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ABSTRACT OF THE DISSERTATION

Learning and Asset Pricing

By

Michael Shin

Doctor of Philosophy in Economics

University of California, Irvine, 2019

Professor William Branch, Chair

The rational expectations (RE) hypothesis although elegant and useful requires demanding

assumptions on part of the agent. A key outcome of the RE hypothesis is that beliefs disap-

pear as an independent force in the model. A branch of the literature focuses on relaxations

of the RE hypothesis to allow agents to instead learn the data-generating process (DGP)

over time. With adaptive learning, beliefs re-emerge as a key element that influences the

DGP. I argue that this relaxation is important for asset pricing settings, which are complex

environments where individual beliefs play a key role in decision making. My dissertation

will explore instances where learning can improve our understanding of asset pricing.

Chapter 1 presents a simple asset pricing model with endogenous participation that

can match key volatility moments when agents adaptively learn about both the risk and the

return of stocks. With learning about risk, excess volatility of prices is driven by fluctuations

in the participation rate that arise because agents’ risk estimates vary with prices. I find

that learning about risk is quantitatively more important than learning about returns. A

calibrated model can jointly match the mean participation rate, the volatility of participa-

tion rates, and explain 25% of the excess volatility of stock prices observed in U.S. data.

Chapter 2 presents a simplified version of the model in Chapter 1 and tests the model

in a laboratory setting. Recent evidence suggests subjective returns play a key role in stock

market participation. Furthermore, there is strong evidence that stock market experiences,

x



i.e. realized returns, impact subjective returns. I bring a model into the laboratory and

find that learning-driven subjective returns can explain limited participation. Stock market

participation is increasing in both subjective returns and past realized returns. I find di-

rect evidence that “learning from experience” generates heterogeneity in subjective returns,

where subjects who experience low returns have lower subjective returns than subjects who

experience high returns. In particular, subjects over-weigh price trends when they experi-

ence high returns and under-weigh it when they experience low returns.

Chapter 3 presents an asset pricing model where agents test the specification of their

models, while adaptively updating the parameters and find that restricted-perceptions equi-

libria (RPE) naturally arise. I extend upon recently developed model specification techniques

to a multi-agent framework. Multiple agents are endowed with different models which they

update and test the specification in real time. When a model is rejected, agents draw a new

model from a distribution. I find that the rational expectations equilibrium (REE) is not

locally stable with respect to hypothesis testing under reasonable parameterization. With

constant-gain learning, the model spends most of its time in a subset of the RPE and in

particular, the dominant model used is not the fully-specified model, but a misspecified one.

xi



Chapter 1

Endogenous Participation, Risk, and

Learning in the Stock Market

1.1 Introduction

In a seminal paper, Mankiw and Zeldes (1991) report that in 1984 only 27.6% of households

in the PSID participated in the stock market. This “participation puzzle” is at odds with

standard assumptions in asset pricing models. Subsequent studies demonstrate that limited

participation is robust across time periods, asset classes, direct/indirect holdings, and coun-

tries (Bertaut and Starr-McCluer 2002, Guiso and Jappelli 2002, Campbell 2006).

This paper focuses on the dynamic relationship between participation and asset prices.

Table 1.1, taken from the Survey of Income and Program Participation (SIPP), documents

fluctuations in participation rates over time with a low of 19.6% and a high of 29.4%. More

recently, Arrondel et al (2014) provide structural econometric evidence of a causal relation-

ship between expected returns and participation rates. I propose a theory of endogenous

fluctuations in participation rates and demonstrate that it can be an important driver of

1



stock price volatility.

Year Participation Rate (%)

1995 20.7

1998 27.1

2000 27.1

2002 29.4

2004 26.4

2005 25.1

2009 21.8

2010 20.4

2011 19.6

2013 20.0

Table 1.1: Stock Market Participation Rates from 1995 - 2013. Data was extracted from the
Survey of Income Program and Participation.

I present a mean-variance asset pricing model with two key departures: a costly par-

ticipation margin and imperfect knowledge about the stochastic processes driving prices.

Participation is costly and agents choose to participate in the stock market by balancing

entry costs against the risk-adjusted expected return from participating. I relax the rational

expectations (RE) assumption and instead assume that agents behave like good econometri-

cians who formulate and estimate a well-specified forecasting model for future stock prices.

A key assumption is that agents have to also estimate the risk, i.e. the conditional variance

of returns. Learning about the risk and return provides two different feedback mechanisms

that contribute to price fluctuations with learning about risk being quantitatively more im-

portant. I find that with learning, changes in agents’ risk estimates lead to large fluctuations

in the participation rate which in turn lead to large fluctuations in the price.

2



To introduce endogenous fluctuations in participation, I implement a cost function

which captures features beyond fixed participation costs while keeping the model tractable.

This approach is motivated by recent empirical evidence revealing costs to participate in the

stock market that go beyond fixed entry costs such as financial awareness, financial literacy,

and other cognition costs (Guiso and Sodini 2013). Similar to labor-leisure decisions, I model

participation as the result of costly effort. Individuals who exert more effort are more likely

to enter the stock market.

It is well known that asset pricing models with RE have difficulty generating excess

volatility (Timmermann 1993). RE requires subjective beliefs to align with the objective

measured probability distribution that is implied by those beliefs. Therefore with RE, be-

liefs disappear as an independent force driving prices, volatility, and participation. I argue

that belief-driven learning dynamics are key in explaining the interplay between participa-

tion and stock price volatility. Hence I take a step down from RE and implement an adaptive

learning rule.

I first characterize the steady-state equilibrium and do comparative statics which give

insights on participation without learning. I find that limited participation lowers the steady-

state price because fewer agents participating in the market corresponds to lower market

demand for the asset. In the steady-state, changes in the structural parameters shift both

the asset demand and participation decision. Therefore, the participation decision can either

shift in the same direction as the asset demand, amplifying the effect on prices, or in the op-

posite direction and reduce the effect. For instance, a decrease in the risk-free rate increases

the demand for the risky asset which increases the price but also increases the participation

rate which leads to a further increase in the price.

I then study the learning dynamics while keeping risk constant in order to character-

ize the learning about returns channel. Along a temporary equilibrium path, agents exert

effort to participate in the stock market, where the level of effort depends on return expec-

tations. Additionally, participation has a direct effect on asset prices and returns. When

3



prices increase, expected returns decrease, leading to a decrease in participation which in

turn decreases prices. This feedback loop due to learning about returns is an important

mechanism in our model for explaining limited participation and excess volatility of stock

prices.

The role for learning about risk is motivated by survey responses in Arrondel et al

(2014) who find that 20.7% of nonparticipants did not invest in the stock market due to the

perceived riskiness of stocks. Since risk influences participation, risk itself is an equilibrium

object jointly determined along with prices and returns. I follow the approach in Branch

and Evans (2011) by explicitly calculating the conditional variance of returns. Risk affects

participation because higher risk lowers returns in certain states and hence lowers the ex-

pected utility from participation. An increase in the subjective risk leads to a decrease in the

participation rate which leads to a decrease in the price. Furthermore a decrease in prices

increases realized returns which leads to an increase in the subjective risk which further

decreases the participation rate. This process continues until risk estimates are adjusted and

the mechanism moves in the opposite direction. This feedback mechanism due to learning

about risk, is key to generating more volatility in prices than the model with exogenous risk.

I also find that learning about risk is quantitatively more important than learning

about returns. Learning about risk generates larger volatility in participation rates which

directly contributes to larger volatility in prices. Essentially, learning about risk is more

important for volatility because changes in risk have a persistent impact on prices. There is

a self-fulfilling aspect between prices and risk which is amplified by the participation mar-

gin. As agents learn about the risk and subjective risk increases, participation decreases and

prices decrease as well. In this sense, higher risk leads to persistently lower prices leading to

higher price volatility. In contrast, prices and expected returns have a negative relationship

such that higher prices lead to lower expected returns which lowers participation. Hence

with learning about returns, higher prices are offset by lower expected returns leading to

lower persistence in volatility. A quantitative exercise demonstrates that the model with

4



learning about risk can match the mean participation rate, the volatility of participation

rates, and generate 25% of the excess volatility in stock prices.

1.1.1 Literature Review

This paper contributes primarily to two literatures. First, to the literature on limited partic-

ipation and household finance. There is a large literature on exogenous limited participation

such as Guo (2004), Guvenen (2009), and Lansing (2015). The first paper to endogenize

limited participation is Allen and Gale (1994) who implement fixed costs in a one-shot asset

pricing game. They find that endogenous participation can increase the volatility of asset

prices. This paper is most similar to Orosel (1998), who models endogenous participation in

an overlapping generations model with fixed costs. My model differs from theirs by imple-

menting a variable cost function, which allows us to tractably analyze the dynamics of the

model while also mapping participation rates to the data. Gomes and Michaelides (2005)

and Fagereng et al (2017) implement fixed costs in a life-cycle model and calibrate it. Models

in this strand of the literature focus on matching the cross-section of asset holdings. In con-

trast, I focus on aggregate participation and how it jointly impacts asset prices and expected

returns in the time-series.

Second, I contribute to the literature on learning. This paper follows a strand of lit-

erature put forth by Marcet and Sargent (1989) and Evans and Honkapohja (2001) which

relaxes the RE hypothesis and replaces it with an econometric learning rule. The first paper

to analyze learning in an asset pricing model is Timmermann (1993) who shows that adap-

tive learning can generate excess volatility. Our environment is similar to Branch and Evans

(2011) who calibrate a mean-variance asset pricing model where agents also learn about the

risk. We differ from their approach by adding a participation decision and focus on price

volatility rather than asset bubbles. More recently, Nakov and Nuño (2015) calibrate an as-

set pricing model with learning and Blanchard-Yaari households. Finally Adam et al (2016)
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formally test a consumption asset pricing model with learning. As far as I know this is the

first paper to combine an asset pricing model with endogenous participation and learning.

1.2 Model

Time is measured in discrete periods t = 1, 2, ... and there are overlapping generations of

agents who live for 2 periods. All agents have CARA utility functions of the form: u(c) =

−e−ρc, where ρ > 0 is the coefficient of absolute risk aversion. There is one non-storable

consumption good which is taken as the numeraire. There are two assets traded in perfectly

competitive markets: a risky Lucas tree and a riskless one-period bond. Like Lucas (1978),

shares underlie firms that produce exogenous stochastic output of the consumption good.

Participation in the risky market requires effort and none is required in the riskless market.

The riskless one-period bond as an analogue to a savings account or a storage technology.

In reality, participation in the bond market also requires effort but the cost is presumably

lower. I assume that the riskless asset gives an exogenous gross return R = 1 + r > 1 of the

consumption good and the supply is infinitely elastic.

The initial old are endowed with S > 0 shares, where each share pays at the beginning

of the period a dividend Dt. Dt follows an exogenous process:

Dt = µ+ εDt

where µ > 0 and εDt is white noise with distribution N(0, σ2
D). The dividend process is

simplistic for technical convenience and to clearly focus on the participation channel.1 After

1In order to focus on the interactions between learning and participation, I abstract from seriously mod-
eling dividends and asset supply, both of which are better approximated by persistent or non-stationary
processes.
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the initial old is endowed with the shares, subsequent S follow an exogenous process:

St = S + εSt (1.1)

where εSt is white noise with distribution N(0, σ2
S). The stochastic supply is a proxy for

volatility in asset float where firms create new issues and provide options that are periodically

exercised changing the available supply at a given time. Furthermore, the impact of asset

float is well documented in the literature (Baker and Wurgler 2000).

I follow Branch and Evans (2011) who show that in a similar model, stochastic variation

in the population of young agents can produce shocks in per capita asset supply. At the

beginning of each period, a new generation nt enters the economy, where nt is an iid random

process with an inverse mean of one. Because nt is random, the per capita asset supply St is

also random, and follows the stochastic process in Equation (1.1). Each agent lives for two

periods, has initial endowment w normalized to 1, and consumes only in the second period.

This is to abstract away from savings decisions in order to focus entirely on the lifetime

portfolio choice and the stock market entry decision of the young households.

There are costs to participate in the stock market beyond fixed entry costs such as

investing in financial literacy, financial awareness, and other cognition costs (Guiso and

Sodini 2013). I implement a cost function that captures these features while also keeping

the model tractable. Agents can exert up to one unit of effort e. Similar to labor-leisure

decisions, exerting effort is assumed to be costly in terms of utility. Agents face a variable

cost function Φ(e) that is increasing in their effort at a decreasing rate with Φ(0) = 0, and

Φ′(0) = 0.

An iid random variable χ which takes on values 0 and 1 determines the young’s ability

to participate. When χ = 1, the young can participate in the stock market, else they are

unable to enter. Furthermore, the young can influence the likelihood of χ by exerting effort.

If the agent exerts e = 1, then he enters the market with certainty. Similarly, if the agent
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exerts e = 1
2
, then he enters the market with probability 1

2
. Implicitly, agents who exert

more effort are more likely to increase their financial awareness or invest in financial literacy

and hence are more likely to enter the stock market.

My modeling approach is similar to employment lotteries in labor models following a

technique pioneered by Rogerson (1988). Since entering the stock market is an indivisible

choice, households can improve their welfare by drawing lotteries amongst themselves and

enter the market probabilistically. A natural interpretation, following Ljungqvist and Sargent

(2011), is that this formulation is equivalent to choosing a portion of your lifetime in which

to enter the stock market. Hence e can alternatively be interpreted as the fraction of an

agent’s life in which they would like to participate in the stock market.2 Because of the Law

of Large Numbers, e also corresponds to the aggregate participation rate.

1.3 Equilibrium

1.3.1 Portfolio Choice

Consumption depends on whether the household is a stock market participant. Hence ct =

cχt, where cχt is state-contingent consumption. Let c0t be risk-free consumption and c1t be

risky consumption. Then agents maximize the following program:

maximize
xt(χ),et

(1− et)u(c0t) + etEtu(c1t)− Φ(et)

subject to cχt =


R + xt(pt+1 +Dt+1 −Rpt) if χ = 1

R if χ = 0

(1.2)

2Their exact interpretation is in terms of the labor market in which agents choose their career lengths.
Alternatively, one can imagine agents having a distribution of fixed entry costs and the representative agent
being a stand-in for the heterogeneity. This interpretation is similar in spirit to Orosel (1998).
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where xt is the asset holding decision and pt is the price of the risky asset.

I make a timing assumption on the portfolio and participation decision. In particular,

I assume that the decisions are made sequentially, that is, agents make the participation

decision before the portfolio decision. Equation (1.2) is the agent’s budget constraint. Agents

allocate their endowment between the risky asset and the one-period bond. Agents choose

some portfolio xt and effort level et to maximize their lifetime utility. Furthermore, agents

also assume that the payoffs, pt+1 + Dt+1, are normally distributed, which implies c1t is

also normally distributed. Since the utility is CARA, I arrive at the following first-order

conditions:

xt =
Et(pt+1 +Dt+1)−Rpt

ρσ2
p

(1.3)

Φ′(et) = max{Etu(c1t)− u(c0t), 0} (1.4)

where σ2
p ≡ V art(pt+1+Dt+1) is the conditional variance of returns, i.e. the agents’ subjective

measure of risk. For now σ2
p is treated as a constant but will be made endogenous in

subsequent sections. The inverse function is:

et = min{Φ′−1[Etu(c1t)− u(c0t)], 1} (1.5)

Equation (1.3) is the standard mean-variance asset demand function which is downward

sloping in the price and Equation (1.5) is the participation decision. Hence, the agent’s

optimal effort level depends on equating the expected utility difference of entering and not

entering with the marginal cost of entry.
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1.3.2 Steady-State

To better understand the participation decision, it is illustrative to analyze the steady-state.

I assume a particular form for the cost function:

Φ(et) =
1

2A
e2
t , where A > 0 is some technology or efficiency parameter.

Then the inverse of the derivative is:

et = Φ′−1(y) = Ay, where y ≥ 0 is some input.

Taking the first-order condition I now get:

et = min{AΓ(Etpt, Etpt+1), 1} (1.6)

where:

Γ(Etpt, Etpt+1) = e−ρR − e
−ρR− [Et(pt+1+Dt+1)−REtpt]

2

2σ2
p (1.7)

Equation (1.7) follows from the transformation of an exponential function with respect to

normal random variables and is derived in Appendix A. Γ(p) is the expected utility difference

between the two states which can be interpreted as the expected excess utility return of

entering the stock market. Since the participation decision is made prior to the portfolio

decision, there is an Et on the price pt. Thus agents care about the expected price Etpt when

participating. The market-clearing condition is as follows:

etxt = St
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Once I impose market-clearing, I get the following pricing equation:

pt = R−1

[
Et(pt+1 +Dt+1)− St

et
ρσ2

p

]
(1.8)

This is the same as the standard mean-variance pricing equation except now the price also de-

pends on et, where again, et is the participation rate. When et = 1, the model collapses to the

standard mean-variance case. Otherwise, when et < 1, the limited participation steady-state

price will be lower than the corresponding full participation price. Since market-clearing im-

plies prices must be positive, the participation rate et will always be positive in equilibrium

and hence Equation (1.8) is well-defined.

There are two propagation mechanisms with the addition of the participation deci-

sion. The first mechanism is through Etpt+1. In the standard model, Etpt+1 affects the price

directly, but in our model it also impacts it indirectly through et since the participation

decision now depends on expected prices. Second, as et increases, pt increases. In particular,

lower participation rates lead to lower prices and higher participation rates lead to higher

prices. This means that increases in expected prices further increase the price through the

participation channel. Thus I can view et as an amplification mechanism, where changes in

participation rates are demand shocks.

These two effects interact nonlinearly. In order to build intuition about the partici-

pation channel, I look at the steady-state equilibrium. I find the participation channel can

act as both an amplification and dampening mechanism. For instance, an increase in R

decreases both the price through the asset demand and through the participation channel.

In contrast, an increase in the risk σ2
p decreases the price through the asset demand but

increases it through the participation channel.

I characterize the steady-state equilibrium where St = S and pt+1 = pt = p̄. Once I
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p

e

inverse asset demand

participation

Figure 1.1: Steady-state Equilibrium.

solve for the steady-state I get the following form:

x̄ =
µ− (R− 1)p̄

ρσ2
p

Plugging in for the cost function I get the following participation equation:

ē = min{AΓ(p̄), 1}

where:

Γ(p̄) = e−ρR − e
−ρR− [µ−(R−1)p̄]2

2σ2
p

Proposition 1. There exists a unique steady-state equilibrium.

Proofs are provided in Appendix A. Figure 1.1 depicts Proposition 1 graphically for a

set of parameters. Given that the steady-state equilibrium exists and is unique, I derive the

expression for the steady-state price. I also compare it to the standard mean-variance case.

