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Abstract

Inferring the driving regulatory programs from comparative analysis of gene expression data

is a cornerstone of systems biology. Many computational frameworks were developed to

address this problem, including our iPAGE (information-theoretic Pathway Analysis of

Gene Expression) toolset that uses information theory to detect non-random patterns of

expression associated with given pathways or regulons. Our recent observations, however,

indicate that existing approaches are susceptible to the technical biases that are inherent to

most real world annotations. To address this, we have extended our information-theoretic

framework to account for specific biases and artifacts in biological networks using the con-

cept of conditional information. To showcase pyPAGE, we performed a comprehensive

analysis of regulatory perturbations that underlie the molecular etiology of Alzheimer’s dis-

ease (AD). pyPAGE successfully recapitulated several known AD-associated gene expres-

sion programs. We also discovered several additional regulons whose differential activity is

significantly associated with AD. We further explored how these regulators relate to patho-

logical processes in AD through cell-type specific analysis of single cell and spatial gene

expression datasets. Our findings showcase the utility of pyPAGE as a precise and reliable

biomarker discovery in complex diseases such as Alzheimer’s disease.

Author summary

Biological regulation is governed by a complex network of interactions involving tran-

scription factors, RNA-binding proteins, and microRNAs. To reveal the regulatory pro-

grams underlying gene expression modulations, researchers often take advantage of gene-

set enrichment analysis, an approach that studies concerted changes in a group of genes

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012346 September 5, 2024 1 / 34

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bakulin A, Teyssier NB, Kampmann M,

Khoroshkin M, Goodarzi H (2024) pyPAGE: A

framework for Addressing biases in gene-set

enrichment analysis—A case study on Alzheimer’s

disease. PLoS Comput Biol 20(9): e1012346.

https://doi.org/10.1371/journal.pcbi.1012346

Editor: Andrey Rzhetsky, University of Chicago,

UNITED STATES OF AMERICA

Received: August 31, 2023

Accepted: July 22, 2024

Published: September 5, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1012346

Copyright: © 2024 Bakulin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: MSBB and ROSMAP

data can be found in Synapse database and will not

be shared with this paper. This data is individual

level and therefore in compliance with Sage

https://orcid.org/0000-0002-9648-8949
https://doi.org/10.1371/journal.pcbi.1012346
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012346&domain=pdf&date_stamp=2024-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012346&domain=pdf&date_stamp=2024-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012346&domain=pdf&date_stamp=2024-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012346&domain=pdf&date_stamp=2024-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012346&domain=pdf&date_stamp=2024-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012346&domain=pdf&date_stamp=2024-09-24
https://doi.org/10.1371/journal.pcbi.1012346
https://doi.org/10.1371/journal.pcbi.1012346
http://creativecommons.org/licenses/by/4.0/


rather than observing genes in isolation. Previously, we developed a tool called iPAGE to

facilitate this analysis. However, both iPAGE and other similar tools implicitly assume

that different genes have uniform gene-set membership. Our recent observations chal-

lenge this assumption, revealing that some genes form regulatory networks far more fre-

quently than others. These technical biases and redundancies in gene-set annotations

complicate the accurate inference of true regulatory relationships in specific contexts. To

overcome these limitations, we introduced pyPAGE, an enhanced method that extends

our information-theoretic framework by incorporating conditional mutual information

to account for specific biases and artifacts.

We applied pyPAGE to Alzheimer’s disease, a neurodegenerative disorder marked by

its complexity and characterized by progressive cognitive decline, memory loss, and

behavioral changes. Pathological processes of Alzheimer’s disease involve various cell

types and diverse molecular mechanisms, which pose significant challenges for study. In

our study we took advantage of our newly developed framework pyPAGE, performing

analysis of gene expression changes at both tissue and cell type levels. This way we were

able to describe regulation patterns of known regulators of Alzheimer’s as well as several

new ones. Additionally, we performed a cohort study of the association between the

enrichment of the identified regulons and survival prognosis for patients, showing that

increased activity of a subset of RBPs is positively associated with a lifespan. In total the

results highlight the utility of pyPAGE and provide a valuable set of biomarkers for Alz-

heimer’s disease.

Introduction

Over the past two decades, gene expression analysis has emerged as an effective approach for

defining cell states at a molecular level. For example, disease signature genes, defined as genes

that are up or down-regulated in diseased cells, have long been used as a proxy for pathological

cell identity [1,2]. However, even in the early days, it was clear that for complex diseases like

cancer, signature genes fail to reproduce in independent studies [3]. This was not surprising,

as it is the collective disruptions in cellular pathways and processes, rather than dysregulated

expression of individual genes themselves that underlie cellular pathologies. This understand-

ing gave rise to a suite of computational analyses that perform pathway-level or gene-set-level

comparisons between samples. Broadly defined, gene-sets include (i) pathways or complexes,

sets of functionally related genes that act together or sequentially, and (ii) regulons, genes that

are downstream of a given regulatory factor. The latter provides an opportunity to assess the

differential activity of master regulators across conditions [4]. Regulons are typically annotated

using experimental data (such as ChIP-seq [5] and CLIP-seq [6]) or inferred using sequence

binding preferences of each regulator (AlignACE [7,8], FIRE [9], DeepBind [10], DeepSEA

[11], DanQ [12]). We have previously shown that application of this methodology to large

scale gene expression datasets reveals the underlying regulatory programs that are key to the

emergence or maintenance of a given cellular state [1]. However, as we will discuss here, addi-

tional challenges needed to be addressed to further improve our ability to detect perturbations

in regulatory programs.

There are myriad tools implementing pathway level analysis; Garcia-Campos et al [13] cate-

gorize these tools into two main categories: over-representation analysis (ORA) methods and

Functional Class Scoring (FCS) methods. ORA relies on the concept that the top-scoring genes

should carry the highest weight; therefore, the ORA methods operate under the null hypothesis
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that if a number of differentially expressed genes is chosen, the fraction of genes that belong to

any given pathway does not exceed the fraction expected by chance. In contrast, FCS methods

operate under the assumption that pathways might consist of many genes that show heteroge-

neous yet coordinated changes in expression. Such methods make use of all available measure-

ments and often do not rely on arbitrary thresholding.

