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AN ALGORITHM FOR DETECTING PHENOTYPIC MUTANTS
FOR THE JAX NEUROSCIENCE MUTAGENESIS FACILITY

SAUNAK SEN*? AND KEVIN SEBURN*¥

Abstract. The Mutagroup at Jackson Labs is interested in generating new mouse models for
studying neurological disease by producing mutations in mice by injecting them with ENU. The group
proposes to produce large numbers of potential mutants and screen them for phenotypic anomalies.
In this report we propose a statistical algorithm to flag phenotypic deviants. We have applied the
algorithm to a pilot data set collected by Dr. Kevin Seburn on mice placed in cages equipped with
monitoring devices. Aiming for a 5% false positive rate, the algorithm was able to detect 18 of the
27 mutant mice it was presented.

1. Introduction. The goal of the ENU Mutagenesis group at Jackson Labs is
to induce mutations in mice by injecting with them with ENU. Because of the nature
of ENU it is believed that it will give rise to a large number of mice that show altered
behavior.

Since the project aims to produce large numbers of possibly mutant mice, it
is necessary to develop methodology that will be able to screen large numbers of
possibly mutant mice. Also, since many mutants may not show obvious visible signs,
it is necessary to have a method that is sensitive to non-visual clues.

In this report we will describe a mutant detection algorithm based on multivariate
statistical analysis that will be able to screen large number of potential mutants based
on data on physiological and/or behavioral data collected on the mice. The proposed
algorithm is first trained on a set of normal mice of the same strain as that of the
background of the mutagenized mice. Then, based on the data collected in the cages,
the algorithm computes a distance between the test mice and the normal mice. If this
distance is “too large” the mouse in question is flagged as a likely mutant. The cutoff
distance for flagging can be adjusted for a desired rate of false positives.

We trained the algorithm on a set of normal mice. Then we applied it to a set of
normal mice (not in the training set) and a another set consisting of mostly known
mutant mice, some normal mice from a different strain and some normal mice. Using
a cutoff corresponding to a 5% false positive rate, the algorithm flagged 1 out of 19
in the control test set as mutant and 18 out of 27 in the mutant test set.

Section 2 describes the algorithm. The results after applying the algorithm on the
pilot data set are presented in Section 3. Technical statistical details are contained in
Section 4. Section 5 concludes.

2. The mutant detection algorithm. First, the investigator selects what
characteristics of the data to focus on and what data summaries to use. The only
statistical requirement is that the data after summarization are approximately Gaus-
sian. Suppose we decide to use p summaries for each mouse, then each mouse would
be summarized by an array of numbers of length p.

The second step is to compute summaries for the normal mice from the back-
ground strain. We will use the sample mean vector and the sample covariance matrix
as summaries. In symbols, suppose z;,Z,,...,Z, are the n data vector summaries
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from the control mice. The sample mean is

= — 1yn
&—;21:1&1'

and the sample covariance is
S =450 (@ - 2)(2; - )"

The sample mean vector and covariance matrix may also be used for strain charac-
terization.

Suppose y is the summary from a potentially mutant mouse. Calculate for the
test mouse the Mahalanobis distance

dly) =@y —-2)'S"'(y—z)

The greater the distance, stronger the evidence that the data came from a mutant
mouse.
To evaluate the strength of the evidence calculate the outlier score

s(y) = P(x} > d(y)).

Suppose we can tolerate a false positive rate of «, then flag those mice with
outlier score smaller than a. The false positive rate is adjustable and should be
adjusted according to the needs of the investigator.

3. Results. Dr. Kevin Seburn’s lab has developed protocols and expertise to
monitor possibly mutant mice for behavioral and/or physiological anomalies. In the
most current protocol, mice placed in cages equipped with monitoring devices are
observed for about three days. Various physiological and behavioral measurements
are made (see Appendix for a list).

The mice studied were separated into three sets. The first set, the training set,
consisted of 32 normal mice from the C57BL6/J strain. We suspect that there may be
a small batch to batch variation in the data collected. To make it representative, we
put at least one mouse from each experimental batch into the training set. The second
set was a test set with 19 control mice. The third set was the test set containing 27
mice. Most mice in this set were known mutants, some were mice from a different
strain and there are a few suspected normals. The algorithm was trained with the
first set and then applied to the other two sets. We wanted to see if the algorithm
had the desired false positive rate on the second set and a bigger positive rate on the
third.