The steady-state equation for the price in the standard mean-variance model is as follows:

p̄ =
µ− Sρσ2

p

R− 1
(1.9)
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e

inverse asset demand

participation

full participation

Figure 1.2: Steady-state Equilibrium: Limited and Full Participation.

The steady-state equation for my model is:

p̄ =
µ− S

ē
ρσ2

p

R− 1
(1.10)

where:

ē = min{AΓ(p̄), 1}

When ē = 1, the model again collapses to the full participation case. Since ē is decreasing

in p̄, our steady-state price will be lower than the benchmark. I graph Equations (1.9) and

(1.10) in Figure 1.2 to describe the relationship between the two models.

In Figure 1.2, we see that the full participation model has a higher steady-state price

than with limited participation. Another thing to note is that changes in the structural

parameters shift both functions so the magnitude of the change is different than the bench-

mark. Moreover, I can plug Equation (1.10) into the steady-state participation function to

find ē as an implicit function of the fundamentals:

ē = min{Ae−ρR − Ae−ρR−
S2ρ2σ2

p

2ē2 , 1}

I now sign the derivatives for the steady-state participation and pricing functions.

Proposition 2. For ē < 1, the derivative signs for steady-state participation are as follows:
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∂ē
∂R

< 0, ∂ē
∂µ

= 0, ∂ē
∂A

> 0, ∂ē
∂σ2
p
> 0, and ∂ē

∂ρ
is indeterminate.

Proposition 3. The derivative signs for steady-state price are as follows: ∂p̄
∂R

< 0, ∂p̄
∂µ
> 0,

∂p̄
∂A

> 0, ∂p̄
∂σ2
p
< 0, and ∂p̄

∂ρ
is indeterminate.

With endogenous participation, the participation and asset demand functions need not

move in the same direction. For instance, when dividends µ increase, prices increase because

agents increase their asset demand but the steady-state participation rate is unchanged. In

Equation (1.10), we see before the substitution that steady-state participation is a function

of µ. Nevertheless the increase in µ increases participation but this effect is exactly offset by

the increase in prices. When the interest rate R increases, agents lower their asset holdings

which decreases the price. They also decrease participation since the risk-free rate now gives

a higher return which decreases their expected utility gain from investing, further decreasing

the price. Next, an increase in the cost parameter A lowers the cost of participating, which

increases participation and increases the price.

Furthermore, when the risk σ2
p increases, agents lower their asset holdings which lowers

the price but their participation rate increases. Similar to the change in µ, there are counter-

balancing effects and the intuition is as follows. For the individual agent, participation is

decreasing in σ2
p because it decreases their expected utility gain from investing. Participation

is also increasing as steady-state price goes down. In equilibrium, the price effect dominates

and steady-state participation is increasing in σ2
p. Finally, when agents become more risk

averse, they decrease their asset holdings and price decreases. The participation decision now

has a u-shaped relationship with respect to ρ. Participation is increasing in ρ up to some

threshold value, and then decreasing afterwards. This threshold depends on the risk-free rate

being sufficiently high. If the risk-free rate is high enough, then participation is increasing

in ρ. This is because in the steady-state, participation is decreasing in prices because higher

prices lower returns. Hence, a change in the price due to the asset demand can be partially

dampened by the participation effect, but the change in prices is indeterminate.
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I now elaborate on the intuition behind the risk σ2
p comparative statics since it plays

a key role in our model. In the steady-state, an increase in σ2
p makes the asset riskier to

hold, but prices become low enough such that the equilibrium level of participation will be

higher. Out of steady-state, the price effect only dominates when Etpt+1 approaches p̄. With

learning, the effect of an increase in σ2
p will decrease participation which will be the main

driver of volatility in prices. Hence to understand the dynamic relationship between risk and

participation, it is important to analyze the learning dynamics.

1.4 Asset Pricing Dynamics with Learning

Because the stochastic model is a complicated non-linear rational expectations equation, it

is not possible to characterize the full set of rational expectations equilibria (REE). However,

since the unique steady-state is locally determinate, I am able to solve for one type of REE,

the noisy steady-state REE. The noisy steady-state REE is a non-linear REE where the

equilibrium path is a sequence of noisy deviations around the steady-state. I characterize

the noisy steady-state REE and then analyze its stability under learning. I do this by

first taking the risk σ2
p as exogenous to clearly understand the dynamic properties of the

participation decision. I then analyze the numerical properties when σ2
p is endogenous.

1.4.1 Rational Expectations Equilibrium

I start by characterizing the noisy steady-state REE with exogenous risk. The key equation

in the model is the following expectational difference equation:

pt = R−1

[
Etpt+1 + µ− St

et
ρσ2

p

]
(1.11)

Definition 1. A noisy steady-state REE is a sequence {pt}∞t=0 and {εSt }∞t=0 such that the
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sequences solve the equation:

p(εSt ) = R−1

[
Etp(ε

S
t+1) + µ− S

e(Etp(εSt+1), p(εSt ))
ρσ2

p −
εSt

e(Etp(εSt+1), p(εSt ))
ρσ2

p

]
(1.12)

where:

e = min {Ae−ρR − Ae
−ρR−

[Etp(εSt+1)+µ−REtp(ε
S
t )]

2

2σ2
p , 1}

Hence the noisy steady-state is characterized by a function p(εSt ) that solves Equation (1.12).

Since Etp(ε
S
t+1) = Etp(ε

S
t ), given that εSt is iid:

e = min {Ae−ρR − Ae
−ρR−

[µ−(R−1)Etp(ε
S
t+1)]

2

2σ2
p , 1}

Then:

p(εSt ) = R−1

[
Etp(ε

S
t+1) + µ− S

e(εSt )
ρσ2

p −
εSt
e(εSt )

]
Since εSt is white noise, Etp is a constant and coincides with the nonstochastic steady-state

p̄. Then e becomes:

e = min {Ae−ρR − Ae
−ρR− [µ−(R−1)p̄]2

2σ2
p , 1}

which is just e = ē. Then

pt = p̄+ ηt (1.13)

where ηt ≡ −R−1
[
εSt
ē
ρσ2

p

]
. I use a proposition by Evans and Honkapohja (1995) that proves

that the noisy steady-state REE exists and is unique.

Proposition 4. If the sequence of shocks {εSt }∞t=0 are such that |εSt | < α with probability 1

for all t and α > 0 is sufficiently small, then there exists a unique noisy steady-state REE.

Proposition 4 states that Equation (1.13) is the unique noisy steady-state REE solution to

Equation (1.12). Here α characterizes the support of the distribution of shocks. Essentially,

the idea of a noisy steady-state REE is that when shocks are iid with compact support, there
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exists a stochastic equilibrium in a neighborhood around the steady-state. Hence I have fully

characterized the noisy steady-state REE of our model and now I implement learning.

In practice, the α parameter which characterizes the support of the distribution is

difficult to pin down. Although Proposition 4 states that the distribution exists, it provides

no analytical solution for α. Thus, when doing my numerical simulation I use empirical

moments and robustness checks to insure that the system is locally stable.

1.4.2 Endogenous Risk

I have treated the risk σ2
p as a constant. Importantly, σ2

p is an equilibrium object and having

the agents learn about the risk has important implications. In asset markets with agents

who learn over time, risk plays an important role because the perceived riskiness of an asset

can lead to a lower asset demand that leads to lower prices in future periods. I argue that

endogenizing σ2
p is crucial for understanding asset markets because we otherwise omit an

important feedback mechanism that influences prices and expectations.

I now endogenize σ2
p ≡ V art(pt+1 +Dt+1). Then:

σ2
p = Et(pt+1 − Etpt+1 +Dt+1 − µ)2

Solving out and plugging in Equation (1.13) I have:

σ2
p = Et(−R−1ρσ2

p

εSt+1

ē
+ εDt+1)2

= V art(−R−1ρσ2
p

εSt+1

ē
+ εDt+1)

=
R−2ρ2(σ2

p)
2

ē2
σ2
S + σ2

D
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Solving for equilibrium risk σ2
p leads to:

σ2
p =

ē2 ± ē
√
ē2 − 4R−2ρ2σ2

Sσ
2
D

2R−2ρ2σ2
S

(1.14)

Equation (1.14) is identical to Branch and Evans (2011) when ē = 1. We see now σ2
p is

determined by fundamentals. Importantly, the standard deviation of supply, σ2
S now influ-

ences the risk since agents consider the effect of the volatility of shares on the volatility of

returns. There are also two solutions to Equation (1.14) which correspond to low and high

risk steady-states. Branch and Evans (2011) show that the low risk steady-state is unstable

under learning. I find a similar result with our numerical analysis and hence focus on the

low risk steady-state as well.

Moreover we see that both ē and σ2
p are determined jointly in equilibrium. Unfortu-

nately, because ē and σ2
p have no closed form, I am unable to provide analytical solutions

for the case with endogenous risk. Instead, I rely on numerical analysis under learning.

1.4.3 Adaptive Learning

Rational expectations (RE) requires a full understanding of the model as well as beliefs of

other agents. In this sense it is a Nash equilibrium, such that coordination between agents

requires strong cognitive and informational assumptions. Instead, many applied economists

estimate econometric forecasting models and adjust the coefficients in light of new data. Here

I adhere to the Cognitive Consistency Principle (Sargent 1993) which requires agents and

econometricians to be on equal footing. In this regard I want to understand how an agent’s

learning mechanism will, in turn, affect the other endogenous variables. With adaptive

learning, agents know the form of the REE but not the true parameters. I make a small

deviation from RE where agents implement a learning rule and run least-squares regressions
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on the perceived pricing function.3

The REE of the model is a constant plus a noise. Then the agents are regressing prices

on a constant and they need to keep track of the regression coefficient each period. I can

rewrite the sample average recursively where expectations formation take the following form:

pet+1 = pet + t−1[pt−1 − pet ]

where pet is the subjective expectation of prices formed at time t. This type of learning is

called decreasing-gain learning. With decreasing-gain learning, agents estimate the sample

average of prices and adjust their expectations as new data becomes available. If agents

believe they are in a noisy steady-state and that the REE is a constant then pt = at−1 + νt

where νt is the perceived white noise and at is updated recursively. Then, evidently pet =

at−1 = pet+1. Γ(pet+1, p
e
t ) then becomes:

Γ(pet+1) = e−ρR − e
−ρR−

[(1−R)pet+1+µ]2

2σ2
p

We say that the REE is locally stable if the model converges to the REE under decreasing-

gain learning. I check the properties of the model with decreasing-gain learning and show

that the REE is in fact stable under learning.

1.4.4 Stability Under Learning

I show analytically that the REE solution is locally stable under learning. To do this I

have to analyze the mapping between the perceived law of motion (PLM) and actual law of

motion (ALM). With econometric learning, agents know the form of the REE but not the

parameters and hence the PLM is the equation that agents believe generate the observed

3I do not assume that agents learn about the dividend process since learning about exogenous processes
provides no feedback. This assumption has no impact on the main results.
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data. The ALM is the true data-generating process given the beliefs of the agents. Local

stability analysis then amounts to understanding the functional relationship between these

two objects and determining the conditions for convergence.

Agents believe they are in a noisy steady-state and know the form of the REE. Then

the PLM is:

pt = a+ νt

where the conditional expectation, E∗t pt+1 = a. Here the asterisk denotes that the conditional

expectation is not fully rational because the agent does not know the true parameter value.

The ALM is then:

pt = R−1

[
a+ µ− St

et
ρσ2

p

]
et = min{Ae−ρR − Ae

−ρR− [(1−R)a+µ]2

2σ2
p , 1}

Plugging into the learning rule, I get:

at = at−1 + t−1

[
R−1(at−1 + µ− St

et(at−1)
ρσ2

p)− at−1

]
T (a) = R−1

[
at−1 + µ− St

et(at−1)
ρσ2

p

]

where T (a) is a T-map which is a function that maps the agent’s PLM to the ALM. Evans

and Honkapohja (2001) show that the T-map can be used to compute local stability using a

concept called E-stability. The E-stability principle states that locally stable rest points of

the ordinary differential equation (ODE):

da

dt
= T (a)− a

will be attainable under least squares learning. E-stability dictates that the “expectational”

stability of a model depends on the signs of the eigenvalues evaluated at the rest point of

the ODE. If all the eigenvalues have negative real parts, then the REE is locally stable. The
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fixed point of the ODE is:

a =
µ− S

e
ρσ2

p

R− 1

e = min{Ae−ρR − Ae−ρR−
S2ρσ2

p

2e2 , 1}

where (a, e) correspond to the steady-state values. I now state a proposition showing that

the REE is locally stable under decreasing-gain learning.

Proposition 5. If the sequence of shocks {εSt }∞t=0 are such that |εSt | < α with probability 1

for all t and α > 0 is sufficiently small, then the noisy steady-state REE is locally stable

under decreasing-gain learning.

Proposition 5 states that if R−1 is less than 1, then the system is E-stable which is satisfied

in our model. In my model R−1 dictates the strength of the expectational feedback since

higher values lead to larger coefficients on the expectations terms. By assumption, R−1 is

always less than 1 since R is greater than 1. Hence the REE is locally stable under learning.

1.4.5 Constant-Gain

So far I have demonstrated the model properties under decreasing-gain learning. In the

simulations I implement constant-gain learning, where agents weigh each observation with

geometrically declining weights. This is appropriate because my application is a perpet-

ual learning environment which is best captured by constant-gain learning. Constant-gain

learning differs from decreasing-gain learning in the sense that agents are not weighing each

observation equally. As γ increases, the agent weighs new evidence higher. I justify this

for three reasons. First, constant-gain learning is a robust learning mechanism and is well-

represented in the data (Malmendier and Nagel 2011, 2015). Second, when agents are worried

21



Figure 1.3: Constant-Gain Learning. For 1000 iterations, γ = 0.05, σ2
S = 0.435, A = 1.15,

σ2
p = 0.46, µ = 1, R = 1.007, ρ = 0.45. Left figure is limited participation, right figure is full

participation.

about structural changes it is optimal to place higher weights on recent observations. Finally,

constant-gain learning converges to a distribution around the REE, so we can still use the

REE as a benchmark. The following is the recursive formulation for constant-gain learning:

pet+1 = pet + γ[pt−1 − pet ], where γ ∈ [0, 1].

Constant-gain learning requires a projection facility to ensure prices remain non-

negative and plays a stabilizing role when the risk in endogenized. I implement a projection

facility by endogenizing the shares, where the endogenous supply of shares is meant to cap-

ture asset float drying up when markets perform poorly. With endogenous supply, shares

follow:

St = {min(S,Φpt)}Vt

where Vt = 1 + εSt and Φ = S
p̄ξ

, where p̄ is the steady-state price and ξ is a fraction between

0 and 1. Here ξ is the fraction of steady-state price at which prices become endogenous.

Figure 1.3 depicts the learning about returns simulation with a constant gain and
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compares them to the full participation case. As we can see, the model with exogenous

risk generates more volatility than the standard model, which is driven mainly by the par-

ticipation channel. The key mechanism when learning about returns is as follows. When

expected returns increase, participation increases. This leads to an increase in the price,

which leads to a decrease in the expected returns which leads to a decrease in participation.

With constant gain learning, this process leads to persistent fluctuations and adjustments in

the learning process which generates more volatility than the standard case.

1.4.6 Learning about Risk

I now implement a learning rule where agents also have to learn about the risk σ2
p. The most

natural learning rule for σ2
p is one similar to the rule for prices, where agents regress the risk

on a constant.4 Then the learning rule for σ2
p is:

σ2
p,t+1 = σ2

p,t + δ[(pt − pet−1 + εDt )2 − σ2
p,t] where δ ∈ [0, 1].

where εDt is the dividend shock. As before, there are 2 steady-state solutions for σ2
p. Although

Branch and Evans (2011) show the high risk steady-state is unstable under learning, it is not

obvious if their results follow with the addition of a participation decision. Since ē and σ2
p

have no closed-form expression, a complete analytical solution is unavailable. Nevertheless,

I find that the low risk steady-state is numerically stable under learning while the high risk

steady-state is not. Figure 1.4 depicts the simulation with learning about risk.

I find that there is an increase in volatility in this simulation and in particular there

is substantially more fluctuation in the participation rate. The main feedback mechanism

with learning about risk is as follows. An increase in the subjective risk estimate σ2
p leads

4Alternatively, one could use different types of learning rules such as an autoregressive conditional het-
eroskedasticity (ARCH) model. Branch and Evans (2013) analyze this case and the qualitative results are
similar.
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Figure 1.4: Endogenous Risk. For 1000 iterations, γ1 = 0.05, γ2 = 0.0005, σ2
S = 0.435,

A = 1.15, σ2
D = 0.28, µ = 1, R = 1.007, ρ = 0.45

to a decrease in the participation rate et which feeds back to a decrease in the asset price.

Furthermore, a decrease in price will increase realized returns which leads to a temporary

decrease in the subjective risk which further decrease the participation rate. This process

continues until risk estimates are adjusted and then the mechanism moves in the opposite

direction. The learning about risk feedback mechanism is the key driver of volatility in my

framework.

1.5 Quantitative Analysis

In order to keep the model tractable and focus on the interplay between learning, the par-

ticipation channel, and stock prices I made strong simplifying assumptions. Nonetheless, it

is illustrative to calibrate the model to give some measure of quantitative importance to the

participation channel.
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1.5.1 Parameter Values

The parameters are calibrated according to the values in Table 1.2. The risk aversion ρ is

calibrated to a value within the range of studies found in Babcock, Choi, and Feienerman

(1993) at 0.45. The historical average real interest rate in the U.S. is 2.7% so I take the

gross quarterly rate which is R = 1.007. Next the volatility of dividends σ2
D is taken from

a Hodrick-Prescott (HP) filter of quarterly real historical stock market dividend data from

1927 to 2017 from Robert Shiller’s database which is 0.28. For mean dividends µ I choose

a value of 1 where the ratio of mean dividends to the standard deviation is sufficiently high

such that the probability of negative dividends is unlikely. The volatility of supply σ2
S is

taken from Baker and Wurgler (2000) who estimate the quarterly volatility of shares in the

S&P 500 at 0.435. The gain parameter γ1 is chosen similarly to past studies at 0.05. Branch

and Evans (2006) show that this parameter value is consistent with the data.

Next, I choose the cost parameter A = 1.15 to match the mean participation rate

consistent with the data. Then, the gain for the risk, γ2 is 0.0005 which is calibrated such

that the ratio of gains γ1

γ2
is sufficiently high to insure stability. Branch and Evans (2011) show

that it is important that the gain for the risk be smaller than the gain for expected prices to

insure stability. In particular, if the gain for the returns moves too much, it may be enough

to move the learning path away from the REE. The endogenous share parameter ξ is chosen

conservatively to be 0.3 which means that the shares start to become endogenous when

prices decline to 30% of the fundamental value. Finally, I am interested in the unconditional

moments so I take a long, transient simulation of two million iterations and burn-in the first

one million.