In these methodologies, pathway annotation databases, such as Gene Ontology [14,15] and

MSigDB [3,16], can be used to represent pathways as gene-sets or binary vectors where a gene

can either belong to a given pathway, or not. However, this commonly used representation of

pathway membership creates an intrinsic bias for several reasons. First, genes are multifunc-

tional and some genes are far more studied than others and therefore are simultaneously anno-

tated as part of many pathways. Second, the more abundant a given protein, the more often it

is detected in various assays (such as affinity purification); therefore, abundant proteins simi-

larly tend to be categorized as members of many complexes and gene-sets. Such biases can

have a broad impact on target selection and pathway identification in large-scale datasets. For

instance, identifying a protein involved in only a few gene-sets as differentially expressed nar-

rows the range of pathways considered relevant, compared to a similar finding about a protein

associated with many gene-sets. To our knowledge, no available pathway-analytical tool explic-

itly takes such biases into account.

Here, we propose a pathway analytical approach that explicitly models the representation

bias present in gene-set annotations. This framework is an extension of our iPAGE package

developed more than a decade ago [1]. In iPAGEv1.0 we used mutual information to directly

estimate the dependency between expression values and gene-set annotations. In contrast,

pyPAGE relies on calculating conditional mutual information, which allows for explicit con-

sideration of annotation bias as a covariate. Here, we provide a number of benchmarks show-

casing the utility of pyPAGE as a robust pathway analytical tool that surpasses its predecessors.

We demonstrate that pyPAGE can effectively reveal the regulatory mechanisms underlying

biological observations, which is a crucial first step towards a molecular understanding of their

origin and maintenance.

The generalizability of pyPAGE allows it to infer regulatory changes at various molecular

levels using a variety of different data modalities, including differential gene expression and

differential stability estimates inferred from both bulk and single cell data. We took advantage

of this to carry out a comprehensive analysis of gene expression programs in Alzheimer’s dis-

ease. While AD is currently characterized at molecular, histological, and symptom levels [17],

the regulatory networks, both transcriptional and post-transcriptional, that accompany and

likely drive cellular pathogenesis in AD are not fully explored. Leveraging pyPAGE, we have

generated novel insights into the role of key master regulators, including transcription factors

(TF), RNA binding proteins (RBP), and microRNAs (miRNAs), in shaping the pathological

transcriptome in AD. First, we perform an analysis of bulk RNA-sequencing data from Mount

Sinai Brain Bank (MSBB) [18], a consortium that holds a large collection of characterized

brain data from both healthy donors and patients with pathological conditions. We focus on

the analysis of samples of Brodmann Area 36, since it is one of the most vulnerable brain

regions in AD [19] and we aimed at identifying a core set of deregulated regulons that are

inherent to the disease. Next we provide a cell-type specific characterization of differential

activity of the identified regulons using two single-cell RNA sequencing datasets of human

prefrontal cortex [20,21], followed by description of their spatial regulation patterns inferred

from spatial transcriptomics data of middle temporal gyrus [22]. Though we analyze different

brain regions, we show an overlap between their regulatory signatures. Finally, on a different

bulk RNA-sequencing dataset of dorsolateral prefrontal cortex we showcase the utility of the

identified factors for a stratification of patients based on the activity of these factors inferred
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using pyPAGE. Using pyPAGE in these analyses provides a significant advantage by effectively

accounting for uncertainty around putative regulatory interactions and non-specific and arti-

factual hits, therefore improving our ability to capture real biological signals in the data.

Results

Gene-set annotations often form scale-free networks

In every annotation of biological regulons, gene-set membership varies significantly among all

genes. Typically, this measure of gene-set membership reflects the number of functional inter-

actions a gene engages in. Current analytical tools assume gene-set membership to follow a

normal distribution (Fig 1A). However, in practice this assumption rarely holds true and

gene-set membership instead follows the power law (Fig 1A). We have demonstrated this

across multiple commonly used gene-set annotations: molecular pathways, transcription fac-

tor target genes, RNA-binding protein regulons and miRNAs targets (S1A–S1D Fig). In each

of these annotations, the degree distribution of the gene-set membership could be closely

approximated using the power law function (R2 > 0.9), which typically peaks at 1 with a long

distribution tail. This implies that like most biological networks, gene-set annotations also

form scale-free networks.

Further analysis of these gene-set membership distributions revealed that in many cases the

shape of the right tails significantly deviates from the power law (Fig 1C). Such deviations indi-

cate a bias in the underlying annotations. We posit that this bias arises from the experimental

and analytical techniques that are used to compile them. For example, we observed that the

Fig 1. Bias in gene-set annotations. (A) Comparison between the theoretical and empirical degree distributions of

gene-set membership in gene-set annotations. The red line represents the curve-fitting of the power law function to the

observed distribution. (B) Scatter plots representing major sources of bias in biological annotations. The left panel

represents the association between the protein abundance and the number of interactions a gene has in the STRING

database. The right panel represents the association between the citation index of a particular gene and its gene-set

membership in an annotation of biological pathways. For each association, we also report correlation between values.

(C) Characteristics of gene-set membership degree distribution within TF regulon annotations are depicted. The top

plot displays the observed distribution with a power law function fitted to it, including reporting the gamma parameter

and the R^2 value. The bottom plot illustrates the deviation of the observed distribution from the expected power law.

https://doi.org/10.1371/journal.pcbi.1012346.g001
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more a given gene is studied the more likely it is to have multiple entries in a knowledge-based

annotation (Fig 1B, right panel). Another source of bias may be technical limitations includ-

ing low sensitivity of detecting weak functional interactions. Consistently, we have observed

that, in the human interactome, the number of physical interactions for a given protein corre-

lates with its protein abundance (Fig 1B, left panel). Overall, these findings indicate that there

are important structural biases in the commonly used gene-set annotations. As we will demon-

strate below, these inherent biases, which are overlooked in most gene-set enrichment analy-

ses, have an impact on the insights that can be gleaned from the underlying data using current

methodologies.

pyPAGE overcomes structural annotational biases in gene-set enrichment

analysis

Current gene-set enrichment analysis tools assume that every gene in a regulon is equally

informative of regulon activity. However, as we demonstrated above, gene-set membership

significantly varies between genes. As a consequence, differential expression of genes with spe-

cific functions provides stronger evidence for deregulation of its corresponding gene-sets than

changes in expression of a more promiscuous gene. To address these biases and imbalances,

we developed pyPAGE, an improved gene-set enrichment analysis method. pyPAGE is an

extension of our previously published iPAGE framework [1] and can be used to analyze vari-

ous gene-set annotations such as Gene Ontology, MSigDB, and regulons of TFs, RBPs and

microRNAs. To correct for imbalances in gene-set membership, pyPAGE uses the concept of

conditional mutual information [23] and measures the dependency between input data (e.g.

differential gene expression) and a specific gene-set while taking into account the total number

of gene-sets every given gene belongs to. The statistical significance of this dependency is then

determined using a permutation test. Like its predecessor, pyPAGE detects any non-random

patterns of enrichment or depletion of target genes and even non-monotonic complex rela-

tionships are captured (e.g. dual regulators). It also does not depend on the particular distribu-

tion of the input data and can be applied to both discrete (e.g. cluster indices) and continuous

(e.g. log-fold changes) inputs.

pyPAGE allows for the comprehensive analysis of gene expression changes at multiple lev-

els, including biological pathways as well as transcriptional and post-transcriptional regulons.

