
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Collaborative Domain Blocking: Using federated NLP To Detect Malicious Domains

Permalink
https://escholarship.org/uc/item/53q5c844

Author
Daud, Mohammad Ismail

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53q5c844
https://escholarship.org
http://www.cdlib.org/

Collaborative Domain Blocking:
Using federated NLP To Detect Malicious Domains

By

MOHAMMAD ISMAIL DAUD
THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Zubair Shafiq, Chair

Setareh Rafatirad

Matthew Bishop

Committee in Charge

2022

i

Table of Contents:

1. Introduction

1.1 What is ad blocking and why it is needed

1.2 Why filter lists are not a cure-all

1.3 Current ML-Based Alternatives - Prior Work

1.4 Current ML-Based Alternatives - Augmenting Filter Lists

1.5 Current ML-Based Alternatives - Passive Blocking

1.6 Current ML-Based Alternatives - Hand Crafting Features Requires A Lot Of Effort

1.7 Objective of our system

1.8 General ML pipeline

1.9 Inference pipeline

1.10 Results

2. Related Work:

2.1 Why do people use ad blockers

2.2 Issues with filter lists

2.3 Random Forests To Classify URL

2.4 kNN To Classify URL

2.5 Decision Tree To Classify URL

2.6 Federated Learning For Malware Detection

2.7 Federated Learning for Malicious Packet Detection

2.8 Reinforcement Learning for Filter List rule generation

2.9 Complex Filter List rule generation using page context and behavior

2.10 The benefits of our system in summary

3. Data - Collection & Processing & Patterns:

3.1 Our Main Data Source: Filter Lists

3.2 Data Acquisition and Processing

3.3 Positive Class Processing

3.4 Positive Class Processing - Downsampling

3.5 Negative Class Processing

3.6 Input Processing - Negative and Positive Classes

3.7 How the data is utilized

3.8 Patterns Associated With The Data

4. Method: System Architecture & Design:

4.1 System level objectives

4.2 Outline Of Architecture And Implementation

4.3 Outline of the neural networks used

4.4 How the Federated Model Works

4.5 How Our Objectives Are Met With the Federated Model

4.6 The Private Content Blocker Model

5. Evaluation:

5.1 Overview of tests

5.2 Neural Network VS RandomForest

5.3 Federated Model Versus Non-Federated Model - Setup

5.4 Federated Model Versus Non-Federated Model - Performance Results

5.5 FL Hyperparameter Impacts On Performance - Client Size and Unique Domains

5.6 FL Hyperparameter Impacts On Performance - Convergence

5.7 Key takeaways

6. (Further Work) / Discussion:

6.1 Explainability

6.2 Alternative Architectures and Embeddings

6.3 Counter-blocking threats

6.4 Centralization,Consensus, and the Filter Bubble

6.5 Effect of ad blocking on websites

6.6 Is it ethical to block ads?

7. Conclusion & Acknowledgements:

7.1 Performance

7.2 Foundation For Future Work

7.3 Explainability

Abstract: Current content filtering and blocking methods are susceptible to various

circumvention techniques and are relatively slow in dealing with new threats. This is due to

these methods using shallow pattern recognition that is based on regular expression rules found

in crowdsourced block lists. We propose a novel system that aims to remedy the

aforementioned issues by examining deep textual patterns of network-oriented content relating

to the domain being interacted with. Moreover, we propose to use federated learning that allows

users to take advantage of each other's localized knowledge/experience regarding what should

or should not be blocked on a network without compromising privacy. Our experiments show the

promise of our proposed approach in real world settings. We also provide data-driven

recommendations on how to best implement the proposed system.

1.Introduction:

(1.1 What is ad blocking and why it is needed) The Web can expose users to a multitude of

security and privacy threats. For example, malicious or compromised websites can trick users

into downloading malware without having to click on anything via drive-by downloads [26]. As

another example, 90% of the top-million websites embed tracking apparatus [15]. To mitigate

these security and privacy threats, users employ security and privacy enhancing content filtering

tools. For example, 42.7% of users on the internet use ad blockers – making it a popular content

blocking technique [2]. An ad blocker browser extension is able to intercept and filter requests to

load harmful resources (e.g., iframe elements, JavaScript). They are able to tell a malicious

element from a non-malicious element using filter lists [5]. These filter lists contain a set of rules

in the form of regular expressions to match known security or privacy harming elements on a

webpage. As discussed next, filter lists are typically manually curated using crowdsourced

feedback from their user base.

(1.2 Why filterlists are not a cure-all) While filter lists curation is an impressive community-driven

effort that relies on crowdsourced feedback [1], prior literature has shown that the crowdsourced

filter list curation process is unreliable [5,12]. There is general consensus that filter list curation

is not reliable, especially on less popular and non-English websites [12]. Moreover, Varmarken

et al. note that filter lists suffer from both false positives and false negatives. First, these filter

lists are known to mistakenly target functional elements that inadvertently break the core

functionality of web pages [16]. While such mistakes are expected, it is important for filter list

curators to respond and fix these issues in a timely manner. Unfortunately, this is typically not

the case. Given the large amount of noisy feedback about website breakage [1], filter list

curators have a hard time updating the filter lists in a consistent time frame. Second, filter lists

also have a hard time keeping up with new security and privacy threats that require the addition

1

of new rules to filter them [5]. Note that malicious actors are known to employ obfuscation

techniques to bypass filter rules [5].

(1.3 Current ML-Based Alternatives) Since filter lists are based on crowdsourced, manually

generated feedback and suffer from the issues listed above, the research community has

employed machine learning to automate filter list generation [11,12] and potentially replace

manually curated filter lists altogether [5,6,7,9]. Research has shown that malicious resources

tend to have distinct features (e.g. amount of alphabet entropy of malicious element attribute

names) that can be leveraged to train accurate machine learning classifiers [5,6,7,9,11,12].

(1.4 Current ML-Based Alternatives - Augmenting Filter Lists) First, much of the research

looking into blocking malicious content like we are, uses filter lists as a source of ground truth

for training their models. However, it is important to note that users can add local rule

updates/changes when they find malicious resources not being blocked by the current filter lists

they are using. Thus, using only published filter lists as training data forces users to miss out on

these local changes and updates that other users within the system are making. Also as

discussed earlier, it may take a non-trivial amount of time to get these changes/updates added

to the filter list. In order to overcome these issues, we propose a technique known as federated

learning. In federated learning, available users are selected to help update a central

classifier/model using their own local, private data to generate appropriate updates to it. This

central model is then given to all users within the system and is used to classify malicious and

non-malicious domains - helping us replace the filter lists based system alluded to earlier. More

importantly, since users are proposing direct updates to the model, this allows the system to

alleviate the time consuming approval processes associated with updating filter lists and allows

us to use list updates/changes that users would not have shared with others to begin with.

2

(1.5 Current ML-Based Alternatives - Passive Blocking) Another common theme seen in prior

work is the injection of their proposed models somewhere along the web page rendering

pipeline. This type of work uses features that have to be analyzed once the web page loads (e.g

number of iframe elements on a page). The elements or pages then get blocked after the page

itself has been loaded by the user. Instead of loading in elements of the webpage and then

making a judgment based on these elements, we look at complementary network-level

resources (i.e whois logs and domain records) that do not require the page to be loaded. So this

allows our system to be more passive by nature and more privacy preserving (as we no longer

have to analyze the actual contents of the page a user loads). This approach of looking at such

information to make an inference on whether its domain is malicious or not also cuts down on

needless loading and thereby reduces wasted network resources. This previous statement is

especially salient when we end up blocking the page or resource and loading it to begin with

was a waste of the network's resources. It also limits the possibility of malicious agents

performing a drive-by attack that loads in malware without user consent or action.

(1.6 Current ML-Based Alternatives - Hand Crafting Features Requires A Lot Of Effort) Finally,

all of the current research tackling this task have one thing in common: the use of expert

selected features. The entire feature selection process requires a lot of care and time. These

features may also need to get updated as new,complex threats arrive which are no longer

detectable by current features sets. A more efficient approach is to use the embeddings of

models pre-trained on broadly similar tasks as input features. In our case, we use the BERT

model to obtain a compressed and automatically generated representation of the textual input

we feed our own models. Research has been done showing the competitive performance of

BERT relative to more classical automated text representation techniques [27]. Furthermore, our

comparative evaluation with baselines using expert selected features shows comparable

performance.

3

(1.7 Objective of our system)

Our objective is to provide a passive, accurate, continually improving and privacy preserving

system that can be used to block malicious content at the network level (i.e during the DNS

lookup phase). By blocking network requests at this level/stage we can make judgments on

content without loading any web page elements. Blocking content at this level also allows us to

achieve our secondary objective: adding content blocking capabilities to IoT and mobile devices

that seldom have direct access to popular browser based ad blockers.

(1.8 General ML pipeline) To train our system to block malicious content during the DNS lookup

phase, we gather and process multiple filter lists geared towards IoT and mobile systems from a

large database of filter lists (filterlist.com). These filter lists will act as our negative and positive

ground truth for what is malicious or non-malicious for our machine learning system. Once we

get the domains in a uniform format, we collect the complementary data (i.e whois log and

pertinent domain/DNS records) associated with each domain. This machine learning system

takes in as input, the whois log of a website and all the associated domains(e.g

A,AAAA,CNAME records) of this website. However, before passing in this information to the

next step, we process this textual input by passing it through a pre-trained transformer model

(i.e BERT) to obtain embeddings we can pass into our two neural network models for

classification on whether or not this domain should be blocked or not. One of the neural

networks trains on data pertaining to domains written solely by the user for the role of content

blocking of domains (i.e. blocking a domain purely for personal and subjective reasons or

issues). The other model, which trains on the data pertaining to the gathered domains from the

multiple filter lists we collected earlier, actually shares its training gradients with other users

within the system through a process known as federated learning. This model aims to block

4

general malicious content like malware, cryptominer, ads,and tracker domains. By using a

federated system we allow patterns from local filter list rules to be shared within the system.

(1.9 Inference pipeline) The inference pipeline used to predict whether or not a domain is

malicious and should be blocked or not, begins with a check to see if a domain is contained

within a user's personal content or malicious content filter list. If so, we block the request right

there. If not we then pass the whois log and domain/DNS information associated with the

requested domain into the malicious content and personal content blocking models. If any one

of the models flags the website as undesirable, we block requests to this website. If a mistake is

made by the model, the user can update the base filter lists accordingly and allow the models to

re-train themselves. In the case of the federated system/model, the model will be allowed to

overfitted on these local updates/additions for a couple of rounds before being updated by the

globally aggregated model - allowing us to guarantee a system that is at least as good as a

purely filter list based system for tail users and majority users alike. Moreover, in the case of the

federated model, the distillation of local data patterns on how to block a domain that gets shared

globally via gradient sharing and allows all users to take advantage of a global body of

knowledge. Finally, using techniques like secure aggregation also ensures the information being

shared with the system remains private.