After substantial exploratory analysis and deliberation, we decided to concen-
trate on 3 variables, the RER (Respiratory Exchange Rate), number of vertical beam
breaks (measuring rearing activity) and number of sequential horizontal beam breaks
(measuring ambulatory activity). Mice, being nocturnal, are more active at night,
so we made means of each of the variables for the lighted and darkened periods in
the lab. To satisfy the Gaussian distribution assumption, we took logarithms of all
variables before we made means?.

Figure 3 plots, for the three test sets, the computer outlier scores. We can see that
for the control groups, the first and second sets, the outlier scores are approximately

1Since activity measurements can be 0 at times, for the ambulatory and rearing activity mea-
surements, we added 1 to the measurements before taking logs to avoid taking logs of zero.
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F1c. 3.1. Plot of the outlier scores for the three groups of mice.
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evenly distributed between 0 and 1 (as is expected from statistical theory). For
the third set, the test set with mostly mutant mice, the outlier scores are mostly
concentrated near 0, indicating that most of them are flagged as outliers. Figure 3,
which plots the histograms of the outlier scores makes the distributions a little more
clear. Using a cutoff corresponding to a 5% false positive rate, we flagged 1 out of 19
in the test set with normal mice and 18 out of 27 of the test set with mutants. Table
3 shows details about the mutants.

The false positive rate of 1 in 9 in the control test set is consistent with the
desired false positive rate of 5%. In addition, the algorithm was able to flag most
of the mutants in the mutant test set. There are a few puzzles to be solved. Why
were the DRD3 mice so different in their behavior? But the overall picture is that
the algorithm seems to do a good job in picking out mutant mice. This gives us hope
that it will perform well in the future when it has more data to train on and more
mice to screen.

4. Technical details. We assume that the data from the normal mice from
the background strain, X,,X,,...,X,,, are n iid sample from a p-variate normal
distribution with mean vector p and variance matrix ¥. This is our training set. If
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F1G. 3.2. Histograms of the outlier scores for the three groups of mice.
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Y is another observation from the same distribution, then
Y - X ~ Ny(0, (1 + 1)%).
Therefore,

(4.1) ¥ -X)(1+5)8) ' ¥ -X)~Tr
where T72 | denotes a Hotelling’s T distribution with n and p degrees of freedom.
When the size of the training set, n is large, the LHS in (4.1) is approximately
equal to the Mahalanobis distance of the point ¥ from X with S as the metric. Also,
for large n, Hotelling’s T2 with n and p degrees of freedom is approximately x? with p
degrees of freedom. Thus, when the training set is large enough, and the observation
Y comes from the same distribution as the training set. the Mahalanobis distance of
the point from the sample mean of the training set, X, with metric defined in terms of
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TABLE 3.1
Table of mice in the mutant test set and their outlier scores.

Date-Cage | Outlier score | Notes
071799-1 | 0.0000* Tubby
071799-2 | 0.0000* Tubby
072399-1 | 0.0005* 1295V
072399-2 | 0.0000* 1295V
073099-2 | 0.0015* AlJ
080399-1 | 0.0002* MDX
080399-2 | 0.7604 MDX
080699-1 | 0.0000* A/
080699-2 | 0.0002* A/
091599-5 | 0.9994 DRD3
091599-6 | 0.0000* DRD3
091599-8 | 0.9755 DRD3
101899-1 | 0.6460 B6ST1
101899-3 | 0.6417 B6ST1
101899-4 | 0.7756 B6ST1
101899-5 | 0.2772 B6ST1
110899-1 | 0.0054* Het/Het
110899-2 | 0.0404* Het/+
110899-3 | 0.0077* Het/Het
110899-4 | 0.0449* Het/+
110899-5 | 0.0252* Het/Het
110899-6 | 0.0252* Het/Het
110899-7 | 0.0490* Het/Het
110899-8 | 0.7402 Het/+
111999-6 | 0.0002* FMR1
111999-7 | 0.4405 FMR1
111999-8 | 0.0202* FMR1

the sample covariance matrix, S, is approximately distributed as a X%- This justifies
the x? distribution used in Section 2.

