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ARTICLE

The link between liver fat and cardiometabolic
diseases is highlighted by genome-wide association
study of MRI-derived measures of body
composition
Dennis van der Meer 1,2✉, Tiril P. Gurholt 1, Ida E. Sønderby 1,3,4, Alexey A. Shadrin1, Guy Hindley 1,5,

Zillur Rahman1, Ann-Marie G. de Lange1,6,7, Oleksandr Frei1,8, Olof D. Leinhard9,10,11, Jennifer Linge9,10,

Rozalyn Simon10,11, Dani Beck1,12,13, Lars T. Westlye 1,4,12, Sigrun Halvorsen 14, Anders M. Dale 15,

Tom H. Karlsen 16,17, Tobias Kaufmann 1,18 & Ole A. Andreassen 1,4

Obesity and associated morbidities, metabolic associated fatty liver disease (MAFLD)

included, constitute some of the largest public health threats worldwide. Body composition

and related risk factors are known to be heritable and identification of their genetic deter-

minants may aid in the development of better prevention and treatment strategies. Recently,

large-scale whole-body MRI data has become available, providing more specific measures of

body composition than anthropometrics such as body mass index. Here, we aimed to elu-

cidate the genetic architecture of body composition, by conducting genome-wide association

studies (GWAS) of these MRI-derived measures. We ran both univariate and multivariate

GWAS on fourteen MRI-derived measurements of adipose and muscle tissue distribution,

derived from scans from 33,588 White European UK Biobank participants (mean age of 64.5

years, 51.4% female). Through multivariate analysis, we discovered 100 loci with distributed

effects across the body composition measures and 241 significant genes primarily involved in

immune system functioning. Liver fat stood out, with a highly discoverable and oligogenic

architecture and the strongest genetic associations. Comparison with 21 common cardio-

metabolic traits revealed both shared and specific genetic influences, with higher mean

heritability for the MRI measures (h2= .25 vs. .13, p= 1.8x10−7). We found substantial

genetic correlations between the body composition measures and a range of cardiometabolic

diseases, with the strongest correlation between liver fat and type 2 diabetes (rg= .49,

p= 2.7x10−22). These findings show that MRI-derived body composition measures com-

plement conventional body anthropometrics and other biomarkers of cardiometabolic health,

highlighting the central role of liver fat, and improving our knowledge of the genetic archi-

tecture of body composition and related diseases.

https://doi.org/10.1038/s42003-022-04237-4 OPEN

A full list of author affiliations appears at the end of the paper.
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Obesity and associated cardiometabolic diseases are cur-
rently considered one of the largest global public health
concerns1,2. Over one-third of the United States adult

population qualifies for a diagnosis of metabolic syndrome3,
characterized by excessive visceral adiposity, insulin resistance,
hypertension, low high-density lipoprotein cholesterol, and
hypertriglyceridemia4,5. Metabolic syndrome substantially
increases the risk of coronary artery disease, type 2 diabetes,
cancer, and metabolic associated fatty liver disease (MAFLD,
previously described as non-alcoholic fatty liver disease6)7–11. As
shown by our previous work, body composition is also strongly
associated with brain structure and brain disorders, which are
among the most costly and debilitating medical conditions in the
world12–14. An improved understanding of the genetic and bio-
logical determinants of body composition is needed to provide
insights into the complex interplay between metabolic factors,
prevent and treat multiple highly prevalent conditions, and
improve public health outcomes2,10.

Body composition is partly determined by a complex con-
stellation of interacting metabolic processes and inter-organ cross-
talk that may become dysregulated and lead to metabolic
syndrome15. In susceptible individuals, excessive energy intake,
stored as visceral adipose tissue (VAT), combined with insulin
resistance, leads to heightened lipolysis and release of free fatty
acids16. Increased free fatty acid flux to the liver results in hyper-
triglyceridemia, which in turn contributes to dyslipidemia and
atherosclerosis. Lipolysis in VAT further promotes insulin resis-
tance and gluconeogenesis and increases pro-inflammatory reac-
tions that exacerbate endothelial dysfunction and hypertension16.
This is reflected in heightened levels of pro-inflammatory markers
among individuals with metabolic syndrome17. Muscle mass is also
a determinant of cardiometabolic health18, as skeletal muscle
constitutes the largest insulin‐sensitive tissue in the body and is the
primary site for insulin‐stimulated glucose utilization19. Still, the
nature and extent of overlap between these different determinants
of cardiometabolic functioning remain unclear.

Measures of localized adipose tissue, liver fat and regional
muscle volume can now be accurately extracted from whole-body
MRI scans20–23. Body anthropometrics such as waist cir-
cumference and body mass index (BMI) lack a direct connection
to pathophysiology5,24 Measures of regional adipose tissue, most
accurately and comprehensively identified through MRI25,26, may
offer sensitive proxies of cardiometabolic health and therefore
complement these common measures27. This is further suggested
by research indicating they have independent associations with
cardiometabolic diseases and improve risk prediction beyond
body anthropometrics28–30.