(1.10 Results) Through experimentation we are able to view the immediate and promising

results of the system. The proposed system was able to achieve comparable performance

relative to hand-picked (in terms of features) baseline models and an example system that did

not utilize federated learning. This shows a promising road ahead that can lead to further

avenues of research and improvement.

2. Related Work:

5

(2.1 Why do people use ad blockers) A recent study has shown that approximately 42.7% of

users on the internet use ad blockers worldwide [2]. The same study also shows that there has

been a steady growth of ad blocker use in the United States over the years [2]. A valid question

would be: “why are we seeing this growth”? Factors pushing for this growth and relatively high

use of ad blockers are as follows. According to Miroglio et al, people view the presence of ads

on webpages negatively due to their association with a bad user experience on the internet [3].

Furthermore, users get the benefit of faster load times of web pages [3], as ads or malicious

elements of the pages get blocked before they load themselves onto the web pages. Users also

get an added layer of privacy and security [3], as elements that track user activity are blocked

and elements that could possibly introduce malicious behavior/agents onto their computer are

also blocked.

(2.2 Issues with filter lists) At their core, ad blockers implement the policy and/or block lists

presented in crowdsourced lists [1]. These rules within these lists can be easily circumvented

through techniques of varying complexity [1]. An example of a well-studied technique is the

randomization of attributes of elements and URLs served on a page [1]. Since these rules are

essentially regular expressions trying to match components, randomizing names and attributes

circumvents these regular expressions and thereby circumvents the ad blockers using them.

Alrizah, et al (2019) study these circumvention techniques and also expose deeper issues that

are created due to the open-source nature of these lists [1]. By looking into the largest and most

well known filter list project (i.e EasyList) they were able to pin-point issues that were introducing

false positives and negatives into their lists [1]: since anyone can try and contribute to the

project, the main editors of the project have a hard time sifting through the low quality reports

and additions [1]. It becomes increasingly hard to fix old false positives rules that block

unnecessary components or URLs and add rules that inhibit/block the components that are not

being correctly blocked(i.e false negatives). Furthermore, websites that have ads and projects

6

like these are essentially natural enemies: when issues of false positives arise website owners

seldom collaborate with these lists [1]. Even more worrying, is the introduction of newer

circumvention techniques like CNAME cloaking, that mask the actual target domain behind a

chain of “dummy” domains [4]. Since these lists are manually curated by volunteers, one cannot

expect them to find all the malicious domains across the internet, especially since one domain

might actually be hiding behind several others. These circumvention techniques might also

further introduce security and privacy issues as they can be associated with improperly set up

endpoints and are open to being manipulated or taken over, like some CNAME cloaking

instances studied by Dimovaet al (2021) [4]. Essentially, it becomes a lose-lose scenario for

internet users with regards to their privacy and security. As stated earlier, the usage of ad

blockers is only growing despite these issues being publicly acknowledged. This only points to

the biggest issue of them all: there are no other widespread alternatives to ad blockers. This

information juxtaposed with the issues expressed in this segment shows that we need a better

alternative or reworking of the current system. Thankfully, research is being done into finding

such alternatives.

(2.3 Random Forests To Classify URL) An appreciable amount of research has already been

done on how machine learning can be utilized to block ads on the internet. Lashkari et al (2017)

looked into classifying URLs via a server and browser extension system[5]. The URLs would get

sent to this server while the browser extension acted on behalf of the client in sending the URLs

it encountered to this server [5]. The classifier had an expert selected set of features that were

geared to find textual abnormalities within the URL itself (e.g length of the URL,number of

tokens, alphabet entropy and many more textual attributes) [5]. The authors of this paper

combined these features and fed them into several different classifier algorithms for training, but

according to them the most effective algorithm was that of RandomForests(i.e an ensemble of

decision trees) [5]. According to the authors, they were able to achieve appreciable performance

7

with this method [5].Though our research also uses a classifier to discriminate between different

domains, there are a couple of key differences. The first being that we use word embeddings

from a pre-trained BERT model as input: automating the feature creation/selection process and

saving human effort/time. The second major difference is that we use a wider set of textual input

that is focused on blocking entire domains rather than portions of the website through its URL.

We look at the corresponding whois log and DNS records for the base domain instead of just

using the URL of the webpage.

(2.4 kNN To Classify URL) Bhagavatula et al(2014) also create a very similar classification

system with expert-selected features, which is also based on discriminating malicious URLs[6].

Like Lashkari et al, they use textual features and attributes of the URL itself. However,

Bhagavatula et al also further the scope of their features by looking into the configuration of the

web page that relays information regarding the external or internal URL requests of the

page(e.g looking at the proportion of externally requested resources)[6]. The authors of this

paper also tried several ML algorithms but ended up stating that the K-Nearest Neighbors

algorithms as it yielded the best performance[6]. Again, we take advantage of a more

automated feature generation approach that saves time. Furthermore, our whois log feature

also allows us to explore the domain in question beyond the confines of the actual domain text.

We also get the added benefit of not having to load the entire webpage to extract features as

our whois log information is acquired through a third-party API call/command that can be

cached.

(2.5 Decision Tree To Classify URL) Iqbal et al (2020) propose a system that utilizes application

layer data (namely HTML,Javascript and HTTP requests) to create a graph of connections

between these resources on a website, in order to classify and block ads [7]. Feature extraction

is done on the graph and these features(e.g structural features of the resulting graph) are

8

passed to a decision tree ensemble for classification[7]. The authors of this paper state that the

final system was relatively accurate and since the feature extraction component is embedded

within the browser’s rendering engine component, the system is also efficient [7]. Again, we take

the easier and more automated approach in generating our features via our BERT

transformation pipeline. Though this system focuses on the overall efficiency and overhead of its

implementation by embedding itself within the page rendering pipeline, we still do not require

any portion of the web page(instead we look at DNS records and whois logs) to make an

inference and thus do not have to waste resources rendering any set of elements that we might

end up blocking.

(2.6 Federated Learning For Malware Detection) There also has been work on using a

federated learning based machine learning system to classify malicious content. Sanket et al.

(2021) propose a system to detect malware at a local level using a collection of different

machine learning models (e.g CNNs,KNNs) that share their gradients with other users in the

system through a federated learning system that collects and aggregates gradients from

randomly selected and available users [9]. This “averaged” out gradient is then given to the

users who participated in the federated training cycle[9]. Over time, this will allow local, learned

patterns to make their way on to other devices - helping the system generalize to a global

optimum. They put a heavy emphasis on robustness and anti-poisoning defenses as local users

can get corrupted by malware and start corrupting the global federated model by sending out

bogus gradients[9]. Namely they use clustering techniques to pick out the possibly malicious

gradients[9]. The authors of this paper also stress the energy usage and prediction delay

improvements of their formulation - something especially important in IoT driven environments.

Our research on the other hand is more focused on network based security and privacy

preservation. Though we do try to stop the spread of malware, we do so by blocking potential

malware domains rather than focusing on hardware level malware signatures. We also take

9

some inspiration from this work when it comes to creating a robust FL (federated learning)

system by checking for gradient updates that are larger than the average values we expect.

This stops a couple of users from distorting our system’s global optimum it has learnt over time.

Our defensive measure also only looks at the actual gradient values of the updates as opposed

to looking at extra units of local information(as suggested in Sanket et al.) like the local

distribution of features. Thereby further reducing overhead-related inefficiency.

(2.7 Federated Learning for Malicious Packet Detection) Bakopoulou et al. (2021) also propose

a federated learning system to both stop leakage of private data and ads by classifying(via an

SVM model) HTTP packets based on their content [10]. Though one of the core objectives of

this research closely aligns with ours (i.e blocking ads), it differs in some fundamental ways.

First being that the system takes in application layer packets as input whereas we look at

network layer information(i.e domains and whois logs) [10]. The second notable difference is

that the system proposed by Bakopoulou et al uses a completely different feature extraction

pipeline that looks at HTTP keys, all the words within the packet,and filtered word sets from the

packet[10]. They get these words and transform them into a multi-hot encoded vector

representing the words shown in the packet. On the other hand, we take the easier/automated

approach and pass our textual input into a BERT transformer to capture our inputs in the form of

an embedding vector.

(2.8 Reinforcement Learning for Filter List rule generation) Hieu et al (2022) took a novel

approach and used reinforcement learning to learn a policy that can be used to generate filter

lists for websites [11]. The agent ,which is deployed in the environment to learn this underlying

policy that makes up filter list creation, is given the ability to detect ads and page usability

degradation by adding components representing these ideas into its reward function [11].

According to the authors, this policy successfully generated rules for unseen websites and

10

domains as well and was successful in blocking most ads on popular websites[11]. Such

technology could be used to generate filter lists for regions that do not have too many

volunteers adding rules to filter list projects. Moreover, this automates the entire labor intensive

process of creating filter lists in the first place. There are a couple of limitations though that our

research overcomes. First being it still takes a couple of minutes for the agent to generate filter

list rules and a person is also required to configure the agent for a given website whereas our

approach is more passive, fast and works without intervention due to no configuration being

required and more inference pipeline taking a relatively trivial amount of time to generate a

prediction. Such technology presented in this work augments the ability of filter lists maintainers

rather than outright replacing them. However, it would be interesting and possibly fruitful to

combine the work of Hieu et al and the ideas presented in this paper to further improve both

systems in tandem via a joint training loop(i.e the RL system provides a constant stream of

ground truth that our system can use for training).

(2.9 Complex Filter List rule generation using page context and behavior) Alexander et al (2020)

propose another system used to generate filter list rules more deterministically(i.e rather than

using a learnt policy like above)[12]. The authors of this paper use a hybrid classifier that looks

at inter-element relationships and how the element was loaded into the page using a graph

structure and also use a convolutional neural network to highlight and flag image-based

advertisement elements. The graph structure further adds context to the CNN classified images.

Once an element has been classified as an advertisement, a filter list rule is generated by using

the graph structure to pinpoint the element's location on the page. According to the authors of

this paper, this approach was able to generate novel rules that targeted ads in a way that

minimized the breakdown of the web page itself[12]. However, the page must still be technically

loaded like it was in Adgraph system references earlier. That is where our approach shines. We

can directly cut off possibly malicious requests without ever visiting the webpage by purely

11

analyzing whois log information and domain name information. This makes our approach less

obtrusive and more privacy preserving as we no longer have to look into possibly private user

generated content on the requested webpage to make a classification. Moreover, we get the

added benefit of sharing possibly regional patterns relating to how malicious content is being

hosted, with a larger user base through our federated learning system, thus allowing users living

in under-represented regions to share information on malicious domains.