5. Discussion. The encouraging results from our pilot study indicate that the
proposed algorithm is very promising. As more data is collected, we will have a better
idea of its performance.

5.1. Strain characterization. An interesting bi-product of the algorithm is
that it provides us with a way of characterizing strains too. The strain characteristics
are summarized by the sample mean and covariance of the training set data after
appropriate transformation?.

The algorithms not only flags mutant mice but also normal mice from other
strains. Thus, to detect mutant mice from strains other than the C54BL6/J strain
used in this report, we will have to first build a database of those strains.

5.2. Batch and other environmental effects. Since the statistical algorithm
only analyzes numbers devoid of the context, for it to be successful, the data collection

2The transformations are important, else the mean and covariance will not be valid as strain
characterization summaries
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procedure has to be closely monitored so that there are no ”process drifts”. The
algorithm could flag a change in environmental conditions instead of mice behavior,
if there are changes in the lab conditions.

We also recommend that each batch of experiments contain some normal mice
to help us adjust and monitor environmental conditions of the cages. The algorithm
may also be further tuned with the help of the control mice. This is an avenue for
further study.

5.3. Phenotypic domains. In our trial set we used 6 number summaries for
each mice. There is potential for using many more summaries, each focusing on
different aspects of mouse behavior. However, there are limitations on the number of
summaries we can use in any given run of the algorithm because, for p summaries,
we have to estimate p(p+1)/2 parameters given only np numbers, assuming a sample
size of n.

Dr. Patsy Nishina suggested that we divide the number summaries according
phenotypic domains. Next, we can train and run the algorithm on the variables in
each of the domains. This is a good suggestion and will be of great help in interpreting
the mutants detected.

If we divide the data into k& phenotypic domains and calculate the outlier score
for a particular mouse for each of the domains, we will get k scores s1, s2,...,S,. The
overall outlier score for the mouse will not their maximum, but their sum,

_ vk .
s =X5_;8;j.

This is a consequence of Bonferroni’s Inequality. It follows that if a false positive rate
used for each of the domains is «, then the overall false positive rate will be ka.

5.4. Other considerations. Under the proposed breeding mechanism for the
Mutagroup the probability that a mouse in the G3 generation will be recessive for
a mutation is 1/8. So far, we have not used this information in our analyses. It is
possible that this may lead to refinements of the algorithm or ways to control errors.

Appendix A. Variables recorded in the cages.
e Sample: Sample number
Time Code: Time in proportion of the day
Time: Time in hh:mm:ss format
VO2: Volume of oxygen consumed per unit body weight per unit time
02 in: Oxygen content of air going in
02 out: Oxygen content of air going out
DO2: Difference of the above two
Acc 02: Cumulative of the above column
VCO2: Volume of carbon dioxide consumed per unit body weight per unit time
CO2 in: Carbon dioxide content of air going in
CO2 out: Carbon dioxide content of air going out
DCO2: Difference of the above two
Acc CO2: Cumulative of the above column
RER: Respiratory Exchange Ratio VCO2: V02
Heat: Energy consumed (formula not known to me)
Flow: How many litres of air flowing into cage; should be constant
Hor: Counts of movement without displacement
Vert: Counts of vertical movement indicative of rearing
Amb: Counts of breaking beams in sequence; indicative of ambulation
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e DrinkA: Water drinking from source A
e DrinkB: Water drinking from source B

Appendix B. Computer programs. Splus was used for the statistical com-
puting. Bash shell under the Cygnus system was used for scripting and text file
processing. This document was edited under Emacs and then processed under the

MiKTeX distribution of BTEX.

Appendix C. Raw results. What follows are the raw results from the computer
programs used to perform the statistical analyses. These are provided for reference.

The following shows the outlier scores, the date and cage of the mice for each of
the three data sets, the training set, the control test set and the mutant test set.