25



Parameters Meaning Value Source/Target

ρ Risk Aversion 0.45 Babcock, Choi, Feinerman (1993)

σ2
D SD of Dividend 0.28 HP filtered dividend volatility

σ2
S SD of Supply 0.435 Baker and Wurgler (2000)

R Real Interest Rate 1.007 Average U.S. Real Interest Rate

γ1 Price Gain 0.05 Branch and Evans (2006)

γ2 Risk Gain 0.0005 No prior reference

ξ Endogenous Supply 0.3 Projection facility

Table 1.2: Parameter Values.

1.5.2 Moments

The moments I am interested in matching are as follows. The quarterly volatility of the HP

filtered log prices from 1927 - 2017 is 0.132. The mean participation rate from the SIPP

participation data from 1995 - 2013 is 0.373 for both direct and indirect stock holdings,

and the volatility of participation rates is 0.008. I do a quarterly interpolation of the stock

market participation data and HP filter it. I stress that this number is a noisy indicator

of the true parameter and that future studies may want to find a more comprehensive way

of measuring the volatility of participation rates. Nevertheless, it proves instructive to see

how the model performs. The mean and standard deviation of annualized excess returns are

1.061 and 0.313. Finally, the autocorrelation of quarterly HP filtered log prices is 0.842.
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Moment No Risk Risk Data

Sd(p) 0.011 0.031 0.132

Mean(e) 0.368 0.37 0.373

Sd(e) 0.004 0.008 0.008

Mean(Re) 1.032 1.032 1.061

Sd(Re) 0.048 0.047 0.313

ρ(p, p−1) 0.625 0.959 0.842

Table 1.3: Moments Table. Sd(·) is the standard deviation, Re is the excess returns, and
ρ(·) is the correlation coefficient.

1.5.3 Results

Table 1.3 documents the calibration results. As we can see, the learning about risk model

does well on many dimensions, particularly when taking into account that the model is

highly stylized. Even with the model abstracting away from serially correlated shocks we

can see that the risk specification can match upwards of 50% of the volatility in stock prices.

That is, as the stock market participation rates go down, stock volatility goes up. That

is because, as participation rates go down, the market becomes more thin and volatility

increases. I also find that learning about risk generates 3 times more volatility than learning

about returns. Therefore, we can attribute most of the volatility from learning about risk

rather than learning about returns. Next I can also match the volatility of participation rates

which is 0.008. In contrast, the model without learning about risk is unable to generate the

necessary volatility in the participation rate and generates a standard deviation of 0.004.

I can also match half of the mean excess returns at 1.032 and I do much better at

matching the autocorrelation of stock prices at 0.959 while without learning about risk, the

autocorrelation is 0.625. I am unable to match the standard deviation of excess returns at
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0.047. I argue that the current model with iid shocks is not a good model for returns. With

iid dividends and autocorrelation of prices, due to learning about risk, prices are moving in

the same direction per period which removes the agents’ capital gains.5

Learning about returns matters but learning about risk is necessary to generate volatil-

ity that matches the magnitudes found in the data. As before, with learning about risk the

key mechanism is as follows. An increase in the subjective risk, decreases the participation

rate which leads to a decrease in the price leading to a decrease in the subjective risk. This

process continues until risk estimates are adjusted and then the mechanism moves in the

opposite direction. These cyclical movements depend on the magnitude of the shocks and

the magnitude of steady-state deviations. As enough data is realized, the process stabilizes

around the steady-state values.

The model mechanism is also externally validated by survey responses provided in

Arrondel et al (2014) where 20.7% of the sample stated the reason they do not invest in the

stock market is that it is too risky. If one takes risk to be the variance of returns as in the

context of our model, then it provides a natural explanation for limited participation rates

and excess volatility in stock prices.

1.6 Conclusion

I have demonstrated that a simple asset pricing model with a participation decision can do

well at matching moments of the data when allowing for agents to adaptively learn about

risk and returns. The model adds a participation channel and endogenizes the risk which

allows feedback effects to occur when combined with expectations and learning. The two

key mechanisms are due to learning about risk and learning about returns. The learning

about returns mechanism works as follows. When expected returns increase, participation

increases, which leads to an increase in the price. This leads to a decrease in the expected

5Suitably extended versions of the model can explain returns such as in Adam et al (2017).

28



return and hence decreases participation. Similarly for learning about risk, when expected

risk increases, participation decreases which decreases the price. This leads to a decrease

in the expected returns which further increases the expected risk and hence further lowers

participation. When risk estimates are finally corrected, the feedback mechanism moves in

the opposite direction. The combination of these two channels are what leads to the agent’s

subjective risk being an important driver of stock price volatility, with learning about risk

being quantitatively more important.

Future research will take the quantitative implications seriously by introducing serially

correlated shocks and heterogenous agents. Also a focus of future empirical research will be

to collect and better understand the time-series of participation rates.
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Chapter 2

Expectations and Stock Market

Participation: Theory and Evidence

2.1 Introduction

One of the main stylized facts in household finance is that stock market participation rates are

significantly lower than predicted by standard asset pricing models, the so-called “limited

participation puzzle” (Mankiw and Zeldes 1991). Although transaction costs, incomplete

markets, and liquidity constraints all help explain limited participation, facets of the data

are difficult to reconcile with these explanations (Guiso and Sodini 2013). For example,

within the 80th percentile of the U.S. wealth distribution where a typical household has

$200,000 in financial assets, 20% do not participate in the stock market (Campbell 2006).

Limited participation among the wealthy is difficult to reconcile solely with transaction

costs or liquidity constraints and poses a significant challenge to the theory. More recently,

there is strong empirical evidence that subjective returns are a key determinant of stock

market participation (Hurd et al 2011). In addition, there is substantial heterogeneity in the
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subjective expectations of stock market returns within survey data (Dominitz and Manski

2011). These two facts suggest that differences in subjective expected returns may play an

important role in explaining limited participation among households who are not liquidity

constrained.

While information acquisition is a popular interpretation of differences in subjective

expected returns (Van Nieuwerbaugh and Veldkamp 2010), private information sets are noto-

riously difficult to elicit from the data. In contrast, recent empirical evidence by Malmendier

and Nagel (2011, 2016) demonstrates that “learning from experience”, where households

place greater weight on data that occurs within their lifetime, can generate heterogeneity

in subjective expected returns independent of private information. Thus I provide an al-

ternative interpretation where heterogeneity in subjective expected returns are generated

by a learning process. Taking participation costs as a primitive, I ask to what extent sub-

jective expected returns explain limited participation. The experimental results show that

heterogeneous participation costs with rational expectations (RE) are not enough to explain

limited participation. In addition, heterogeneity in subjective expected returns along with

deviations from RE are needed.

I first write down a simple asset pricing model with heterogeneous participation costs

where, depending on the distribution of costs, limited participation is a steady-state out-

come. This allows me to have a framework to understand the mechanisms behind limited

participation. While the most common approach in testing expectations-based models is us-

ing survey data, stock market participation is difficult to test because dynamic participation

data is generally unavailable. In addition, standard surveys like the SCF and PSID do not

elicit subjective expected returns. Moreover, researchers have little to no control over the

subjects’ information sets given that the environment is constantly changing, which is espe-

cially critical in asset pricing. In particular, the data-generating process (DGP) is unknown

to the researcher and important parameters must be calibrated or estimated.

Instead I test the implications of the theory, using the experimental method, which
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provides an ideal tool to analyze models of limited participation. In the experimental labo-

ratory the researcher is able to control the fundamentals of the environment and jointly elicit

expectations along with individual participation data while having complete knowledge of

subjects’ history and information sets. It also provides a tool to test the comparative statics

of limited participation models while analyzing the effects of induced participation costs,

subjective expected returns, and learning on individual participation decisions. Thus, the

laboratory presents an environment to diagnose the causes of potential deviations from the

theory, not identifiable solely using survey data.

Models with forward-looking expectations are inherently difficult to test in the lab-

oratory. Rational expectations requires that agents not only make optimal forecasts, but

optimal decisions conditional on their forecasts. This joint optimization task can prove chal-

lenging for subjects in the laboratory. A learing-to-forecast (LtF) experiment separates these

tasks such that subjects are only asked to forecast stock market prices while the optimiza-

tion decision is done by an automated auctioneer. In particular, subjects are incentivized

based on the accuracy of their forecasts and an automated auctioneer constructs an optimal

portfolio based on the subjects’ forecasts. Hence a LtF experiment allows for a clean way

to elicit individual expectations while preserving the self-referential nature of beliefs and

outcomes.

I extend the standard LtF asset pricing experiment (Hommes et al 2005) to include a

stock market participation decision. Subjects make both a participation decision and forecast

prices in each period. As a preview, I find mixed results for the homogeneous expectations

model with participation costs. While the main predictions of the model do well, where

mean prices and participation rates are generally lower in treatments with higher partic-

ipation costs, subjects with higher induced costs do not necessarily have lower subjective

returns. Moreover, the heterogeneity in subjective returns are more disperse and persistent

than predicted by the benchmark model. Given these results, I analyze the stock market

participation decision directly. I find that while participation is increasing in subjective ex-

32



pected returns, contrary to the model, participation also depends on past realized returns.

That is, higher past realized returns from participating increases the likelihood of stock mar-

ket participation.

I next look at a learning-based explanation of the observed heterogeneity in subjective

returns. Since the fundamentals and aggregate variables are common knowledge, hetero-

geneity in subjective expected returns cannot be explained by private information. The

experimental method provides me with a novel tool to look at the subjects’ expectations

updating rule directly. I find strong evidence that subjects update their expectations condi-

tional on realized returns. Contrary to standard learning models, subjects who experience

high returns have higher subjective returns and subjects who experience low returns have

lower subjective returns than subjects who do not participate. In particular, subjects over-

weigh the price trend when experiencing high returns and under-weigh the price trend when

experiencing low returns, with low returns having a stronger quantitative impact. Thus I

find evidence that limited participation can be perpetuated by subjects with low subjective

returns due to low experienced returns.

Finally, my experiment allows for documentation of a novel behavioral phenomena.

I find evidence of “discouraged investors” who exit the stock market for the remainder

of the experiment after receiving consecutive low returns relative to the risk-free return.

This finding provides direct experimental evidence of a behavioral finance phenomena as in

Strahilevitz et al (2011) where investors are reluctant to hold stocks once they realize low

payoffs.

2.2 Literature Review

This paper contributes primarily to three literatures. First, I contribute to the literature on

endogenous participation in asset markets. The phenomenon of limited participation is first
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documented by Mankiw and Zeldes (1991). The first paper to endogenize participation in

an asset pricing setting is Allen and Gale (1994). Following Allen and Gale (1994), there

have been numerous extensions such as Orosel (1998), Vissing-Jorgensen (2002), Gomes and

Michaelides (2005), and more recently Shin (2018).

I also contribute to the empirical literature on limited participation, in particular, to

the strand of the literature dealing with subjective returns. Guiso and Sodini (2013) provides

a survey of alternative explanations such as participation costs, trust, and non-standard pref-

erences. Hurd et al (2010) and Arrondel et al (2014) use novel datasets on expectations and

asset positions to estimate a causal effect between subjective expected returns and likelihood

of stock market participation. Malmendier and Nagel (2011) shows that living through a

period of low stock market returns reduces the likelihood of stock market participation. My

paper consolidates these previous findings by establishing the connection between subjective

expected returns, experienced realized returns, and its subsequent effects on stock market

participation.

Second, I contribute to the literature on LtF asset pricing experiments following

Hommes et al (2005). Following the pioneering work of Hommes et al (2005), there have

been numerous extensions. For a survey of the literature see Hommes et al (2011) and Duffy

(2016). A related paper is Hennequin (2018), who analyzes the effects of stock market expe-

riences on bubble formation. My paper differs from theirs in that stock market experiences

are endogenous in my experiment and that I focus on limited participation and not bubbles.

Finally, this paper contributes to the literature on adaptive learning and asset pricing.

This paper follows a strand of literature put forth by Marcet and Sargent (1989) and Evans

and Honkapohja (2001) which relaxes the RE hypothesis and replaces it with an econometric

learning rule. The first paper to analyze learning in an asset pricing model is Timmermann

(1993) who shows that adaptive learning can generate excess volatility. Branch and Evans

(2010, 2011) use a similar asset pricing model to explain bubbles and crashes and regime-

switching returns. Finally Adam et al (2016) formally test a consumption asset pricing model
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with learning. As far as I know, this paper is the first to explore endogenous participation

in a LtF environment.

2.3 Model

First I describe an asset pricing model with an endogenous participation decision and hetero-

geneous participation costs with the goal of implementing it in the laboratory. This model

provides a framework for understanding the determinants of limited participation in equi-

librium. I then introduce a special case of the model which includes parameterizations and

features of the experimental design.

2.3.1 Endogenous Participation

The benchmark model is a CARA asset pricing model with heterogeneous participation

costs and an endogenous participation decision. In order to map the model to the simplest

laboratory environment, I introduce two agents that make the participation and portfolio

decisions separately. This formulation allows me to get a closed-form solution by making the

participation decision linear in expectations, while keeping the same comparative statics as

the model with one risk-averse agent as in Shin (2018).

Time is discrete and continues forever. There are M households who are each paired

with a financial advisor. Households have CARA utility of the form: uP (ct) = −e−ρct ,

where ρ is the coefficient of absolute risk aversion and financial advisors are risk-neutral:

uM(ct) = ct. Both households and advisors are 1-period maximizers. There are two assets:

a risk-free 1-period bond which pays a gross return R = 1 + r > 1 and a risky asset with

price pt that pays an ex-ante dividend Dt = µ + εDt , where εDt ∼ N(0, σ2
D). The risk-free

1-period bond is in infinitely elastic supply. The supply of assets is iid with mean S and

35



follows St = S + εSt , where εSt ∼ N(0, σ2
S).

To participate in the risky asset market, financial advisors have to pay a research cost

κi which is specific to each advisor i. Here the research cost is a proxy for both financial and

psychological participation costs that are documented in the literature (Guiso and Sodini

2013). The financial advisor makes the participation decision and the household makes a

subsequent portfolio allocation decision. Advisors make a fraction α ∈ [0, 1] of the total

payoff from the portfolio returns and the household keeps fraction 1− α. I assume that the

advisor and households do not have the technology to change this contract.1

Let Wt+1 = RWt + (1 − α)xit(pt+1 + Dt+1 − Rpt) be the next period’s wealth for the

household, where xit is the fraction of wealth held in the risky asset by household i. CARA

utility insures that optimal asset holdings are independent of wealth such that Wt need not be

indexed by i. I assume that the endowment is sufficiently large that agents are not liquidity

constrained. Since all the random variables are normally distributed and the household has

CARA utility, the maximization problem is:

max
xit

EtWt+1 −
ρ

2
VtWt+1

s.t. Wt+1 = RWt + (1− α)xit(pt+1 +Dt+1 −Rpt)

where i denotes household i. If the financial advisor does not participate, then the household

places all their wealth into the riskless bond. Taking the F.O.C.:

xit =
Etpt+1 + µ−Rpt

(1− α)ρσ2
p

(2.1)

where VtWt+1 ≡ σ2
p. Equation (2.1) is the standard mean-variance asset demand adjusted

for α. The participation decision for the advisor is:

max
nit

αxit(Etpt+1 + µ−REtpt)− κi

1α can be microfounded through an optimal contract design.
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where nit is 1 if the advisor decides to participate in the risky asset market and 0 otherwise.

Etpt+1 + µ−REtpt is the expected return from participation for the advisor and αxit is the

fraction of the profits that the advisor makes per share xit. There is an expectation Et on

pt because I assume pt is unknown to the advisor before participating. I rationalize this by

treating the participation decision as a market order where realized prices can be different

from the quoted price during the time of the order. In contrast, the portfolio decision is a

limit book, where agents give the auctioneer an asset position for every price. While this is

reasonable for the portfolio decision, it is unreasonable for the participation decision because

the decisions are made sequentially.

I solve by backward induction, where the advisor takes xit as given. Then the cutoff

decision for the advisor is:

nit =


1 if Etpt+1 + µ−REtpt ≥ b

√
κi

0 else

(2.2)

where b ≡
√

1−α
α
ρσ2

p. Notice that the threshold in the participation decision depends posi-

tively on the participation cost, risk aversion, and negatively on the surplus share α. I can

rewrite ki ≡ b
√
κi and call it the effective participation cost for advisor i. The advisor only

cares about the subjective expected returns relative to the participation cost per fraction of

earnings. Thus, I can always rewrite the distribution of costs as a function of bki, where

bki is the per asset cost of participation for advisor i. The optimization problem reduces

to a mean-variance portfolio problem with a risk-neutral participation decision. Again, the

structure of the model maps into the simplest laboratory implementation.

Aggregate participation is Nt = 1
M

∑
i n

i
t which is the fraction Nt ∈ [0, 1] of the pop-

ulation participating in the risky market and aggregate asset holdings is Xt =
∑

M xit.
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Market-clearing NtXt = St implies that the equilibrium pricing equation is:

pt = R−1

[
1

Nt

∑
N

Etpt+1 + µ− St
Nt

(1− α)ρσ2
p

]
(2.3)

where the summation on Etpt+1 is over all stock market participants Nt. Since market-

clearing implies prices must be positive, the participation rate Nt is always positive in equi-

librium and hence Equation (2.3) is well-defined. Given that prices are not defined for

Nt = 0, I utilize an automated mutual fund who always participates during the experiment.

Participation affects prices through two channels. First, only expectations of market

participants are priced so participation endogenously reduces the number of agent’s expec-

tations that are priced. Second, participation affects prices directly through the supply St.

As Nt increases, prices increase. In particular, lower participation rates lead to lower prices

and higher participation rates lead to higher prices. When Nt = 1 the model collapses to the

standard model without a participation decision. Thus, Nt acts as a demand multiplier for

aggregate asset holdings. Because Nt is a decreasing function of Etpt, higher Etpt leads to

lower participation which leads to a lower price. This is because higher Etpt lowers expected

returns in that the advisor expects to pay a higher price to hold the asset. The advisor

always wants to pay the lowest price possible.