(2.10 The benefits of our system in summary) As presented above, an appreciable amount of

work has been done trying to enhance and improve the current filter list based and dependent

system of ad blockers through the introduction of machine learning algorithms and techniques.

We build off the strength of these systems and highlight the use of the following mechanisms

that stand to further improve the performance of our own machine learning based, content

blocking systems. The first element to highlight is the use of a federated learning system that

aims to open the possibility of deep pattern sharing amongst users of our system - hopefully

allowing everyone to take advantage of each other locally discovered and used filter lists as

ground truth. When new types of malicious threats get introduced our ground truth will move in

order to block them and our system will follow suit - making the system robust against more

global pattern shifts in behavior. Secondly, Our approach is much more passive and does not

require complicated representations of web page elements and does not require the loading of

resources to make an inference on whether or not a domain is malicious or not. We achieve

this goal of efficiency by only looking at cacheable information that can be acquired through third

parties(i.e whois logs and DNS records). Finally, the use of BERT allows us to automatically

create a set of features we can feed our models with. This saves on human effort and time that

would be spent in researching and crafting the most performant set of features.

12

3. Data - Collection & Processing & Patterns:

(3.1 Our Main Data Source: Filter Lists) For the purposes of giving our machine learning system

(more specifically the federated model) a source of “ground truth” to discriminate between

malicious and non-malicious domains, we use public filter lists hosted on filterlists.com (a large

public repository of filter lists). Older related work (e.g. Bhagavatula et al(2014) [6]) and newer

work (e.g. Umar et al(2020) [7]), all seem to use filter lists as their ground truth for their

proposed systems. This is due to the fact that there are no other widely known alternatives for

finding out whether or not a domain is malicious. A possible alternative that we took a cursory

look into by testing 4 provably malicious domains if the domain/website trust rating agencies

could be reliably used to generate these labels. However, we found that there was a general

lack of consensus between the various agencies and extra empirical analysis would be required

to separate the more reliable agencies from the bogus ones. Though using filter lists opens the

door to the same deficiencies we have previously mentioned, we hope that by using multiple

lists the deficiencies of one list will be covered by the content of the others. Furthermore, we

only care for the generic patterns (due to the use of our ML oriented approach) used by

malicious agents to create domains and our hope is by using multiple lists we will be able to

capture said generic patterns.

(3.2 Data Acquisition and Processing) As alluded to previously, we utilize filter lists from a large

filter list repository,filterlist.com, for training purposes for the federated model portion of our

system. However, we did take two different processing procedures for each of our two classes -

positive(i.e malicious) and negative (i.e non-malicious).

(3.3 Positive Class Processing) For the positive class, we first parsed all the listed projects on

filterlist.com and did some basic keyword filtering on title and descriptions of these filter list

13

projects. If either their description or title had a target keyword matching a specific set,say

“home” in the IoT word set, we would categorize it accordingly. We had two word sets that we

would use to categorize a list as either a mobile or IoT oriented filter list. We did this filtering in

order to bring our data in line with our secondary objective: making sure our ML system is

oriented towards mobile and IoT network ecosystems. Such ecosystems direly need such a

system as most ad blocker software comes in the form downloadable browser extensions,

whereas content in mobile and IoT ecosystems can be consumed through non-browser sources

like in-built streaming apps. If a list does not contain any target keywords in any of the sets, it is

rejected. After this step, we look at the syntax of the filter list and software the list is formatted

for. We choose lists that only have DNS-based filter list syntax and associated software that can

be used in mobile/IoT environments. Once a list meets both conditions, we check its tag to see

what it is set up to block. We only select lists that are oriented to block crypto miners, ads,

trackers, malware, and privacy-related leaks/issues. We specifically look at these categories as

we will pass this collected and processed data to a federated model that blocks content that is

universally seen as malicious - these categories seem to fit this description. After all of this

filtering, we parse each list’s line/rules and convert them into a uniform format where each

domain is written on a new line. We do not format lines that have extra information targeting

specific elements on a page or url. We also skipped any allow list rules that allowed domains to

bypass lists. We only try to accept/format lines that encode purely domain related information.

IoT Keywords:

internet of things, internet-of-things, iot, i.o.t, home, pi-hole, pihole, dns,

server, smart, network, router, gateway, protocol

14

Mobile Keywords:

ios,android,mobile,phone

Table 1: Keywords used to categorize a filter list as either a mobile or IoT filter list(used in

positive class processing).

Software:

Minerblock - Excluded, AdGuard (free versions), DNS66, AdBlock, AdAway,

Pi-hole,FireHOL, Samsung Knox, Privoxy, Diversion, dnsmasq, Blokada,

personalDNSfilter, Unbound, BIND, AdGuard Home, pfBlockerNG, Opera’s built-in

adblocker, Surge, dnscrypt-proxy, SmartDNS, AdGuard for Android, Vivaldi’s

Privacy settings

Syntax:

Non-localhost hosts (IPv4), uBlock Origin Static, Domains, Unbound, BIND,

Socks5, Hosts (0), Hosts (localhost IPv4), Privoxy action file,

Adblocker-syntax domains, Adblocker-syntax domains w/o ABP tag, AdGuard

Superadvanced onlys, Adblock Plus, SmartDNS, $important/$empty only, AdGuard,

Domains with ABP tags, dnsmasq domains list, Adblock Plus Advanceds, Pi-hole

RegEx, Non-localhost hosts (IPv6), DNS servers, Response Policy Zones (RPZ),

Domains with wildcards

Table 2: Acceptable software and syntax of the filter lists (used in positive class processing).

(3.4 Positive Class Processing - Downsampling) After this entire pipeline we still had around 2.5

million domains we could use for the positive class and we had to respect a rate limit for how

15

many whois logs we could access. So, we limited ourselves to taking a maximum of 289

domains per list. This got us to around 14,281 domains for the positive class.

(3.5 Negative Class Processing) Due to the dearth of allow lists that matched the criteria we

articulated earlier for the positive class, we resorted to taking all of the allow lists we found

(regardless if they were IoT or mobile oriented or not). We looked up the syntax “Domains For

allow listing” on filterlist.com and listed all the associated lists. We rejected any lists that were

part of any acceptable ad program. We do this as there is no broad consensus on whether or

not the ads being allow listed in these programs are truly acceptable or not according to

potential users[28]. Since this data will be given to a federated model that needs to be trained

on data that has broadly agreeable class labels, we skip such lists. In addition to the allow lists

collected in the previous manner, we also looked for lists that had “adguard home allow list” as

part of their title as we wanted to make sure we got as many IoT/mobile lists as possible and

adguard home seemed to be a popular target software on filterlist.com for IoT systems based

on a cursory rundown of the data on the site. In the end we got 7 filter lists (allow list) for the

negative class and 3 of them were IoT oriented. After getting these lists we parsed each line

similarly to the positive class processing pipeline. There was no need for downsampling due to

the initial size of our set being relatively small.

(3.6 Input Processing - Negative and Positive Classes) Once we have the parsed and cleaned

lists we collect the auxiliary information(i.e whois logs and DNS records) associated with each

domain that we will actually further process and pass to our federated model. For each domain

we query a service to collect its associated whois log (i.e a required log containing information

about the domain registrant and other details about the website) and we also collect all of the

CNAME and AAAA domains associated with the target domain. We then pass this textual

information into a pre-trained BERT transformer model that was trained on tasks requiring it to

16

understand the relationship between words in textual natural language samples[19] ,namely

‘bert-base-uncased’ of the HuggingFace library, to extract embeddings that will represent our

textual information in a format that is usable/readable by our neural network(i.e multi-layer

perceptron) model. The whois log is passed line by line to BERT but each line in the log is

truncated to the first 512 characters due to the input limit of this model. After we have collected

each line’s embedding vector we sum each of the vector’s columns to get a single output vector

and we divide each element in the summed vector by the number of total lines in the log. This

essentially averages out the final output vector for the whois log component of our input vector.

The domains are split on the “.” character and remove any duplicate sub-domains/keywords. We

then lexicographically sort all the keywords and join them back together with a space as a

delimiter. We then pass this string of sub-domain/keywords into BERT and extract the output

embeddings. It is also important to note that we reject an entire domain instance(i.e whois log

and DNS record vector concatenated combination of a specific target domain) if we see a blank

whois log or if the BERT output of either the DNS records or whois log has UNKs (tokens that let

users of BERT know that this version of the model does not understand a specific character or

sub-word). The final form of our input vector of each domain is a concatenated vector of the

domain’s whois log BERT embeddings vector and its domain collection BERT embeddings

vector. In the end we had 11,777 negative instances and 9,425 positive instances.

(3.7 How the data is utilized) Our proposed system has two components: a private,local model

that does not share its gradients with others and a federated,global model that shares its

gradients. The private model only uses a filter list of domains solely set/created by the user and

no domains from any third-party list or project are added to it - the goal of this model is block

content that the user does not want to see for subjective reasons(e.g not wanting to see

Microsoft owned or associated domains). The global model’s objective is to block generally

agreed upon targets(e.g malware,ads,trackers). This model utilizes a base list of domains that

17

everyone has but a user can always add lists and domains to their local version of this

model(that shares its gradients with others) as well. So for this reason, we only train and test

this global model(and its associated experiments) in this paper as that is the only model we can

accurately represent due to the relatively objective nature of its ground truth. Furthermore, some

users in our system may choose not to utilize the private content blocker and thus the global

model only system can be seen as the core/base system that everyone will have access to. For

the reasons above, only the global/federated model and its associated experiments get trained

with the data we cleaned and processed in the steps articulated within this section.

(3.8 Data Analysis) We went through the filter lists of the positive class(i.e malicious content

blocking filter lists) and we set aside all the projects that were hosted on GitHub. We got around

52 different projects to analyze. We gained two important insights into the overall behavior of

these projects. One being that it takes around a month for the filter lists to get updated.

However, larger projects tend to skew this analysis as shown by the highlighted EasyList and

No-Coin projects. We can assume from this behavior that larger projects act as anchors for ad

blockers whereas the smaller niche lists that get rarely updated can possibly can cover some of

the more rarer deficiencies found in the larger lists(e.g a smaller list could help block more rare

types of malware domains not listed in a larger project).

18

Figure 1: The figure above shows the average time difference between commits by highlighting

the average commit delay/time-difference for individual projects.

Another observation we made is that most projects have very few maintainers. This means a

very small group of people actually support and work on these projects. This can lead to issues

of projects flatlining in terms of updates when the few users lose interest in them. Furthermore,

this also possibly exacerbates the bias issue of these lists. Very few people actually decide what

goes into these lists that millions of people use on a daily basis. Moreover, it would be very

difficult to get volunteers from regions with less active users of content blocking

technology,which would help counteract any possible regional bias in the lists.

