 
faster scale to identify important metabolic enzymes in diseases or in industrial 
applications. 
 
The development of small molecule chemical tools to investigate metabolic enzymes is 
critical, because traditional genetic approaches often fail due to toxicity, compensatory 
pathways, and the inability to achieve temporal control over protein function. Important 
to the generation of such chemical tools is the ability to validate the selectivity and 
efficacy of the small molecule to not only make certain that the follow-up biology is due 
to on-target effects, but also to ensure safety of the molecule for follow-up clinical 
development.  One key adaptation of ABPP, competitive-ABPP, can be employed for 
the discovery of potent and selective small molecule inhibitors of enzyme.  Inhibitors are 
identified by their ability to compete against activity-based probe binding, facilitating a 
competitive platform for inhibitor discovery.  This strategy is amenable to gel-based 
ABPP for medium-throughput screening of inhibitors, LC/MS-based ABPP for a lower-
throughput but more in-depth proteomics analysis, and high-throughput formats 
including fluopol-ABPP for the screening of large compound libraries. Thus, competitive 



	
  
	
  

23 

ABPP platforms are powerful approaches for developing small molecule inhibitors for 
metabolic enzymes, which can be used for expanding our knowledge of metabolism in 
(patho)physiology, but also to develop chemical tools for subsequent translational 
development.  
 
Modern technologies, such as ABPP and NIMS to assay the activities of enzymes and 
develop small molecule enzyme inhibitors are powerful strategies that allow us to more 
broadly assess metabolism beyond well-understood and characterized biochemical 
pathways. These technologies can then be combined with advanced targeted and 
untargeted mass spectrometry-based metabolomic approaches to define the 
endogenous substrate/product relationships as well as the larger metabolic networks 
controlled by metabolic enzymes. Targeted metabolomics approaches consist of 
targeting for specific masses and associated parent and fragment ion mass-to-charge 
ratios (m/z) using mass-spectrometry allowing for the quantification of several hundred 
known metabolites. However, the metabolome is highly physicochemically diverse and 
likely consists of many metabolites whose structures are yet unknown. Thus, untargeted 
metabolomic profiling platforms, such as discovery metabolite profiling (DMP), have 
arisen to capture a much wider metabolomic landscape. While untargeted 
metabolomics likely still does not capture the entirety of the metabolome, this approach 
broadly scans detectable ions across a large m/z range using mass-spectrometry 
platforms and the resulting large datasets are processed by bioinformatic tools to align, 
integrate, and compare all m/z ion intensities between different biological samples and 
identify differentially changing ions. 
 
The integration of these technologies, such as ABPP, NIMS, and metabolomic profiling 
platforms with traditional sequencing and quantitative proteomics approaches will be 
critical moving forward towards gaining a more complete understanding of how altered 
enzymatic pathways cause alterations in metabolites which, in turn, may regulate 
protein function, signaling pathways, or other aspects of metabolism to fuel disease 
pathogenesis. While these technological platforms can certainly be advanced and 
improved to increase throughput, improve sensitivity, increase metabolic coverage, and 
quicken the process of uncovering novel metabolite and PTM structures, it is no longer 
necessary for scientists to remain focused on well-understood metabolic pathways. With 
the increasing sophistication of these modern approaches, we should actively and 
systematically mine the largely uncharacterized metabolic landscape for unique and 
novel metabolic networks that can be effectively targeted to treat human diseases. 
 
In summary, targeted and untargeted metabolomic platforms have been successfully 
and repeatedly used to identify novel functions to previously well-characterized 
enzymes or to uncharacterized enzymes, which has led to understanding how these 
enzymes function in regulating metabolism in normal physiology or dysregulated 
metabolism in diseases such as cancer, neurodegenerative diseases, tissue injury, and 
infection. 
 
Chemical Genetics and Chemoproteomics to Identify Novel Anti-Inflammatory 
Small Molecules and their Targets 
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Inflammation is normal defense mechanism against infection or tissue injury. Yet, 
chronic and low-grade inflammation is a hallmark of many diseases including cancer, 
diabetes, and arthritis.  Currently available treatments for inflammatory diseases show 
many negative side effects that prevent any long-term use that would be required for the 
treatment of these complex diseases. Thus, new therapeutics are needed. 
 
Chemical genetics represents a powerful approach towards discovery of novel and 
effective small molecules for treatment of complex diseases. Unlike the traditional, 
target-based screen that relies on a predefined, sometimes poorly validated target, a 
chemical genetics-based phenotypic screen efficiently interrogates entire metabolic or 
molecular signaling pathways in an unbiased manner for the most drug-sensitive node. 
However, the single most significant impediment associated with this approach is the 
identification of the targets of the efficacious small molecules. To address this 
challenge, we have combined a chemical genetic screen for identifying pro-  
inflammatory cytokine lowering small molecules with chemoproteomic and metabolomic 
platforms to enable straightforward identification of lead compounds, their targets, and 
their mechanisms.  
 