Since b is a parameter, for simplicity I set this to 1. I do this so that I can arrive

at a form similar to Hommes et al (2005) but also to analyze the interactions between the

expectational feedback mechanisms directly.

pt = R−1

[
1

Nt

∑
N

Etpt+1 + µ− St
Nt

]
(2.4)

Although it is standard to analyze the case with S = 0, I analyze the case with S > 0

because it is more interesting to analyze the direct effects of participation especially if we

believe feedback between expectations and prices matter. If S = 0, the participation effects

drop out from Equation (2.4) and participation only indirectly affects prices. I rationalize
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my approach by arguing that in models with reasonable learning rules, if the steady-state

price is a constant, agents can learn the steady-state values (Bao et al 2017). In particular,

any LtF experiment with risk-averse preferences will have to implement a positive supply.2

2.3.2 Steady-state Equilibrium

In order to solve for the steady-state, I specify the distribution of participation costs. I make

the distribution of costs uniform U(0, k̄), where k̄ is the upper support of the distribution

and represents the agent with the highest participation cost. I assume that each agent

can be represented by a point in the distribution, that is, agents are equally spaced along

the distribution and no two agents can have the same cost. Implicitly, I also assume that

one agent has a participation cost of zero. Then I can represent the distribution with a

participation cost function c(Nt) = Ntk̄, where Nt = 1 is full participation and the aggregate

cost of full participation is k̄. c(Nt) is the limiting cost function that arises as the number

of agents M approaches infinity.

Once I specify the cost function, the equilibrium participation rate is characterized

by the marginal agent who is indifferent between participating and not participating. I set

expected returns equal to the cost function c(Nt) = Ntk̄. In the steady-state, pt = pt+1 =

p̄, St = S. Then the steady-state values are:

p̄ =
µ− S

N̄

R− 1

N̄ = min {
√
S

k̄
, 1}

The steady-state is the fundamental price and participation rates that are equilibrium best-

responses with a given cost distribution for all agents. Steady-state participation N̄ depends

on the supply S and the upper support of the cost distribution k̄. The minimum operator

2In Hommes et al (2005) setting S = 0 implements risk neutrality.
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insures that the participation rate is never greater than 1.

The comparative statics are intuitive, higher cost implies that the participation rate

is lower and prices are lower. Higher supply when S ≥ 1 implies that there are more shares

and the participation rate is higher and prices are higher. The key feature of the model is

that higher costs k̄ lead to lower participation rates N̄ because it lowers aggregate demand

for stocks. The specific mechanism is that participation costs ki reduce the expected utility

of participation and acts as a wedge for agents with high costs.

2.3.3 Parameterization

To implement the model in the laboratory, I make three additional assumptions. First, I

make the dividends constant Dt = µ. This has no bearing on the equilibrium but simplifies

the instructions. Second, I normalize S to 1. Finally, I create bounds on the advisor’s excess

returns. That is, advisors can only make π to π̄ excess returns from participation. This is to

map closely to the experiment where payoffs from stock market participation are bounded

and has no bearing on the model equilibrium since these thresholds are chosen such that it

will not bind in the model. I rationalize my experimental design choices in the subsequent

section. Then the steady-state values become:

p̄ =
µ− N̄−1

R− 1

N̄ = min {
√
k̄−1, 1}

2.3.4 Model Hypotheses

The treatments vary the cost parameter k̄.3 Based on the theory in the last subsection

I present the following hypotheses which are tested in the experiment. The model has a

3I do not vary the supply parameter S since this information is usually not given to the subjects in a LtF
experiment.

40



clear implication that subjects with lower participation costs should participate more than

subjects with high participation costs. Any deviations from this behavior must be due to

factors unrelated to participation costs.

Hypothesis 1: Treatments with a higher cost distribution parameter k̄ have lower mean prices

p̄ and participation rates N̄ . In particular, subjects with higher induced participation costs

ki have lower mean participation rates n̄i.

Hypothesis 1 is a direct test of the aggregate properties of the model. Since a higher

cost parameter implies there are more subjects with higher induced participation costs ,

the steady-state participation rate is lower. Similarly, the lower participation rate implies a

lower price since there is lower aggregate demand for the asset in the steady-state.

Hypothesis 2: Participation is increasing in subjective expected returns Ei
tpt+1 +µ−REi

tpt−

ki. In particular, participation is an increasing function of the 2-period ahead forecast Ei
tpt+1

and a decreasing function of the 1-period ahead forecast Ei
tpt, and induced cost ki.

Hypothesis 2 falls from the utility function and looks more closely at the individual par-

ticipation decision. Here I allow for subjective expected returns to be subscripted by i as

in Ei
tpt + µ − REi

tpt − ki. In the model, subjective expected returns for agent i are in-

creasing in the 2-period ahead forecast and decreasing in the 1-period ahead forecast and

induced participation costs. Thus the model predicts that at the individual level, subjects

with higher subjective returns should be more likely to participate than those with lower

subjective returns.

Hypothesis 3: Under adaptive learning, all subjects update their subjective returns towards

the forecast error and subjective returns converge over time. Heterogeneity in subjective re-
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turns V art(Etpt+1 + µ−REtpt − ki) is due to heterogeneity in costs V ar(ki). Moreover, all

subjects have expected returns Etpt+1 + µ−REtpt net participation costs ki.

Hypothesis 3 investigates the model implications under standard learning mechanisms i.e.

learning processes that update expectations towards the forecasting error. In the benchmark

model, under homogeneous expectations, since all subjects have access to the same history

of aggregate variables, their forecasts can only differ due to their induced participation cost.

With rational expectations (RE), objective and subjective probabilities must be equal so

differences in expectations must be due to differences in their induced costs. With adaptive

expectations, if the underlying rational expectations equilibrium (REE) is a constant plus

a noise, then both the 1-period and 2-period ahead forecasts must be equal and subjective

returns should converge to the objective returns.4 In particular, the dispersion of subjective

returns converges to the variance of the induced cost distribution. The strong empirical

evidence on “learning from experience” and the stylized facts on heterogeneous subjective

returns in survey data suggest an alternative hypothesis:

Hypothesis 3b: Subjects’ with higher past returns have higher subjective expected returns

and subjects’ with lower past returns have lower subjective expected returns i.e. subjects up-

date their forecasts differently depending on past payoffs. Heterogeneity in subjective returns

persist over time.

Empirical evidence from survey data along with psychological evidence demonstrates that

agents who experience lower returns expect lower returns and higher returns expect higher

returns. The experiment provides an ideal environment to test this hypothesis since the

economic fundamentals are common knowledge and subject’ information sets are known to

the researcher. Moreover, the introduction of a 1-period ahead forecast elicitation along with

4Shin (2018) demonstrates that in this model, there exists a noisy steady-state REE which is a constant
plus a noise that is E-stable.
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the 2-period ahead forecast, which will be described in detail in the next section, provides a

novel tool for understanding subjects’ expectations updating process.

2.4 Experimental Design

The experiment was designed to test Hypotheses 1-3. I utilize a learning-to-forecast (LtF)

design. In a LtF experiment, the experimenter elicits expectations of the subjects while

the optimization decision is done through an automated auctioneer. This provides a clean

way of eliciting expectations without having to deal with the potential complications of the

joint forecasting-optimization task. My experiment differs from the standard design in that

I introduce a simple, binary optimization task in the form of a participation decision.

I implement the model in Section 2.3 in the laboratory. I vary the induced cost distri-

bution k̄ and test the model against a baseline version where I shut down the participation

decision. This allows me to test the comparative statics of the model as well as determinants

of the participation decision. In particular, I implement 4 treatments. The first treatment

tests the benchmark case which is Hommes et al (2005) with the addition of a 1-period ahead

forecast. The rest of the treatments vary the cost parameter k̄ from 0 to 1.5 to 4 which is

a shift in the distribution of participation costs. I conduct 16 sessions with 4 sessions per

treatment. Each session has 8 subjects for a total of 128 subjects.

2.4.1 Experimental Instructions

The experiment was programmed using oTree. The experimental design is a standard LtF

asset pricing experiment with the addition of a stock market participation decision. 8 sub-

jects are told they are advisors to a household.5 Households need advice on whether they

5Originally subjects were advisors to fund managers. The current formulation just changes “fund man-
ager” to “households” within the instructions and changes nothing else in the experimental setting.
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should participate in the stock market along with a forecast of stock prices in each period

(in particular for this period t and the next t+ 1). Subjects are told that the household will

make an optimal portfolio allocation split between stocks and risk-free bonds conditional

on these forecasts and completely follow any participation advice. At the beginning of the

experiment, each subject is randomly given an induced participation cost drawn from a uni-

form distribution without replacement. Subjects are told the distribution U(0, k̄) and the

drawn induced cost ki is fixed throughout the experiment. The units are in francs which is

a common experimental currency.

As is standard in the literature, subjects are only told qualitative information about

the data-generating process. In particular, they are told that higher price forecasts lead to

higher asset purchases and that stock market prices are determined by supply and aggre-

gate demand. They are told that aggregate demand depends on the decisions of the other

households who are also advised by other subjects in the experiment. The exact number of

subjects are not revealed. Moreover, they are also provided with information on the dividend

µ and interest rates R which are also fixed. Subjects are told that there is one pension fund

who always participates in the market. Finally, they are told there is a small, exogenous

demand for stocks by private investors. This is a proxy for the stochastic supply which is

formally equivalent to noise traders in the model.

2.4.2 Pricing Mechanism

The pricing mechanism is generated by Equation (2.4) which is repeated here:

pt = R−1

[
1

N

∑
i

Ei
tpt+1 + (1− h(Nt))p̄+ µ− St

Nt

]

where 1−h(Nt) is the weight placed on the automated fund which depends on the number of

participants in the market and p̄ is the steady-state price implied by the model parameters.
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Stage 1

Forecast pet , p
e
t+1

Stage 2

Participation nit

Stage 3

Portfolio Choice xit
Automated

Figure 2.1: Timeline

The automated pension fund participates every period and forecasts the model implied

fundamental price p̄ to insure prices exist. The automated pension fund plays two roles:

first they insure that prices exist every period. Second they play a stabilizing role given that

they forecast the fundamental price every period.6

2.4.3 Timing and Decisions

There are 50 periods and each period is divided into 3 stages. In the first stage, subjects are

told to make a 1 and 2-period ahead forecast of prices pet , p
e
t+1. pet+1 is called a 2-period ahead

forecast because pt is not revealed until the end of the period thus using an information set

up to period t − 1. I add an upper bound p̄et+1 = 100 similar to past studies to rule out

potential bubbles. In the second stage, subjects are asked to give participation advice nit

to the household to either participate in the stock market or not. At the third stage, all

decisions are given to the automated auctioneer who clears the market. The price pt and

participation rate Nt are then revealed. Throughout the experiment, subjects are provided

with the history of past prices, past participation rates, subject-specific expectations, and

past payoffs. The following timeline shows the sequence of decisions:

It is important to note that my experiment makes two deviations from the standard

LtF design. First, subjects are asked to make a participation decision in the form of advice

to households. Second, subjects are asked to make a 1-period ahead forecast along with their

2-period ahead forecast. This is because the profits from participating in the stock market

6Hommes et al (2005) also have a stabilizing fund and show that removing it has no qualitative impact
on their results.
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Figure 2.2: Experimental Screen: Forecasting Prices

depend on their realized returns which depends on pt which is unknown to the subjects when

making the participation decision. To make an informed decision, subjects must also make

a forecast of the 1-period ahead price. I also provide subjects with their subjective expected

returns pet+1 +µ−Rpet conditional on their forecasts along with their previous forecast of pet .

Figures 2.2 and 2.3 provide screens of the experiment for the forecasting and participation

decisions.

2.4.4 Parameterization

I follow Hommes et al (2005) and choose the experimental parameters as follows: the mean

dividend µ = 3, the gross interest rate R = 1.05, and the standard deviation of the supply

shock σ2
S = 0.25. For simplicity, I set the supply S = 1 which acts as a natural benchmark

normalization but future studies can explore what happens when you vary S. In Treatment
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Figure 2.3: Experimental Screen: Participation Decision

2, all subjects have an induced participation cost ki of zero which corresponds to k̄ = 0. The

steady-state price in this case is p̄ = 40. Treatments 3 and 4 have cost parameters at k̄ = 1.5

and 4 respectively which lead to N̄ = 0.82 and 0.5 and p̄ = 35.5 and 20.

With 8 subjects and 1 automated fund, this implies steady-state participation is 6-7

subjects participating in Treatment 3 and 4-5 subjects participating in Treatment 4. The

predictions are in between because the discrete nature of the experiment leads to steady-state

predictions that are fractions. The cost parameters were chosen such that there is sufficient

variation within steady-state participation rates while the steady-state price is sufficiently

away from 50 since the average initial guess tends to be around 50. Table 2.1 shows the

parameterization.
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Parameter Meaning Value
µ mean dividend 3
R gross interest rate 1.05
σ2
S supply shock 0.25
S supply 1
k̄ cost distribution 0 to 4

Table 2.1: Experimental Parameters

2.4.5 Payoffs

The conversion rate in the experiment is 15 points = $1. The rate was determined through

pilot studies to insure sufficient compensation for subjects’ time. Subjects are paid according

to two criteria: forecasting accuracy and the 1-period return from participating in the stock

market. Forecasting payoffs are given by the following equation:

πft =
16

2 + |pt − pet,t−1|+ |pt − pet,t|
(2.5)

where pet,t−1 is the 2-period ahead forecast of price pt made in period t − 1 and pet,t is the

1-period ahead forecast of price pt made at the beginning of period t. Thus subjects are paid

based on the accuracy of both their forecasts to insure truthful revelation. Equation 2.5 is

an adjusted Brier score with sharp declining payoffs to avoid the flat maximization problem

(Camerer 2003). In particular, if the payoff function is sufficiently flat such that differences

from the optimum only lead to small changes in the payoffs, then the payoff function may

not be sufficient to induce truthful revelation. The maximum payoff subjects can make per

period from forecasting is 8 points and sharply declines with the forecast error.

Participation payoffs are given by:

πpi,t =


min{5, 3 +MP} if nit−1 = 1 and pt + µ−Rpt−1 − ki ≥ 0

max{1, 3 +MP} if nit−1 = 1 and pt + µ−Rpt−1 − ki ≤ 0

3 if no participation nit=1 = 0
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where MP = pt + µ − Rpt−1 − ki is the net 1-period return and nit−1 is the participation

decision where nit−1 = 1 is to participate in the stock market. Hence, if there is positive profit

from participation, subjects make a high payoff up to 5, else they make a low payoff down

to 1, which is linear in realized returns. Subjects can also take the risk-free option which is

chosen in between the high and low payoffs at 3. Notice that participation payoffs depend on

subjects’ participation decision in period t− 1. This is because the 1-period return depends

on the realization of next period’s prices. The payoffs are incentive compatible because since

subjects’ subjective expected returns are their best forecasts, risk-neutral subjects can do

no better than participating if it is positive and not participating otherwise. In equilibrium,

subjects with high participation costs will lose payoff in expectation.

I now rationalize my experimental design choices. With unbounded payoffs, the maxi-

mum payoff would be 103 and the minimum would be -98 because MP = pt+µ−Rpt−1−ki.

Thus, to make participation payoffs comparable to forecasting payoffs, I chose to bound them

at a level similar to the forecasting payoffs. In particular, I ran a pilot study to see what

average forecasting payoffs were. If one task gives more payoff on average than the other,

then subjects have an incentive to pay more attention to one task. I choose the loss and gain

thresholds to be symmetric such that the expected payoff from participation are symmetric.

If there is more downside risk then there may be over-participation independent of the model

since subjects can potentially gain much more from participating than not. Future studies

can explore the effects of changing the threshold payments.

Next, I choose to place cutoffs on the payments rather than give subjects an endow-

ment due to potential wealth effects. Of course, since my model removes wealth effects from

consideration, I take the interpretation from Crockett et al (2018) that subjects may bring

intrinsic utility to the laboratory that differs from induced utility. Thus to avoid potential

complications, I remove wealth effects from consideration. Future studies can explore the

implications of adding endowments with unbounded payoffs.
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2.4.6 Subjects and Payments

Subjects are undergraduate students from the University of California, Irvine. As part of the

instructions, each subject is required to complete a quiz to test comprehension. Instructions

are reproduced in the appendix. Subjects are recruited for two and a half hour sessions but a

typical session lasts two hours, including instructions and the quiz. Treatment 1 lasts around

1 hour and 45 minutes on average because it includes no participation stage. At the end of

the last round and before the realization of payoffs, subjects are given a risk elicitation task

which takes around 10 minutes. This is to insure that priming does not play a role in the

risk elicitation.

Payoffs are earned from every period for each task. One task is selected at random

at the end of the experiment and subjects are given points for that task. Random selection

helps insure that subjects pay equal attention to both tasks. The mean payment was $18.49

including the show-up payment of $7. The average payment for the risk elicitation was $2.21.

2.4.7 Risk Elicitation

I elicit risk aversion using a multiple-price list (MPL) as in Drichoutis and Lusk (2016). A

MPL provides a list of safe and risky lotteries to subjects and asks them to choose between

them. After the survey, the experimenter utilizes a randomization device and one lottery on

the list is played. Subjects receive a payment based on their choice for that lottery. The

number of safe choices provides an estimate of their risk aversion parameter. Csermely and

Rabas (2016) shows that the most reliable risk elicitation surveys are in the form proposed

by Drichoutis and Lusk (2016).7

7Their criterion was based on predictability and consistency. For more details please see their paper.
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Treatment Cost Parameter S.S. Price S.S. Participation
1 N/A 40 N/A
2 0 40 100%
3 1.5 35.51 81.67%
4 4 20 50%

Table 2.2: Treatment Summaries

Treatment Session Mean Price S.S. Price Mean Participation S.S. Participation
1 1 46.23 40 N/A N/A
1 2 41.62 40 N/A N/A
1 3 42.84 40 N/A N/A
1 4 43.02 40 N/A N/A
2 5 41.44 40 72.6% 100%
2 6 43.89 40 61.9% 100%
2 7 47.04 40 78% 100%
2 8 40.38 40 82.14% 100%
3 9 45.13 35.51 48.15% 81.67%
3 10 48.37 35.51 63.62% 81.67%
3 11 50.77 35.51 65.58% 81.67%
3 12 40.42 35.51 45.32% 81.67%
4 13 28.70 20 63.83% 50%
4 14 25.82 20 60.13% 50%
4 15 25.76 20 55.56% 50%
4 16 29.51 20 66.45% 50%

Table 2.3: Mean Price and Participation Rates per Session

2.5 Experimental Findings

Table 2.2 documents the four treatments along with the model predictions for the steady-

state price and participation rates. Table 2.3 provides aggregate prices and participation

rates per treatment and session. While the benchmark model generally does well at the

aggregate level, some of the comparative statics are counter to the theory. I provide some

justification for why this is the case and develop an extension of the model which can explain

the deviations in Treatment 3. I first start explaining the data at the aggregate level and then

at the individual level. For the individual level data, I run a probit regression to explain the

determinants of the participation decision. I then, demonstrate that subjects have different
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subjective returns depending on past experienced returns. I finally show that differences in

subjective returns are due to differences in how subjects update their expectations.