To standardize the analysis of biological datasets using pyPAGE, we propose the workflow

described in Fig 2A. We begin with initial preprocessing of RNA-seq data to obtain estimates

of transcript abundance in each sample. Then, for each gene, we compute an estimate of its log

fold change and a corresponding p-value using any of the available tools, such as DESeq2 [24],

limma [25] or edgeR [26]. These values form the basis for an estimate of differential gene

expression as demonstrated by Formula 3. Next, we apply pyPAGE to identify biological path-

ways and transcriptional factor regulons that are significantly associated with the differential

gene expression. This approach can be broadly used for both bulk and single cell RNA-seq

data, which in the latter case would allow better capture of cell-type specific patterns of regula-

tion. Since miRNAs and RBPs impact gene expression by influencing RNA decay, differential

RNA stability measurements provide a superior source of signal for detecting significant post-

transcriptional regulons. To incorporate this information, we propose using our recently pub-

lished tool REMBRANDTS, which infers changes in transcript stability by comparing the

numbers of intronic and exonic reads [27]. These measurements can then be used to estimate

the magnitude of stability changes between two groups and its significance, from which differ-

ential stability can be calculated in a similar way to differential gene expression. In addition to

the comparative analysis between groups of samples, pyPAGE supports analysis of regulons in
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each sample individually using expression or stability estimates that are normalized across

samples.

pyPAGE outperforms existing tools on simulated datasets

To assess the ability of pyPAGE to account for biases while maintaining a high baseline perfor-

mance relative to its predecessors, we used several simulation-based validation strategies. By

controlling the "ground truth" signal in simulated data and setting a priori expectations for

gene-set modulations, we were able to measure the sensitivity of pyPAGE and compare its per-

formance to other similar tools.

The main objectives of these simulations were (i) to demonstrate that implicit biases in

gene-set annotations can negatively impact the quality of gene-set enrichment analysis, and

Fig 2. pyPAGE is a novel framework for inference of differentially regulated gene-sets. (A) Schematic of the

pipeline we propose for the analysis of bulk RNA-seq data using pyPAGE. The pipeline starts with preprocessing of

RNA-seq data and then diverges into two branches: one for the analysis of transcriptional regulation and the other for

the analysis of post-transcriptional regulation. (B) Precision-recall curves demonstrating the performance of pyPAGE

and benchmarking it against iPAGE and fgsea. The analysis was made in 4 simulated scenarios with and without added

biases and with or without dual regulation patterns. As a general metric of performance we report PR-AUC score, also

cross glyphs mark the performance at p-value threshold equal to 0.01. (C) Graphical representation of pyPAGE’s

robustness to variations in input data quality. The analysis incorporates two distinct curves illustrating the effects of: 1)

subsampling the data from 5% to 100% in increments of 5%, and 2) adjusting the parameter that dictates the fraction

of deregulated genes within each regulon (note that the default value for this parameter is 0.5 which explains

divergence of two curves at 1.0).

https://doi.org/10.1371/journal.pcbi.1012346.g002
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(ii) to assess whether pyPAGE effectively addresses this issue and robustly identifies deregula-

tion of gene-sets from biased annotations. To simulate pathway annotations, we randomly

selected subsets of varying sizes from a set of genes. We introduced artifacts by enhancing the

likelihood that certain genes would be included across all pathway annotations. Specifically,

we designated a set of ’biased genes’ and added a random sample from this group to each sim-

ulated pathway, as detailed in the Methods section. Our secondary goal was to demonstrate

that pyPAGE can detect any non-random patterns in data, both monotonic and non-mono-

tonic. Though activity of most factors is associated with either upregulation or downregulation

of their target regulons, there are nevertheless factors that function as dual regulators simulta-

neously exerting both effects. Therefore, we simulated two types of datasets with monotonic

and dual regulation patterns.

We assessed iPAGE [1] and fgsea [28] as comparators to pyPAGE. The performance of

each method was measured by its ability to recover the artificially perturbed gene-sets in each

simulated dataset. We employed four simulation scenarios to test how well each algorithm

handles bias in annotations and captures monotonic and non-monotonic regulatory patterns.

In each case, we report relevant performance metrics (S2 Fig). However, since the number of

unperturbed gene-sets in the simulation is much greater than the number of perturbed gene-

sets, we specifically focus on the precision-recall curves (Fig 2B). In these benchmarks,

pyPAGE and iPAGE performed equally well predicting deregulation of gene-sets from unbi-

ased annotations both with monotonic and non-monotonic signals (PR-AUC>0.90). How-

ever, when using biased annotations, performance of iPAGE decreased dramatically by more

than 30% as indicated by changes in PR-AUC score. Performance of pyPAGE, on the other

hand, remained largely unchanged. Fgsea performed worse than pyPAGE and iPAGE using

the same simulated datasets across all tasks. Firstly, it failed to accept several gene-sets as input

and could not analyze their deregulation because of imbalances in their input distributions.

Secondly, it largely failed to capture non-monotonic and bimodal signals, which led to a 35%

decrease in PR-AUC score as compared to the case with monotonic signals. Finally, annota-

tional biases led to reductions in its PR-AUC by 18% and 30% for monotonic and non-mono-

tonic signals, respectively. These results demonstrate that based on the criteria formulated by

our two validation objectives, pyPAGE outperforms other tools in being robust to biases in

gene-set annotations and identifying complex patterns in data.

pyPAGE is both robust and sensitive in detecting dysregulated gene-sets

To further assess the robustness and sensitivity of pyPAGE, we implemented several additional

simulation strategies. Our goal was to demonstrate that the identified gene-sets remained con-

sistent across independent runs, even as signal-to-noise was reduced. To suppress the signal in

the input data, we employed two approaches. First, to measure the sensitivity of pyPAGE to

the strength of the input signal, we directly controlled the magnitude of the simulated gene

expression changes by tuning it as a hyperparameter. In the second approach we simulated

new datasets by randomly selecting and changing a subset of genes in the target gene-set to

evaluate pyPAGE’s robustness to incomplete data or imperfect gene-set annotations [9].

pyPAGE proved to be highly robust to the choice of simulation parameters controlling signal

expressiveness within a wide range (Fig 2C), which is showcased by its ability to capture more

than 80% of the target gene-sets even after an 80% decline in the strength of a signal controlled

by the simulation parameters. Similarly, even after sub-sampling the genes to as low as 20% of

the original counts, pyPAGE was still able to recover more than 80% of the perturbed target

gene-sets. These results suggest a strong potential for pyPAGE to be highly useful on single-

cell RNA-seq datasets, where substantially fewer genes are captured relative to bulk data.
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Comprehensive analysis of regulatory perturbations in Alzheimer’s disease

As we showed above, pyPAGE provides a sensitive and robust approach for identifying the

regulatory programs that drive changes in gene expression. Extending our work to real-world

data, we sought to use pyPAGE to study regulatory perturbations in Alzheimer’s disease (AD).