In addition to social and physical environmental factors31,
genetically determined individual differences play a substantial
role in regulating body composition32–34. Cardiometabolic risk
factors have both unique and shared genetic correlates35. Much
less is known about the genetics of specific MRI-derived body
composition measures. We aimed to map the unique and shared
genetic architectures across the MRI-derived body composition to
provide a holistic understanding of the interplay between differ-
ent tissue types and their role in metabolic syndrome and car-
diometabolic health. We further sought to identify the extent of
genetic overlap between these measures and common medical
conditions, as such information promotes research into shared
molecular pathways and therefore a better understanding of the
underlying biology.

Results
We conducted GWASs of fourteen MRI-derived muscle and
adipose tissue distribution measures and investigated the genetic

link to conventional cardiometabolic risk factors. We included six
measures of adipose tissue distribution: abdominal subcutaneous
adipose tissue, VAT, abdominal fat ratio, anterior and posterior
thigh muscle fat infiltration, and liver protein density fat fraction.
Additionally, we investigated three measures related to thigh
muscle tissue, namely anterior and posterior thigh muscle volume
and weight-to-muscle ratio. We further analyzed visceral and
abdominal adipose tissue, and anterior and posterior muscle
volume, divided by standing height in meters squared, and total
thigh muscle volume z-score (sex-, height-, weight-, and BMI-
invariant)36. See Table 1 for an overview of these measures, and
the Methods section for protocols and definitions. Given a total of
fourteen individual measures, we set the univariate GWAS sig-
nificance threshold at α= 5 × 10−8/14= 3.6 × 10−9. Our sample
for the main analyses consisted of 33,588 unrelated White Eur-
opean participants of the UK Biobank (UKB), with a mean age of
64.5 years (standard deviation (SD) 7.5 years), 51.4% female. We
pre-residualized all measures for age, sex, test center, genotyping
array and the first twenty genetic principal components to control
for population stratification37.

Univariate GWAS. Univariate GWASs on the individual mea-
sures revealed a total of 82 loci, including 50 unique, surpassing
the study-wide significance threshold of 3.6 × 10−9. Two loci
stood out with highly significant p-values, on chromosome 19
(lead rs58542926, p= 4.4 × 10−110) and chromosome 22 (lead
rs738409, p= 2.8 × 10−161), both identified in the GWAS on liver
fat. Using converging positional, eQTL, and chromatin interac-
tion information (see Methods), we mapped these loci to genes
previously coupled to MAFLD (rs738409: PNPLA3, SAMM50,
PARVB)38 as well as inflammatory processes and cancer
(rs58542926: TM6SF2, CD99)39. Supplementary Fig. 1 contains
Manhattan plots and Supplementary Data 1 lists overviews of all
loci discovered together with mapped genes.

Additionally, we assessed the generalization of the discovered
loci in an additional set of 5042 non-White European UKB
participants with identical processing steps. Of the 79 lead single-
nucleotide polymorphisms (SNPs) available in this set, 77 had
effects in the same direction as the main analyses (97.5%, sign-test
p < 1 × 10−16). Thus, our results suggest a cross-ethnicity general-
ization of these genetic associations with MRI-derived measures

Table 1 MRI-derived measures of body composition included
in this study.

Measure Abbreviation N # loci

Abdominal subcutaneous
adipose tissue

ASAT 33,532 1

Visceral adipose tissue VAT 33,542 2
Anterior thigh muscle volume ATMV 32,978 8
Posterior thigh muscle volume PTMV 33,022 9
Anterior thigh muscle fat
infiltration (%)

ATMFI 32,911 18

Posterior thigh muscle fat
infiltration (%)

PTMFI 32,956 25

Weight-muscle-ratio WMR 32,970 1
Abdominal fat ratio AFR 32,939 1
Liver proton density fat fraction (%) LPDFF 33,235 8
VAT/height2 VATi 32,564 2
ASAT/height2 ASATi 32,573 1
ATMV/height2 ATMVi 32,017 2
PTMV/height2 PTMVi 32,059 0
Total thigh muscle volume z-score TTMVz 31,977 4

Further provided are the available sample size and number of loci discovered through
univariate GWAS.
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of body composition, despite the known high variability of body
anthropometrics across ethnicities5,24.

