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A Note on the Representation of Cosserat
Rotation

J.D. Goddard

Abstract. This brief article provides an independent derivation of a formula given
by Kafadar and Eringen (1971) connecting two distinct Cosserat spins. The first of
these, the logarithmic spin represents the time rate of change of the vector defining
finite Cosserat rotation, whereas the second, the instantaneous spin, gives the local
angular velocity representing the infinitesimal generator of that rotation. While the
formula of Kadafar and Eringen has since been identified by Iserles et al. (2000)
as the differential of the Lie-group exponential, the present work provides an inde-
pendent derivation based on quaternions. As such, it serves to bring together certain
scattered results on quaternionic algebra, which is currently employed as a com-
putational tool for representing rigid-body rotation in various branches of physics,
structural and robotic dynamics, and computer graphics.

1 Background: Cosserat Rotations

From the conventional continuum-mechanical viewpoint, a Cosserat continuum1 is
defined via a differentiable map assigning spatial position x(x◦,t) and microstruc-
tural rotation P(x◦,t) to each material particle, with x = x◦, P = I in a given refer-
ence configuration, where P ∈ SO(3) denotes a real, proper orthogonal tensor.

We can express the kinematics concisely in terms of the map R
3 → R

3×SO(3)
given by

x◦ → {x,θ}, where θθθ =−1
2
εεε :ΘΘΘ , and ΘΘΘ =−εεε ·θθθ ,

(1)
i.e. θi =−1

2
εi jkΘ jk , and Θi j =−εi jkθ k,
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and the Cayley-Gibbs-Rodrigues relation [2, 6, 7, 8, 9, 10]

P = expΘΘΘ = I+
(

sinϑ
ϑ

)
ΘΘΘ +

(
1− cosϑ

ϑ 2

)
ΘΘΘ 2, ϑ = {−tr(ΘΘΘ 2)/2}1/2 (2)

Here θ̂θθ = θθθ/|θθθ | represents the axis of rotation and ϑ = |θθθ |= (θ iθi)1/2 the angle of
rotation about the axis.

If P is taken as primary variable, the skew-symmetric tensorΘΘΘ = logP ∈ sososo(3)
(Lie algebra) represents an inverse of the map sososo(3)→ SO(3) (Lie group), and it
can be defined uniquely and computed by various methods [11]. Alternatively, and
more conveniently, we may regard θθθ as the primary variable, with (1) defining the
associated map or Cosserat placement R

3 →R
6.

To connect the vector of the logarithmic spinΩΩΩ = dΘΘΘ/dt to that of the instanta-
neous spin N = (dP/dt)PT, where

d
dt

:=
(
∂
∂ t

)

x◦
,

we recall the rather remarkable result of Kafadar and Eringen [5](Eqs.(2)-(9)),
which can be expressed in the present notation as:

ννν :=−1
2
εεε : N =ΛΛΛωωω , where ωωω =−1

2
εεε :ΩΩΩ ,

with

ΛΛΛ = I+
(

1− cosϑ
ϑ 2

)
ΘΘΘ +

(
ϑ − sinϑ

ϑ 3

)
ΘΘΘ 2, (3)

and

ΛΛΛ−1 = I− 1
2
ΘΘΘ +

1
ϑ 2

(
1− ϑ

2
cot

ϑ
2

)
ΘΘΘ 2

Either definition of spin is acceptable, and this relation makes it easy to relate their
conjugate stresses.

Kafadar and Eringen [5] derive a formulas equivalent to (3), and Iserle et al.
[8](Eqs. B.10-B.11) later have given them as differentials of the Lie-group exponen-
tial, cf. [7](Eqs. 17-19). The purpose of the present article is to give an independent
derivation by means of the quaternionic representation of the Lie-algebra/Lie-group
connection SO(3) = exp{sososo(3)}. It is hoped that this derivation will clarify certain
relations between quaternions, matrix algebra and Lie groups.