This highly complex disease involves dysregulation of many cellular pathways and processes.

The recent explosion in the amount of transcriptomic data from AD patients presents an

opportunity to systematically investigate the transcriptional and post-transcriptional regula-

tory programs mediating AD–a first step toward potential new therapeutic targets.

AD primarily causes the atrophy of the large cortex, subcortex and a number of other areas

of the brain [29]. Pathologically, it is characterized by neuronal loss and destruction of synaptic

connections, which are linked to the accumulation of amyloid beta and tau protein. Previous

research also points to a variety of other pathological mechanisms that may be involved in AD,

such as immune dyshomeostasis [30], oxidative stress [31] and metal imbalance [32]. A hand-

ful of studies have sought to identify master regulators of these changes based on the regula-

tors’ differential gene expression [33–35]. However, since the activity of proteins is often

controlled at the post-translational level [36], it cannot be reliably inferred from their mRNA

expression levels alone. Therefore, we sought to instead infer their differential activity from

changes in the expression of their downstream target genes. In our earlier work, we demon-

strated that an information-theoretic approach can be effectively employed to capture regula-

tory programs that underlie complex human diseases [1]. pyPAGE provides the opportunity

to infer associations between AD pathology and deregulation of TFs, miRNAs, and RBPs capi-

talizing on both known (sourced from curated databases) and putative (derived from high-

throughput assays) interaction datasets (Table 1).

Using publicly available RNA-seq data from the MSBB study [18], we performed a compari-

son of samples from the BM36 brain region between individuals with an AD diagnosis and

without, while controlling for biological variables such as sex. To capture differences in tran-

scriptional control, we used our previously curated annotation of cis-regulatory elements and

transcription factor binding sites [37]. Similarly, post-transcriptional regulatory changes were

predicted based on the combined annotation of known RBP binding sites from various sources

(see Methods) and miRNA recognition elements [38,39]. To ensure that the identified regula-

tory programs reflect AD pathogenesis and not changes in cellular composition artificially

read out in bulk data, we also analyzed their cell-type specific activation patterns using single

cell measurements, as well as their clinical relevance in predicting long-term survival of AD

patients.

Transcriptional regulatory modules associated with Alzheimer’s disease

In our analysis of transcriptional deregulation in AD, we observed significant disease associa-

tions for 15 transcription factors (TFs) (Fig 3A) most of which are regulators of neuronal func-

tions (Fig 3E). We also demonstrate that changes in expression of these TF regulons occur in

both female and male donors (S3A Fig) and in each age group (S3B Fig). For a number of

Table 1. Summary of pyPAGE findings.

Transcriptional

factors

NR2F1, ATF4, TFAP2, CDUX4, SOX10, ZNF92, NFKB1, KDM5A, JARID2, FOXP2,

OTX2, CDX2, SIX2, SMAD1, TCF4

RNA binding

proteins

ILF3, LIN28A, DROSHA, METAP2, PABPC4, ZFP36, HNRNPK, HNRNPD, LARP4,

SERBP1, RPS3, ALKBH5, IGF2BP1, PCBP1, EWSR1, FXR1

miRNAs miR-106B-5P, miR-20A-5P, miR-124-3P, miR-6825-5P, miR-506-3P, miR-8067, miR-

302C-5P, miR-506 (GTGCCTT)

https://doi.org/10.1371/journal.pcbi.1012346.t001
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these regulons, we also observed concomitant changes in the expression levels of their associ-

ated TFs as well (Fig 3B). While the correlated expression of a TF and its regulon strengthens

the evidence for the observed associations, as mentioned earlier, differential expression of a TF

is only one possible way that it may acquire differential activity. For example, our analysis cor-

rectly identified two well-known transcriptional regulators of AD, KDM5A [40] and ATF4

Fig 3. Transcription factors associated with gene expression changes in Alzheimer’s Disease. (A) Regulons of TFs

differentially expressed between AD and non-AD samples discovered by pyPAGE. In this representation the rows

correspond to TFs and columns to gene bins of equal size ordered by differential expression, the cells are colored

according to the enrichment of genes from regulons in a corresponding bin. The leftmost column of the heatmap

depicts the differential expression of the regulator itself. (B) The barplot representing Pearson correlations between the

expression of TFs and of their regulons, as measured by median TPM of its members. Asterix indicated significant

correlation (p-value<0.05). (C) The scatter plot demonstrating association between the expression of the well-known

AD regulator KDM5A with the expression of its regulon. (D) The association between the expression of another AD

regulator ATF4 with the expression of its regulon. (E) Biological roles of the identified TFs inferred based on the

functions of the genes controlled by these TFs. In these heatmap colored cells correspond to TFs whose regulons are

significantly (p-value<0.05) enriched with genes from a corresponding biological pathway based on PantherDB. (F)

Plot showcasing how robust are predictions of three different methods to subsampling of expression data. To measure

consistency of the predictions we computed intersection over union (IoU) of the method’s output with and without

subsampling of genes.

https://doi.org/10.1371/journal.pcbi.1012346.g003
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[41]–but only the mRNA expression level of KDM5A showed a high correlation with the

mean expression of its regulon (R2 = 0.85) (Fig 3C) while ATF4 did not (R2 = 0.40) (Fig 3D).

Indeed, ATF4 levels are known to be controlled at the level of translation [42].

These transcriptional signatures are robustly recovered by pyPAGE even when part of the

input expression data is missing due to the subsampling of genes (Fig 3F). By conditioning on

the regulon membership of each gene, pyPAGE avoids reporting spurious non-robust associa-

tions and outperforms iPAGE by reporting a more consistent set of genes with different frac-

tions of the input (as indicated by higher intersection over union). Fgsea similarly shows high

consistency of its predictions across runs with ablated data. However, in contrast to pyPAGE,

which identifies deregulation of only 3% of all TF regulons, Fgsea detects significant associa-

tions with over half (53%) of all TFs, which is highly unlikely to be biologically meaningful.