I report summary statistics at the treatment level. Table 2.4 provides summary statis-

tics for prices, participation rates, subjective expected returns, and realized returns per

treatment. Consistent with survey evidence, I first find that there is large heterogeneity

among subjective returns. Next I find that subjective returns for participants are systemat-

ically higher than non-participants across periods. The fact that Treatment 2 has identical

induced costs among subjects suggests that heterogeneous subjective returns are due to fac-

tors other than induced costs. Finally, I find that the heterogeneity in subjective returns are

persistent throughout the experiment, that there is systematic disagreement on fundamental

values over time.

Figures 2.4 and 2.5 provide graphs of the aggregate price and participation rates

for each treatment. Each graph has 4 series which are represented by the different sessions

along with a dotted series which represents the model steady-state predictions. Consistent

with Hommes et al (2005) I find heterogeneity across sessions but each treatment follows a

general pattern.
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Treatment 2
25th pct Median 75th pct Mean Std. Dev. N

Subj. Returns 0.28 1.03 1.95 1.13 3.44 1632
Realized Returns 0.03 1.13 2.08 0.99 2.14 1126

Price 38.99 43.64 46.19 43.19 5.75 204
Participation 0.67 0.78 0.89 0.74 0.19 204

Subj. Returns (Part) 1.12 1.49 1.91 1.60 0.92 51
Subj. Returns (Non) -0.32 0.16 0.66 0.13 0.69 51
Average Difference 0.75 1.15 1.89 1.47 1.30 51

Treatment 3
25th pct Median 75th pct Mean Std. Dev. N

Subj. Returns -0.71 0.32 1.34 0.44 3.31 1479
Realized Returns -1.91 0.09 1.92 -0.02 3.54 704

Price 40.43 44.8 52.31 46.17 6.76 204
Participation 0.44 0.56 0.67 0.56 0.18 204

Subj. Returns (Part) 0.97 1.33 1.72 1.42 1.20 51
Subj. Returns (Non) -0.69 -0.40 -0.06 -0.39 0.79 51
Average Difference 1.11 1.77 2.29 1.81 1.37 51

Treatment 4
25th pct Median 75th pct Mean Std. Dev. N

Subj. Returns -1.62 -0.1 1.75 0.21 4.59 1632
Realized Returns -2.59 0.25 2.63 -0.45 4.47 905

Price 21.56 26.21 31.96 27.44 8.42 204
Participation 0.44 0.67 0.78 0.62 0.19 204

Subj. Returns (Part) 0.53 1.14 1.47 1.06 1.12 51
Subj. Returns (Non) -1.52 -0.99 -0.51 -0.89 1.42 51
Average Difference 1.31 1.99 2.78 1.96 1.95 51

Table 2.4: Summary Statistics by Treatment
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Figure 2.4: Aggregate Prices by Treatment.

2.5.1 Findings for Treatment-level Prices

Consistent with Hypothesis 1:

Finding 1: For Treatments 2 and 4, higher cost treatments have lower mean prices and

participation rates. Treatment 3 has higher mean prices and lower mean participation rates

than Treatments 2 and 4. An extension of the model explains this theoretical deviation and

is formalized in Finding 1b.
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Figure 2.5: Aggregate Participation Rates by Treatment.

To potentially allow for learning over time, it is more accurate to use the mean values

of the second half of each session. For robustness, I provide in the appendix the mean and

median values for the entire series along with fitting an autoregressive process to each session

to find the model implied unconditional means of each series. None of these alternatives have

a qualitative effect on my results.

The model predicts Treatment 1 and 2 should have the same mean price and partici-

pation rates. Treatment 3 should have lower prices and participation rates than Treatment

2 and Treatment 4 should have lower prices and participation rates than Treatment 3. I
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summarize these predictions in the following equation:

p̄1 = p̄2 > p̄3 > p̄4 N̄2 > N̄3 > N̄4

where p̄i is the mean price and N̄ i is the mean participation rate for treatment i. In par-

ticular, the model predicts that higher cost treatments imply both lower mean prices and

participation rates.

In order to formally test my model predictions, I use the Mann-Whitney test. The

Mann-Whitney test is a nonparameteric rank sum test commonly used in the experimen-

tal literature to compare mean values across different treatments (Moffatt 2015). Table 2.5

summarizes the results from the Mann-Whitney tests.

Price

Treatment 1 2 3 4

2 = - < >∗∗

3 > > - >∗∗

4 <∗∗ <∗ <∗∗ -

Participation

Treatment 1 2 3 4

2 - - - -

3 <∗ - < -

4 <∗ > - -

Table 2.5: Mann-Whitney Tests for Price and Participation Rates

The asterisks represent the standard significance levels. I also summarize the results

in the next equation:

p̄3 > p̄1 = p̄2 > p̄4 N̄2 > N̄4 > N̄3

2.5.2 Explanation for Deviations in Treatment 3

All the treatments are in line with the theory except for Treatment 3. I provide an expla-

nation for the deviation from the theory and then extend the benchmark model to explain
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Figure 2.6: 2-period Ahead Forecasts for Treatment 1.

the results. In particular, each session in Treatment 3 has one subject with expectations

consistently higher than the average. Since prices depend on average expectations, realized

prices deviate from the model implied steady-state price. Figures 2.6 and 2.7 document

2-period ahead forecasts for Treatments 1 and 3.

Each graph provides the 2-period ahead forecasts for all 8 subjects within a session.

Figure 2.6 depicts that in a standard session, 2-period ahead forecasts are highly correlated

among subjects as in Hommes et al (2005). In contrast, Figure 2.7 shows that there is always

one subject with 2-period ahead forecasts that are uncorrelated with the other subjects and

consistently higher, in many cases hitting the upper bound. This leads to persistently higher

prices, since prices are an average of every subject’s 2-period ahead forecast. Moreover if the

subject who is consistently providing high 2-period ahead forecasts is also participating in

the market with a high induced cost, they can crowd out subjects with lower induced costs,

leading to a lower participation rate.
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Figure 2.7: 2-period Ahead Forecasts for Treatment 3.

There are multiple potential hypotheses that can explain the behavior of these sub-

jects. Instead of delving into the hypotheses of irrationality and high cognitive loads, I ask

the inverse question: given the existence of subjects with high, uncorrelated forecasts, what

is the implied behavior of the model? I define subjects with high 2-period ahead forecasts

that are uncorrelated with other subjects’ forecasts as an “exuberant” subject, loosely bor-

rowing from Shiller (2000).

Finding 1b: The results in Treatment 3 can be explained by an extension of the bench-

mark model. I find evidence that “exuberant” subjects crowd-out lower cost subjects from the

experiment, leading to higher mean prices and lower mean participation rates than predicted

by the benchmark model.

I extend the model to include an agent with exuberant expectations p̄x that are taken
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Treatment Session Mean Price S.S. Price Mean Participation S.S. Participation
3 9 45.13 47.16 48.15% 42.79%
3 10 48.37 51.39 63.62% 28.71%
3 11 50.77 49.56 65.58% 34.8%
3 12 40.42 41.16 45.32% 62.79%

Table 2.6: Calibration for Treatment 3

as exogenous. I derive the extended model in Appendix B. The steady-state price and

participation rates are:

p̄ =
R−1[(1− h)p̄x + µ− S

N̄
]

1−R−1h

N̄ =
C +

√
C2 − 4k̄S(R− 1)

2k̄

where 1 − h is the fraction of agents with exuberant expectations, and C is a function

of the model parameters. I then calibrate the model by taking the mean expectations

of “exuberant” subjects in the experiment and choose the weight (1 − h) to be 1
9

which

corresponds to the the number of subjects in the experiment plus an automated fund. Table

2.6 lists the predictions of the extended model with the calibrated values from the experiment.

2.5.3 Interpretation of Treatment-level Findings

Finding 1c: While higher induced costs ki lowers the average frequency of positive subjec-

tive returns, participation costs alone cannot account for differences in subjective expected

returns at the session level.

As Findings 1a and 1b demonstrate, while the model generally does well in the aggregate,

subjects are not participating in the stock market solely based on their induced costs. That

is, subjects with a higher induced cost do not necessarily have lower subjective returns than

subjects with lower costs. The following graphs show that mean participation rates cannot
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Figure 2.8: Aggregate Induced Cost and Positive Subjective Returns.

be solely explained by differences in induced participation costs. Figure 2.8 shows the per-

centage of periods that a subject has positive subjective returns and their induced costs. I

rank induced costs from 1 to 8 with 1 being the lowest and 8 being the highest to capture

session and treatment level heterogeneity: Figure 2.8 shows that on average, induced costs

do well at explaining subjective returns. While there is large heterogeneity across sessions,

on average, higher induced costs lowers the percentage rate of positive subjective returns.

Figure 2.9 decomposes the data into Treatments 3 and 4 and shows that while on average,

induced costs explain subjective returns, within a session, participation costs need not align

with subjective returns. In particular, subjects with high induced costs can have higher

subjective returns and subjects with low induced costs can have lower subjective returns,

independent of participation costs.
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Figure 2.9: Induced Cost and Positive Subjective Returns by Treatment.

2.5.4 Findings for Individual Participation Decisions

Finding 1c suggests that there are determinants for the participation decision independent

of participation costs. I now analyze the individual participation decision.

Finding 2: The probability of participating in the stock market is increasing in subjec-

tive expected returns, lagged realized returns, lagged forecasting payoffs, and a price trend.

In order to understand the participation decision at the individual level, I run a

random-effects probit panel data regression with robust standard errors. Random-effects

regressions are preferred over fixed-effects under the probit model because coefficient esti-

mates under fixed-effects are biased. In the appendix, I run robustness checks with logit and

fixed-effects linear probability models and find that the results are similiar. I run the regres-

sion using period, session, and treatment level dummies to capture potential dependence at
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the period, session, and treatment levels.

The baseline random-effects probit regression is of the form:

P (nit = 1|xit, zi) = Φ(α + β′xit + γ′zi + ui)

where nit = 1 is participation, Φ(·) is the CDF normal, i is the subject, t is the period, xit

contain variables that vary both between subjects and periods, zi contains variables that

vary among subjects, β and γ are the regression coefficients, α is the constant term, and ui

is the subject specific term where V (ui) = σ2
u.

I run three specifications. Specification 1 is the simplest regression which just includes

subjective expected returns. For Specification 2, I add regressors using the guidance of

theory, in particular, a price-trend, risk aversion, and lagged payoffs. The participation and

forecasting payoffs are lagged because it is the last payoff that is in the subjects’ information

set. Then, Specification 3 adds a dummy variable for past experienced payoffs. Table 2.7

shows the results of the regression. I add demographic controls and lags in Appendix B.

2.5.5 Benchmark Regression

Specification 2 is the benchmark regression. I find that subjective returns, lagged realized

returns, lagged forecasting payoff, and price trends matter for stock market participation.

The economic interpretation is as follows. Conditioning on induced costs, a 1 franc increase

in subjective returns leads to a 2.8% increase in the likelihood of participating. Next, a 1

franc increase in lagged realized returns increases the likelihood of participating by 1.8%. A

1 franc increase in past forecasting payoffs increases the likelihood of participating by 1.9%.

Finally, subjects place weight on price trends, that is a 1 franc increase in the price trend

increases the likelihood of participating by 1.3%.
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Table 2.7: Dependent Variable: Individual Participation

Variable Model 1 Model 2 Model 3

Subjective Returnst 0.03*** 0.028*** 0.027***
(0.009) (0.009)

Actual Returnst−1 0.018*** 0.004
(0.005) (0.006)

Forecast Payofft−1 0.019*** 0.01*
(0.006) (0.006)

Risk Aversion 0.039 0.035
(0.026) (0.023)

Price Trendt−1 0.013*** 0.01**
(0.005) (0.004)

Past Positive Payofft 0.181***
(0.023)

Past Negative Payofft 0.003
(0.03)

N 4896 4704 4704
Pseudo R2 0.048 0.157 0.172

***p < 0.01, **p < 0.05, *p < 0.1

2.5.6 Past Experienced Payoffs

The fact that participation depends on lagged actual returns suggests that participation

may depend on past experiences. To test this hypothesis, I create a dummy variables which

splits the dataset into 3 parts. In particular, subjects can receive 3 categories of payments

depending on their participation decision. If the subject does not participate, then they

receive the risk-free payoff. If the subject participates, then they receive either a high payoff

or a low payoff depending on realized returns. Surprisingly, I find that if a subject receives

a high payoff from participating, they are 18.1% more likely to participate in the stock

market. In contrast, when subjects receive a low payoff, it has no significant effect on the

likelihood of participation. The price-trend controls for the fact that past high payoffs may

signal future high payoffs i.e. if subjects are in a rising price-trend environment. I find that

even controlling for the trending price, subjects are more likely to participate given higher

past returns. The fact that the effect is not symmetric suggests that there is some bias in

63



subjects’ updating rule.

2.5.7 Interpretation

In line with past empirical evidence, the regression results provide strong econometric evi-

dence that higher subjective returns lead to higher probability of participating in the stock

market. More importantly in contrast to the benchmark model, the results show that high

past realized returns increases the likelihood of participation. The fact that the coefficient

on past positive payoffs are highly positive implies that there is some inertia to participa-

tion when subjects receive a high payoff. Nevertheless, since subjective returns are also a

function of past realized returns, in order to distinguish the impact of realized returns, that

is, whether past positive returns lead to higher subjective returns or if past negative returns

lead to lower subjective returns, I look directly at subjects’ expectations updating behavior.

2.5.8 Learning from Experience

Finding 3: Subjects who participate in the stock market in the prior period and receive a

low payoff, have lower subjective expected returns. In particular, they place less weight on

the price trend.

Finding 2 demonstrates that subjective expected returns are the main driver of individual

participation, while higher lagged realized returns increases the probability of participation.

Moreover, Table 2.4 demonstrates that the subjective returns of participants are system-

atically higher than non-participants. My experimental design allows a novel look at how

subjects update their expectations. In particular I find that subjects who experience a low

payoff place a lower weight on the forecast trend and thus have a lower subjective return.

To formally test my hypothesis, I run 3 different regressions. I run a regression on
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subjects’ 1-period ahead forecast, 2-period ahead forecast, and forecast trend i.e. pet+1 − pet

on lagged prices and participation along with a dummy for past realized payoffs. The first

result is that subjects update their 1-period ahead forecast towards past prices independent

of past realized payoffs. That is, subjects update towards the signal (Chambers and Healy

2012). Similarly subjects weigh the 2-period ahead forecast toward past prices but using

different weights. A 1 franc increase in lagged prices leads to a 1.3 franc increase in the

2-period ahead forecast while a 1 franc increase in the 2-period lagged price decrease the

2-period ahead forecast by 0.37 francs. Interestingly, subjects’ past experiences only have a

statistically significant impact on the 2-period ahead forecast, that is, past positive payoffs

leads to higher 2-period ahead forecasts and past negative payoffs lead to lower 2-period

ahead forecasts. If subjects’ experience a low payoff last period, then they lower their 2-

period ahead forecast by -0.53 while if they experience a high payoff last period, they increase

their 2-period ahead forecast by 0.43.

Table 2.8: Dependent Variable: 1-Period, 2-Period, Forecast Trend

Variable 1-Period Forecast 2-Period Forecast Forecast Trend

Pricet−1 1.24*** 1.323***
(0.045) (0.063)

Pricet−2 -0.259*** -0.374***
(0.042) (0.0618)

Participationt−1 0.502*** 0.962***
(0.165) (0.248)

Price Trendt−1 0.0264
(0.219)

Past Positive Payofft 0.224 0.428* -0.142
(0.224) (0.217) (0.147)

Past Negative Payofft -0.183 -0.525* -0.772***
(0.183) (0.295) (0.2)

N 4508 4508 4508
R2 0.945 0.883 0.025

***p < 0.01, **p < 0.05, *p < 0.1
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2.5.9 Interpretation

The underlying story is that differences in subjective returns due to differences in experi-

ence, can lead to implicit costs to stock market participation. Since the standard framework

assumes that participation costs are utility costs, high participation costs are equivalent

to having a lower expected utility which depends on subjective expected returns. My re-

sults demonstrate that differences in experiences can create “pseudo-costs” to stock market

participation that differ from standard participation costs. Moreover, since differences in

subjective returns are directly measurable, I provide a testable story for explaining limited

participation among non-liquidity constrained households. The underlying mechanism is

behavioral in that losses hurt more than gains (Kahneman and Tversky 1979). In essence,

confronting an agent that “learns from experience”, they will tell you that they expect lower

returns since they have directly experienced them.

2.5.10 Discouraged Investors

Finding 4: A fraction of subjects exit the market for the majority of the experiment after

consecutive low payoffs.

Additionally, the experiment provides a unique environment to identify novel behavioral

phenomena that are difficult to elicit from survey data. I find evidence of subjects who

exit the market after consecutive low payoffs from participating in the stock market. I call

these subjects “discouraged investors”. To formally identify discouraged investors, I define a

variable called failure rates, where if the subject participated in the stock market in period

t − 1 and received a payoff lower than the risk-free payoff, then it is considered a failure.

In particular, there are 10 subjects out of 96 that fit this criterion. I find that discouraged

investors end the experiment with failure rates close to 100% since they no longer participate
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for the rest of the experiment.

This can potentially be rationalized by an ambiguity aversion or robust control model

where subjects make robust choices against the worst-case scenario model. This finding is in

line with Strahilevitz et al (2011) where investors are reluctant to return to the stock market

once they realized low payoffs. Thus I provide experimental evidence for a novel behavioral

financial phenomena.

2.6 Conclusion

My experimental results demonstrate that a model of heterogeneous participation costs with

rational expectations (RE) alone cannot explain limited participation of the non-liquidity

constrained. Moreover, dispersion within subjective expected returns can be due to “learning

from experience” where subjects over-weigh public signals with respect to realized outcomes

i.e. higher and lower returns.

My experiment provides three answers that are novel to the literature on heterogenous

expectations and asset pricing. First I show that heterogeneity in subjective expected returns

along with non-rational expectations are needed to explain limited participation among the

non-liquidity constrained in an experimental context. Second I provide direct evidence for

the conjecture in Malmendier and Nagel (2011) that “true experiences” are the determi-

nants of “learning from experience”, that is, it is the subjects’ experiences i.e. low versus

high realized returns that determine whether they bias their updates or not, not just the

history. Finally, I provide strong evidence for the claim in Dominitz and Manski (2011), that

heterogeneity in subjective expectations are due to weighing the public signal differently.