For our chemical genetics screening strategy, we chose to focus on a small-molecule 
library directed towards the serine hydrolase superfamily, since several members of this 
enzyme class have previously been implicated in inflammation. Previous studies have 
shown that the carbamate, phosphonate, and triazole urea chemotypes are optimal for 
covalent inhibition of serine hydrolases. With diversification of substituents, many 
studies have shown that selectivity can be attained for specific members of serine 
hydrolase class.  A selection of inhibitors was identified based on the ability to lower 
TNFα secretion from primary mouse bone marrow-derived macrophages (BMDMs). The 
compound WWL115 was selected as our lead compounds because it was the most 
efficacious, non-cytotoxic inhibitor. 
 
To identify the biological targets of WWL115, we used competitive ABPP. Specifically, 
we competed WWL115 against the serine hydrolase fluorosphosphonate activity-based 
probe to identify the functionally inhibited enzymes by ABPP-MudPIT. Among the 36 
serine hydrolases enriched by our activity-based probe, we found 5 lipases that were 
significantly inhibited by WWL115: KIAA1363, PLA2G15, MGLL, PNPLA6, and LIPE.  
JW480 is an inhibitor previously shown to be selective for KIAA1363, the most abundant 
serine hydrolase identified as inhibited by WWL115. We confirmed JW480 selectivity in 
BMDMs and showed it is able to recapitulate the same anti-inflammatory phenotype as 
WWL115, indicating KIAA1363 inhibition could largely be responsible for the observed 
phenotype, but we cannot yet rule out the contribution of the remaining 4 targets. 
 
We next used untargeted and targeted liquid chromatography/mass spectrometry 
(LC/MS)-based metabolomic platforms to investigate the mechanism through which  
KIAA1363 blockade lowered LPS-induced TNFα release from BMDMs. KIAA1363 was 
previously characterized as a serine hydrolase that deacetylates the ether lipid 2-acetyl 
monoalkylglycerol ether (2-acetyl-MAGe or C16:0e/C2:0 MAGe), the penultimate 
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precursor in the de novo biosynthesis of platelet activating factor (PAF), to the product 
monoalkylglycerol ether (MAGe).  
 
Since KIAA1363 is a deacetylase of an ether lipid, we focused our metabolomic profiling 
efforts on lipid metabolites. We used single-reaction monitoring (SRM)-based targeted 
approaches to measure >100 lipid metabolites encompassing phospholipids, neutral 
lipids, sphingolipids, ether lipids, fatty acids, and eicosanoids, and found the levels of 35 
lipids to be significantly changed upon KIAA1363 inhibition with JW480 in BMDMs. This 
included members from many lipid classes, including phosphatidylcholine-plasmalogen 
(PCp), phosphatidylinositol-ether (PIe), and phosphatidylglycerol-ether (PGe), neutral 
lipids monoacylglycerols (MAG) and diacylglycerols (DAG), free fatty acids (FFA), N-
acyl ethanolamines (NAEs), and phospholipids phosphatidyl ethanolamine (PE), 
phosphatidic acids (PA), phosphatidyl inositols (PI), lysophosphatidylcholines (LPC), 
lysophosphatidylethanolamine (LPE), and lysophosphatidylserines (LPS), 
lysophosphatidylinositols (LPI), sphingolipids ceramide and sphingosine, revealing 
broad metabolic alterations as a result of KIAA1363 inhibition. 
 