Indeed, our previous studies of the pathological hallmarks of AD, specifically tau accumulation

[43] and microglia activation [40], revealed that fewer than 10 out of the top 100 genes associ-

ated with these changes were transcription factors, underscoring that AD pathology is driven

by the modulation of a limited number of key factors. This suggests that many of the Fgsea hits

could be false positives, in line with our observations when benchmarking against synthetic

data (Fig 2B). Overall, the analysis highlights that pyPAGE is adept at identifying both robust

and specific signals within AD datasets.

Consistent with their association with AD pathology, many of the identified TFs are key

regulators of brain development and homeostasis. Systematic analysis of the functions repre-

sented among the regulons of these identified TFs (see Methods), revealed that 11 out of 15

TFs regulate molecular programs related to neurogenesis (Figs 3E and S4 and S1 Table). For

example, ATF4 maintains excitatory properties of neurons [44], whereas the generation of oli-

godendrocytes [45] is controlled by SOX10. While the majority of the identified TFs function

as transcriptional activators, two of them, JARID2 and KDM5A, are also involved in epigenetic

reprogramming, which is a hallmark of AD pathology [46,47]. Additionally, several of the

identified factors control adaptive immune response and protein metabolism, linking these

regulons to other key hallmarks of AD: inflammation, amyloid accumulation and abnormal

phosphorylation of tau protein.

Cell-type specific patterns of deregulation for AD-associated TF regulons

Since the analysis of bulk data captures a mixture of cell types, it often requires major shifts in

gene regulation in order to generate a discernible signal. Moreover, some of the patterns

observed in bulk may reflect changes in cell-type abundance rather than bona-fide reprogram-

ming of gene expression. To account for this possibility and improve resolution of our analysis,

we applied pyPAGE to the ROSMAP single-cell RNA-seq study [20], which includes the major

brain cell types in samples from both AD patients and healthy donors (Fig 4A). For each cell

type, we estimated differential gene expression between patients and healthy controls and then

applied pyPAGE to predict deregulated TF activity. Since the approach implemented by

pyPAGE is independent of any particular distribution of the input data, it was seamlessly

extended to the scRNA-seq data domain. The benefits of using pyPAGE over other tools devel-

oped for analysis of scRNA-seq data (e.g., Vision [48], Triangulate [49], scFAN [50]) are the

same as the ones we enumerated for bulk datasets. As we showed earlier (Fig 2C) pyPAGE is

robust to data sparsity and it accounts for biases in our annotations. As a result, we expect a

reduction in the number of false positives, which makes pyPAGE especially well-suited for reg-

ulon exploration of cell-type specific gene expression patterns.

As mentioned above, the primary goal of integrating single-cell data into our AD analysis

workflow was to measure contribution of the identified regulons to the gene expression of
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individual cell types. As expected, all of the 15 TF regulons we identified from bulk data

showed significant deregulation in at least one cell type. Strikingly, 6 of them showed signifi-

cant associations with gene expression across most of the major cell types, indicating their

diverse roles in brain homeostasis. For example, ATF4 is known to act in a cell type specific

Fig 4. Cell type and regional specific differential activity patterns of transcriptional factors in AD. (A) Cells from

the analyzed ROSMAP dataset represented on a force-directed graph embedding. The clusters are colored according to

cell-types: excitatory neurons (Ex), inhibitory neurons (In), astrocytes (Ast), oligodendrocytes (Oli), oligodendrocyte

progenitor cells (Opc), microglia (Mic), endothelial cells (End), pericytes (Per). (B) The same cell-type clusters colored

according to differential activity of SOX10 between cells from non-AD and AD samples estimated using pyPAGE. The

magnitude of the regulation pattern was calculated as scaled conditional mutual information multiplied by the factor

representing the direction of deregulation. (C) Summary of the cell-type specific deregulation patterns of the TFs

identified in the analysis of the bulk data. Heatmap cells with significant associations (p-value<0.05) are framed. The

regulation is calculated as the normalized conditional mutual information of the relationship multiplied by the sign of

the log fold change. (D) Heatmap representations of concordant expression changes in expression of TF target genes in

inhibitory neurons and oligodendrocytes. Here rows correspond to TFs and columns to gene bins of equal size ordered

by differential expression, the cells are colored according to the enrichment of genes from regulons in a corresponding

bin. (E) This heatmap summarizes deregulation patterns in various cortical layers of TFs that we previously identified

in the analysis of bulk data. Heatmap cells with significant associations (p-value<0.05) are framed. Regulation pattern

is estimated as normalized conditional mutual information of the association multiplied by the sign of log fold change.

https://doi.org/10.1371/journal.pcbi.1012346.g004
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manner and depending on the cellular context, it activates both pro-survival and pro-death

pathways [51]. Accordingly, in our analysis, we observed that the ATF4 regulon showed diver-

gent patterns of activity in various cell types. SOX10 being a major regulator of oligodendro-

cyte survival [45] and inhibitor of astrocyte differentiation [52] showed increased activity in

the former cell type and decreased activity in the latter cell type(Fig 4B). Or, similarly, TCF4

which is known to be a major regulator of neurogenesis [53] showed upregulation of its regu-

lon in excitatory neurons and downregulation in inhibitory neurons. Finally, we observed

strong evidence of epigenetic reprogramming, manifested either by activation or repression of

chromatin modifiers KDM5A and JARID2 target regulons in all major cell types. Taken

together, these findings illustrate cell type specific regulatory programs involved in AD, further

highlighting the generalizability of pyPAGE to single cell transcriptomic measurements.

Next, we asked whether there were patterns in the single-cell data that had remained hidden

in our analysis of bulk RNA-seq. We analyzed the cell type specific differential regulon activity

of factors that were not identified in the bulk analysis (S5A–S5E Fig and Table 2). Intrigu-

ingly, inhibitory neurons showed downregulation of factors involved in neuronal differentia-

tion (DMT3A [54], NFKB1 [55], KDM5A [56]) (Fig 4D, top panel) and, likewise, in

excitatory neurons we observed inhibition of TF regulons that characterize mature neurons

(NCOR2 [57], KDM5A [56]) (S5B Fig). Excitatory neurons also showed activation of regulons

controlled by neuroprotective factors (SIX2 [58], NR1H3 [59], TCF7 [60]) (S5B Fig). Unlike

inhibitory neurons, glial cells showed upregulation of developmental factors and similarly to

excitatory neurons activation of cytoprotective factors, such as shown, for example, by activa-

tion of regeneration programs in oligodendrocytes (NKX3-1 [61], NFKB1 [62], EMX1 [63],

IRF2 [64]) (Fig 4D, bottom panel). Together, these observations support the hypothesis that

AD pathology disrupts gene expression programs that give rise to and maintain cellular iden-

tity in neurons [65], while simultaneously triggering cytoprotective response in glia.