While my paper answers some key questions, others remain. For instance, what de-

termines the initial beliefs of subjects? Next, while I showed that heterogeneity can be

generated by the same learning rule which weighs outcomes differently, there is a large lit-
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erature following Hommes et al (2005) that explains dispersion in beliefs through intrinsic

heterogeneity, that is, where agents use different learning rules. Future research should look

at differentiating between these two modeling approaches. For simplicity, my experiment

provides a stationary environment with no private information and common knowledge. A

natural extension is to relax each component in turn to see the impact of richer environments

on both heterogenous subjective returns and outcomes. Moreover, since investors tend to

have different planning horizons, it would be interesting to see how multiple horizons will

affect the results.

Finally, my experiment provides a novel extension to the standard LtF design which

allows for a participation decision. Many expectations-based models can be augmented to

include an extensive margin decision and tested in the laboratory such as the cobweb model

with firm entry.
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Chapter 3

Learning, Hypothesis Testing, and

Restricted-Perceptions Equilibria

3.1 Introduction

While the rational expectations hypothesis is both parsimonious and elegant, it requires de-

manding assumptions on part of the agents. In response, the adaptive learning literature has

moved towards relaxing the hypothesis using econometric learning (Evans and Honkapohja

2001). With econometric learning, agents act as econometricians and must estimate the

model parameters over time. A criticism of this approach is the passive nature of the learn-

ing mechanism and that the rational expectations equilibria (REE) of a model are the only

possible points of convergence. Similarly, deviations from this approach such as restricted

perceptions, where agents underparameterize their models, have faced criticism because they

do not nest the REE and hence do not give the rational expectations solution a chance. Con-

trary to agents in learning models, modern econometricians also test the specification of their

models and should be able to detect misspecification over time.
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More recently, Cho and Kasa (2014) extend the econometric learning model to a setting

where a policy maker suspects that their model is misspecified and also tests the specifica-

tion of their model over time. I extend upon their framework and allow multiple agents

to test the specification of their model in a simple asset pricing framework. In my setting,

groups of agents are endowed with either the fully-specified model or an underparameterized

one i.e. have restricted perceptions. Agents suspect that their model is misspecified and

test the specification with new data. If it passes, the model is updated using least-squares

learning. If it fails, then the agent draws a new model from a set of models. Following the

theme of econometric terminology, I call this procedure hypothesis testing learning.1 The

main question is whether other equilibria naturally arise besides the REE, under hypothesis

testing learning.

I find that in a simple asset pricing model, where agents engage in hypothesis testing

learning, restricted perceptions equilibria (RPE), that is, the equilibrium points of under-

parameterized models naturally arise. My environment calls for a new stability definition

which I call HT-stability or Hypothesis Testing stability. For an equilibrium to be HT-stable,

it needs to be robust to shocks, which I define here to be a model shock. Similar to the idea

behind impulse-response functions, I allow the model to converge to a steady-state and force

one agent type to switch their model i.e. a model shock. HT-stability then requires that

the system return to its original steady-state equilibrium values. Under this definition and

reasonable parameters, the REE is not HT-stable and in particular only RPE corresponding

to combinations of underparameterized models are HT-stable. In particular, no agents hold

the fully parameterized model in HT-stable equilibria.

This finding is similar to those in Sargent (1999) and Cho and Kasa (2014) which relate

the strength of the self-referential feedback to the resilience of certain equilibria compared to

others. In our case, there are two reasons why the REE fails to be HT-stable. First like in

Cho and Kasa (2014), the self-referential feedback of the REE is not as strong as the other

1Cho and Kasa (2014) call this “model validation” but the original idea from Foster and Young (2003)
uses the term hypothesis testing.
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equilibria when the other agents hold underparameterized models. Next, the REE in our

base case has three different parameters which are tested and hence is much easier to reject

in environments where the other agents have misspecified models. In particular, with three

parameters, the agent is easily able to detect shifts in the model parameters and likely to

discard their model.

Finally, given that the model has multiplicity of RPE, I implement constant-gain learn-

ing to characterize the time agents spend within each RPE. I find that the model spends

most of its time within a subset of the RPE and in particular mainly between a subset

of them. Surprisingly, the model spends most of its time in the hybrid equilibria where

all models are used. Using the language of Cho and Kasa (2014), the “dominant model”

i.e., where all agents hold one model most frequently, is not the fully-specified model but

rather the dividend only model. The key implication of my analysis is that agents can have

misspecified models arising naturally from a more realistic learning process over time.

3.2 Literature Review

This paper contributes to the literature on adaptive learning and more specifically to the

budding literature which examines learning mechanisms where agents are endowed with

multiple models. I also contribute to the literature dealing with alternative equilibrium

concepts to rational expectations such as the restricted-perceptions equilibrium (RPE).

The first paper to propose hypothesis testing as a learning mechanism is Foster and

Young (2003) who have agents test the specification of their models in a stationary game-

theoretic environment. They find that this type of learning converges to a solution that

is approximately a Nash Equilibrium. Next, Branch and Evans (2007) deals with model

uncertainty and its effects on volatility. This paper extends Cho and Kasa (2014) who

examines a policy maker’s decision-making and dynamics under model validation. My paper
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differs from theirs in two key aspects. First, my approach focuses on the stability of equilibria

in a class of models using the techniques introduced in Cho and Kasa (2014). Next, I allow

multiple agents to engage in model validation rather than just one and specifically test

which models are “dominant” in the long-run via simulation. More recently, Norman (2015)

introduces hypothesis testing learning to a macroeconomic setting without adaptive learning

and Cho and Kasa (2017) introduce a sequential Lagrange multiplier (LM) test into a model

with Bayesian averaging.

Next, in the literature on RPE, Branch and Evans (2010, 2011) also deal with RPE in

an asset pricing framework. The closest paper in this strand of the literature is Branch and

Evans (2010) who deal with an RPE switching framework in an asset pricing model. This

paper is different from theres in that I allow fully-specified models to be chosen by agents

through hypothesis testing. As far I know, this paper is the first to extend specification tests

to multiple agents in an asset pricing model and test the model properties through numerical

simulation.

3.3 Model

Time is measured in discrete periods. There is a finite set of models M indexed by m =

1, 2, ...,M . For tractability, agents assume that all models are linear in the exogenous vari-

ables. There is a unit measure of agents divided into m partitions who are each endowed

with an initial model indexed by m ∈ M at time 0. Hence an agent i with model m will

be indexed im. The fraction of agents with initial model m is nm where
∑

m nm = 1. All

agents are infinitely lived and have CARA utility functions of the form: u(c) = −e−ac, where

a > 0 is the coefficient of absolute risk aversion. Agents also maximize their one-period

portfolio.2 There are two assets traded in perfectly competitive markets: a risky Lucas tree

2Alternatively, one can employ an OLG structure which is equivalent to an infinitely lived agent maxi-
mizing their one-period portfolio.
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and a riskless one-period bond. The risky asset yields a dividend stream {Dt}∞t=0 and sells

at price pt. The riskless one-period bond gives an exogenous gross return R > 1 and the

supply is infinitely elastic.

Dividends follow a stationary AR(1) process:

D̃t = (1− ρ)µ+ ρD̃t−1 + εDt

where ρ ∈ [0, 1) is the AR(1) coefficient, µ > 0, and εDt is white noise with distribution

N(0, σ2
D). Similarly, supply follows a stationary AR(1) process:

S̃t = (1− φ)S + φS̃t−1 + εSt

where φ ∈ [0, 1) is the AR(1) coefficient, S > 0, and εSt is white noise with distribution

N(0, σ2
S). The supply shocks are also possibly correlated with the dividend process such

that the covariance σDS 6= 0. The stochastic supply is a proxy for volatility in asset float

where firms create new issues, provide options and warrants that are periodically exercised

and change the available supply at a given time. The importance of asset float is well

documented in the literature (Baker and Wurgler 2000). I also denote the random variables

with tildes to differentiate them from their mean deviation forms: Dt = D̃t−µ and St = S̃t−S

which will prove useful when deriving the restricted perceptions equilibria (RPE).

Then the pricing equation is:

pt = R−1[E∗t (pt+1 + D̃t+1)− S̃taσ2
p]

where σ2
p ≡ V art(pt+1+Dt+1) and E∗t is the (potentially) non-rational conditional expectation

at time t. With rational expectations, E∗t = Et. If agents instead deviate from rational

expectations or use misspecified models, then E∗t = 1
M

∑
mE

m
t , which is the weighted average

of all expectations in the economy conditional on their model, where Em
t is the conditional
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expectation at time t with respect to model m.

3.3.1 Base Case

A key assumption here is that some agents have underparameterized models, which is called

restricted perceptions. I motivate restricted perceptions by stating that agents face a degree

of freedoms problem. If there are multiple factors that may influence the dividend or supply

process, it will be difficult for the agent to estimate that process, which may cause agents

to omit some variables. This specification is similar to Branch and Evans (2010) with the

difference that I allow one of the models to be correctly specified.

I implement a simple case of the model with a minimal number of elements in the

model class. A natural benchmark case includes only two underparameterized models where

agents omit one of the two exogenous variables S and D. Hence there are 3 models in the

model set M , in particular, a model where dividends D are omitted and a model where

supply S are omitted, along with the correctly specified model. The following models are:

pt = A1 +B1Dt + C1St + ν1t

pt = A2 +B2Dt + ν2t

pt = A3 + C3St + ν3t

where:

E1
t pt+1 = A1 +B1ρDt + C1φSt

E2
t pt+1 = A2 +B2ρDt

E3
t pt+1 = A3 + C3φSt

Since there are three potential models, each agent can hold one of the three models. Let n1

denote the fraction of agents with model 1, n2 denote the fraction of agents with model 2,

and 1− n1 − n2 denote the fraction of agents with model 3. To simplify the analysis, I have
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this fraction be 1
3

for all models. In discussions, model 1 will be called the fully-specified

model, model 2 will be the dividend model, and model 3 will be the supply model. In this

setup there are potentially two groups of agents in the economy that underparameterize

their forecasting model by either omitting dividends or supply and one group that has the

fully-specified model

In an econometric learning model where switching is determined by forecasting perfor-

mance, the REE is the asymptotic solution. I do not have agents determine which models to

use based on forecasting performance here for two reasons. First when there are structural

changes in the economy like in our setting, choosing models based on past forecasting per-

formance is not necessarily robust. Second in an environment where agents may not know

the entire set of models, agents will be unable to rank forecasting performance, that is, I

assume that agents do not know the entire set of models and hence cannot judge if their

model is better than another one. This interpretation is borrowed from Foster and Young

(2003) who view model selection as formalizing the notion of agents developing “hunches”

of how the economy works over time. Hence, in our setting with hypothesis testing learning,

whether the REE will be the long-run solution is not entirely obvious.

3.3.2 Equilibrium

The pricing equation in the base case then becomes:

pt = R−1

[
1

3
(E1

t pt+1 + E2
t pt+1 + E3

t pt+1) + EtDt+1 + µ− (St + S)aσ2
p

]

where Em
t is the subjective expectation of the agent for model m and at this point I replace

the exogenous processes D̃, S̃ with their mean deviation forms D,S. Plugging in for the

75



expectations I get:

pt = ξ0 + ξ1Dt + ξ2St

ξ0 = R−1[
1

3
(A1 + A2 + A3) + µ− Saσ2

p]

ξ1 = R−1[
1

3
ρ(B1 +B2) + ρ]

ξ2 = R−1[
1

3
φ(C1 + C3)− aσ2

p]

To reiterate, agents with underparameterized models are said to have restricted perceptions.

Two key objects in the learning literature are the perceived law of motion (PLM) and the

actual law of motion (ALM). A PLM is the model that the agents believe are the true data-

generating process while an ALM is the actual model that determines the economy. One

facet of restricted perceptions is that the perceived laws of motion (PLM) of the restricted

perceptions models do not nest an REE and thus it is impossible for them to converge to it.

Nevertheless, models with restricted perceptions can converge to an RPE which is optimal

within a limited class of PLMs.

Although the restricted perceptions models are underparameterized, I will require them

to forecast in a statistically optimal manner and that the model parameters be optimal linear

projections. Intuitively, when forecasts satisfy orthogonality conditions, the agent will be

forecasting optimally within their restricted perceptions and will be acting optimally within

their model, that is, in an RPE, agents will not be able to detect that their models are

misspecified. The orthogonality conditions for the 3 models are thus,

E(1, Dt, St)
′(ξ0 + ξ1Dt + ξ2St − A1 −B1Dt − C1St) = 0

E(1, Dt)
′(ξ0 + ξ1Dt + ξ2St − A2 −B2Dt) = 0

E(1, St)
′(ξ0 + ξ1Dt + ξ2St − A3 − C3St) = 0
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where:

Aj = ξ0, j = 1, 2, 3

B1 = ξ1

B2 = ξ1 + ξ2r

C1 = ξ2

C3 = ξ2 + ξ1r̃

where r = EDtSt
ED2

t
and r̃ = EDtSt

ES2
t

. Then an RPE is a set of coefficients {ξ0, ξ1, ξ2, A1, A2, A3, B1,

B2, C1, C3} that solves these systems of equations. The coefficients become rather involved

so we leave them for Appendix C.

3.3.3 Adaptive Learning

Agents do not know the model parameters and must estimate them over time. Here, I de-

viate from rational expectations and implement an adaptive learning rule for two reasons.3

Rational expectations requires a full understanding of the model as well as beliefs of other

agents. In this sense it is a Nash equilibrium, hence coordination between agents requires

strong cognitive and informational assumptions. Instead, many applied econometricians es-

timate econometric forecasting models and adjust the coefficients in light of new data. Here

I adhere to the Cognitive Consistency Principle (Sargent 1993) which requires agents and

econometricians to be on equal footing.

Next in an environment such as this where agents possibly entertain multiple models,

it may take time for a new model to converge to its RPE. I allow agents to update their

parameters over time to allow each model to adapt to the environment. With adaptive

learning, parameters are updated with respect to observable data over time. Hence, a mis-

specified model can potentially still converge to some equilibrium value because the model

parameters can adjust such that it fulfills the orthogonality conditions as above.

3The current formulation can be seen as a midpoint between RE and restricted-perceptions.
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Agents in the model update their expectations conditional on data. Let zi
′
t be the data

vector depending on the agent’s model which can include some combination of 1, Dt, and

St. Then let Φi
t be the vector of coefficients which include some combination of Ait, B

i
t, and

Ci
t depending on the model. Agents update their pricing coefficients Φi

t as follows:

Φi
t = Φi

t−1 + γ1(Ri
t−1)−1zit[pt − Φi′

t−1z
i
t]

Ri
t = Ri

t−1 + γ1[zitz
i′

t −Ri
t−1]

where γ1 is the gain parameter and Ri
t is the moment matrix for agent i with some model.

3.4 Hypothesis Testing

In addition to updating their models over time, agents also test the specification of their

model. Modern econometricians use statistical tools to test for model misspecification and

update their model specification accordingly. Following the analogy of Cho and Kasa (2014),

one inconsistency of the current learning approach is that we assume agents have taken the

first semester of econometric theory but not the second. That is, the agents understand

estimation but not inference.

We would expect such a procedure to approach the true model, but endogenous data

and misspecification on part of the other agents creates issues. As stated above, I call this

procedure hypothesis testing learning as in Foster and Young (2003). There are potentially

many ways to test the specification of a model. Following Cho and Kasa (2014), I endow

agents with a Lagrange multiplier (LM) test. The Lagrange multiplier (LM) or score test,

uses the score and the Fisher information to test the sensitivity of the likelihood function.

The LM test is a natural choice as a hypothesis testing mechanism because it does not

require that one explicitly specify an alternative hypothesis. Hence it is usually known as a

misspecification test. Moreover, the LM test has a recursive formulation which allows it to
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be naturally added to the tools of stochastic recursive algorithms of the adaptive learning

literature.

The LM test is defined as follows:

Λi
t = (Ri

t−1)−1zit[pt − Φi′

t−1z
i
t]

where the null hypothesis is H0 : Λi′
t (Ωi

t)
−1Λi

t ≤ τi and where Ωi
t is the variance of the score

Λi
t and defined as:

Ωi
t = Ωi

t−1 + γ2(Λi
tΛ

i′

t − Ωi
t−1)

Agents update the LM test-statistic as follows:

θit = θit−1 + γ2(Λi
t(Ω

i
t)
−1Λi

t − θit−1)

Here τi is a threshold value that determines the test-statistic where agents would reject their

model. If the score statistic θit is less than τi then the agent keeps their model, else they

reject it and draw another model. I follow Foster and Young (2003) where agents draw a

new model at random from the set of models. Following their definition, I call this procedure

experimentation, where agents are unaware of the different elements in the model class and

that drawing a model at random is equivalent to having a “hunch”. In the case of 3 models,

the probability of drawing a model m is 1
3

after rejecting their existing model. For now I

allow the agent to redraw their model mainly for computational tractability. After a new

model is drawn, there is also a grace period ξ between drawing a new model and testing it

to give each model’s parameters a chance to adjust to the environment and thus not have it

potentially be immediately rejected upon being drawn.

Once I implement hypothesis testing, the potential space of equilibria increases. With

this environment there are ten equilibria that correspond to the combination of the three

different model types. One of them is the REE while the other nine are RPE. Unfortunately
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with multiple switching, learning, and hypothesis testing I am unable to derive analytical

results due to the complex nonlinearities that arise from the learning algorithms. Instead,

I use numerical analysis and simulations to characterize the local stability and long-run

properties of the different equilibria.

3.5 Numerical Analysis

It is illustrative to describe the numerical algorithm used to simulate and analyze the model. I

first write down the dynamical system by gathering the equations from the previous sections.

Then I describe the algorithm and timing to provide intuition.

Let st = [n1, n2, n3] where ni for i = 1, 2, 3 denotes the fraction of the agents in the

economy that can each be endowed with some model m = 1, 2, 3. While this leads to discrete

model switching, given that all agents of type ni switch once their model is rejected, it leads

to computationally tractable simulations.4 Then, st denotes the set of models agents have

at time t.