19

Figure 2: The figure above shows the trend displayed between open-source filter list projects

with regards to the number of maintainers involved with the project.

Overview of Data used for this analysis can be found in the Appendix (A.3)

4. Method: System Architecture & Design:

(4.1 System level objectives) Our system-level/technical objectives are as follows. We want to

create a system that can accurately inhibit malicious domains at the DNS level throughout a

network for all devices within this network. The system should automatically learn from its own

locally downloaded and/or updated filter lists and also from the distributed patterns seen by

other users in the system. We also want the system to be relatively customizable by end users

with regards to what domains it blocks on said users network. Finally, the required system

should also attempt to secure itself from potential malicious attacks that could lower the

effectiveness of the system and stop privacy leakages that could expose a user’s private data or

preferences they have entered or use to maintain or run this system.

20

(4.2 Outline Of Architecture And Implementation) Our system will act like a DNS proxy service.

In other words it will take DNS queries from a local network and forward requests to a public

DNS server. However, it will only forward requests it thinks are non-malicious(i.e non

ad,tracker,malware,crypto miner domains) and block all malicious requests. There are three

phases/components for deciding how to classify something as malicious in our system. Each

local instance of our system will have a base filter list of the categories we mentioned earlier. If a

domain query matches with a domain in this base list, we block said request. If a domain is not

found within the base list, we then look to our two neural network based classifiers. We cache

and collect the domain’s associated DNS records(CNAME and AAAA) and its whois log as input

for the two neural networks. If either one of the models classifies the domain as malicious, we

block the domain. One neural network is trained purely on domains supplied by the user who

sets up the local DNS proxy service our system is built around. This model tries to block any

content users do not want to see on a network. The other system is trained on the base list we

mentioned earlier and gets updated by a central service that aggregates the training gradients

of different users in the system to create the updates to this model. The role of this model is to

block generally malicious domains from being accessed on a network.

21

Figure 3: Overview of how an individual instance/user of the system’s models are updated and

how a query is handled by the system.

(4.3 Outline of the neural networks used) The private, general content blocker neural network

and the federated,malicious content blocker neural network will share the same network

architecture. We found the following architecture to be most suitable by performing randomized

hyperparameter optimization on a task utilizing the data we cleaned and processed(see the

“Data - Collection & Processing & Patterns” section for more details). The task being to predict

whether a domain is malicious or not using the BERT embeddings of the domains alternative

domains and whois log. Now in terms of architecture, both models have 5 dense MLP layers

with 1536 , 416, 32 ,1 neuron(s) respectively. The two hidden layers use the ReLU and SeLU

22

activation function respectively and the final layer uses a Sigmoid activation function. We also

use binary cross entropy as our loss function and we use stochastic gradient descent with a

learning rate of 0.01. The inputs to these two models is the same, the concatenated BERT

embeddings of a domain whois log and all its associated domains. The output is a probability

estimate on whether it is a malicious/blocked domain(i.e a label of 0) or it is a

non-malicious/unblocked domain(i.e a label of 1).

(4.4 How the Federated Model Works) Each user gets a local-copy of the federated model that

gets trained on a base filter list of domains oriented towards generally accepted malicious

categories. However, a user can also add their own domains matching these categories to this

list. This hits our first objective of being customizable. We characterize our federated learning

system’s training in terms of “rounds”. The definition of which can be changed at each

instantiation of the system. We define a round of training as a single step of updates across the

system. At a given round of training, a random subset of users are chosen. These users are

then told to go through 5 epochs of training to update a central model ,with the same

architecture as their local models, using their own base lists that they may or may not have

added their own domains to, The gradients from this training are aggregated on a central server

and are applied to this central model. The users that are not selected at this time/round are

allowed to finetune their local copies of the central model on their own base lists. After a couple

of rounds(in our case 30), the local copies of the central,federated model are synced with the

central model stored on the aggregation server.

(4.5 How Our Objectives Are Met With the Federated Model) The sharing of gradients in the

manner described above also ensures patterns in unique domains across users are shared

across the system whilst not physically sharing filter list rules. The fine-tuning between these

sync events allows tail users that share very little in common with other users in terms of

23

domains in their base list to still take advantage of their unique domains[20]. These two ideas

ensure that we can see a boost in terms of accuracy on unseen and new domains not covered

by the filter lists of singular users - covering another one of our objectives. The sharing of

gradients over the system also makes it distributed in nature and the automated rounds of

training ensure the system keeps up to date with the trends exhibited by the filter lists of users

within the system. This also fulfills another set of our objectives. Moreover, cryptographic

techniques like secure aggregation can be used to share gradients over a network without

leaking said gradients[21]. Finally, we also ensure that malicious end users do not attack the

accuracy of our system by flooding large gradient updates to disturb the central model by

keeping a running average of gradients. If a malicious agent tries to give an anomalous

gradient update(i.e larger or smaller than 2 standard deviations of the current average) we reject

said gradient. Moreover, we recommend that teams trying to implement our system also ensure

that a trusted third party is used to validate(but not log or tether to users to a fingerprint) new

users joining the system. This will stop malicious agents from flooding the system with their own

bots to ruin the central model. With these mechanisms we hope to ensure your privacy and

security preserving system objectives.

(4.6 The Private Content Blocker Model) Each user also receives an optional content blocker

model that gets trained on a list of domains that comes purely from the user. The gradient

updates do not get shared and the list of domains do not get shared either. This allows users to

block domains (and thereby content on them) without having their preferences leaked. This

additional model makes the system more flexible on the user end. We mainly experiment and

evaluate a system that purely relies on the federated model described above though. This is

due to it being very difficult to model the content preferences of users on a simulated network

and the optional nature of this model.

24

Figure 4: An overview of how the various models in the system update themselves.

5. Evaluation

(5.1 Overview of tests) We took a tiered approach in evaluating the core components and ideas

of our proposed system. We first compared a baseline machine learning algorithm ,that used

hand-picked features, to our BERT-fed neural network approach. The results showed that our

neural network approach did indeed have comparable results to the core approach undertaken

by prior work. We then experimented with federated learning and showed that a system that

utilizes federated learning will outperform the pure neural network model we introduced in the

previous experiment. Finally, once we had shown that our system formulation had verifiable

25

gains, we analyzed a couple of core federated learning hyperparameters to explore their effect

on the system and test the assumptions we had of the federated learning component of our

system.

(5.2 Neural Network VS RandomForest) As alluded to in our related work section, there has

been a lot of work done on blocking ads and/or trackers with machine learning techniques that

use hand-picked features. The core component of our system is a neural network that takes in

BERT embeddings of the whois log and associated domains - a complete departure from the

previous work we have discussed. So to see if we could achieve comparable results, we

compared our system’s neural network architecture to a RandomForest decision tree with the

features listed in the table below.

Random Forest Features

● Admin country,Tech Country, Registrant country on whois log(if error value set to -1)

● Days since domain creation on whois log (if error value set to -1)

● Days since expiry on whois log(if error set to 0)

● [Number of english words in all associated domains] / [Total number of ngrams in all

associated domains] (if error value set to -1)

● Client and Server EPP STATUS codes present in whois log (one-hot encoded)

Table 3: The features used to train the random forest algorithm on our dataset.

26

We provided our neural network (with the same architecture described in the method section)

and the RandomForest the same training data described in the data section. The task was also

the same: give a binary label on whether or not to block the given domain using the provided

input features. Cross-validation was also performed on the RandomForest whereas a fixed

validation set was used during the training of the neural network. The best models of each

algorithm were picked via randomized search. On a test set ,that was set aside from the main

training data, the neural network outperformed the RandomForest. One a secondary test set

that was constructed using two filter lists not used in the base training data set, the neural

network outperformed the RandomForest again.

Algorithm Accuracy ROC Value F1 Score

Our Neural Network 80% 83% 80%

RandomForest 78% 80% 77%

Table 4: Metrics(rounded to the nearest whole percent) of the given algorithms on the base

dataset’s test set.

Algorithm Accuracy ROC Value

Our Neural Network 93% 93%

RandomForest 89% 89%

Table 5: Metrics(rounded to the nearest whole percent) of the given algorithms on the

combination of two new filter lists not used in training. One was a block list(joe wein threat feed)

27

and the other a allow list(baluptons-cdn-allow list). There were a total of 55 domains in the

list(and their associated features). There were 26 block list domains and 29 allow list domains.

(5.3 Federated Model Versus Non-Federated Model - Setup) Now that we have shown the

comparable performance of a neural network based approach to the task, we further investigate

the usefulness of the federated component of our system. The main question to be asked here

is if there is any point in adding a federated learning system on top of the neural network to

further improve its performance. The federated system we created and experimented with had a

central model that would be updated by randomly selected participants in the network. After a

set amount of training rounds, the users’ local models (that get fine-tuned on their local data

when they are not selected for central model updates) get resynced with the central model -

ensuring everyone has both a chance to get the latest updates from the central model and the

ability to fine tune to their own models. We also created an equivalent set of non-federated

models with the same architecture that do not share their gradients and purely train on their own

personal data. Both systems received training data from the same training data set from the

previous experiment(neural network vs RandomForest). Each user of both systems gets a “base

list” of training data instances they all share in common. We created sub-experiments/(system

instances) that changed the number of simulated clients in the system and the number of

unique domains added on top of the base list per client. Furthermore, we also experimented

with how fast the federated system converges when given a new set of data. By examining and

combining the results of all these sub-experiments and configurations of the system, we were

able to analyze the performance of the federated and unfederated systems.

(5.4 Federated Model Versus Non-Federated Model - Performance Results) We created 9 sets

of experiments/configurations(that we repeated thrice) where we changed the number of clients

in the system and number of unique domains per user to see how they impacted the federated

28

and non-federated systems’ performance. We test the performance of the non-federated and

federated system in each of these experiments and then analyze the results as a whole from

these experiments(i.e we look at all the results from all the experiments to compare system

performance). Testing the performance of the system this way allows us to analyze performance

of the system in various configurations and limits possible biased setups that unfairly give an

edge to the federated or non-federated system. The exact results of these experiments can be

found in the appendix(A.1). In each experiment the training dataset was partitioned to the

hyperparameters alluded to earlier and the resulting models were given the same test set of 55

domains(which was the secondary test set of the baseline vs neural network experiment).