Finally, we showed that LPAe, through LPA receptor signaling may be responsible for 
the anti-inflammatory effect seen with KIAA1363 inhibition. Thus, our results show that 
KIAA1363 may serve as a unique metabolic node between ether lipids and other 
signaling lipids to drive the inflammatory response in macrophages. Our study 
underscores the utility of combining chemical genetics with chemical systems biology 
platforms such as ABPP and functional metabolomic profiling towards identifying and 
characterizing anti-inflammatory small molecules and their targets.  
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Figure 1-1. Activity-based protein profiling. ABPP uses active site-directed chemical 
probes to broadly assess the functional state of enzymes across enzyme families. 
These probes consist of a reactive group and a detection handle, most commonly 
rhodamine (Rh) or biotin (B). A) In gel-based ABPP, native proteomes are reacted with 
the probe and proteins are separated by SDS-PAGE and visualized by fluorescent 
scanning. B) MS-based ABPP facilitates the identification and quantification of enzyme 
activities following avidin enrichment, on-bead tryptic digest, and resolution by 
Multidimensional Protein Identification Technology (MudPIT).  
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Table 1-1.  Representative activity-based probes and their applications (CHECK 
REFERENCE NUMBERS) 
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Figure 1-2.  Competitive ABPP.  Competitive ABPP assess the potency and selectivity 
of small molecule inhibitors in native proteomes by competing with the ability of the 
activity-based probes to bind.  Enzyme inhibition is indicated by a loss of fluorescent 
intensity by gel or by a loss of spectral counts by mass spectrometry. 
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Figure 1-3.  Fluorescence polarization ABPP.  Fluopol ABPP is a HTS version of 
competitive ABPP conducted with pure or recombinant protein. Fluorescence 
polarization is high if enzyme activity is high (inactive inhibitor) and low if enzyme 
activity is low (active inhibitor). 
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Figure 1-4.  Targeted metabolomics.  In targeted metabolomics, specific sets of 
known metabolites are selected for analysis by targeting for their associated parent and 
fragment ion mass-to-charge ratios (m/z) using LC/MS. 
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Figure 1-5.  Discovery metabolite profiling. In untargeted metabolomics, the mass 
spectrometer scans a large mass range (m/z 100–1200) for known and unknown 
metabolites. Datasets are then analyzed by bioinformatics platforms which align, 
quantify, and identify metabolites that are significantly altered between treatment 
groups. 
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Figure 2-1.  Chemotypes for serine hydrolase inhibitors. We screened a library of 
small molecules based on known serine hydrolase inhibitor scaffolds: carbamates, 
phosphonates, and triazole ureas. R groups represent diversification points on the small 
molecules.  
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Table 2-1.  Compound library included in chemical genetics screen. 
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Figure 2-3.  Hits from chemical genetics screen.  Shown are the structures of the 12 
small molecules that decreased LPS-stimulated TNFα secretion by greater than 50%. 
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Figure 2-4.  Counterscreen for cytokine-lowering effects in BMDMs. We next 
counterscreened the top 12 compounds to identify agents that also lowered TNFα in 
primary mouse bone marrow-derived macrophages (BMDMs). BMDMs were 
preincubated with inhibitor (5 µM) in serum-free DMEM for 1 h before stimulating with 
LPS (100 ng/mL) for 6 h. The conditioned medium was assayed for TNFα levels by 
ELISA.  Data represent n=3/group.  Significance is presented as *p < 0.05 comparing 
inhibitor treated groups to vehicle-treated, LPS-stimulated controls. 
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Figure 2-5.  Counterscreen for cell death.  We also counterscreened the lead 
compounds for cytotoxic agents by performing a cell survival assay using Hoescht 
staining.  Data are presented as a percent of vehicle-treated cells. Data represent 
n=3/group.  Significance is presented as *p < 0.05 comparing inhibitor treated groups to 
vehicle-treated controls. 
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Figure 2-6.  Lead compound WWL115.  WWL115 is the only compound that 
significantly lowers LPS- stimulated TNFα by greater than 50% in BMDMs without 
causing cytotoxicity. We show dose-dependent reductions in LPS-induced TNFα 
secretion with WWL115 treatment in BMDMs.  Data represent n=3/group.  Significance 
is presented as *p < 0.05 comparing inhibitor treated groups to vehicle-treated, LPS-
stimulated controls. 
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Figure 2-8.  WWL115 inhibits 5 serine hydrolases in BMDMs. ABPP-MudPIT 
profiling of WWL115-treated BMDMs reveals five significantly inhibited serine 
hydrolases.  Data are presented as mean ± SEM; n = 3−4/group. Significance is 
presented as *p < 0.05 between inhibitor and control-treated groups.  
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Figure 2-9.  Gel-based ABPP analysis of JW480 in BMDMs.   Fluorophosphonate-