> source("/Mutant/trainandvalidate.s")
[1] "Training set outlier scores: "

073099-1
0.0405
091599-3
0.3495
100599-2
0.9944
100199-1
0.582
100199-8
0.6496
[1] "Test
092199-1
0.6394
092799-4
0.702
101299-7
0.0862
[1] "Test
071799-1
0
080699-1
0
101899-4
0.7756
110899-6
0.0252

Next we provide the data summaries used for the analyses. These are the means
on the log scale in the following order: RER (night and day), Rearing activity (night
and day), and Ambulatory activity (night and day). The final column is the outlier

score.
> result
$train:

073099-1 -
092199-5 -
092199-6 -
092199-7 -

092199-5 092199-6 092199-7
0.7044 0.0031 0.0018
091599-4 092799-5 092799-6
0.7425 0.8398 0.5754
100599-3 100599-4 101299-1
0.5918 0.7636 0.8212
100199-2 100199-3 100199-4
0.8788 0.656 0.1708
101899-6 101899-7 101899-8
0.8953 0.5909 0.3096
set outlier scores: "
092199-2 092199-3 092199-4
0.5135 0.6075 0.2273
100599-5 100599-6 100599-7
0.6761 0.0143 0.6106
101299-8 111999-1 111999-3
0.2229 0.6717 0.8861
set outlier scores: "
071799-2 072399-1 072399-2
0 0.0005 0
080699-2 091599-5 091599-6
0.0002 0.9994 0
101899-5 110899-1 110899-2
0.2772 0.0054 0.0404
110899-7 110899-8 111999-6
0.049 0.7402 0.0002

x.1 X.2 x.3 X.

092199-8
0.7079
092799-7
0.5419
101299-2
0.6569
100199-5
0.7916

092799-1
0.3739
100599-8
0.947
111999-4
0.2416

073099-2
0.0015
091599-8
0.9755
110899-3
0.0077
111999-7
0.4405

4 x.5

091599-1
0.5627
092799-8
0.8532
101299-3
0.4584
100199-6
0.1086

092799-2
0.8451
101299-5
0.1019

080399-1
0.0002
101899-1
0.646
110899-4
0.0449
111999-8
0.0202

x.6

091599-2
0.5434
100599-1
0.4079
101299-4
0.8857
100199-7
0.2913

092799-3
0.161
101299-6
0.8661

080399-2
0.7604
101899-3
0.6417
110899-5
0.0252

X2

0.3102 -0.1669 2.8754 4.7008 3.5156 5.1237 0.0405
0.2999 -0.2394 2.2824 4.5301 4.1947 6.4103 0.7044
0.3594 -0.3976 4.8392 5.4759 4.0156 6.1429 0.0031
0.3289 -0.2362 0.8375 2.6053 1.4688 3.3651 0.0018
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092199-8
091599-1
091599-2
091599-3
091599-4
092799-5
092799-6
092799-7
092799-8
100599-1
100599-2
100599-3
100599-4
101299-1
101299-2
101299-3
101299-4
100199-1
100199-2
100199-3
100199-4
100199-5
100199-6
100199-7
100199-8
101899-6
101899-7
101899-8

$control:

092199-1
092199-2
092199-3
092199-4
092799-1
092799-2
092799-3
092799-4
100599-5
100599-6
100599-7
100599-8
101299-5
101299-6
101299-7
101299-8
111999-1
111999-3

.3333
.3620
.3027
.3684
.3289
.3421
.3848
.3704
.3035
.3612
.3291
.3116
.3759
.3463
.3441
.3671
.3420
.2883
.2964
.2798
.2734
.3423
.3040
.3320
.3179
.2890
.3389
.3140

x.1

. 3497
.3133
.3479
.3322
.2888
.3398
.3542
.3261
.3007
.3747
.3435
.3244
.2892
.3474
L3774
.3561
.3549
.3142

.3386
.2983
.2959
.3123
.2170
.2929
.2132
.2188
.2190
.25634
.2611
.1512
.2759
. 3462
.2354
.2608
. 2257
.2575
.2863
.3053
.3630
.1921
.3674
.1649
.2346
.2617
.2684
.2142

X.2

.28561
.2442
.2187
.2373
. 2267
.2376
.1538
.2783
.1968
.3517
.3226
.2895
.1901
.2209
.3104
.3037
.3057
.25662

NNNWNWNDNMNMNWOWNDNWNNDNDNENNMNNNDNDNDDNDDNDDNDN

NNNWFELNNNMENNDMNNMNEDNMNNDNNDNDN

.5516
.5054
.0826
.3548
L4773
.1603
.1381
.1598
.6521
.6622
.5166
.1200
.8184
.9883
.0233
.8671
.9294
.3750
.5146
.1357
.1897
.6496
.1753
.0630
.4538
.4746
.4494
.2434

x.3

.1793
.0605
.7221
.9256
.1284
.7244
.5770
.4248
.4174
.9154
.2681
.8909
.6881
.7833
.1379
.5754
.4444
.0484