Again, in each experiment each user was given a federated model that they fine tuned for a

couple of rounds before it was reset and a non-federated model trained purely on their local

dataset that was assigned to them. Since we have multiple instances of two models in each

experiment (one set for each user in the system), we considered a model type(i.e federated or

non-federated) to outperform another in a given experiment if the average accuracy of the

models of one type was higher than that of the other in that instance of the system or

experiment. The average accuracy was fixed to one standard deviation below the mean(i.e if

average accuracy for a set of non-federated models was 50 and the standard deviation was 2,

we used an accuracy of 48 for comparison). Using this as a basis of comparison, we found that

in around 74% of experiments/configurations, the federated model that was fine-tuned

outperformed the equivalent private models. The fine-tuned model we used for this analysis

were federated models the users had just before the final resync with the main model. Using the

same scheme for comparison, we also found that the final set of non-synced federated

models(i.e federated model right before the final resync) only beat the central model in around

19% of experiments. However, the gains of a non-fine tuned central model begin to wane when

we consider the fine tuned models beat the central model in around 78% of

experiments/configurations when the test set was switched to each user’s local dataset. This is

29

vitally important for tail users with very unique domains in their filter lists as they are at least

guaranteed some localized performance for taking part in the system[20]. The results therefore

show that our configuration of having a fine-tuned federated model gives users in our system

the best of both worlds(performance and localized adaptation for tail users).

(5.5 FL Hyperparameter Impacts On Performance - Client Size and Unique Domains) It is also

important to note how the parameters we changed in each experiment/configuration affected the

performance of the system. The first observation to take note of is the interplay between the

number of clients in the system versus the number of unique each client has. The figure below

shows that starting from the 10-50 client size, we see a relatively loose pattern: the fewer

unique domains we have the better the overall performance of the system. This pattern

becomes clear and linear in larger client sizes. The lower client sizes also seem to achieve

better performance,especially when the unique domain size is very small. However, we see that

for the lower client size experiments a "bucket curve" pattern emerges: where having more

unique domains is better after a certain cutoff point and having less is even better after a certain

cutoff point. With our fixed 150 round training, the more unique data there is in the system, the

more competing gradients we will see that will be saying different things and thus it will be

harder to imbue the "collective knowledge" within such a system when there is too much flux in

the system. A possible solution is to increase the training time. Increasing the training time for

higher client sizes, will result in more stable performance improvement whereas doing so for

lower client sizes might result in mixed performance. Therefore an ideal system would be: a lot

of clients, not too much variation between clients, and infinite training time. This a very realistic

assumption to make as each of these points can be easily expressed in a real world

implementation of our system.

30

Figure 5. This diagram shows the average lowest bound accuracy(average mean accuracy of

each experiment minus one standard deviation from said mean) of each of the 9 experiments

with the number of clients(ClientSize) and unique domains per client(ClientUniqueDomains) of

each experiment being highlighted as x and y axes.

(5.6 FL Hyperparameter Impacts On Performance - Convergence) Since we expect this system

to have an infinite runtime with updates rounds and fine tuning, we also expect occasional

updates to occur on the ground truth (base filter lists of each user). So it is vital to see how

different configurations of the system react to such updates. For each of the 9

experiments/configurations mentioned earlier, we also had a secondary set of experiments(3 for

each of the 9 experiments) where we changed the number of added domains after the system

had been fully trained and examined how the system reacted to them. After removing any

configurations that did not have a clear loss improvement(as we want to pick out the best

configurations), the top experiments (i.e ones that had the best loss improvement calculated on

the new domains) are those with ones with less domains to add. We found that the fewer the

number of clients and fewer number of base unique domains, the better the loss improvement.

31

So a system with few new updates and little uniqueness from user to user and many update

rounds is most suitable. All in all, we recommend small updates in a realistic system in order to

help improvements trickle out into the system.

Figure 6. The loss graphs of the federated system once the new domains were randomly

added(the number of each is based on the experiment’s parameters). The loss is calculated

based on the given new domains that were added to the trained federated models (and by

extension central model).

32

Figure 7. This diagram shows the loss improvement of each of the models that were selected.

The x and y axes show the number of clients in the system and unique domains per client. The

coloring represents the number of domains added after the initial models were trained. Tabular

data for the above can be found in the appendix (A.2)

(5.7 Key takeaways) The main takeaway is that the system we have formulated has appreciable

potential. We have shown that it outperforms the ideas of previous work and that the added

complexity of introducing federated learning into the system stands to improve the overall

system. We have also noted some recommendations on how to properly manage the different

aspects of a system in an applied setting.

6. Discussion & Future Work:

33

(6.1 Explainability) Though we use a transformer to obtain embeddings that we then feed into

our neural networks, we do not have any direct way of deducing why the model works the way it

does since the transformer is not an active component of our neural network architecture. It is

more of a data transformation technique in our pipeline. When it comes to adoption use this

might be an issue as filter lists provide direct insight on what is being blocked. A solution that

might augment our accuracy as well, is to use a transformer possibly in conjunction with a

neural network to classify our textual inputs [22]. These will give us the ability to employ

interperability techniques geared towards transformers and will, in turn, allow us to highlight

portions of the whois log and domains that trigger a model to classify it as either malicious or

non-malicious.

(6.2 Alternative Architectures and Embeddings) As highlighted earlier, we primarily use a basic

multi-layer perceptron as our primary model and BERT as our primary driver for text

representation: this gives future researchers ample room to experiment with other formulations

and architectures. To possibly boost performance, architectures like recurrent neural networks

(e.g LSTMs, RNNs with GRU units) can be used with more traditional word embeddings like

GLoVE vectors. More complicated language models (e.g GPT-3) can also be used or possibly

fine-tuned to acquire a better vectorized representation of our textual input.There is no limit here

when it comes to architectural innovation for this task due to how simple the target is and how

much possible data we have to discriminate between domains.

(6.3 Counter-blocking threats) Counter-blocking of ad blockers is a real threat to the validity of

the proposed system. Back in 2016, Nithyanand et al. first analyzed the presence of anti-ad

blocker measures on websites and found that around 7% of the top 5,000 websites (according

to the Alexa Top-5K list) employed anti-ad blocking measures[23]. We can only assume that this

number has grown alongside the increased adoption of ad blockers across the web. If a website

34

can detect a user is actively using our system to block certain aspects of their page, they can

force the user to disable our system to access their website. Though dealing with such threats is

more of an implementation level issue and beyond the scope of this paper, it is still important to

note the possible drawbacks this system can face on the open internet.

(6.4 Centralization,Consensus, and the Filter Bubble) Since there are no competing servers that

offer aggregation services in a centralized system(i.e only one central server and model) for the

users taking part in the federated learning process, whatever the majority of users decide on

becomes the “ground truth” for the system. This is due the fact that aggregated gradients that

are used to update the central model come directly from a random assortment of users. If a

large portion of the users share a similar set of gradients ,due to their similar blocking

preferences, with the system during the training phase of the federated model then the entire

system moves in the majority’s favor as they will be selected more often due to their large

presence within the system.Though the fine-tuning of the system offers more unique users of

the system some baseline guarantee of performance, it does not ensure that their idea of

malicious/non-malicious domains will be shared across other users in the system. For these

users that have completely different views on what should be blocked or unblocked, the resync

with the central model that occurs every so often, only drags the performance of their local

systems down. Essentially, such a system will create its own “filter bubble”. Users who have the

same philosophy as the majority on what should be blocked will tend to stick around longer

whereas those who have completely divergent views will tend to leave more frequently. This

cycle only increases the divergence between users which ends in a large portion of users

possibly leaving if the decisions the majority takes on what should be blocked is very divisive.

The most direct and simple solution would be to create different central servers for each varying

geographical region - assuming that users residing in the same region share the same opinion.

35

In another proposal, private individuals might also create and advertise their own central model

services. This gives users the ability to choose servers that are more inline with their own ideals.

(6.5 Effect of ad blocking on websites) According to Shiller et al (2017), using ad blocker(and by

association: derivative technology like we are suggesting in this paper) indirectly harms the

livelihood of the websites that take advantage of them to garner revenue[24]. By using such

technology that blocks the presence of ads on a webpage, the website does not receive

payment for showing said ads to that specific user. This results in lower short profits that result

in reduced investment into the further development of the website: lowering quality[24]. This

reduction in quality further pushes away users from using this website and ultimately results in a

loss of potential long-term revenue required to stay up on the internet[24]. This spells disaster

for many privately run websites that depend on these ads to pay for hosting costs. This has a

negative effect on the web economy.

(6.6 Is it ethical to block ads?) As mentioned previously, there is an economic cost associated

with blocking ads. However, not blocking said ads opens users to a whole host of privacy

related issues. These issues mainly stem from the use of trackers that track user behavior in

order to suggest the most pertinent ad that a user will most likely click. According to Iqbal et

al.(2017), these trackers allow private firms to extract sensitive information (e.g medical

conditions and financial state) from users [25]. Furthermore, governments and other institutions

can take advantage of this private extracted data in order to perform unethical surveillance on

unknowing citizens[25]. So a moral quandary appears: hurt small and large businesses that

depend on these ads or risk leaking private information. The burden of choice,therefore, on

whether or not to utilize the system we are presenting within this paper falls on the potential

user. They need to perform a cost-benefit analysis based on their own set of ethics before using

any such system.

36

7.Conclusion & Acknowledgements:

(7.1 Performance) Our goal was to create a novel system that would be an effective supplement

for the current filter list based content blocking ecosystem. We feel we have achieved this

objective by showing that our isolated model has comparable performance to a simulated

baseline and showing that using federated learning further augmented the performance of this

isolated model.

(7.2 Foundation For Future Work) We would also like to add that this federated system and the

ML model used as components for this system can be further explored and improved.

Therefore, this paper is also a potential foundation for future work looking into using machine

learning to improve domain blocking systems in a privacy preserving and decentralized manner.

(7.3 Explainability) Outside further performance improvements, the main goal of future work

should be to look into adding explainability into the system to facilitate possible real-world

adoption of this system. The most promising angle of this challenge is to look into using

transformers and their self-attention layers to highlight what aspects of the input text are

triggering the model.

(Acknowledgement) I would like to thank Professor Z. Shafiq for his continued and unwavering

support during the course of this project. I would also like to thank Professor. S. Rafatirad and

Professor. M. Bishop for their support and guidance as well. A special thanks to VirusTotal for

37

the use of their whois data I used for training and WHOISXML for the use of their web

categorization and whois data that I used for exploratory data analysis. Finally, I would like to

thank my parents and my friend Taimur (and anyone I have not pointed out by name) for helping

me on this journey.

Citations:

1. Alrizah, Mshabab, et al. “Errors, Misunderstandings, and Attacks.” Proceedings of the

Internet Measurement Conference, 2019, https://doi.org/10.1145/3355369.3355588.

2. “AD Blockers Usage and Demographic Statistics in 2022.” Backlinko, 9 Mar. 2021,

https://backlinko.com/ad-blockers-users#ad-blocker-usage-worldwide.