I first write down the set of model updating equations:

Φi
t = Φi

t−1 + γ1Λi
t

Λi
t = (Ri

t−1)−1zit[pt − Φi′

t−1z
i
t]

Ri
t = Ri

t−1 + γ1[zitz
i′

t −Ri
t−1]

where Φi
t is the vector of belief parameters, Λi

t is the score for the model, and Ri
t is the

moment matrix all for agent i. Through the feedback, these determine the pricing equation

or ALM:

pt = R−1[h(st−1,Φ
i
t−1) + EtDt+1 + µ− (St + S)aσ2

p]

4Currently this research project is still in an early stage where even running the algorithm is computa-
tionally involved. Future work will deal with less discrete updating by using distributions of test thresholds.
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where h(st−1,Φ
i
t−1) is the aggregate expectations of the economy subject to beliefs Φi

t−1 and

model set st−1. Notice here, that the pricing equation is also dependent on st−1 which is an

index for the number of model types in the economy. The important aspect of hypothesis

testing is that st−1 is also a function of the realizations pt−1 and test parameters. Next,

models are tested by forming the recursive LM test-statistics:

θit = θit−1 + γ2(Λi
t(Ω

i
t)
−1Λi

t − θit−1)

Ωi
t = Ωi

t−1 + γ2(Λi
tΛ

i′

t − Ωi
t−1)

where the null hypothesis is H0 : Λi′
t (Ωi

t)
−1Λi

t ≤ τi. And finally, the set of models is deter-

mined by:

st = f(st−1, pt, τi, ξ)

where st depends on the ALM pt, the test thresholds τi, and the grace period ξ. Because

the law of motion for st is a complex nonlinear equation that depends on the rest of the

dynamic system, I rely on numerical simulations. Intuitively, agents update their beliefs via

least- squares and their beliefs lead to some realization of the ALM. Using the new data,

agents test their models and decide to either accept or reject their model. Finally, the set of

models are either changed or left alone. The algorithm is as follows:

Step 1. Agents are endowed with a model m ∈M and initial beliefs Φ0.

Step 2. Endogenous value pt is realized through market clearing.

Step 3. Each agent updates their beliefs Φt,m, θt,m with respect to new data.

Step 4. After the grace period ξ, each agent also tests the specification of their model.
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Step 5. If the null hypothesis H0 is rejected, then agents draw another model at ran-

dom.

Step 6. Repeat.

To further clarify the hypothesis testing mechanism, Figure 3.1 demonstrates a hy-

pothetical model switching tree diagram. Figure 3.1 takes the switching probabilities of the

other agents as given and demonstrates the probability of switching for the representative

agent with model 1 (m1) after model rejection. Here the triple (n1, n2, n3) denotes the frac-

tion of the population with the respective models, where the first element is model 1, the

second element is model 2, and the third element is model 3. For example, the triple (1
3
, 1

3
, 1

3
)

means that each representative agent holds one of the three models.

m1( 1
3 ,

1
3 ,

1
3 )

m1( 1
3 ,

1
3 ,

1
3 )
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1
3 )
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Figure 3.1: Model Switching Tree Diagram. Representative agent 1 given model 1 is rejected.

3.5.1 Parameterization

Since I am not doing a calibration exercise, the choice of parameterization is mainly for

expositional purposes. I parameterize the model as follows:
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Parameters Meaning Calibration

a Risk Aversion 0.15

R Risk-free Rate 1.02

µ Mean Dividend 1

S Mean Supply 1

σ2
D Std Dev. of Dividend 0.45

σ2
S Std Dev. of Supply 0.45

ρ AR(1) Dividend Coefficient 0.45

η AR(1) Supply Coefficient 0.45

σDS Cov. of Dividend and Supply 0.45

ξ Grace Periods 5

γ1 Parameter Gain t−1

γ2 LM Test Gain 0.00025

N # of Iterations 100,000

Table 3.1: Parameter Values

I discuss the parameter choices for the hypothesis testing algorithm. I choose a grace

period ξ of 5 to allow models to adapt to their environment when chosen. That is, agents

wait 5 periods before testing their models. Next, the parameter gain γ1 is set to a decreasing-

gain initially to check for local stability under learning via a new definition I explain later.

In subsequent sections, I also have agents implement a constant-gain as well. The LM test

gain γ2 is not chosen to be a decreasing-gain for the same reason as Cho and Kasa (2014)

where I require the gain on the score statistic to be larger than the parameter updates or

else the score statistics will depend on the history of the estimates rather than the current

magnitudes. Intuitively, I want the updates to be slow enough such that the model is not
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rejected by a large shock but fast enough such that the test can detect parametric changes.5

3.5.2 HT-Stability

In order to test for local stability, I need to specify a definition that fits hypothesis testing

learning. One issue with local stability is that, with a sufficiently high test-statistic, all the

RPE are trivially locally stable because there is no switching in these scenarios.6 Instead,

I want a robust form of local stability when allowing for model switching. In particular, I

want to understand which equilibria are robust in some sense to model changes i.e. a model

shock. I call this HT-stability with respect to τ (or Hypothesis Testing stable), which can

be thought of as a hypothesis test with a test-statistic threshold of τ .

I call an equilibrium HT-stable(τ) (HT-stable with respect to τ) if it satisfies the fol-

lowing criteria. First the equilibrium must be either an RPE or REE of the system. Second

if the system is in an equilibrium, the equilibrium must be locally stable to all one-model

shocks to the system. Similar to the idea behind impulse-responses, I define a one-model

shock as follows. Suppose an environment converges to its equilibrium values after N peri-

ods. At period N + 1, I force one of the representative agents to switch their model. An

equilibrium is then HT-stable(τ) if after the model shock, it returns to the RPE over time.

With the definition above, many if not all the equilibria will possibly by HT-stable

for some value τ , that is, if τ is sufficiently large, no amount of misspecification will reject

the model. Hence when checking for HT-stability, I use a more stringent method. I say an

equilibrium is HT-stable(τ̄) if it converges to its equilibrium values after a one-model shock

with respect to its equilibrium LM test-statistic value τ̄ . I define the equilibrium threshold

value τ̄ as the LM test-statistic that the model converges to without model switching. That

is, if all agents have some model m, the equilibrium τ̄ is the average τ that results in this en-

vironment. One caveat of this definition is that some models will be more misspecified than

5Cho and Kasa (2014) explain in detail the technical reasons for this choice.
6We can think of the standard econometric learning case as one where the test threshold τ goes to ∞.
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others and thus will be harder to reject in equilibrium.7 Nevertheless, the above definition

provides a useful benchmark to understand the interactions between adaptive learning and

hypothesis testing with multiple agents.8

I find that not all of the RPE are HT-stable(τ̄). In particular, the REE is not HT-

stable(τ̄). The fully-specified model has three parameters that need to be matched which

makes the LM test very sensitive to changes in the environment. Hence a model shock causes

other agents to eventually discard their model as well and over time it diverges away from

the REE values.

I provide some intuition on why the REE is not HT-stable(τ̄). The REE is not HT-

stable(τ̄) because when the REE is subject to a model shock, it raises the LM test-statistic

causing the fully-specified model to be rejected. Over time, all models shift because the

equilibrium threshold for the REE is close to zero. With a finite grace period ξ the LM

test-statistic is unable to adjust below the threshold value and hence the model does not

converge but switches between different equilibria.

In Table 3.2, I write down a list of all the potential equilibria (REE, RPE) and list if

they are HT-stable(τ̄) or not. I number them and call them “regimes” which will prove useful

in the following section with constant-gain learning, where parameter values may be away

from the equilibrium estimates. To reiterate, model 1 is the fully-specified model, model 2

is the dividend model, and model 3 is the supply model.

7While the one-model shock is not a local shock, it does reveal some properties of the strength of a
particular RPE.

8Two interesting extensions would be to see what happens if we use a common τ across all models and
to have a model where all models are equally misspecified and thus have equivalent τ̄ .
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Regime Equilibrium HT-Stable(τ̄)

1 (1, 0, 0) No

2 (0, 1, 0) Yes

3 (0, 0, 1) Yes

4 (1
3
, 1

3
, 1

3
) No

5 (2
3
, 1

3
, 0) No

6 (1
3
, 2

3
, 0) No

7 (0, 1
3
, 2

3
) Yes

8 (0, 2
3
, 1

3
) Yes

9 (1
3
, 0, 2

3
) No

10 (2
3
, 0, 1

3
) No

Table 3.2: HT-Stability of RPE and Regime Numbers

I find that the only HT-stable(τ̄) equilibria are combinations of models 2 and 3. In particular,

since both of these models are already misspecified, their equilibrium threshold τ̄ are higher

than the REE model. Next the higher τ̄ values allow certain models to be more robust

towards changing beliefs. Intuitively, agents in these models are used to higher test-statistics

and are less able to detect that the environment has changed. In contrast, agents with the

fully-specified model more easily detect changes in the environment which is signaled through

a higher LM test-statistic.9

I now show a case of HT-stability for the RPE corresponding to the all dividends model

(0-1-0). For HT-stability I simulate the model for N periods and then shock the model at

time N + 1 where I force one of the models to switch. The equilibrium LM test-statistic τ̄

for the all dividend RPE is τ̄ = 2 and I set that as the threshold. I then run the model for

another N periods. Figure 3.2 shows the process of HT-stability. We see that after the shock,

9Another potential extension would be to have a distribution of agents with different test-statistic thresh-
olds.
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the model stays in a different environment for some time and then as the LM test-statistic

starts to increase in the other models, it shifts back to the (0-1-0) RPE.

Figure 3.2: HT-stability Test for All Dividends RPE

One concern about HT-stability may be robustness. Both the choice of τ and grace

period length ξ are important for convergence after the shock. In order to demonstrate some

robustness, I also do the exercise for ξ = 5 and 10, γ2 = 0.0001 and 0.00025, and τ̄ ± 0.1. I

find that the results do not change for the different robustness checks.

3.5.3 Constant-Gain Learning

I now implement constant-gain learning and find that a subset of the RPE are utilized more

than others. This is because some models are less sensitive to the LM test, depending on

both the number of parameters that need to be estimated and the feedback properties of

the restricted-perceptions equilibria (RPE). The constant-gain learning simulation is the
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computational counterpart to the analytical results of Cho and Kasa (2014), where they

demonstrate that some models are “dominant” in the long-run i.e. models that are used

“almost always”.10

I run two different simulations and show the time spent within each model. For the

first simulation I use γ1 = 0.001 and γ2 = 0.03 at 500,000 iterations, where γ1 is the gain

parameter for the estimates and γ2 is the gain parameter for the score statistic. For the

second simulation I use γ1 = 0.005 and γ2 = 0.07.11 I set the test threshold τi to 2 and

initialize the model at the RPE where all models are used (1
3
, 1

3
, 1

3
), where again the triple

(n1, n2, n3) denotes the fraction of the population that holds each model. To insure that

initial conditions do not heavily influence the results, I also burn in the first half of the

simulations.

Again, for notational simplicity, I define the ten different possible model combinations

as “regimes” rather than equilibria, given that at any time t, the parameter estimates may

be away from the RPE (or REE) values. In Table 3.2, I define the regime numbers for the

different states. For example, Regime 1 is (1, 0, 0) which is the regime where all agents hold

the correct model. Regime 4 is (1
3
, 1

3
, 1

3
), where a fraction 1

3
each hold one of the three models.

10The technical definition uses large deviation theory and analyzes the invariant distribution of the model
set as the gain parameter goes to 0. Intuitively, their definition is similar to Foster and Young (2003), where
one model is used almost all the time in the limit.

11As in Cho and Kasa (2014), it is convenient to raise γα2 where here α = 1
2 . With some abuse of notation,

γ
1
2
2 = 0.001

1
2 ≈ 0.03.
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Figure 3.3: Constant Gain Learning Fractions γ1 = 0.001, γ2 = 0.03

Figure 3.4: Constant Gain Learning Fractions γ1 = 0.005, γ2 = 0.07

Figures 3.3 and 3.4 show the fraction of the time spent within each regime. There

are three findings from Figures 3.3 and 3.4. First, Regime 1, where all agents use the fully-

specified model, is not used very often even though the test threshold is relatively high at

τi = 2. Next, the regime that the model spends the most time in is the hybrid regime

(1
3
, 1

3
, 1

3
), which is surprising given that it is not HT-stable. A key reason for this may be the
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discrete nature of the model switching mechanism here.12 Finally, the “dominant model”

in the simulations, where all agents hold one model most frequently, is the dividend model

(0, 1, 0). While the fact that the dominant model is not the correct model is surprising,

it is consistent with Cho and Kasa (2014) who conjecture that the correct model will not

necessarily be dominant depending on the feedback parameters of the model.

It is important to provide intuition why the correct model is not used the most by all

agents. Similar to the explanation in Cho and Kasa (2014), there are two counterbalancing

mechanisms involved. First, while a higher test threshold makes the specified model less

likely to be rejected, all else equal, it also makes the misspecified models less likely to be

rejected as well. Because the misspecified models are also held by other agents, the fully-

specified model is then more likely to be rejected outside an REE. Thus certain equilibria

may be more fragile than others depending on the feedback mechanisms within the model.

Figure 3.5: Constant Gain Learning Fractions γ1 = 0.001, γ2 = 0.03

12Future work can see how robust this finding is to different model switching mechanisms.
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Figure 3.6: Constant Gain Learning Fractions γ1 = 0.001, γ2 = 0.03

Another way to visualize the simulations are Figures 3.5 and 3.6 which show how

much time agents spend in each model. Figure 3.5 shows the fraction of time spent within

each model while Figure 3.6 shows the data for two models holding one of the models fixed.

For instance, in the top panel of Figure 3.6, the first column is how much time is spent

in the fully-specified model (1, 0, 0) and the second column is the amount of time spent in

the regime (2
3
, 1

3
, 0). I remove the hybrid equilibria (1

3
, 1

3
, 1

3
) to make a better comparison

between the other regimes. Another interesting finding of the simulations is that the basin

of attraction seems to be around regimes with the dividend model and in particular, regimes

with model 3, the supply model, tend to not be seen. Finally, adding a higher gain to the

simulation does not change the shape of the distribution but adds more weight onto certain

hybrid regimes.
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3.5.4 Robustness Check

Here I do two robustness checks. First I simulate the model with larger test thresholds

τi = 10 and a longer grace period ξ = 20 and find that it is robust to this specification.

Figure 3.7 shows the first robustness check. Again, the finding is consistent with Cho and

Kasa (2014) who demonstrate that the dominant model depends on the H-functional and

the LD rate function13 which is ambiguous even in the simple linear case.

For the second robustness check, I change the initial conditions of the new model when

agents switch their models following rejection. Currently, when an agent switches their

model, the initial conditions of the new parameter estimates are switched to the steady-

state values consistent with the RPE (or REE) of the new model.

Figure 3.7: Constant Gain Learning Fractions γ1 = 0.001, γ2 = 0.03, τi = 10, ξ = 20

13These functions characterize the probability of escape paths and feedback strengths of the RPE.
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Figure 3.8: Constant Gain Learning Fractions with Different Switching Rule

In the second robustness check, I instead have agents switch to their previous parameter

estimates and any estimates on the previously omitted variables (e.g. dividend D or supply

S) are given the RPE (or REE) steady-state values as the initial conditions. Figure 3.8

shows that while this spreads the distribution more towards hybrid regimes, the same pattern

persists. In particular, notice that instead of 45% of the time spent in Regime 4 (1
3
, 1

3
, 1

3
),

30% of the time is spent there, while more weight is placed on the other regimes.

I suspect that with a large enough test threshold and grace period, the REE may be

the dominant model. Nevertheless, with constant-gain learning, the parameter estimates are

constantly drifting, such that with a large enough shock, the model enters an escape path

which triggers a rejection, making it difficult to return to the REE. Thus, as in Cho and

Kasa (2014) the probability of entering the escape path determined by the LD rate function

and the feedback properties of the RPE via the H-functional characterize which models are

dominant in the long-run.

The constant-gain learning simulations and HT-stability suggest that the connection

between them are not as strong as we would suspect, that is, HT-stability equilibria here do

not necessarily seem to be regimes that are regularly visited under constant-gain learning.
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One possible explanation is that the model shock here is a large shock and that HT-stability

tells us more about the strength of the RPE rather than local stability. Future work should

try to establish a stronger connection by possibly using a less discrete switching mechanism

and refining the definition of stability.

3.6 Conclusion

I have demonstrated that in an asset pricing environment with hypothesis testing learning,

the REE is not necessarily the stable equilibrium. Moreover, with constant-gain learning,

agents spend most of their time using both the fully-specified and underparameterized models

and the model switches between a subset of the RPEs.

The current project can be seen as a numerical examination of a potentially more

general claim, which is that RPE can arise via a more natural learning mechanism than

standard econometric learning. In particular, I fix the test thresholds, model class, and grace

period. Since I have shown that under certain conditions, RPE can arise as the dominant

model i.e. models that are used the most in the limit, the next step is to prove this in a

more general case.

Cho and Kasa (2014) show that in a linear Gaussian version of their model, there is

ambiguity in dominant models even if the model class includes the true model because of the

interaction between the model feedback parameters and the functions that determine the

escape paths (the H-functional and the Large Deviation (LD) rate function). An important

step in the literature would be to see which parameter values in a linear Gaussian case lead

to misspecified models being dominant models under hypothesis testing.
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Appendix A

Appendix for Chapter 1

Derivation of Equation (1.7): The expected value of the utility of c1t is:

Etu(c1t) = Et[−e−ρc1t ] = −e−ρEtc1t+
ρ2

2
Vtc1t (A.1)

since c1t is normally distributed. Then:

Etc1t = R + xt[Et(pt+1 +Dt+1)−Rpt]

Vtc1t = x2
tσ

2
p

We know:

xt =
Et(pt+1 +Dt+1)−Rpt

ρσ2
p

Plugging this into Equation (A.1) I get:

Etu(c1t) = −e−ρR−ρ[Et(pt+1+Dt+1)−Rpt]+ ρ2

2
x2
tσ

2
p

= −e
ρR−ρEt(pt+1+Dt+1)−Rpt

ρσ2
p

+ ρ2

2

[
Et(pt+1+Dt+1)−Rpt

ρσ2
p

]2

σ2
p

= −e
−ρR− [Et(pt+1+Dt+1)−Rpt]

2

2σ2
p
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And thus:

Γ(pt) = e−ρR − e
−ρR− [Et(pt+1+Dt+1)−Rpt]

2

2σ2
p

Proof of Proposition 1: I focus on interior equilibria where
Sρσ2

p

µ
< Ae−ρR[1 − e

− µ2

2σ2
p ].

Fix a set of parameters. Both 1
x̄

and ē are compositions of continuous functions and hence

continuous. With market clearing, 1
x̄

= ē
S

implies 1
x̄

is below the ē equation at p̄ = 0. If the

equation 1
x̄

is above the participation curve, then the equilibrium condition is the intercept

of the participation curve. Next I take the limit of 1
x̄

as p̄ goes to µ
R−1

. The equation 1
x̄

approaches ∞. Since ē is bounded and monotonic in p̄, we know that there exists a point

on 1
x̄

where 1
x̄
> 1. Hence by, the intermediate value theorem, there exists a point where

they cross. Because both curves are monotonic within the given parameter space and since

x̄ > 0, it is unique. Hence, there exists a unique steady-state p̄.