In total, we identified eight study-wide significant loci for liver
fat, validating those found in a previous GWAS of organ tissue
using different measurement protocols40. Gene-based analysis
through Multi-marker Analysis of GenoMic Annotation
(MAGMA) identified 31 genome-wide significant genes, includ-
ing the three primary MAFLD genes (TM6SF2 p= 1.7 × 10−15,
PNPLA3 p= 7.8 × 10−15, and TMC4-MBOAT7 p= 7.2 ×
10−9)41–44, further confirming the strong biological validity of
this liver fat measure and its connection to MAFLD. Functional
annotation of the set of 31 genes revealed differential expression
in the liver, pancreas, and subcortical brain regions and
significant enrichment among Gene Ontology (GO) biological
processes specifically related to lipid homeostasis and metabolic
processes. Supplementary Data 2 and 3 further contain results of
gene set enrichment analyses for each individual measure.

Next, we estimated the polygenicity and effect size variance
(‘discoverability’) by fitting a Gaussian mixture model of null and
non-null effects to the GWAS summary statistics using
MiXeR45,46. The results are summarized in Fig. 1a, depicting
the estimated proportion of genetic variance explained by
discovered SNPs for each measure as a function of sample size.
This illustrates that body MRI measures generally show genetic
architectures similar to e.g., brain MRI measures, characterized by
high polygenicity47,48. However, the notable exception is liver fat,
with substantially lower polygenicity and higher discoverability
than the other measures, in line with the relatively few highly
significant associations we identified through the GWAS.

Figure 1b visualizes the phenotypic and genetic correlations
between each pair of measures, confirming a strong structure and
a subdivision between adipose- and muscle-related measures.
SNP-based heritability ranged from 18% to 34% (all
p < 1 × 10−16); see the diagonal of Fig. 1b.

Multivariate GWAS. Gene variants are likely to have distributed
effects across these measures of body composition, as they are
correlated components of the same biological system. To identify
variants influencing body composition as a whole, we also jointly

analyzed all measures through the Multivariate Omnibus Statis-
tical Test (MOSTest)49, which increases statistical power in a
scenario of shared genetic signal across the univariate
measures49–51. After applying a rank-based inverse normal
transformation, we performed MOSTest on the residualized
measures, yielding a multivariate association with 9.1 million
SNPs included.

MOSTest revealed 100 significant independent loci across all
MRI-derived measures (Fig. 2a and Supplementary Data 4).
Figure 2b visualizes the significance of the association between the
individual measures and each of the 100 loci, illustrating the
presence of many shared but also specific genetic variants.

MAGMA identified 241 significant genes after multiple
comparison correction (α= 0.05/18,203), with highly significant
differential expression in the liver, pancreas, heart, muscle, and
several other tissues (Fig. 3). Coupling the significant genes to the
Reactome database52 indicated most prominent associations with
the adaptive immune system and cytokine signaling (p < 1 ×
10−16), see Supplementary Data 5 and Supplementary Fig. 2 for
an overview.

Comparison of genetic architecture with cardiometabolic risk
factors. To establish whether the loci discovered through the
univariate GWAS of the body MRI measures are novel compared
to related measures of cardiometabolism, we additionally ran
univariate GWAS on 21 secondary measures of anthropometric
and cardiometabolic factors (e.g., BMI, triglycerides, cholesterol,
blood pressure; see Table 2). To ascertain whether the body MRI
measures truly allow for more discovery, without being con-
founded by differences in sample size, we restricted these analyses
to the same sample of individuals with available MRI data
(N= 33,588). These analyses showed that the large majority of
loci were indeed novel; Supplementary Fig. 3 summarizes this,
showing for each discovered variant whether it was whole-
genome significant for each of the primary and secondary
measures.

We further ran multivariate GWAS on this separate set of
measures in the full UKB sample, consisting 377,950 unrelated
White European UKB participants. Through MOSTest, we found

Fig. 1 Comparison of the genetic architecture of individual body composition measures. a The relation between genetic variance explained by genome-
wide significant hits (y-axis) and sample size (x-axis) for each measure (solid-colored lines). The vertical dashed blue line marks the current sample size,
with the corresponding percent genetic variance explained indicated between brackets in the legend. b Correlation between the measures, with phenotypic
correlation shown in lower-left section and genetic correlation in the upper-right section, and heritability on the diagonal. Abbreviations: ASAT abdominal
subcutaneous adipose tissue, VAT visceral adipose tissue, AFR abdominal fat ratio, WMR weight-muscle-ratio, ATMV anterior thigh muscle volume, PTMV
posterior thigh muscle volume, ATMFI anterior thigh muscle fat infiltration, PTMFI posterior thigh muscle fat infiltration, Liver PDFF liver proton density fat
fraction, TTMVz total thigh muscle volume z-score, i index, referring to a measure divided by standing height2.
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1173 genome-wide significant loci with α= 5 × 10−8 (list
provided in Supplementary Data 6). Of the 100 loci identified
through the primary multivariate analysis of MRI-derived body
composition measures, 91 were significant in this secondary
analysis in a larger sample. This indicates that, combined, these
sets of measures overall are influenced by the same network of
biological processes.