O NG LY S TC T S U NS NG ST N O N NG N NS N O O N N N S O N NN N

I I O O N N N L T N O N N AU RN I SORN

.5349
.7360
.0471
.0271
.8770
.6441
.4945
.7399
.9808
.2704
.5816
.6865
.4387
.7860
.3327
.3235
.9707
.0747
.7873
.3835
.5188
.4548
.7631
.1403
.1373
.3076
L7997
.1248

x.4

.8299
.8035
.1525
.6871
.7873
.3663
.2621
.1198
.6186
.5397
.5809
.0398
.0314
.2102
.4089
.7633
.6286
.8748

AW OTWDBRDADDOADDDADDDNODWWOD WD DD W

N O N N N Y O N O Y S N N N NN N S

.8625
.0182
.5706
.5400
.7334
.4214
.8973
.8941
.6746
.8806
.5200
.5254
.3144
L6797
.5674
.6005
.0937
L2771
.7078
.5398
. 8496
.3261
.0248
.8659
.1007
.5248
.5916
.2142

x.5

.2490
.8748
L7732
.2131
.3867
.0636
.7032
.5722
.2734
.8653
.4700
.7488
.1538
.1127
.7568
.1563
.3160
.2206

DU OO UT IO 1Ol OO

GO oo oo oo oo o 1ol OO,

.1256
.0941
.8266
.2574
.3972
.6482
.2642
.2875
.6754
.55689
.2975
.6227
.3205
.5461
.1941
.1020
.3498
.7106
.6166
.1814
.31901
.0031
.0803
.2459
.6352
.9683
.1662
.3576

x.6

.58565
.8362
.8132
.5891
.8688
.2584
.2282
.8684
.4228
.9663
. 3462
.7064
.0844
.1594
.0203
.9469
.2131
.8059

el eolNeoloNoNeoNoRoRoRe o NeooNeoNoNoNoNeNoReRoNeoBoNo oo e Ne)

[l eNelNeolNeoleolNeNeoNeNeoRoEeRelloleolelNe e

L7079
.5627
.5434
. 3495
. 7425
.8398
.5754
.5419
.8632
.4079
.9944
.5918
.7636
.8212
.6569
.4584
.8857
.5820
.8788
.6560
.1708
.7916
.1086
.2913
.6496
.8953
.5909
.3096

X2

.6394
.5135
.6075
.2273
.3739
.8451
.1610
.7020
.6761
.0143
.6106
.9470
.1019
.8661
.0862
.2229
L6717
.8861



111999-4 -0.3016 -0.2378 1.6260 3.2223 3.6213 5.1326 0.2416

$test:

x.1 x.2 x.3 x.4 x.5 x.6 X2
071799-1 -0.4114 -0.3729 2.2306 4.2528 2.6676 4.7422 0.0000
071799-2 -0.4024 -0.4275 1.6014 3.8635 2.4881 4.7956 0.0000
072399-1 -0.3799 -0.3635 1.5343 2.4782 2.3587 3.8762 0.0005
072399-2 -0.2641 -0.1696 0.5349 1.7902 2.3170 4.1487 0.0000
073099-2 -0.3474 -0.1861 2.6268 4.2674 2.7721 4.3064 0.0015
080399-1 -0.2827 -0.2656 3.2885 5.0967 3.8705 5.0052 0.0002
080399-2 -0.3000 -0.2035 2.3508 4.1013 4.2118 5.6414 0.7604
080699-1 -0.3771 -0.2979 3.2948 4.1273 3.9021 4.4079 0.0000
080699-2 -0.3815 -0.1894 2.7462 4.0971 2.3474 4.0179 0.0002
091599-5 -0.3198 -0.2730 2.5858 4.6359 4.3714 6.2651 0.9994
091599-6 -0.3452 -0.2700 5.8033 6.3303 4.2143 6.7021 0.0000
091599-8 -0.3264 -0.2991 3.1116 4.9118 4.5852 6.3832 0.9755
101899-1 -0.3561 -0.2553 3.0824 4.7212 4.6427 6.2082 0.6460
101899-3 -0.2736 -0.2686 2.6451 4.5855 4.3426 6.0821 0.6417
101899-4 -0.3438 -0.2619 2.5499 4.9870 4.2694 6.8013 0.7756
101899-5 -0.3468 -0.2316 2.7874 4.1611 4.9210 6.3599 0.2772
110899-1 -0.2777 -0.2168 3.7349 4.4963 5.25568 5.7228 0.0054
110899-2 -0.2458 -0.2273 3.4601 5.2838 5.6587 6.7912 0.0404
110899-3 -0.2528 -0.2805 4.2294 6.0130 6.2029 7.5240 0.0077
110899-4 -0.2656 -0.2431 3.3860 4.4390 5.4230 6.1940 0.0449
110899-5 -0.2337 -0.3316 3.2181 5.1804 4.8943 6.3895 0.0252
110899-6 -0.2747 -0.3191 3.5189 5.9473 5.3677 7.2030 0.0252
110899-7 -0.3147 -0.3208 2.0083 4.8011 3.3851 5.9497 0.0490
110899-8 -0.3472 -0.3022 2.1504 4.3431 4.3749 6.1810 0.7402
111999-6 -0.4045 -0.2630 2.2985 4.6954 4.8889 6.4499 0.0002
111999-7 -0.2863 -0.1990 2.9119 4.5768 4.9739 6.2853 0.4405
111999-8 -0.3746 -0.2837 1.6537 3.1923 3.7731 5.0917 0.0202

Next we provide the data summaries used for the analyses transformed back to
their original scales. They are in the following order: RER (night and day), Rearing
activity (night and day), and Ambulatory activity (night and day). The final column
is not meaningful and should be ignored.

> round(exp(result$train),3)
x.1 x.2 x.3 x.4 x.5 x.6 X2

073099-1 0.733 0.846 17.733 110.035 33.636 167.956 1.041
092199-5 0.741 0.787 9.800 92.768 66.334 608.076 2.023
092199-6 0.698 0.672 126.368 238.865 55.457 465.401 1.003
092199-7 0.720 0.790 2.311 13.535 4.344 28.936 1.002
092199-8 0.717 0.713 12.828 93.214 47.584 457.419 2.030
091599-1 0.696 0.742 12.248 113.977 55.601 443.235 1.755
091599-2 0.739 0.744 8.025 57.231 96.602 339.203 1.722
091599-3 0.692 0.732 10.536 56.098 93.691 521.860 1.418
091599-4 0.720 0.805 11.909 48.279 41.821 220.787 2.101
092799-5 0.710 0.746 8.674 103.970 83.213 771.395 2.316
092799-6 0.681 0.808 8.483 89.523 49.269 525.421 1.778
092799-7 0.690 0.803 8.669 114.423 49.112 537.807 1.719
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092799-8 0.738 0.803 14.184 145.
100599-1 0.697 0.776 5.271 71.
100599-2 0.720 0.778 12.386 97.
100599-3 0.732 0.860 8.331 108
100599-4 0.687 0.759 16.750 84.
101299-1 0.707 0.707 19.852 119.
101299-2 0.709 0.790 20.559 76.
101299-3 0.693 0.770 17.586 75
101299-4 0.710 0.798 18.716 144.
100199-1 0.750 0.773 29.224 159.
100199-2 0.743 0.751 12.362 119.
100199-3 0.756 0.737 8.463 80.
100199-4 0.761 0.696 8.933 91.
100199-56 0.710 0.825 14.148 86.
100199-6 0.738 0.693 23.934 43.
100199-7 0.717 0.848 7.870 62.
100199-8 0.728 0.791 31.620 170.
101899-6 0.749 0.770 11.877 74.
101899-7 0.713 0.765 11.581 121
101899-8 0.731 0.807 9.425 61.
> round(exp(result$control),3)