Spatial patterns of deregulation for AD-associated TF regulons

Beyond the cell type specificity of gene expression programs, the spatial patterning and physi-

cal organization of these cell types and functions within the brain can influence physiology in

ways that cannot be gleaned from bulk or single cell RNA-seq data. Therefore, we extended

our analysis to spatial transcriptomics data, here focusing on a Visium platform [22] dataset

from the middle temporal gyrus–which is a vulnerable region in the early stage AD [66]. For

Table 2. Summary of pyPAGE single-cell analysis of transcriptional deregulation.

Excitatory neurons KDM5A, SIX2, JARID2, NR1H3, CDX2, NCOR2, NR2F1, TCF7, DUX4,

NEUROD1, FOXJ2, AHR, THA11

Inhibitory neurons KDM5A, CDX2, ATF4, NFKB1, GATA2, JARID2, DUX4, ATF5, NANOG,

DNM3A, ZBT16

Oligodendrocytes NKX3-1, ATF4, NFKB1, KMT2A, CDX2, SOX10, MAFF, BRAC, EOMES, GFI1B,

HMBX1, EMX1, DUX4, ELF5, IRF2, GZF1, ARNTL

Oligodendrocyte progenitor

cells

BRAC, FOSL2, HOXC9, ATF4, RFX1, MEF2B, DUX4, IRF2, GLI1, NR2F1, HXA13

Astrocytes ATF4, NANOG, GATA1, NR1H3, SOX10, CRBL2, CASZ1, HMBX1, HOXC9,

SATB1, THA11

Microglia BATF, MAF, CDX2, BRAC, DUX4, HOXC9, OTX2, SOX10, GFI1B, MAFF,

FOXA1, EOMES

Pericytes ATF4, SIX2, NKX3-1, FOSL2, CDX2, HOXC9, NFKB1, MAFF, DUX4, NANOG,

HXC6, DNM3A, GATAD2A

Endotheliocytes ATF4, MEF2A, NKX3-1, FOXH1, ATF5, DUX4, KMT2A, HMBX1, ARID1B,

DNM3A, MAFF, ZNF92, ZN335, GFI1B, FOXP2

https://doi.org/10.1371/journal.pcbi.1012346.t002
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each cortical layer, we computed differential gene expression between AD and control samples

and further estimated TF deregulation using pyPAGE.

As expected, 13 of the TFs regulons that we previously identified as associated with AD in

the bulk data showed significant deregulation in at least one cortical layer in the spatial analysis

with 7 of them showing significant deregulation among all layers (Fig 4E). Intriguingly, many

of these TFs exhibit distinct spatial patterns of activation of their corresponding regulons. For

example, SOX10, DUX4, and CDX2 regulons are preferentially activated in deep cortical lay-

ers, while FOXP2 and NR2F1 regulons are active in the middle layers. While most of these

associated TF regulons were activated in AD compared to control samples, the KDM5A regu-

lon exhibits strong downregulation across all layers in AD samples. Overall, this analysis

shows that transcriptional programs affected by AD have different levels of regional specificity.

Systematic identification of RNA-binding proteins associated with

pathological post-transcriptional gene regulation in AD

In the previous sections, we explored AD-associated transcriptional programs. Following, we

performed a similar analysis of post-transcriptional programs controlled by RBPs and miR-

NAs. To do that, we computed unbiased estimates of transcript stability from MSBB RNA-seq

data using our previously developed tool REMBRANDTS [27] and then assessed differential

stability between AD patients and healthy donors. Noteworthy, in the analysis of post-tran-

scriptional regulation it is critical to use estimates of RNA turnover, which is controlled by

RNA-binding proteins and microRNAs, and cannot be substituted by differential gene expres-

sion, since it mainly reflects effects of transcriptional regulators. Further, we compiled and col-

lated an annotation of post-transcriptional regulons using multiple sources: namely ENCODE

[67] and POSTAR databases [68], as well as the Mireya Plass study [69]. By applying pyPAGE

to this new comprehensive annotation of RBP targets we were able to disentangle the contribu-

tion of each RBP to the changes in stability and uncover novel post-transcriptional regulators

associated with AD.

Utilizing the framework described above, we identified 16 candidate RBPs that are associ-

ated with differential RNA stability in AD (Fig 5A). Several of these proteins have been previ-

ously implicated in AD pathology. For example, in an earlier study, we had identified ZFP36

as a regulator of AD-related changes in RNA stability in an independent dataset [27]. Here,

pyPAGE confirmed that ZFP36 activity is indeed perturbed in AD as evidenced by upregula-

tion of the genes targeted by this RBP. Similarly, pyPAGE identified deregulation of HNRNPK

and HNRNPD, two RBPs that are silenced in AD due to epigenetic alterations [70,71]. The

HNRNPK regulon is destabilized in AD samples, indicating that this RBP acts as an enhancer

of RNA stability. In contrast, HNRNPD promotes the degradation of its regulon, which results

in an increase in their stability in AD [70,72]. The ability of pyPAGE to capture known and

novel RBP associations with AD not only confirms the utility of this approach, but also pro-

vides readily testable hypotheses around the underlying modes of regulation.