rhodamine labeling of lysate from JW480-treated BMDMs confirms target occupancy 
and selectivity of JW480.  BMDMs were preincubated for 1 h with 5µM JW480. After 
stimulation with LPS (100 ng/mL) for 6 h, cells were harvested for ABPP analysis.  
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Figure 2-10.  ABPP-MudPIT analysis of JW480 in BMDMs.  Fluorophosphonate-
biotin labeling of lysate from JW480-treated BMDMs confirms target occupancy and 
selectivity of JW480. BMDMs were preincubated for 1 h with 5µM JW480. After 
stimulation with LPS (100 ng/mL) for 6 h, cells were harvested for ABPP-MudPIT 
analysis. Data are presented as mean ± SEM; n = 3−4/group. Significance is presented 
as *p < 0.05, comparing inhibitor-treated groups to vehicle-treated, LPS-stimulated 
controls.  
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Figure 2-11.  JW480 effects on LPS-stimulated TNFα secretion from BMDMs.  
JW480 lowers LPS-induced TNFα secretion in a dose-dependent manner.  BMDMs 
were preincubated for 1 h with JW480 at the indicated concentrations. After stimulation 
with LPS (100 ng/mL) for 6 h, the conditioned medium was analyzed for secreted TNFα 
levels by ELISA. Data are presented as mean ± SEM; n = 3−4/group. Significance is 
presented as *p < 0.05, comparing inhibitor-treated groups to vehicle-treated, LPS-
stimulated controls. 
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Figure 2-12.  JW480 effects on other pro-inflammatory cytokines.  KIAA1363 
blockade induces selective decreases in LPS-stimulated pro-inflammatory cytokine 
release from BMDMs.  BMDMs were preincubated for 1 h with 5µM JW480. After 
stimulation with LPS (100 ng/mL) for 6 h, the conditioned medium was analyzed for 
secreted cytokine levels by ELISA. Data are presented as mean ± SEM; n = 3/group. 
Significance is presented as *p < 0.05, comparing inhibitor-treated groups to vehicle-
treated, LPS-stimulated controls. 
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Figure 2-13.  MGLL inhibition does not alter LPS-stimulated TNFα secretion.  
BMDMs were pretreated for 1 h with the selective MGLL inhibitor JZL184 at the 
indicated concentrations before stimulation with 100ng/mL LPS (6h) in serum-free 
medium. 
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Figure 2-14.  KIAA1363-ether lipid pathway.  KIAA1363 is thought to control the 
formation of monoalkylglycerol ether (MAGe) from the hydrolysis of 2-acetyl MAGe, the 
penultimate precursor in the biosynthesis of platelet-activating factor (PAF).  
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Figure 2-15.  KIAA1363 activity assay.  KIAA1363 activity, assessed by measuring 
d4-2-acetyl MAGe hydrolysis, is significantly inhibited in JW480-treated BMDMs (5 µM, 
4 h).  Data are presented as mean ± SEM; n = 5/group. Significance is presented as *p 
< 0.05, comparing inhibitor-treated groups to vehicle-treated controls.  
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Figure 2-16. Metabolomic signature of KIAA1363 inhibition in BMDMs.  Volcano 
plot shows targeted and untargeted metabolomic analysis of the nonpolar metabolome 
of JW480-treated BMDMs, revealing 35 lipid species whose levels were significantly 
altered out of all ions detected. 
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Figure 2-18.  Relative levels of significantly altered lipids.  JW480-mediated 
blockade of KIAA1363 changes levels of 35 lipid species. Data are presented as mean 
± SEM; n = 5/group. Significance is presented as *p < 0.05, comparing inhibitor-treated 
groups to vehicle-treated, LPS-stimulated controls. 
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Figure 2-19.  D4-2-acetyl MAGe labeling of BMDMs. d4-2-Acetyl MAGe isotopic 
incorporation into ether lipid metabolites in the KIAA1363 pathway. BMDMs were 
preincubated with JW480 (5 µM) or vehicle for 1 h before adding LPS (100 ng/mL) and 
d4-2- acetyl MAGe (10 µM) for 15 min. Isotopic incorporation into ether lipid metabolites 
was analyzed by LC−MS/MS.  Data are presented as mean ± SEM; n = 5/group. 
Significance is presented as *p < 0.05, comparing inhibitor-treated groups to vehicle-
treated, LPS-stimulated controls.  
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Figure 2-20.  Screening KIAA1363-regulated lipids for cytokine-lowering effects. 
The effect of KIAA1363-regulated lipids on LPS-induced TNFα release from BMDMs. 
BMDMs were preincubated with each lipid (10 µM) or vehicle for 1 h before adding LPS 
(100 ng/mL).  Conditioned medium was collected and assayed for TNFα by ELISA after 
6 hr. Data are presented as mean ± SEM; n = 3−4/group. Significance is presented as 
*p < 0.05, comparing inhibitor-treated groups to vehicle-treated, LPS-stimulated 
controls.  
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Figure 2-21.  Rescue of cytokine-lowering effects with lipid receptor antagonists. 
Rescue of JW480-mediated TNFα-lowering effects by the LPA receptor antagonist 
Ki16425 (10 µM) but not by the PPARγ antagonist GW9662 (10 µM) or the PAF 
receptor antagonist WEB2086 (10 µM). Data are presented as mean ± SEM; n = 
3−4/group. Significance is presented as *p < 0.05, comparing inhibitor-treated groups to 
vehicle-treated, LPS-stimulated controls, or #p < 0.05 compared to JW480-treated 
controls.  
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