2 Quaternions as Tensors

With no claim to originality, the object here is to provide a concise summary of scat-
tered results from numerous treatises on quaternions, many of which are presented
under a different guise elsewhere, e.g. in the much more comprehensive journal
article [12]. The knowledgeable reader can skip to the following section for the
derivation of the main result.
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Hamilton’s [13] quaternions represent a special case of the non-commutative hy-
percomplex (Clifford) algebras, which are known to be isomorphic to matrix alge-
bras [14]2. With this in mind, it is convenient for the present purposes to adopt the
tensorial representation of quaternions:

���= zi���i = z0���0 + z1���1 + z2���2 + z3���3
.=

⎛
⎜⎜⎝

z0 −z1 −z2 −z3

z1 z0 z3 −z2

z2 −z3 z0 z1

z3 z2 −z1 z0

⎞
⎟⎟⎠

=
(

z0�+z1� −z2�+z3�

z2�+z3� z0�−z1�

)
, (4)

with � :=
(

1 0
0 1

)
, � :=

(
0 −1
1 0

)
, and �2 = −� ,

which represents a 4-dimensional subspace Q of the 7-dimensional vector space
consisting of the sum of skew-symmetric and isotropic 4-tensors. The zi are real, and
.= indicates the matrix of tensor components relative to given basis ei, i = 0 . . . ,3.

Superscripts on zi allow for curvilinear tensors, and the Einstein summation con-
vention is observed here and in the following3. The 2× 2 identity matrix � and
symplectic matrix � are to be interpreted as belonging to the appropriate blocks of
the 4×4 matrix, and the replacement �→ 1, �→ ı establishes an isomorphism with
the algebra of 2×2 complex matrices4. The basis elements���i, which are obtained
from (4) by taking z j = δ j

i , satisfy

���2
i =

{
���0, i = 0,
−���0, i �= 0

and ���i��� j =

⎧
⎨
⎩
εi j

k���k, for i, j,k �= 0,
���i , for j = 0,
��� j , for i = 0,

(5)

which yields the well-known product rules for general quaternions. The deviator (or
“vector part”)���′, conjugate���∗, modulus |���|, and inverse of a general quaternion���
are defined respectively by

���′ := Dev(���) =���|z0=0 , with ���= z0���0 +���′, ���∗ = z0���0−���′,
(6)

|���|= 1
2

[tr(������∗)]1/2 , and ���−1 =���∗/|���|2,

As discussed below, unitary quaternions, defined by ���−1 =���∗, represent spatial
rotations.

2 Given this fact, the pure mathematician might wish to be excused from further reading of
the present work.

3 However, the zi in (4) do not obey the standard tensor-transformation rules unless inter-
preted in terms of 4-vectors.

4 In that case, the���i, i = 1,2,3, are identical with the well-known Pauli spin matrices [12],
up to permutation and multiplication by ±ı .
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With matrix scalar product for matrices ���,��� defined by ��� :��� =tr(���∗���), it is
clear from the preceding relations that the ���i represent an orthogonal basis, whose
reciprocal basis is ���i = 1

4���i. Therefore, the transformation of Q into the space of
4-vectors with basis ei is given by

γγγ = ei⊗���i with z = γγγ :���, i.e. γ j
kl = (��� j)kl with z j = γ jkl(���)kl , (7)

and the inverse���= γγγ−1·z is obviously given by (γγγ−1)kl j = (��� j)kl .
The projection Q→ sososo(3)

S′ = dev(S), with S =ΠΠΠ���, ΠΠΠ =���0− e0⊗ e0 (8)

provides a connection between the Lie algebra sososo(3) and the algebra of quaternions,
as defined by the preceding matrix representations. Thus, given a 4-vector x with
quaternion			= γγγ−1·x, one obtains from it the 3-vector (“physical-space” vector) x′:

x′ = γγγ :			′,with x = x0e0 + x′, and x∗ = x0e0−x′, (9)

Then, the quaterionic product5 is given in terms of 3-vector operations as:

xy := γγγ : (			


) = x0y′+ y0x′+(x0y0−x′·y′)e0 + x′ ×y′,
(10)

with x′ ×y′ =
1
2
(x′y′ −y′x′),

which, with the proviso that the vector space be enlarged to 4-vectors, adds a new
operation to the usual 3-vector operations.