To show relevance of the inferred associations in the context of AD, we explored biological

functions of the identified RBPs. First, we looked at the mechanisms they use to control RNA

metabolism (Fig 5B). Based on existing scientific literature, most of our candidate RBPs seem

to regulate RNA stability directly upon binding either through repelling or recruiting RNA

degradation factors [73–81]. However, some of these RBPs employ other mechanisms, such as

HNRNPK which stabilizes RNA by preventing inclusion of cryptic exons during alternative

splicing–a process that is critical in several neurodegenerative diseases [82]. Further, we per-

formed analysis of overrepresented biological pathways within regulons of the identified RBPs

to characterize their role in biological processes (S8A Fig and S1 Table). This analysis revealed
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Fig 5. Deregulation of post-transcriptional regulatory programs in AD. (A) Heatmap representation of RBP

regulons that are differentially expressed between AD and non-AD which we identified using pyPAGE. Here rows

correspond to RBPs and columns to gene bins of equal size ordered by differential stability, the cells are colored

according to the enrichment of genes from regulons in a corresponding bin. The leftmost column of this heatmap

represents the differential expression of RBPs themselves. (B) Various roles performed by the identified RBPs based on

the analysis of scientific literature. In this representation colored cells represent a recorded association between a

protein and corresponding mechanism of action. (C) Deregulation patterns of the miRNA target gene-sets identified

by pyPAGE. *miR-506 targets with GTGCCTT in their 3’ untranslated region. (D) Differential activity of RBP and

miRNA regulons in various brain cell types. The codes for the analyzed cell-types: neurons (Neur), astrocytes (Ast),

oligodendrocytes (Oli), oligodendrocyte progenitor cells (Opc), microglia (Mic). Differential activity of RBP regulons

was estimated based on differential rates of RNA splicing and degradation. miRNA regulons were analyzed using only

estimates of degradation rates. In these heatmaps significant associations (p-value<0.05) are marked by colored

frames. Regulation pattern is estimated as normalized conditional mutual information of the association multiplied by

the sign of log fold change.

https://doi.org/10.1371/journal.pcbi.1012346.g005
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that these RBPs play a crucial role in regulating stability of various transcriptional regulators

and genes involved in molecular signaling, including those associated with G protein-coupled

receptor activity and kinase interactions. Differential activity of these RBPs in AD might in

part explain observed deregulation of transcriptional programs via direct or indirect interac-

tions. Additionally, the analysis of pathway enrichment within RBP regulons showed that a

handful of the identified RBPs such PABC4, DROSHA, RPS3 and LARP4 are involved in the

regulation of oxidative pathways which might be the root cause of AD-related mitochondrial

dysfunction [83] and metabolic deficiencies [84].

Identification of post-transcriptional programs governed by microRNAs in

Alzheimer’s disease

MicroRNAs are another major class of post-transcriptional regulators that have been previ-

ously associated with AD pathology [85]. Though many miRNAs have been reported to change

their expression in the context of AD [85], there has been no systematic effort to infer their

activity from changes in expression of their downstream targets. We sought to fill in this gap

by applying pyPAGE to analyze AD-related coordinated changes in RNA stability of all anno-

tated sets of miRNA targets, and identified eight candidate miRNA regulons (Fig 5C). In most

cases AD-specific deregulation patterns of miRNA target genes were characterized by an

increase in their stability. This suggests reduced activity of the miRNAs, which is in line with

the notion that AD neurons lose the ability to process miRNAs [86]. Six out of eight identified

miRNAs were previously associated with AD and its pathological mechanisms [87–91]. Func-

tional analysis of genes regulated by these miRNAs (S8B Fig and S1 Table) showed that they

largely control neuronal processes (neurogenesis, differentiation and signaling). Taken

together, the marked deregulation of the identified miRNAs combined with their potential

roles in AD and/or brain function makes them an attractive list of targets for further focused

research.

Cell-type specific analysis of post-transcriptional regulatory programs in

AD

Similar to our characterization of cell type specific patterns of transcriptional regulons, we

next assessed the activity of RBP- and miRNA-driven regulons in each of the disease-relevant

cell types. For this, we analyzed single cell RNA-seq data from Morabito et al. [21], which con-

tains cells from both neuronal and glial lineages. Since RNA stability is difficult to estimate

directly from single cell RNA-seq data, we used functions from the ‘velovi’ package [92] for

inference of RNA splicing and degradation rates within each cell type and compared healthy

and AD donors. These estimates present an unbiased view of post-transcriptional regulation

by controlling for the effect of transcriptional activity. Given their known regulatory functions,

we used both differential stability and splicing rates to test for differential RBP activity. For

miRNAs, on the other hand, we focused primarily on differential stability rates.

This analysis confirmed that the post-transcriptional regulatory programs we had previ-

ously identified in bulk RNA-seq data were predominantly deregulated in cells of glial lineage,

and to a lesser degree in neurons (Fig 5D). Oligodendrocytes, astrocytes, and oligodendrocyte

progenitors predominantly showed an increase in splicing rates and a decrease in degradation

rates of RBP regulons in AD samples compared to controls. Neurons, on the other hand, did

not exhibit broad changes in splicing rates and only a few RBP regulons showed changes in

their degradation rates. Results from miRNA regulons, however, were less concordant between

the single-cell and bulk data modalities. Four out of eight miRNAs we identified above showed

significant deregulation patterns, and only in two cell types. We observed a significant decrease
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in the stability of miR-106b-5p and miR-20A-5p regulons in microglia. Interestingly, upregu-

lation of miR-106b-5p marks microglial activation [93], suggesting that its potential role as a

regulator of inflammatory response in AD. Astrocytes showed a significant increase in the sta-

bility of miR-124-3p and miR-506-3p regulons, which are known to be critical for astrocyte

transdifferentiation into neurons [94] and neuronal proliferation [95], respectively. In line

with the importance of glia in AD pathology, overall our data highlights that most prominent

patterns of miRNA and RBP regulon perturbations occur in non-neuronal cells.

pyPAGE identifies deregulation of post-transcriptional programs as a

major source of heterogeneity within the cohort of Alzheimer’s patients

Finally, we employed pyPAGE to describe clinical implications of deregulation of the previ-

ously discovered master regulators. For that, we performed an analysis of their activity in each

individual sample, measured using conditional mutual information (CMI) values that are pro-

vided by pyPAGE as part of its output. Here, the information criterion was estimated between

the target genes and the standardized gene expression/transcript stability profile of each sam-

ple. As mentioned earlier, one of the benefits of using CMI is that it both captures monotonous

changes in regulon abundance (S9A Fig) as well as non-linear patterns, which allows pyPAGE

to efficiently measure regulon activity in individual samples.

Based on estimated activities of transcriptional and post-transcriptional regulons, we used

Cox regression to assess associations between regulon activities and patient survival. Interest-

ingly, we found that post-transcriptional programs are most strongly associated with patient

survival, represented mainly by RBP regulons (LIN28A, HNRNPD, EWSR1, FXR1, HNRNPK,

ILF3, PCBP1) and a few miRNA regulons (miR-302C-5P and miR-6825-5P) (S9C Fig). Using

activity estimates of these RBP regulons, we performed unsupervised clustering of samples.