The heritability of the MRI-derived measures (mean h2= 0.25,
95% CI [0.22, 0.28]) was significantly higher than the body
anthropometrics and other biomarkers (mean h2= 0.13, 95% CI
[0.10, 0.15]), p= 1.8 × 10−7. The heritability per measure is
further provided in Supplementary Fig. 4. As shown in Fig. 4,
these measures generally showed higher genetic correlations with

the MRI-derived measures of adipose tissue than the muscle-
related measures. Further, BMI, hip/waist circumference, and
waist-to-hip-ratio were genetically correlated with nearly all body
MRI measures.

Genetic correlation with cardiovascular, metabolic and mental
disorders. Next, we analyzed the genetic overlap of the MRI-
derived measures with medical conditions previously linked to
cardiometabolic health, selecting recent GWAS with adequate
power53–59. As shown in Fig. 5a, the strongest association across
all measures was found for liver fat, with a genetic correlation of
0.49 (p= 2.7 × 10−22) with type 2 diabetes. Coronary artery

Fig. 2 Multivariate locus discovery. a Manhattan plot of the multivariate GWAS on all MRI-derived body composition measures, with the observed
−log10(p) of each SNP shown on the y-axis. The x-axis shows the relative genomic location, grouped by chromosome, and the red dashed line indicates the
whole-genome significance threshold of 5 × 10−8. The y-axis is clipped at −log10(p)= 75. b Heatmap showing −log10(p) of the association between the
lead variants of MOSTest-identified independent loci (x-axis) and each of the individual MRI measures (y-axis). The values are capped at 7.5
(p= 5 × 10−8).

Fig. 3 Tissue-specific differential expression of the set of significant genes identified through the multivariate GWAS on MRI-derived measures of
body composition. The red-dotted line indicates the multiple comparisons-corrected significance threshold.
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disease was found to have highly significant positive genetic
correlations with visceral and subcutaneous adipose tissue.
Overall, we found weak negative genetic correlations with muscle
tissue measures and stronger positive genetic correlations with
adipose tissue measures, with two exceptions; anorexia nervosa
showed the opposite direction of correlation compared to the
other conditions, and there was no discernible pattern for schi-
zophrenia. Genetic correlations with the anthropometric and
metabolic measures are provided in Fig. 5b for comparison,
indicating that the adipose tissue measures are as strong as or
stronger correlated with these conditions than the conventional
body anthropometrics.

Sex-specific analyses. Given that the body composition of men
and women differs substantially, we provide sex-stratified GWAS
summary statistics besides those produced through the primary
analyses. Further, Supplementary Table 1 lists the genetic corre-
lations between the male and female-specific GWAS, ranging
from 0.56 for lean muscle volume index to 0.97 for muscle fat
infiltration, as well as the locus yield.

Discussion
Here, we reported results from a comprehensive, large-scale
GWAS of MRI-derived measures of body composition. Joint
analyses of measures of regional adipose and muscle tissue dis-
tributions revealed extensive genetic overlap and led to the
identification of a large number of shared genetic risk loci across
traits. We further showed genetic overlap with body anthropo-
metrics and cardiometabolic measures as well as medical condi-
tions linked to cardiometabolic health. Our findings illustrate how
MRI-derived measures can be leveraged to improve our under-
standing of the biology underlying the metabolic system,
emphasizing liver fat as a particularly promising measure, high-
lighting the integral role of steatosis and MAFLD in cardiome-
tabolic health.

The genetic correlations of body composition measures with
common medical conditions underlined that they may comple-
ment conventional measures to better understand

cardiometabolic health. Liver fat showed a stronger genetic cor-
relation with type 2 diabetes than conventional measures. While
causality needs to be established, this correlation could suggest
that the amount of liver fat and its genetic determinants may play
a central role in type 2 diabetes development, and at a minimum
robustly positions MAFLD onto the map of relevant comorbid-
ities of type 2 diabetes alongside cardiovascular disease, kidney
disease and diabetic retinopathy. Further, we found significant
positive genetic correlations between coronary artery disease and
visceral and subcutaneous adipose tissue, adding genetic evidence
to the well-established relation between this disease, obesity, and
body fat distribution60.