Without loss of generality, we employ the usual quaterionic convention e0 ≡ 1,
and we make a distinction between a quaternion and its 4-vector only when neces-
sary to clarify tensor-transformation formulae. Hence, letting lower-case bold Greek
refer either to 3-vectors or 3rd-rank tensors, we have the well-known polar or expo-
nential representation (cf. e.g. [12])

z = ρeφφφ = ρ(cosϕ+ φ̂φφ sinϕ),
(11)

where ϕ = |φφφ |, ρ = |z|, φφφ = φφφ ′, φ̂φφ = φφφ/ϕ =−φ̂φφ∗ ,

which remains valid when the pair z, φφφ is replaced by the corresponding quaternions
���= γγγ−1·z and���= γγγ−1·φφφ . The same formula serves to define the logarithm and its
various branches.

3 Application to Cosserat Rotations

The important special case ρ = 1 of (11) gives a unitary quaternion q = γγγ :���, which
represents an orthogonal transformation P ∈ SO(3) of space-vectors, according to

y′ = γγγ : (���			′���∗) = qx′q∗ = Px′ = P1/2(x′P−1/2) (12)

5 Not to be confused with the Gibbs dyadic notation for the tensor product x⊗y.
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It is easy to show [9] by (10)-(12) that

θ̂θθ = φ̂φφ , |θθθ |= 2|φφφ | (mod 2π), hence p = q2 or q =±p1/2,
(13)

where q = eφφφ and p = eθθθ ,

which involves the map between skew-Hermitian quaternions ��� = −���∗ and rota-
tions:

eζζζ = cosζ + sinζ ζ̂ζζ = γγγ : e���,
(14)

with eZ = I+ sinζ Ẑ+(1− cosζ ) Ẑ2, Z =ΠΠΠ��� ,

where the unit skew-Hermitian vector ζ̂ζζ = −ζ̂ζζ∗ represents the axis of rotation, and
ζ the angle of rotation about the axis.

The relations (13)-(14) allow for an easy verification of certain results of Kafadar
and Eringen [5] involving the derivatives of the one-parameter Lie group represented
by orthogonal transformations P(t) = expΘΘΘ(t). In particular, given the relations,

ννν =−1
2
εεε : N, N =

dP
dt

PT, with ννν =
dp
dt

p∗ = 2
dq
dt

q∗ (15)

we can now derive the desired relation between N or ννν and ωωω = − 1
2εεε : ΩΩΩ , where

ΩΩΩ := dΘΘΘ/dt.
Letting ˙( ) = d( )/dt and employing the representation q = expφφφ = cosϕ +

φ̂φφ sinϕ , one finds readily by (13) and the relation θ̂θθ2
=−1 that

ννν = 2q̇q∗ = ϑ̇θ̂θθ + sinϑ ˙̂θθθ +(1− cosϑ)θ̂θθ ˙̂θθθ , (16)

which corresponds to Eq. (7) of [5]. However, in view of the relation θθθ 2 = −ϑ 2, it
follows that

ϑ̇ =−1
2

(
θ̂θθθ̇θθ + θ̇θθθ̂θθ

)
and θ̂θθ ϑ̇ =

1
2

(
θ̇θθ − θ̂θθθ̇θθθ̂θθ

)
(17)

Substitution of these expressions into (16) and application of (10) gives after some
algebra

ννν = θ̇θθ +
(

1− cosϑ
ϑ 2

)
θθθ × θ̇θθ +

(
ϑ − sinϑ

ϑ 3

)
θθθ × (θθθ × θ̇θθ)

(18)

≡
{

I+
(

1− cosϑ
ϑ 2

)
ΘΘΘ +

(
ϑ − sinϑ

ϑ 3

)
ΘΘΘ2

}
ωωω

representing Eq. (8) of [5], as cited above in (3).

4 Conclusions

The connection between Cosserat spins given by Kafadar and Eringen [5] is rather
easily established by means of the quaternionic representation of rotations. While



88 J.D. Goddard

the present work is intended mainly to establish that fact, Section 2 provides tensor
representations that may be useful in a broader range of applications. In particular,
the formula (11) with ρ �= 1 describes superposed Cosserat rotation and dilatation,
suggesting a convenient of representation of Eringen’s microstretch continuum. In
particular, one sees that a complex quaternion of the form

���(x◦) = x + ı logz

where z is defined by (11), defines a more general microstretch placement, a subject
to be considered in a future work.
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