3. Miroglio, Ben, et al. “The Effect of Ad Blocking on User Engagement with the Web.”

Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW '18,

2018, https://doi.org/10.1145/3178876.3186162.

4. Dimova, Yana, et al. “The Cname of the Game: Large-Scale Analysis of DNS-Based

Tracking Evasion.” Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 3,

2021, pp. 394–412., https://doi.org/10.2478/popets-2021-0053.

5. Lashkari, Arash Habibi, et al. “CIC-AB: Online Ad Blocker for Browsers.” 2017

International Carnahan Conference on Security Technology (ICCST), 2017,

https://doi.org/10.1109/ccst.2017.8167846.

6. Bhagavatula, Sruti, et al. “Leveraging Machine Learning to Improve Unwanted Resource

Filtering.” Proceedings of the 2014 Workshop on Artificial Intelligent and Security

Workshop - AISec '14, 2014, https://doi.org/10.1145/2666652.2666662.

7. Iqbal, Umar, et al. “AdGraph: A Graph-Based Approach to AD and Tracker Blocking.”

2020 IEEE Symposium on Security and Privacy (SP), 2020,

https://doi.org/10.1109/sp40000.2020.00005.

38

https://doi.org/10.1145/3355369.3355588

8. Abi Din, Zainul, et al. “PERCIVAL: Making In-Browser Perceptual Ad Blocking Practical

with Deep Learning.” 2020 USENIX Annual Technical Conference, 2020.

9. Shukla, Sanket, et al. “On-Device Malware Detection Using Performance-Aware and

Robust Collaborative Learning.” 2021 58th ACM/IEEE Design Automation Conference

(DAC), 2021, https://doi.org/10.1109/dac18074.2021.9586330.

10. Bakopoulou, Evita, et al. “FedPacket: A Federated Learning Approach to Mobile Packet

Classification.” IEEE Transactions on Mobile Computing, 2021, pp. 1–1.,

https://doi.org/10.1109/tmc.2021.3058627.

11. Le, Hieu, et al. “AutoFR: Automated Filter Rule Generation for Adblocking.” 2022,

https://doi.org/https://doi.org/10.48550/arXiv.2202.12872.

12. Sjösten, Alexander, et al. “Filter List Generation for Underserved Regions.” Proceedings

of The Web Conference 2020, 2020, https://doi.org/10.1145/3366423.3380239.

13. Sigler, Karl. “Crypto-Jacking: How Cyber-Criminals Are Exploiting the Crypto-Currency

Boom.” Computer Fraud & Security, vol. 2018, no. 9, 2018, pp. 12–14.,

https://doi.org/10.1016/s1361-3723(18)30086-1.

14. “2022 SiteLock Website Security Report .” 2022 SITELOCK ANNUAL WEBSITE

SECURITY REPORT, SiteLock, 2022,

https://s3.us-east-1.amazonaws.com/sectigo-sites-web/global/uploads/2022-SiteLock-W

ebsite-Security-Report-FINAL.pdf.

15. Sanchez-Rola, Iskander, and Igor Santos. “Knockin’ on Trackers’ Door: Large-Scale

Automatic Analysis of Web Tracking.” Detection of Intrusions and Malware, and

Vulnerability Assessment, 2018, pp. 281–302.,

https://doi.org/10.1007/978-3-319-93411-2_13

16. Varmarken, Janus, et al. “The TV Is Smart and Full of Trackers: Measuring Smart TV

Advertising and Tracking.” Proceedings on Privacy Enhancing Technologies, vol. 2020,

no. 2, 2020, pp. 129–154., https://doi.org/10.2478/popets-2020-0021.

39

https://doi.org/10.1007/978-3-319-93411-2_13

17. Mazhar, M. Hammad, and Zubair Shafiq. “Characterizing Smart Home Iot Traffic in the

Wild.” 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and

Implementation (IoTDI), 2020, https://doi.org/10.1109/iotdi49375.2020.00027.

18. Wills, Craig E., and Doruk C. Uzunoglu. “What Ad Blockers Are (and Are Not) Doing.”

2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies

(HotWeb), 2016, https://doi.org/10.1109/hotweb.2016.21.

19. Devlin, Jacob, et al. “BERT: Pre-Training of Deep Bidirectional Transformers for

Language Understanding.” 2019,

https://doi.org/https://doi.org/10.48550/arXiv.1810.04805.

20. Yu, Tao, Eugene Bagdasaryan, Vitaly Shmatikov. ‘Salvaging Federated Learning by

Local Adaptation’. CoRR abs/2002.04758 (2020): n. pag. Web.

21. Bonawitz, K. A et al. ‘Practical Secure Aggregation for Federated Learning on User-Held

Data’. NIPS Workshop on Private Multi-Party Machine Learning. N.p., 2016. Web.

22. Khadhraoui, Mayara, et al. “Survey of Bert-Base Models for Scientific Text Classification:

Covid-19 Case Study.” Applied Sciences, vol. 12, no. 6, 2022, p. 2891.,

https://doi.org/10.3390/app12062891.

23. Nithyanand, Rishab et al. ‘Adblocking and Counter Blocking: A Slice of the Arms Race’.

6th USENIX Workshop on Free and Open Communications on the Internet (FOCI 16).

Austin, TX: USENIX Association, 2016. Web.

24. Shiller, Ben, et al. “Will Ad Blocking Break the Internet?” 2017,

https://doi.org/10.3386/w23058.

25. Iqbal, Umar, et al. “The Ad Wars.” Proceedings of the 2017 Internet Measurement

Conference, 2017, https://doi.org/10.1145/3131365.3131387.

26. Narvaez, Julia, et al. “Drive-by-Downloads.” 2010 43rd Hawaii International Conference

on System Sciences, 2010, https://doi.org/10.1109/hicss.2010.160.

40

https://doi.org/10.1109/iotdi49375.2020.00027

27. M.V, Koroteev. “BERT: A Review of Applications in Natural Language Processing and

Understanding.” 2021, https://doi.org/https://doi.org/10.48550/arXiv.2103.11943.

28. Walls, Robert J., et al. “Measuring the Impact and Perception of Acceptable

Advertisements.” Proceedings of the 2015 Internet Measurement Conference, 2015,

https://doi.org/10.1145/2815675.2815703.

Appendix:

● Table 6: (A.1) Section Reference: Evaluation

Experiment

Number

Experiment

Configurati

on

FL Central

Model

Final Acc

on Test Set

Private

Models

average

(Acc,Stand

Dev) on

Test set

Fine Tuned

Avg

(Acc,Stand

Dev) on

Test set

Fine-tuned

FL models

avg

(Acc,Stand

Dev) on

own local

data

Central FL

model avg

(Acc,Stand

Dev) on

own local

data

0 [10, 10, 20] 58.18

(69.45,

6.63)

(60.18,

2.63)

(59.22,

0.86)

(58.14,

0.09)

1 [10, 10, 50] 61.82

(64.73,

6.37) (69.45, 4.6)

(59.43,

1.44)

(60.76,

0.12)

2

[10, 10,

100] 69.09

(58.36,

3.48)

(67.09,

5.71)

(60.26,

1.32)

(58.92,

0.16)

3 [10, 50, 20] 78.18 (61.64, (66.73, (63.61, (60.65,

41

5.84) 7.43) 1.53) 0.26)

4 [10, 50, 50] 81.82

(61.45,

7.94)

(72.55,

10.89)

(60.81,

1.31)

(59.46,

0.28)

5

[10, 50,

100] 58.18

(65.82,

9.06)

(66.0,

11.75) (61.7, 1.17) (62.22, 0.3)

6

[10, 100,

20] 70.91

(64.36,

7.53) (64.0, 7.85)

(60.99,

1.43) (58.4, 0.56)

7

[10, 100,

50] 58.18

(69.09,

9.35)

(64.55,

6.01)

(60.39,

1.24) (60.94, 0.4)

8

[10, 100,

100] 74.55

(67.27,

8.35)

(67.09,

7.49)

(61.01,

0.64)

(60.35,

0.45)

9 [50, 10, 20] 52.73

(65.78,

8.28)

(65.27,

10.86)

(61.15,

1.95)

(63.28,

0.12)

10 [50, 10, 50] 74.55

(65.93,

7.18)

(76.25,

0.77)

(69.15,

0.65) (67.1, 0.13)

11

[50, 10,

100] 56.36

(64.69,

8.59) (62.07, 5.7) (60.6, 2.01) (56.6, 0.14)

12 [50, 50, 20] 70.91

(64.95,

6.95)

(62.91,

8.09) (61.27, 0.9)

(59.63,

0.39)

13 [50, 50, 50] 61.82 (65.45, 7.5)

(65.02,

5.55)

(62.45,

1.46)

(62.93,

0.37)

14

[50, 50,

100] 63.64 (65.2, 9.05)

(62.22,

4.64)

(60.46,

1.69)

(58.29,

0.36)

15

[50, 100,

20] 67.27 (63.67, 6.7) (64.62, 6.8)

(61.05,

1.57)

(57.93,

0.45)

42

16

[50, 100,

50] 70.91

(65.45,

8.27)

(67.38,

5.15)

(61.26,

1.83)

(58.07,

0.43)

17

[50, 100,

100] 74.55

(65.16,

7.06)

(66.84,

8.28)

(63.33,

1.33)

(61.04,

0.51)

18

[250, 10,

20] 76.36

(65.04,

7.62)

(68.76,

7.47)

(61.06,

0.99)

(59.49,

0.15)

19

[250, 10,

50] 72.73

(65.28,

7.79)

(65.28,

7.35)

(61.86,

1.71)

(59.21,

0.15)

20

[250, 10,

100] 72.73

(65.13,

7.56)

(69.28,

5.94)

(61.01,

1.28)

(59.41,

0.15)

21

[250, 50,

20] 67.27

(64.88,

7.98)

(64.39,

6.37)

(62.34,

2.13)

(59.28,

0.33)

22

[250, 50,

50] 72.73

(65.45,

7.94)

(69.29,

8.99)

(63.61,

0.95)

(61.08,

0.32)

23

[250, 50,

100] 74.55

(65.15,

7.59)

(69.33,

8.56)

(61.32,

1.64)

(57.16,

0.33)

24

[250, 100,

20] 76.36

(65.35,

8.06) (69.0, 8.13)

(61.46,

1.51)

(59.54,

0.44)

25

[250, 100,

50] 60

(65.74,

7.54)

(68.78,

9.83)

(62.04,

1.39)

(61.71,

0.46)

26

[250, 100,

100] 67.27

(65.05,

7.85)

(63.11,

6.71)

(60.78,

1.12)

(58.59,

0.45)

Table 6: The accuracy (and standard deviation) for the different federated system experiments

organized by model. Experiment configuration organized as follows: [Number of Clients,Unique

Domains Per Client,Number Of Domains Added To Check Convergence]

43

● Table 7: (A.2) Section Reference: Evaluation

Experiment

Number Number Of Clients

Unique Domain

Per Client

New Domains

Added

Loss

Improvement

2 10 10 100 0.0036

1 10 10 50 0.0058

7 10 100 50 0.0082

5 10 50 100 0.0096

22 250 50 50 0.0098

6 10 100 20 0.01

21 250 50 20 0.01

8 10 100 100 0.0103

11 50 10 100 0.0103

20 250 10 100 0.0106

25 250 100 50 0.0117

12 50 50 20 0.0118

15 50 100 20 0.0126

3 10 50 20 0.0147

10 50 10 50 0.0171

Table 7: The table shows the loss improvements of the experiment where we add new domains

once the models have been trained to see how they converge. The experiment number

corresponds to the table A.1.