x.1 x.2 x.3
092199-1 0.705 0.752 8.840 125.
092199-2 0.731 0.783 7.850 44.
092199-3 0.706 0.804 15.212 172.
092199-4 0.717 0.789 18.645 108.
092799-1 0.749 0.797 8.401 44.
092799-2 0.712 0.789 5.609 78.
092799-3 0.702 0.857 13.1568 70.
092799-4 0.722 0.757 11.300 61.
100599-5 0.740 0.821 11.217 101.
100599-6 0.687 0.703 6.790 93.
100599-7 0.709 0.724 9.661 97.
100599-8 0.723 0.749 18.010 154.
101299-5 0.749 0.827 14.704 56.
101299-6 0.707 0.802 5.949 67.
101299-7 0.686 0.733 23.055 82.
101299-8 0.700 0.738 13.137 117.
111999-1 0.701 0.737 11.524 102.
111999-3 0.730 0.774 7.755 48.
111999-4 0.740 0.788 5.083 25.
> round(exp(result$test),3)

x.1 x.2 x.3
071799-1 0.663 0.689 9.305 70.
071799-2 0.669 0.652 4.960 47.
072399-1 0.684 0.695 4.638 11.
072399-2 0.768 0.844 1.707
073099-2 0.707 0.830 13.829 71.
080399-1 0.754 0.767 26.803 163
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.475

.495

.483
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.495
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.850
.750
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.063
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.669
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xX.6
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824
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4.686
0.977
8.241
3.3562
4.173
9.187
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.347
.504
.703
.807
.146
.273
.929
.582
.425
.790
.408
.927
.186
.207
.115
.338
.915
.448
.806
.363

X2

.895
.671
.836
.265
.453
.328
.175
.018
.966
.014
.842
.578
.107
.378
.090
.250
.958
.426
.273

X2
.000
.000
.001
.000
.002
.000
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080399-2 0.741 0.816 10.494 60.419 67.478 281.857 2.139
080699-1 0.686 0.742 26.972 62.010 49.506 82.097 1.000
080699-2 0.683 0.827 15.583 60.166 10.458 55.584 1.000
091599-5 0.726 0.761 13.274 103.121 79.154 525.894 2.717
091599-6 0.708 0.763 331.391 561.325 67.647 814.114 1.000
091599-8 0.722 0.741 22.457 135.884 98.023 591.818 2.652
101899-1 0.700 0.775 21.811 112.303 103.824 496.806 1.908
101899-3 0.761 0.764 14.085 98.052 76.907 437.948 1.900
101899-4 0.709 0.770 12.806 146.496 71.479 899.015 2.172
101899-5 0.707 0.793 16.239 64.142 137.140 578.189 1.319
110899-1 0.758 0.805 41.884 89.685 191.675 305.760 1.005
110899-2 0.782 0.797 31.820 197.118 286.776 889.981 1.041
110899-3 0.777 0.755 68.676 408.708 494.180 1851.960 1.008
110899-4 0.767 0.784 29.548 84.690 226.558 489.801 1.046
110899-5 0.792 0.718 24.981 177.754 133.527 595.559 1.026
110899-6 0.760 0.727 33.747 382.719 214.369 1343.455 1.026
110899-7 0.730 0.726  7.451 121.644 29.521 383.638 1.050
110899-8 0.707 0.739 8.588 76.946 79.432 483.475 2.096
111999-6 0.667 0.769  9.959 109.443 132.807 632.639 1.000
111999-7 0.751 0.820 18.392 97.203 144.590 536.625 1.553
111999-8 0.688 0.753 5.226 24.344 43.515 162.666 1.020

Appendix D. Addendum: 24 February 2000. We decided to take the logs of
the measurements after taking the means for each mouse. The resulting measurements
are thus logs of average activity values. In the original version, we had taken logs
before averaging, which is not physiologically meaningful. The algorithm did not
change, only the measurement fed to it did.

Before we started our investigation, the Mutagroup had proposed an algorithm
for detecting mutants. By this algorithm, a mouse was flagged as mutant if it was
more than 3 sd’s away from the mean for at least one measurement or more than 2
sd’s from the mean for at least two measurements. Based on results ot shown here,
we made the following recommendation to the Mutagroup.

“We recommend that the Distance Algorithm (DA) be used for flagging mutants
and the Standard Deviation Algorithm (SDA) be used for interpretation.

Based on the data collected on mutants so far, the SDA and the DA perform
comparably. Both use 6 summary measurements collected on each animal. In the
future, more summaries may be calculated. By the nature of the SDA, the false
positive rate of the SDA will increase with the number of measurements used. The
DA does not suffer from this defect and according to statistical theory, it is at least
as powerful as the SDA if both are aiming for the same false positive rate.”
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