Proof of Proposition 2: I implicitly differentiate ē with respect to the parameters. µ is not

in the equation hence ∂ē
∂µ

= 0. ∂ē
∂R

, ∂ē
∂σ2
p
, ∂ē
∂A

all follow from standard differentiation. A appears

as a multiplier and hence ∂ē
∂A

> 0. ∂ē
∂R

= Aē3ρ(1−e
ρ2σ2

p

2ē2 )

ē3e
Rρ+

ρ2σ2
p

2ē2 +Aρ2σ2
p

. Since e
ρ2σ2

p

2ē2 > 1 =⇒ ∂ē
∂R

< 0.

∂ē
∂σ2
p

= ēAρ2

2ē3e
Rρ+

ρ2σ2
p

2ē2 +2Aρ2σ2
p

=⇒ ∂ē
∂σ2
p
> 0. ∂ē

∂ρ
=

Aē3R−Aē3e
ρ2σ2

p

2ē2 +Aēρσ2
p

ē3e
Rρ+

ρ2σ2
p

2ē2 +Aρ2σ2
p

. Hence ∂ē
∂ρ

is positive when

R > e
ρ2σ2

p

2ē2 +
ρσ2
p

ē2
, negative if the sign is opposite and 0 at equality.

Proof of Proposition 3: I use the chain rule. Let Ω be the set of model parameters.

Then p̄ = f(ē(Ω),Ω) which implies ∂p̄
∂Ω

= ∂f
∂Ω

+ ∂f
∂ē

∂ē
∂Ω

. A only appears in ē. ∂ē
∂A

> 0 hence,

∂p̄
∂A

> 0. µ does not appear in ē and ∂x̄
∂µ
> 0 hence ∂p̄

∂µ
> 0. ∂x̄

∂R
< 0 and ∂ē

∂R
< 0, hence ∂p̄

dR
< 0.

∂x̄
∂σ2
p
< 0 and ∂x̄

∂ρ
< 0. ∂p̄

∂ρ
= −

[
σ2
p

ē
− ρσ2

p
∂ē
∂ρ

ē2

]
S

R−1
and ∂p̄

∂σ2
p

= −
[
ρ
ē
−

ρσ2
p
∂ē

∂σ2
p

ē2

]
S

R−1
. Then ∂p̄

∂σ2
p
< 0

if ∂ē
∂σ2
p
< ē

σ2
p
⇐⇒ σ2

pAρ
2

2ēee
Rρ+

ρ2σ2
p

2ē2 +2Aρ2σ2
p

< 1 ⇐⇒ σ2
pAρ

2(−2ē3e
Rρ+

ρ2σ2
p

2ē2 −1)

2ē3e
Rρ+

ρ2σ2
p

2ē2 +2Aρ2σ2
p

< 0 which is always true.
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∂p̄
∂ρ

is positive if ∂ē
∂ρ
> ē

ρ
and negative if less than, 0 at equality.

Proof of Proposition 4: Proposition 5.2 in Evans and Honkapohja (1995) is the result I

use to prove my case. The requirements are that the gain parameter γ > 0 is a decreas-

ing sequence, the shocks εSt are iid with E(εSt ) = 0, V ar(εSt ) > 0 and either (1) |εSt | < α

with probability 1 for all t or (2) E|εSt |p exists and is bounded in t for each p > 1, and the

derivatives of G and H are bounded. I claim to satisfy condition (1). First εSt is iid by

definition. Next for some α sufficiently small, as long as σ2
S is sufficiently small, or I bound

the distribution of εSt , then Proposition 5.2 holds.

Proof of Proposition 5: The proof depends on Evans and Honkapohja (2001) E-stability

condition which requires the eigenvalues of the T-map to have negative real parts. First, if

the sequence of shocks {εSt }∞t=0 are such that |εSt | < α with probability 1 for all t and α > 0

is sufficiently small then Proposition 4 holds and there exists a unique noisy steady-state

REE. Our PLM is pt = a + νt which implies that pet = a + νt = pet+1. Then the ALM is

pt = R−1
[
a+ µ− S

et
ρσ2

p

]
. Then the T-map is: da

dτ
= R−1

[
a+ µ− St

et
ρσ2

p

]
− a which can be

rewritten as da
dτ

= a(R−1 − 1) + R−1(µ − St
et
ρσ2

p). Furthermore, since e is a function of a, I

need to sign the derivative of e with respect to a which is de
da
< 0. Given that de

da
< 0, the

T-map satisfies the local stability conditions by definition and hence proves my proposition.
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Appendix B

Appendix for Chapter 2

B.0.1 Additional Summary Statistics

Here I list additional summary statistics for prices and participation rates per session. In

particular, I list the median, 2nd half mean, and a time-series fit. The time-series fit which is

called AR(1) in Table B.1, is a time-series regression on each session’s price and participation

series to estimate the constant and AR(1) coefficients. Then I take the implied unconditional

average of the series using the estimated values. The additional summary statistics show

that in general the different measures of average behavior are all very similar.
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Treatment Session Med. Price Med. Part. AR(1) Price AR(1) Part.

1 1 45.52 N/A 45.85 N/A

1 2 42.45 N/A 39.88 N/A

1 3 41.84 N/A 42.28 N/A

1 4 43.66 N/A 42.05 N/A

2 5 41.32 77.78% 40.82 74.2%

2 6 43.38 66.67% 42.5 58.22%

2 7 45.64 77.78% 46.32 78.59%

2 8 39.84 88.89% 40.15 81.7%

3 9 43.79 44.44% 45.29 49%

3 10 48.77 66.67% 50.74 63.83%

3 11 52.07 66.67% 51.73 65.9%

3 12 40.25 44.44% 40.24 46.4%

4 13 28.46 66.67% 27.52 64.79%

4 14 25.46 66.67% 22.32 59.14%

4 15 23.76 55.56% 23.42 54.92%

4 16 29.26 77.78% 27.22 66.67%

Table B.1: Additional Summary Statistics

B.0.2 Robustness Checks

I perform robustness checks. I first show the regressions for Finding 2 using the linear

probability model with fixed effects. Since fixed effects are not biased with linear probability

models, they are preferred to random effects. Table B.2 shows the results for the linear

probability model.
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Table B.2: Dependent Variable: Individual Participation (LPM)

Variable Model 1 Model 2 Model 3

Subjective Returnst 0.022*** 0.021*** 0.021***

(0.005) (0.005) (0.005)

Actual Returnst−1 0.017*** 0.004

(0.004) (0.005)

Forecast Payofft−1 0.017*** 0.014***

(0.005) (0.005)

Price Trendt−1 0.011*** 0.01**

(0.004) (0.004)

Past Positive Payofft 0.139***

(0.023)

Past Negative Payofft -0.002

(0.029)

N 4896 4704 4704

R2 0.059 0.085 0.149

***p < 0.01, **p < 0.05, *p < 0.1
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Table B.3: Dependent Variable: Individual Participation (Logit)

Variable Model 1 Model 2 Model 3

Subjective Returnst 0.054*** 0.052*** 0.049***

(0.015) (0.017) (0.017)

Actual Returnst−1 0.017*** 0.004

(0.005) (0.006)

Forecast Payofft−1 0.019*** 0.015***

(0.006) (0.006)

Risk Aversion 0.04 0.036

(0.027) (0.026)

Price Trendt−1 0.011** 0.008*

(0.004) (0.004)

Past Positive Payofft 0.154***

(0.027)

Past Negative Payofft 0.001

(0.028)

N 4896 4704 4704

Pseudo R2 0.107 0.181 0.193

***p < 0.01, **p < 0.05, *p < 0.1

We can see that the coefficients are very similar to the probit model. Next I run the

logit model with random effects. Table B.3 shows the results for the logit model. Again,

the results are very similar. Finally, in Table B.4 I show the demographic regressions along

with an added lag. The demographic regressions show that they are insignificant to the

regression. The lagged regression shows that the only lags that matter are the 2-period

lagged price trend and the direction of the 2-period lagged payoff.

105



Table B.4: Dependent Variable: Individual Participation

Variable Model 4 Model 5

Gender 0.062

(0.059)

Age -0.012

(0.018)

Major -0.004

(0.007)

Subjective Returnst 0.027*** 0.029***

(0.009) (0.008)

Subjective Returnst−1 -0.005

(0.004)

Actual Returnst−1 0.004 0.006

(0.006) (0.006)

Actual Returnst−2 -0005

(0.004)

Past Positive Payofft 0.18*** 0.188***

(0.027) (0.029)

Past Negative Payofft 0.003 0.023

(0.03) (0.029)

Past Positive Payofft−1 0.062***

(0.023)

Past Negative Payofft−1 0.023

(0.023)

N 4704 4608

Pseudo R2 0.172 0.206
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B.0.3 Instructions

Overview

Welcome to this experiment in economic decision-making. Please read the instructions care-

fully as they explain how you earn money from the decisions you make in today’s experiment.

We ask that you not talk with one another and that you silence your phones. If you have

questions at any time please raise your hand and it will be answered in private. There will

be a short quiz following the reading of the instructions which you will all need to complete

before we can begin the session. Also, at the end of the last round, we will give you

a survey that pays you cash.

Today’s session will involve “rounds”. Each round will have 2 “tasks”: forecasting and

entry advice. For each task you will view some information and make decisions. You will

receive points for each task in each round. At the end of the session, we will randomly select

1 task. Your points from this task will be converted into dollars at 15 points = $1. Your

earnings from the task, the survey, and your $7 show-up payment will be given privately in

cash at the end of the session.

General Information

You are a financial advisor to an investment fund manager. The manager has 2 investment

options: a risk-free investment and a risky investment. The risk-free investment is putting

all the money into a bank account paying a fixed interest rate. The risky investment is

holding stocks which requires a transaction fee to buy. Your 2 tasks are:

1) Forecast the stock market price as accurately as possible and

2) Provide entry advice to the manager (hold the stock or not).
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To make the best decision, the manager needs to know what the stock price will be. As

the advisor, you have to predict the stock price (in francs) during 51 rounds and tell the

manager if he should buy the stock or not in each round.

Each manager has a different transaction fee for holding stocks. The transaction fees

are fixed per manager (e.g. each manager’s fee does not change in all rounds) and ranges

evenly from 0 to 4 francs per round (with no manager having a fee of 0). The manager

makes profits each round. If the manager does not buy stocks he makes 3 francs that round.

If he buys the stock, he makes uncertain profit: dividends which are 3 francs per round plus

a capital gain from stocks (which can be negative). Therefore good entry advice depends on

good forecasts. Your points depend on forecasting accuracy and the manager’s profits.

Market Information

The stock price is determined by equilibrium between the supply and demand of stocks. The

supply of stocks is fixed. The demand for stocks is mainly determined by the total demand

of a number of investment funds active in the stock market. Some of these funds are advised

by a participant in the experiment, others use a fixed strategy.

The more funds there are in the market, the higher the demand for stocks on average.

There is also 1 fund who will always enter the market. There is also some uncertain, small

demand for stocks by private investors but their effect on the stock price is small. Stock

prices are determined by equilibrium, that is, the stock price in round t will be the price

where total demand equals supply.
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Manager’s Investments Information

The exact investment strategy of your manager and the strategies of the other funds are

unknown. The risk-free bank account pays a fixed interest rate of 5% per round.

Stockholders receive a certain dividend of 3 francs per round. Stock returns per round

are uncertain and depend on dividends and stock price changes.

Based on your stock price forecast and entry decision, your manager will make an

optimal investment decision (e.g. some money into the bank account and some into stocks).

The higher your price forecast, the larger will be the fraction of money invested by your

manager in stocks, so the larger will be their demand for stocks. If you tell the manager not

to enter, then he invests everything in the risk-free bank account.

Task 1: Forecasting Prices

Your 1st task is to forecast the stock market price in each round as accurately as possible.

The stock price will always be between 0 and 100 francs. The stock price has to be predicted

both one and two rounds ahead. So at the start of each round you will make 2 stock price

predictions (e.g. this round and next). If the manager enters, he will use your two round

ahead forecast to make his optimal investment decision. Your forecasts can be made up to

2 decimal points.

At the start, you have to predict the stock price in the 1st two rounds, that is, you

have to give forecasts for rounds 1 and 2. After everyone has given their forecasts for the

1st two rounds, along with their entry advice, the stock price in round 1 will be revealed

and based on your forecasting error, your points for round 1 will be given. After that, you

have to give your forecast for rounds 2 and 3, along with entry advice for round 2. After

everyone has given their forecasts and entry advice in round 2, the stock price in round 2

will be revealed and based on your forecasting error and the manager’s profits, your earnings
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for round 2 will be given. This continues for 51 rounds.

It is important to note that you make 2 forecasts for each round’s price after round 1.

During round 1, you make a forecast of the stock price in round 2 and in round 2, you make

another forecast of the stock price in round 2. This is because at the start of round t, you

do not know the stock price in round t since it is revealed at the end of the round.

Task 2: Entry Advice for the Manager

Your 2nd task is to give entry advice. Your 2 choices are to enter the stock market or not

enter. The manager will follow your advice completely. The manager makes a profit based

on your decision. If the manager does not enter, the manager makes a service fee of 3 francs

that round. Otherwise, the manager makes a profit:

Pricet+1 + 3− 1.05 ∗ Pricet −Manager’s fee

where pricet is price in round t, 3 is the dividend, and 1.05 is the gross interest rate. Hence

his profits depend on the price change after entry (e.g. Pricet and Pricet+1).

Your job will be to make sure the manager makes the decision that maximizes his

per round profits. In each round, you will receive 3 points plus the manager’s profits if the

manager’s profits are positive (up to 5 points) and 3 points minus the manager’s profits if

they are negative (down to 1 point). If he does not enter, you will receive 3 points. The

following is a timeline of your tasks in each round:

Forecast p1

Forecast p2

Stage 1

Round 1

Enter or Not

Stage 2

Forecast p2

Forecast p3

Stage 1

Round 2

Enter or Not

Stage 2

...

...

Round t
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Points

Your points will depend on your forecasting accuracy and the manager’s profits. For fore-

casting, the better you predict the stock market price in each round, the more points you

get. Your points for forecasting are:

Forecast points in round t =
16

2 + |Price in round t− 1st forecast|+ |Price in round t− 2nd forecast|

where | · | is an absolute value (deviation), e.g. |10 − 13| = 3, |5 − 4| = 1. The accuracy

of both your 1st and 2nd forecast will matter. You can earn up to 8 points in each

round if you predict the stock price exactly both times.

Your points for entry are:

Entry points in round t =



min{3 +MP, 5} if entered in t-1 and pt + 3− 1.05pt−1 − ki︸ ︷︷ ︸
manager’s profits

≥ 0

max{3 +MP, 1} if entered in t-1 and pt + 3− 1.05pt−1 − ki︸ ︷︷ ︸
manager’s profits

< 0

3 if did not enter in t-1

where MP is the manager’s profits, pt is the price in round t, and ki is the manager’s trans-

action fee. And where max chooses the maximum value, e.g. max{3, 5} = 5 (min chooses

the minimum value). Hence the maximum points you can make is 5 and the minimum is

1. We will provide you with your manager’s expected profits based on your forecasts. Note

that entry points in round t depend on your entry choice in round t− 1. Remember we

will pick 1 task (forecasting or entry) at random to pay you at the end of the

experiment.

Forecasting Example: Suppose the price in round 7 was 70 francs and you guessed 65 in
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round 6 and 60 in round 7. Then your points:

16

2 + |70− 65|+ |70− 60|
=

16

2 + 5 + 10
= 0.94 points

Entry Example: Suppose the price in round 8 was 80 francs and the price in round 7

was 70 francs and the manager’s transaction fee was 1. Then your points in round 8 if you

entered in round 7 would be:

80 + 3− 1.05 ∗ 70− 1 = 9.5 + 3 = 12.5 ≥ 5 =⇒ 5 points

If you did not enter, you would get 3 points. If it were negative you get less than 3 points.

The following is a table of possible points for forecasting. It is important to note

that the table does not give all values and that points are rounded to 2 decimal points.

Now please complete a short quiz. You can use the instructions sheet. Please raise your

hand when you are done and we will come around to check your answers. After everyone

has finished, we will let you know when you can begin the experiment.
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Question 1

What is the smallest and largest prices the stock can be?

Suppose you are at the beginning of round 10. Which rounds’ prices do you need to predict?

Question 2

If you advise your manager to enter, which forecast will your manager use to make his in-

vestment decision (1 or 2 rounds ahead)?

How much does the stock give in dividends (in francs) per round?

What is the interest rate that the bank account pays per round?

Question 3

What is the range of all manager’s transaction fees?
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What is the most amount of points you can earn for entry advice? What is the least

amount? How many points do you receive if you do not enter?

If you advise the manager to not enter the stock market, will he buy stocks?

Question 4

Suppose the price for round 20 is 50 francs. You guessed 45 in round 19 (for price in round

20) and 50 in round 20 (for price in round 20). How many points would you receive for

forecasting the price in round 20?

Suppose your manager’s profit in round 6 is 3. How many points would you earn? (Hint:

min{3 +MP, 5}). Suppose your manager’s profit in round 6 is -1. How many points would

you earn? (Hint: max{3 +MP, 1})

Suppose the price for round 21 is 55 francs and price for round 20 is 50 francs. Your

manager’s transaction fee is 1. If you entered in round 20, what is the manager’s profits?

How many points would you earn at the end of round 21? (Hint: pt + 3 − 1.05pt−1 − ki,

where ki is the manager’s transaction fee)
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Appendix C

Appendix for Chapter 3

Here is list the analytical forms for the RPE. First let:

b = R−1

r =
EDtSt
ED2

t

r̃ =
EDtSt
ES2

t

Then the RPE is:

A1 = A2 = A3 =
µ− Saσ2

p

R− 1

ψ = 1− bη + b(−ρ+ φbρφ− brρφr̃)n2 + b2ρφ(−1 + rr̃)n2
2 + bρn1(−1 + bφ+ bφ(−1 + rr̃))n2

B1 =
bρ(1− bφ+ b(−arσ2

p + φ)n2)

ψ

B2 =
b(ρ− arσ2

p − bρφ+ abrρσ2
pn1 + bρφn2 − brρφr̃(−1 + n1 + n2))

ψ

C1 =
b(−bρφr̃(−1 + n1 + n2) + aσ2

p(−1 + bρn1 + bρn2))

ψ

C3 =
b(aσ2

p(−1 + bρn1 + bρn2)− ρr̃(−1 + bφn1 + abrσ2
pn2))

ψ
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