44

● Table 8: (A.3) Section Reference: Data

ID Title

Descrip

tion Type User

Project

Name

Working

Branch

FilePat

h

Average

Commit

Time

Maintai

nerNum

MostCo

mmonT

ypeOfC

hange

NumCo

mmits

0

Yuki's

uBlock

Japanes

e filters

- Mobile

Add this

if you

use

Yuki's

uBlock

Japanes

e filters

with

uBlock

Origin

on

Firefox

for

Mobile. MOBILE

Yuki271

8 adblock master

japanes

e/jp-mo

b.txt

0.79696

9 2

MODIF

Y 97

2

gmbksli

st

(Hosts)

Blocks

Japanes

e

regional

mobile

advertis

ements MOBILE

Dandeli

onSprou

t adfilt master

Ancient

Library/

gmbksli

st

(Hosts).

txt -1 1 ADD 1

45

and

trackers

.

7

Anti-Po

pAds

Blocks

shady,

annoyin

g

pop-und

er ads

from the

infamou

s

PopAds

ad

network. IOT Yhonay

antipop

ads master

popads.

txt

0.14040

8 4

MODIF

Y 11857

9

ABP

Japanes

e 3rd

Party

SNS

Filters

Blocks

Japanes

e

regional

social

network

advertis

ements

and

trackers

. IOT k2jp

abp-jap

anese-fil

ters master

abpjf_3r

d_party

_sns.txt

67.5486

44 1

MODIF

Y 22

12

Minimal

Hosts

Blocker

A

minimal

adblock MOBILE arcetera

Minimal-

Hosts-Bl

ocker master

etc/Mini

malHost

sBlocke

7.92236

1 3

MODIF

Y 31

46

er for

iOS.

r/minim

alhosts

13

Adawayl

ist JP

Hosts

for

Adaway.

Block

mainly

on

advertis

ements

for

mobile. MOBILE

multiver

se2011

adawayl

ist-jp master hosts

90.2850

2 1

MODIF

Y 8

14

All-in-O

ne

Customi

zed

Adblock

List

A

compre

hensive,

all-in-on

e

adblock

list for

thoroug

h

blocking

of

trackers

, popup

ads,

ads,

unwante

d

cookies, IOT hl2guide

All-in-O

ne-Cust

omized-

Adblock

-List master aio.txt

0.95695

2 1

MODIF

Y 96

47

fake

news,

cookie

warning

messag

es,

unwante

d

comme

nt

sections

,

crypto-c

oin

mining,

YouTub

e clutter

and

social

network

hassles.

15

PiHole

Blocklist

SmartT

V None IOT Perflyst

PiHoleB

locklist master

SmartT

V.txt

16.3876

2 21

MODIF

Y 76

16

PiHole

Blocklist

Android

Tracking None IOT Perflyst

PiHoleB

locklist master

android-

tracking

.txt

55.6562

09 6

MODIF

Y 18

48

17

Badd

Boyz

Hosts

This list

of hosts

is

compile

d from

server

logs on

my own

servers

and

forms

the

basis of

the bad

referrers

domain

lists for

The

Nginx

Ultimate

Bad Bot

Blocker

at

https://gi

thub.co

m/mitch

ellkrogz

a/nginx-

ultimate

-bad-bot

-blocker IOT

mitchell

krogza

Badd-B

oyz-Hos

ts master hosts

1.72095

6 6

MODIF

Y 893

49

and the

Apache

Ultimate

Bad Bot

Blocker

at

https://gi

thub.co

m/mitch

ellkrogz

a/apach

e-ultima

te-bad-b

ot-block

er

19

Goodby

e Ads

Goodby

e Ads is

designe

d for

Unix-lik

e

systems

(such as

Android)

, gets a

list of

domains

that

serve

ads, MOBILE jerryn70

Goodby

eAds master

Hosts/G

oodbye

Ads.txt

18.1873

91 2 ADD 65

50

tracking

scripts

and

malware

from

multiple

reputabl

e

sources

and

creates

a hosts

file that

prevent

s your

system

from

connecti

ng to

them.

21

pihole-yt

adblock

YouTub

e

Ad-Bloc

k-List

for

PiHole

by

Henning

VanRäu

mle IOT

Henning

VanRau

mle

pihole-yt

adblock master

ytadbloc

k.txt

0.76152

3 1

MODIF

Y 82

51

23

Adguard

Mobile

Ads

(hosts) None MOBILE r-a-y

mobile-

hosts master

Adguar

dMobile

Ads.txt

10.2072

65 1

MODIF

Y 155

24

Adguard

Mobile

Tracking

and

Spywar

e

(hosts) None MOBILE r-a-y

mobile-

hosts master

Adguar

dMobile

Spywar

e.txt

13.5511

55 1

MODIF

Y 117

26

Spotify

AdBlock

ing for

pihole None IOT w13d

adblock

ListABP

-PiHole master

Spotify.t

xt

4.08472

2 1 ADD 2

28

Facebo

ok Zero

Hosts

Block

This aim

to block

non-for

mal

hosts

that

serve all

Facebo

ok

contents

and

resourc

es from

alternati

ve "Free MOBILE

kowith3

37

Persona

lFilterLis

tCollecti

on master

hosts/h

osts_fac

ebook0.

txt

24.0126

58 1

MODIF

Y 45

52

Basics"

servers

that it

happen

when

you're

using on

mobile

data

over the

carrier

that

collabor

ate with

Facebo

ok to

have

THAT

service!

This list

will

follow

the

update

after

routine

check

results

of

dead-ho

sts.

53

29

Mat1th

DNS

add

block

(Domain

s) None IOT

deathby

bandaid

piholepa

rser master

Subscri

bable-Li

sts/Pars

edblock

lists/Mat

1th-DN

S-add-b

lock.txt -1 1 ADD 1

33

CitizenX

VIL

Hosts

Mobile

Mobile

ad/track

er list

based

on

AdGuar

d's

mobile

ad filter. MOBILE

CitizenX

VIL Hosts master

mobile

domain

s.txt

55.0034

72 1

MODIF

Y 10

34

tankmo

hit's

AllUnifie

dHosts

Unified

hosts

combine

d from

wally3k

pihole

lists and

possibly

without

false

positive

s IOT

tankmo

hit

Unified

Hosts master hosts.all

45.3847

22 2

RENAM

E 2

54

35

DNS

Zone

block

list

Generat

or

Dnsmas

q

This

project

generat

es

dnsmas

q, bind

and

unboun

d zone

files to

be used

in DNS

based

AD

Blocker

s. IOT oznu

dns-zon

e-block

list master

dnsmas

q/dnsm

asq.bloc

k list

3.68996

5 1

MODIF

Y 454

36

SNAFU

List

A

general

ad &

tracking

domain

blocklist

for

pihole. IOT

Rooney

McNibN

ug

pihole-st

uff master

SNAFU.

txt

2.44618

8 8

MODIF

Y 393

37

DataMa

ster

Android

AdBlock

Hosts

Android

AdBlock

Hosts

file for

/etc/host

s MOBILE

DataMa

ster-250

1

DataMa

ster-And

roid-Ad

Block-H

osts master hosts

105.339

331 1

MODIF

Y 12

55

38

Mobile-

Ad-Host

s

This ad

blocker

list aims

to block

mobile

ads

which

includes

in-app

ads. MOBILE biroloter

Mobile-

Ad-Host

s master hosts

94.0673

61 1

MODIF

Y 13

39

hosts-jp

Ads

Categori

zed

hosts

files for

DNS

based

content

blocking

. This is

meant

to be

used as

a

regional

compon

ent of a

more

compre

hensive

hosts IOT tiuxo hosts master ads

42.7989

97 2

MODIF

Y 19

56

list,

such as

Steven

Black's

hosts.

40

PiHole

Lists -

Quad9 None IOT XionKzn

PiHole-

Lists master

PiHole/

Archive/

Quad9.t

xt -1 1

RENAM

E 1

41

PiHole

Lists -

Yahoo

Ad

Servers None IOT XionKzn

PiHole-

Lists master

PiHole/

Archive/

Yahoo_

Ad_Ser

vers.txt -1 1

RENAM

E 1

42

PiHole

Lists -

Spywar

e None IOT XionKzn

PiHole-

Lists master

PiHole/

PiHole_

HOSTS

_Spywa

re_HOS

TS.txt

147.195

139 2

MODIF

Y 3

43

PiHole

Lists -

Cerber

Ransom

ware None IOT XionKzn

PiHole-

Lists master

PiHole/

Archive/

Cerber_

Ransom

ware.txt -1 1

RENAM

E 1

44

PiHole

Lists -

Blocklist None IOT XionKzn

PiHole-

Lists master

PiHole/

Blocklist

_HOST

S.txt

15.0540

94 2

MODIF

Y 20

57

45

iOS

Tracker

Blocklist

My

persona

l

blocklist

of iOS

tracking,

telemetr

y, and

advertisi

ng

domains

. MOBILE

jakejarvi

s

ios-track

ers master

blocklist

.txt

32.9304

69 1

MODIF

Y 17

46

Dandeli

on

Sprout's

AdGuar

d Home

Compila

tion List

AdGuar

d Home

is one of

the tools

for the

future,

or at

least it

is for

those

who

know

how to

set up

and use

a

Raspber

ry Pi. IOT

Dandeli

onSprou

t adfilt master

AdGuar

d Home

Compila

tion

List/Ad

GuardH

omeCo

mpilatio

nList.txt

16.7117

62 1

MODIF

Y 49

58

Howeve

r, its

current

internal

structur

e

discards

virtually

every−𝑢

𝑠𝑖𝑛𝑔𝑏𝑙𝑜𝑐𝑘

𝑟𝑢𝑙𝑒(𝑒.𝑔.