Liver fat also stood out from the other measures with regard to
its genetic architecture. While all traits investigated were sub-
stantially heritable, the genetic discoverability of liver fat was
much higher, with an oligogenic architecture as opposed to the
polygenic architectures of the remaining traits and other complex
biomedical measures47. This was reflected in the GWAS yield,
with a few highly significant loci coupled to lipid homeostasis
explaining the majority of genetic variance for this measure.
These loci should be scrutinized for the biological link between
liver fat and cardiometabolic conditions61, and may potentially
point to fundamental processes that become dysregulated in these
diseases. Indeed, all components of metabolic syndrome correlate
with liver fat content62. Evaluation of MAFLD risk has been
recommended for any individual with metabolic syndrome and
related morbidities (e.g., type 2 diabetes)11,62, and the large effects
of these liver fat-associated loci even may suggest potential as
features for individual risk stratification in MAFLD63,64. These
findings also attest to the accuracy and clinical relevance of MRI-
derived measures of liver fat, and support the notion that MAFLD
should be considered an integral component of obesity and
metabolic syndrome and a key non-communicable disease11.

Another key finding was that the highest number of significant
loci were found for muscle fat infiltration in the anterior and
posterior thighs, two measures not previously genetically studied.
Fatty infiltration of skeletal muscle reduces the muscle mass and
strength65, and has been implicated in aging and frailty66. It has
also been coupled to metabolic syndrome67 and cardiovascular
mortality68. Recent literature focused on liver disease and its
progression have also highlighted the importance of muscle
health69. Muscle fat infiltration has been linked to higher
comorbidity within MAFLD and decreased muscle fat infiltration
has been correlated with improvement in steatohepatitis70,71. Our
findings suggest a strong genetic component to these associations,
indicated by the large degree of shared genetic architecture with
related diseases. Interestingly, fat accumulation in the muscle
arises through specific pathways, including the intramyocellular
accumulation of lipid65, which is associated with insulin insen-
sitivity and inflammation72.

The genetic correlations between the MRI-derived body com-
position measures indicate partly overlapping biological processes
with some unique genetic determinants. The correlation structure
further suggests that adipose tissue distribution is genetically
largely independent from muscle tissue. However, it should be
noted that global correlations underestimate overlap when a
mixture of genetic effects in the same and opposing directions
cancels each other out48. Indeed, adipose and muscle tissue are
known to have complex regulatory cross-talk, both releasing
metabolism-regulating molecules to maintain a balanced weight-
to-muscle ratio73. The increased yield from the multivariate
GWAS analysis, nearly doubling the number of unique loci dis-
covered, is in line with the hypothesis of strong biological inter-
play and shared molecular mechanisms. The multivariate GWAS
allowed for identifying loci that have distributed effects across the
included body composition measures. These may help to explain

Table 2 Measures of cardiometabolic health used in the
secondary analyses, together with abbreviations and
maximum available sample sizes.

Measure Abbreviation N

Cholesterol 3,60,319
High-density lipoproteins HDL 3,29,791
Low-density lipoproteins LDL 3,59,650
Triglycerides 3,60,036
Apolipoprotein A 3,27,953
Apolipoprotein B 3,58,576
Cholesterol to HDL 3,29,727
ApoB to ApoA 3,26,320
C-reactive protein CRP 3,59,539
Glucose 3,29,565
Glycated hemoglobin HbA1c 3,60,260
Alanine aminotransferase ALT 3,60,190
Aspartate aminotransferase AST 3,59,000
Gamma-glutamyl transferase GGT 3,60,136
Creatinine 3,60,141
Body mass index BMI 3,76,747
Waist circumference 3,77,321
Hip circumference 3,77,283
Waist-to-hip ratio WHR 3,77,249
Diastolic blood pressure DBP 33,784
Systolic blood pressure SBP 33,784
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Fig. 5 Genetic correlations with conditions linked to poor cardiometabolic health. a Correlations for MRI-derived body composition measures on the
x-axis. b These correlations for anthropometric and metabolic measure (x-axis) with conditions linked to poor cardiometabolic health (y-axis).
***p= 5 × 10−9, **p= 5 × 10−6, *p= 5 × 10−4.

Fig. 4 Genetic correlations of the MRI-derived body composition measures with standard anthropometrics and cardiometabolic measures.
Abbreviations: BMI body mass index, WHR waist-hip ratio, CRP C-reactive protein, ALT alanine aminotransferase, GGT gamma-glutamyl transferase, HDL
high-density lipoproteins, AST aspartate aminotransferase, HbA1c glycated hemoglobin, LDL low-density lipoproteins, BP blood pressure. ***p= 5 × 10−9,
**p= 5 × 10−6, *p= 5 × 10−4.
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the complexity of metabolic syndrome and the frequent comor-
bidity between diseases associated with body composition. Our
findings that a substantial portion of the genetic determinants of
these measures are related to the immune system fit with a large
body of literature indicating that adipose tissue is an active
metabolic and endocrine organ that secretes a host of pro- and
anti-inflammatory factors, and with the characterization of obe-
sity as a state of chronic low-grade inflammation74. Thus, the
current genetic findings can form the basis for functional follow-
up studies to determine the molecular mechanisms involved in
the complex relations between lipids and the immune system.

