UC Irvine

UC Irvine Previously Published Works

Title

POSSIBLE OBSERVATION OF THE COEXISTENCE OF SUPERCONDUCTIVITY AND LONG-RANGE MAGNETIC ORDER IN NDRH6B6, SMRH4B4 AND TMRH4B4

Permalink

https://escholarship.org/uc/item/53q164fd

Journal

BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 24(3)

ISSN

0003-0503

Authors

HAMAKER, HC MACKAY, HB WOOLF, LD et al.

Publication Date

1979

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Superconductivity and Long-Range Magnetic Order in NdRh₆B₆, SmRh₄B₄ and TmRh₄B₄. † H. C. HAMAKER, H. B. MacKAY, L. D. WOOLF, Z. FISK and M. B. MAPLE, U. of Calif., San Diego—The ternary rare earth compounds NdRh₆B₆, SmRh₄B₄ and TmRh₄B₄ have been studied by means of critical field, low temperature heat capacity and static magnetic susceptibility measurements. Features in the upper critical field and heat capacity data suggest the occurrence of long range magnetic order in the superconducting state. The temperature dependence of the static magnetic susceptibility of NdRh₆B₆ follows a Curie-Weiss law with an effective moment μ_{eff} = 3.6 μ_B and a

netic susceptibility of NdRh₆B₆ follows a Curie-Weiss law with an effective moment μ_{eff} = 3.6 μ_{B} and a Curie-Weiss temperature θ_{p} = -6.2 K between 20 K and room temperature. However, magnetization vs. applied field isotherms show a greater tendency towards saturation than would be expected for an antiferromagnet. *Supported by US DOE/Ey-76-S-03-0034-PA227-3 (HCH, HBM, LDW, MBM). *Supported by NSF/DMR77-08469 (ZF).