𝐸𝑎𝑠𝑦𝐿𝑖𝑠𝑡)

,𝑤ℎ𝑖𝑐ℎ𝑚

𝑎𝑘𝑒𝑠𝐸𝑎𝑠𝑦

𝐿𝑖𝑠𝑡𝑎𝑛𝑑𝑠𝑖

𝑚𝑖𝑙𝑎𝑟𝑙𝑖𝑠𝑡𝑠

𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑙𝑦

𝑢𝑠𝑒𝑙𝑒𝑠𝑠𝑖𝑛

𝐴𝑑𝐺𝑢𝑎𝑟𝑑

𝐻𝑜𝑚𝑒,𝑑𝑒

𝑠𝑝𝑖𝑡𝑒ℎ𝑜𝑤

𝑚𝑎𝑛𝑦𝑜𝑓𝑡ℎ

𝑒𝑒𝑛𝑡𝑟𝑖𝑒𝑠𝑤

𝑜𝑢𝑙𝑑𝑏𝑒≥9

0values,

here's

my

intermis

sional

list to

work

59

around

it.

47

Dandeli

on

Sprout's

Anti-Mal

ware

List (for

AdGuar

d

Home)

Most

anti-mal

ware

lists are

pretty

big and

can

cover a

5- or

6-digit

amount

of

specific

domains

. But my

list

hereby

claims

to

remove

more

than

25% of

all

known

malware

sites

with just IOT

Dandeli

onSprou

t adfilt master

Alternat

e

versions

Anti-Mal

ware

List/Anti

Malwar

eAdGua

rdHome

.txt

5.71602

5 1

MODIF

Y 145

60

a 2-digit

amount

of

entries.

This is

mostly

done by

blocking

top-level

domains

that

have

become

devastat

ingly

abused

by

spamm

ers,

usually

because

they

allowed

for free

and

uncontr

olled

domain

registrat

ions.

There's

61

also

addition

al

categori

es that

cover

unusual

malware

and

phishing

domains

that

very few

other

lists

seem to

cover.

48

Dandeli

on

Sprout's

Nordic

Filters

for

Tidier

Website

s (for

AdGuar

d

Home)

Remove

s ads,

affiliatio

n ads,

and

empty

boxes

on

Norwegi

an,

Danish,

Icelandi

c, Sami IOT

Dandeli

onSprou

t adfilt master

Norwegi

anExper

imental

List

alternat

e

versions

/Nordic

FiltersA

dGuard

Home.tx

t

5.27338

1 1

MODIF

Y 146

62

and

Danish

territoria

l sites to

produce

a

cleaner

browser

experie

nce.

Meant

to be

used on

top of

general

filters.

uBO

users

should

use the

regular

version

instead.

49

ADP

Mobile

Filter None MOBILE T4Tea

ADPMo

bileFilter master

ADPMo

bileFilte

r.txt

10.3131

3 1

MODIF

Y 55

63

50

Addition

alFilters

CN

Addition

al Filters

for

browser

extensio

n based

adblock

ers like

uBlock

Origin,

mainly

for

Chinese

mainlan

d

internet

service,

respecti

vely for

privacy,

advertis

ement

and

interrupt

ion

element

s.

Includin

g some

obvious

trackers IOT

Crystal-

RainSlid

e

Addition

alFilters

CN master CN.txt

23.0995

99 1

MODIF

Y 27

64

which

could be

found&c

onfirme

d by

novices

in

network

develop

ment

easily,

and

should

been

listed&bl

ocked

YEARS

ago.

52

mhhaki

m

Pihole

Blocklist

Custom

blocklist

to

include

in the

main

list. IOT

mhhaki

m

pihole-bl

ocklist master

custom-

blocklist

.txt

112.531

25 2

MODIF

Y 5

53

Samsun

g No

Snoopin

g

List

below is

all

domains

I've IOT

Unbend

ableStra

w

samsun

gnosno

oping master

READM

E.md 4.48998 1

MODIF

Y 8

65

http://readme.md
http://readme.md

capture

d that

Samsun

g Smart

TVs use

to do

anything

other

than

watch

YouTtub

e,

Netflix,

and

Google

Play.

Block all

of them

for total

privacy

and no

ads.

Note the

comme

nts.

54

xlimit91

Block

List for

Pi-Hole

Custom

block

list

annoyin

g ads, IOT xlimit91

xlimit91-

block-lis

t master

block

list.txt

34.5828

12 3

MODIF

Y 25

66

trackers

, scam

sites

etc. for

Pi-hole

(DNS

Blocking

)

55

Th3M3

Blocklist

s -

Malware

My

custom

blocklist

s for

pihole IOT Th3M3

blocklist

s master

malwar

e.list

12.1035

38 1

MODIF

Y 22

56

Th3M3

Blocklist

s -

Tracking

& Ads

My

custom

blocklist

s for

pihole IOT Th3M3

blocklist

s master

tracking

&ads.lis

t

34.0611

11 1

MODIF

Y 14

57

Game

Console

Adblock

List

Much

like

there's

now

lists for

AdGuar

d Home

and

Pi-hole

to block

ads on

smart-T IOT

Dandeli

onSprou

t adfilt master

GameC

onsoleA

dblockLi

st.txt

24.6852

9 2

MODIF

Y 23

67

Vs,

here's

an

attempt

from me

at doing

the

same

for

videoga

me

console

s with

AdGuar

d Home.

Enjoy.

61

dnsward

en

Adblocki

ng

(Domain

s)

Blocklist

mainly

used for

dns

servers

at

dnsward

en IOT

dnsward

en blocklist master

block

list-form

ats/host

names

0.76064

6 3

MODIF

Y 116

62

anti-AD

(Domain

s)

anti-AD

is

currentl

y the

highest-

hitcount IOT

privacy-

protecti

on-tools anti-AD master

anti-ad-

domain

s.txt

1.27445

9 4

MODIF

Y 498

68

-filtering

ad list in

Chinese

, which

achieve

s

accurat

e ad

blocking

and

privacy

protecti

on. Now

support

s

AdGuar

d Home,

dnsmas

q,

Surge,

Pi-Hole

and

other

excellen

t

network

tools.

66

ADgk

Mobile

Advertis None MOBILE

banben

dalao ADgk master

ADgk.tx

t

2.33344

9 3

MODIF

Y 199

69

ing

Rules -

adgk手

机去广

告规则

67

PiHole

Blocklist

SmartT

V -

Amazon

Fire TV None IOT Perflyst

PiHoleB

locklist master

Amazon

FireTV.t

xt

349.675

694 2

MODIF

Y 3

68

Combin

ed

Privacy

Block

Lists

HOSTS

(IPv4 +

IPv6)

This is a

compre

hensive

hosts

file

(IPv4 +

IPv6)

which

blocks

known

ad,

exploit,

malware

, and

tracking

servers.

It is

pulled

from MOBILE

bongoc

hong

Combin

edPriva

cyBlock

Lists master

newhost

s-final-D

ual.host

s

2.43759

4 2

MODIF

Y 391

70

MVPS,

PGL

Yoyo,

Malware

Domain

List,

Energiz

ed and

EasyList

, along

with

some

supplem

entary

entries

for

increase

d

protecti

on

against

telemetr

y, and

addition

s for

mobile

platform

s. It is

then

merged,

sorted

71

and

dedupe

d. This

list is

compati

ble with

all

operatin

g

systems

that

make

use of a

hosts

file

(obvious

ly this

includes

Window

s, OS X,

GNU/Li

nux and

more). It

works

great

with

mobile

VPN

ad-block

ing

72

solution

s too.

71

Host-Lis

t for iOS

ad

blockers

(Domain

s)

For use

with

AdGuar

d Pro MOBILE

BlackJa

ck8

iOSAdbl

ockList master

Hosts.tx

t

18.9035

71 5

MODIF

Y 64

72

blackbo

ok

blackbo

ok is a

historica

l

(black)li

st of

maliciou

s

domains

created

as part

of the

periodic

automat

ed

heuristic

check

(i.e.

WHOIS,

HTTP,

etc.) of

newly IOT

stampar

m

blackbo

ok master

blackbo

ok.txt

1.13999

1 1

MODIF

Y 676

73

reported

entries

from

public

lists of

maliciou

s URLs

(currentl

y

CyberCr

ime,

URLhau

s,

ScumBo

ts,

Benkow

and

VirusTra

cker).

Main

goal is

listing

those

that

are/wer

e

malware

dedicate

d (e.g.

C&C) -

thus,

74

excludin

g

compro

mised

sites. It

is

suppose

d to be

used for

detectio

n of

malware

beaconi

ng

infected

clients

by

inspecti

on of

associat

ed DNS

traffic,

with

significa

nt

reduce

of

false-po

sitives.

75

74

AdGuar

d DNS

Filter -

Addition

al rules

One of

AdGuar

d DNS

Filter's

many

source

files.

This

one

contains

entries

for

domains

not

covered

by any

of its

other

source

lists. IOT

Adguard

Team

AdGuar

dSDNS

Filter master

Filters/r

ules.txt

64.1211

6 6

MODIF

Y 18

75

AdBlock

List

(Domain

s)

Self-Cu

stomize

d

AdBlock

List

Focusin

g on

DNS

hijackin

g and IOT

Licolnle

e

AdBlock

List master AdList

0.44166

7 1

MODIF

Y 3

76

AdBlock

.

76

AdBlock

List Lite

(Domain

s)

Self-Cu

stomize

d

AdBlock

List

Focusin

g on

DNS

hijackin

g and

AdBlock

. IOT

Licolnle

e

AdBlock

List master

AdListLi

te

0.88402

8 1

RENAM

E 2

80

Adblock

by Jm

(Hosts)

I

created

this

project

as a

way to

optimize

adware

protecti

on of

my

router

TPLINK

1043

with

Openwrt IOT

jmhenri

que adblock master

etc/adbl

ock_hos

ts 2.47715 5

MODIF

Y 777

77

. It's an

excellen

t router,

but has

very

little

availabl

e

memory

(8MB)

and a

median

process

or

(400MH

z). I

noticed

that the

articles

and

tutorials

on

ad-block

ing does

not take

into

account

the

optimiza

tion of

hosts

78

and

domains

. (…)

But

these

lists are

variation

s of

website

s that

create

random

subdom

ains,

interferi

ng with

the

blocking

efficienc

y. Only

one

domain,

302br.n

et has

+17,000

register

ed

subdom

ains in

lists. So

I first

79

tried to

treat

(sub)do

mains

within

the

router,

(…) and

impacte

d the

perform

ance of

the

navigati

on here

at

home,

(…).

This

takes

~2Mb

on the

router.

After

groupin

g, my

list has

about

27,000

hosts.

(…)

80

Table 8: The table shows the data used for analyzing the average time between commits and

the number of average number of maintainters. Note that repos with only one commit were

excluded from the average time between commits graph.

81