There was high genetic overlap between the sets of MRI-
derived measures of body composition and the conventional
measures of body anthropometrics and cardiometabolic health,
indicating that they tag similar biological processes. The body
anthropometrics were correlated with both muscle and adipose
tissue, indicating little specificity, in line with the long-standing
recognized limitations of these global measures that they fail to
distinguish between specific body types that differ widely in risk
for disease75.

Strengths of this study are the large number of whole-body
MRI scans and the use of state-of-the-art, precise body compo-
sition measures, including multiple measures not previously
investigated. With this, we were able to replicate loci reported
earlier for MRI-derived measures of organ tissue, with different
measurement protocols and different study focus40. We further
combined the study of individual measures with a multivariate
approach to genetic discovery, allowing for greater GWAS locus
yield and insight into the overall architecture of these com-
plementary indicators of body composition and associated dis-
eases. However, further studies are needed to clarify the role of
putative moderators such as sex76, age, and ethnicity77.

Limitations of this study include the fact that the approaches
employed do not allow for causal claims beyond genetic asso-
ciations. Establishing the directionality of causal effects under-
lying the genetic correlations between the studied measures and
diseases will therefore require follow-up investigation, e.g.,
through Mendelian randomization. Our investigation of traits
was further not comprehensive, and we lacked a sufficiently
powered GWAS of MAFLD for inclusion in the analyses of
genetic correlation. Further, the limited locus yield from the
univariate GWAS and the low percentage of explained genetic
variance for the body MRI measures, with the exception of liver
fat, point towards low statistical power. The collection of larger
sample sizes, as now underway through several large-scale
initiatives such as the UK Biobank, and the use of more power-
ful statistical approaches, such as MOSTest, will be required to
improve discovery.

To conclude, the high prevalence of cardiometabolic diseases,
combined with substantial morbidity and mortality, indicates a
strong need for new therapeutic targets. While these diseases are
often comorbid, they are treated separately, with this poly-
pharmacy bringing along increased risk of adverse drug
reactions4. Genetic data is less subjected to reverse causation and
confounding than environmental factors. Knowledge about
shared and specific genetic determinants is therefore central to
develop effective strategies that optimally treat the individual.
Contributing to this, we showed that accurate MRI-derived
measures of liver and regional adipose and muscle tissue char-
acteristics have strong genetic components. However, our find-
ings have also made clear that the majority of these measures are
highly complex and polygenic, leading to limited yield with
current sample sizes. Further, when combined, they tag similar
sets of biological processes as widely available measures of
anthropometrics and blood markers. This raises the question
whether it is worthy to collect costly MRI scans to obtain these

measures, which is hard to answer firmly with current knowledge.
This study does show that the individual measures have their own
unique patterns of genetic correlations and that they lead to the
identification of novel loci, indicating they capture unique
information, which may prove important to tease apart the
influences of complex biological processes on body composition.
Further, we prove that the shared influences can be leveraged to
boost discovery. As such, aided by their growing availability, these
measures have the potential to substantially enhance our under-
standing of body composition and related diseases, provide drug
targets for MAFLD and related traits, and contribute to com-
batting a large, increasing threat to public health.

Methods
Participants. We made use of data from participants of the UKB population
cohort, obtained from the data repository under accession number 27412. The
composition, set-up, and data gathering protocols of the UKB have been exten-
sively described elsewhere78. It has received ethics approval from the National
Health Service National Research Ethics Service (ref 11/NW/0382), and obtained
informed consent from its participants. For the primary analyses, we selected
White Europeans that had undergone the body MRI protocol, with available
genetic and complete covariate data. As a final step, we excluded one of each pair of
related individuals in the remaining sample, as determined through KING79 and
released by UKB, using a kinship coefficient threshold of 0.0884 (n= 448), leaving
N= 33 588, mean age 64.5 years (SD= 7.5) at the time of the MRI scan, 51.4%
female. For the replication analyses, we made use of data from non-White Eur-
opeans, with otherwise same exclusion criteria, leaving N= 5042, mean age 63.0
years (SD= 7.7), 52.9% female. This ethnic grouping was based on self-report and
confirmed by genetic principal component analysis (UKB data field 22006). For the
secondary analyses of measures of cardiometabolic health, we included all White
Europeans with complete genetic and covariate data. After excluding one of each
pair of related individuals (n= 34,366), this sample consisted of 377,950 indivi-
duals with a mean age of 57.4 years (SD= 7.9), 53.7% female. The lower age of this
sample reflects that we used age at baseline assessment, when these measures
were taken.

Data collection and pre-processing. Body and liver MRI scans were collected
from four scanning sites throughout the United Kingdom, all with identical
scanners and protocols. They were acquired on 1.5 T Siemens MAGNETOM Aera
scanners using a body dual-echo Dixon Vibe protocol and a single-slice multi-echo
gradient Dixon acquisition, respectively. The UKB core neuroimaging team has
published extensive information on the applied scanning protocols and procedures,
which we refer to for more details80. We acquired the data as processed by AMRA
(Linköping, Sweden; https://www.amramedical.com), subsequently released by
UKB. We bridged with UKB project accession #6569 to obtain early access to this
data, which was then obtained from the UKB data repositories and stored locally at
the secure computing cluster of the University of Oslo.

The methods used to generate the MRI-derived measurements has been
described and evaluated in more detail elsewhere1–6. Briefly, the process for fat and
muscle compartments includes the following steps: (1) calibration of fat images
using fat-referenced MRI, (2) registration of atlases with ground truth labels for fat
and muscle compartments to the acquired MRI dataset to produce automatic
segmentation, (3) quality control by two independent trained operators including
the possibility to adjust and approve the final segmentation, and (4) quantification
of fat volumes, muscle volumes and muscle fat infiltration within the segmented
regions. For liver proton density fat fraction (PDFF), nine regions of interest (ROI)
were manually placed, evenly distributed in the liver volume, while avoiding major
vessels and bile ducts.

Muscle volumes were calculated as fat-tissue free muscle volumes. Muscle fat
infiltration was calculated as the average T2*-corrected fat fraction and converted
to PDFF4,7. Liver PDFF was calculated depending on the protocols implemented by
UK Biobank. The liver protocol was initially based on a single-slice symmetric 10-
point acquisition with IDEAL reconstruction, but after 10.000 scans it was replaced
by the whole-body dual echo Dixon images with an additional T2* and proton
density correction, where the T2* values were estimated from a separate single-slice
asymmetric 6-point acquisition. The latter method has been described and
validated against IDEAL-based liver PDFF previsouly4. 1.338 scans were acquired
with both liver protocols to assess the switch, and a good agreement was found
between the protocols—the mean difference in liver PDFF was 0.30% with a
standard deviation of the differences of 0.80%.

Test-retest reliability of the MRI-derived measures included in this study is
high, with a nearly perfect intraclass correlation coefficient, and the automated
processing performs better than manual segmentation of muscle and fatty tissue8,9.
A recent study, investigating both regional fat and muscle volumes as well as
muscle fat infiltration and liver fat fraction, showed high repeatability and
reproducibility on five different 1.5 T and 3 T scanners from three different
vendors4.
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Measurement protocols and definitions. We extracted a selection of body
composition measures (Table 1; see also UKB online documentation (http://
biobank.ctsu.ox.ac.uk/showcase/)). Specifically, we extracted the following mea-
sures of adipose tissue: VAT, defined as the adipose tissue within the abdominal
cavity, and abdominal subcutaneous adipose tissue (ASAT), defined as the adipose
tissue between the top of the femoral head and the top of T9. We also extracted
measures of muscle fat infiltration (MFI) derived from the anterior and posterior
thighs (anterior thighs including quadriceps femoris, sartorius, and tensor fascia
latae, and posterior thighs including gluteus muscles, iliacus, adductor muscles, and
hamstring muscles), averaged over both legs, and liver PDFF. As measures of
muscle tissue, we included anterior and posterior thigh fat-free muscle volume
(ATMV and PTMV). We extracted two ratios from the UKB repository, namely
weight-to-muscle ratio (WMR), defined as weight/TTMV, and abdominal fat ratio
(AFR), which is (VAT+ASAT)/(VAT+ASAT+ TTMV). For VAT, ASAT,
ATMV, and PTMV, we computed index measures by dividing these measures by
the squared standing height in meters (e.g., ASATi is ASAT/height2). This is done
since weight, adipose tissue, and lean tissue compartments scale to approximate
height squared. In addition, a sex-, height-, and weight invariant normalized z-
score for TTMV (TTMVz) was calculated. Including adjustment for sex, height,
and weight has been shown to strengthen the association between muscle volume
and hospitalization/function, and TTMVz has previously been associated with poor
function, hospitalization, and all-cause mortality in general population, as well as
poor function and metabolic comorbidity in MAFLD10–12.

We subsequently regressed out age, sex, scanner site, genotyping array and the
first twenty genetic principal components from each measure. Following this, we
applied rank-based inverse normal transformation81 to the residuals of each
measure, leading to normally distributed measures as input for the GWAS.

For the secondary analyses, comparing the set of MRI-derived measures of body
composition to measures of cardiometabolic health, we included 21 measures
available in the UKB as listed in Table 2.

GWAS procedure. We made use of the UKB v3 imputed data, based on two highly
similar genotyping arrays (UK BiLEVE and UKB Axiom), which has undergone
extensive quality control procedures as described by the UKB genetics team82.
After converting the BGEN format to PLINK binary format, we additionally car-
ried out standard quality check procedures, including filtering out individuals with
more than 10% missingness, SNPs with more than 5% missingness, and SNPs
failing the Hardy–Weinberg equilibrium test at p= 1 × 10−9. We further set a
minor allele frequency threshold of 0.005, leaving 9,061,022 SNPs.

Statistics and reproducibility. We carried out GWAS through the freely available
MOSTest software (https://github.com/precimed/mostest), with the approaches
employed being identical for both the primary analyses of the body MRI data and
the secondary analyses of cardiometabolic health metrics. The procedure has been
extensively validated49. GWAS on each of the pre-residualized and normalized
measures were carried out using the standard additive model of linear association
between genotype vector, gj, and phenotype vector, y. Independent significant SNPs
and genomic loci were identified in accordance with the PGC locus definition, as
also used in FUMA SNP2GENE83. First, we selected a subset of SNPs that passed
genome-wide significance threshold 5 × 10−8, and used PLINK to perform a
clumping procedure at linkage disequilibrium (LD) r2= 0.6 to identify the list of
independent significant SNPs. Second, we clumped the list of independent sig-
nificant SNPs at LD r2= 0.1 threshold to identify lead SNPs. Third, we queried the
reference panel for all candidate SNPs in LD r2 of 0.1 or higher with any lead SNPs.
Further, for each lead SNP, its corresponding genomic loci were defined as a
contiguous region of the lead SNPs’ chromosome, containing all candidate SNPs in
r2= 0.1 or higher LD with the lead SNP. Finally, adjacent genomic loci were
merged if separated by less than 250 KB. Allele LD correlations were computed
from EUR population of the 1000 genomes Phase 3 data. We made use of the
Functional Mapping and Annotation of GWAS (FUMA) online platform (https://
fuma.ctglab.nl/) to map significant SNPs from the MOSTest analyses to genes. For
this, we combined the default positional mapping with eQTL and 3D chromatin
interaction mapping, including all available tissue types.

MiXeR analysis. We applied a causal mixture model45,46 to estimate the percentage
of variance explained by genome-wide significant SNPs as a function of sample size.
For each SNP, i, MiXeR models its additive genetic effect of allele substitution, βi, as a
point-normal mixture, βi ¼ 1� π1

� �
N 0; 0ð Þ þ π1Nð0; σ2βÞ, where π1 represents the

proportion of non-null SNPs (‘polygenicity’) and σ2β represents the variance of effect
sizes of non-null SNPs (‘discoverability’). Then, for each SNP, j, MiXeR incorporates
LD information and allele frequencies for 9,997,231 SNPs extracted from 1000
Genomes Phase3 data to estimate the expected probability distribution of the signed

test statistic, zj ¼ δj þ ϵj ¼ N∑i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hirijβi þ ϵj

q
, where N is the sample size, Hi

indicates heterozygosity of i-th SNP, rij indicates an allelic correlation between i-th
and j-th SNPs, and ϵj � Nð0; σ20Þ is the residual variance. Further, the three para-
meters, π1; σ

2
β; σ

2
0, are fitted by direct maximization of the likelihood function. Fitting

the univariate MiXeRmodel does not depend on the sign of zj, allowing us to calculate

|Zj| fromMOSTest p-values. Finally, given the estimated parameters of the model, the
power curve S(N) is then calculated from the posterior distribution pðδjjzj;NÞ.

LD score regression. For estimates of SNP-based heritability (h2), we applied LD
score regression (LDSR)84 to the univariate GWAS summary statistics. For this,
each set of summary statistics underwent additional filtering, including the removal
of all SNPs in the extended major histocompatibility complex region
(chr6:25–35Mb). We further used these munged summary statistics to perform
cross-trait LDSR to estimate genetic correlations between the measures85.

Gene-set analyses. We carried out gene-based analyses using MAGMA v1.08
with default settings, which entails the application of a SNP-wide mean model and
the use of the 1000 Genomes Phase 3 EUR reference panel. Gene-set analyses were
done in a similar manner, restricting the sets under investigation to those that are
part of the Gene Ontology biological processes subset (n= 7522), as listed in the
Molecular Signatures Database (MsigdB; c5.bp.v7.1).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data incorporated in this work were gathered from public resources, with UK
Biobank data repository under accession number 27412. GWAS summary statistics are
uploaded to the GWAS catalog (https://www.ebi.ac.uk/gwas/). Source data for
Supplementary Fig. 4 is provided in Supplementary Data 7. Correspondence and requests
for materials should be addressed to d.v.d.meer@medisin.uio.no.

Code availability
The code used in this project is freely available via https://github.com/precimed/mostest
(GPLv3 license) and https://github.com/norment/open-science.
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