This resulted in two clusters (Fig 6A), showing starkly different levels of activity of several

RBPs. Remarkably, in this stratification low activity of the selected RBP regulons was associ-

ated with shorter survival (p-value = 0.007 of the Kaplan–Meier (log rank) test (Fig 6B) and

hazard ratio of 4.84 (p-value = 0.012) of the Multivariate Cox model (Fig 6D)). In comparison,

no other major biological covariate, such as age, sex and cognitive state, had a significant effect

on survival (Fig 6D). Next, we established that the activity estimates of RBPs in samples from a

group with shorter survival was similar to those observed in healthy samples (Fig 6C). This

observation indicates that modulation of these post-transcriptional programs is likely a com-

pensatory mechanism that helps mitigate effects of AD progression. Following this analysis we

asked whether the samples from the group with low RBP activity can be further stratified

based on the activity of the target RBPs. In a new stratification of these samples we found two

sub-clusters, among which the one with higher activity showed increased survival as compared

to the subcuster with lower RBP activity (p-value = 0.037 of the Kaplan–Meier test) (S9D Fig).

These results highlight the underexplored significance of post-transcriptional regulation in

AD and their potential clinical utility in improving patient stratification.

In order to identify underlying genetic root causes of the observed heterogeneity among

AD patients, we performed differential analysis of genomic variants enrichment between the

two identified groups of patients (Table A in S1 Text). Specifically, we looked at the AD-

related GWAS [96] polymorphisms and polymorphisms related to genes of the analyzed RBPs.

In this manner we have identified that patients with a longer lifespan are characterized by AD-

related genomic variants in the upstream regions of CD55, PLK2 and SAP18 protein-coding

genes. On the other hand, patients in the second group are characterized by variants upstream

of STC1 and SCARA3 genes. The analysis of mutations associated with the RBPs showed that

longer lifespan is associated with an upstream variant of PABPC4 gene and conversely shorter
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lifespan is related to two intronic variants in FXR1 and LARP4 genes. Incidentally, among

these RBPs only FXR1 shows differential activity patterns between samples which makes it a

primary subject for further research of the proteins which influence AD survival time.

Discussion

Understanding the patterns of gene expression regulation in a biological system is a challeng-

ing task, but one which holds the potential to provide valuable insights into key factors con-

trolling the behavior of a biological system. In this paper, we propose a systematic approach

for exploration of gene regulation based on the analysis of regulon activity, which we imple-

mented in our framework called pyPAGE. This new framework addresses two major problems

Fig 6. Association of activation of post-transcriptional regulation programs with survival of patients with AD. (A)

Heatmap representing differences in the activity of the previously identified post-transcriptional regulons in AD

samples. Factors which activity is significantly associated with survival are underscored. The dendrogram reflects the

results of unsupervised clustering of samples based on activity of factors associated with survival. (B) Kaplan-Meier

curve representing the difference in survival between two groups of patients stratified based on the activity of post-

transcriptional regulons. (C) Comparison of the activity of selected RBP regulons in healthy samples and samples from

two AD clusters. (D) Summary of the Cox regression analysis.

https://doi.org/10.1371/journal.pcbi.1012346.g006
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that complicate our understanding of gene expression: technical variation and the combinato-

rial action of multiple regulatory factors. First, by focusing on the differential activity of regu-

lons rather than individual genes, pyPAGE becomes more robust to random variations in

data. Second, by conditioning the association of gene expression with a particular regulon on

the number of regulons each gene is associated with, pyPAGE effectively uses the structure of

an interaction network to more efficiently disentangle perturbation responses of multiple fac-

tors. In settings with simulated data, pyPAGE outperforms other commonly used tools and

demonstrates its robustness to noise in the input, such as data sparsity. We show that pyPAGE

can be used for inference of changes in regulatory programs both on transcriptional and post-

transcriptional levels and in bulk and single-cell data modalities.

In this study, we have showcased applications of pyPAGE to large RNA-seq datasets, both

single-cell and bulk, in the context of Alzheimer’s disease. We were able to recapitulate a num-

ber of previously known regulons and uncover new insights into the potential role of multiple

TFs, RBPs and miRNAs in AD. Deregulation of the target genes controlled by these regulatory

programs might explain pathological changes in AD, as they control key biological processes

such as cell cycle progression, cellular signaling, neurogenesis, proteostasis and mitochondrial

functions. By using single cell data of healthy and AD samples, we were able to capture the cell

type specific patterns of the identified regulon that otherwise remained obscure in the analysis

of bulk data. We found that AD-associated deregulations in gene expression in neurons are

modulated primarily at the transcriptional level, whereas glial gene expression reprogramming

is predominantly due to aberrant activity of post-transcriptional regulators. We further lever-

aged pyPAGE for the inference of regulatory programs hidden in the bulk data and uncovered

characteristic upregulation of developmental TF regulons in most brain cell types. Similarly,

we have identified that miR-124-3p, one of the key miRNAs that is depleted in AD brains,

most strongly affects astrocytes, potentially blocking their transdifferentiation into neurons

[94].

Like most complex human diseases, AD is a heterogeneous disease, likely with multiple

molecular subtypes. Our results indicate that the activity of the various regulatory programs

identified can be used to risk-stratify AD patients. In our stratification, patients with higher

activity of several RBPs, in particular those associated with oxidative pathways, showed overall

better clinical outcomes. As new therapeutic strategies against AD emerge, knowledge of these

regulatory programs may allow for better stratification of responders and non-responders

among the patient population.

Materials and methods

Analysis of bias in gene-set annotations

To demonstrate specific properties of gene-set membership distribution, we analyzed several

commonly used annotations of gene-sets. Specifically, we examined annotations of biological

pathways and miRNA targets [38] from MSigDB [3,97], TF regulons from Vorontsov et al.

[37] and RBP regulons which we compiled ourselves. For each gene in an annotation we, first,

calculated the number of gene-sets each gene is a member of, then, divided these values into

several equally sized bins and then showed that this distribution can be closely approximated

with the power law. In each case we report the inferred gamma parameter of the distribution

and the R2 statistics. We observed that for several annotations the long tail of the gene-set

membership distribution deviates from the power law, indicating bias in annotations.

We further explored the possible sources of bias observed in annotations. Firstly, we ana-

lyzed the association between the number of protein interactions and the protein abundance.

To determine the number of interactions, we utilized the STRING database [98] considering
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only physical interactions with a confidence score greater than 0.9. As a source of protein

abundance data we used proteome measurements from HEK-293 cells [99]. Secondly, we ana-

lyzed the association between pathway membership and citation index [100] for each gene in

the annotation of biological pathways. In both cases we were able to show that there is a linear

relationship between the analyzed variables indicated by high correlation values.

pyPAGE algorithm

The computational framework implemented by pyPAGE includes three key steps. First, it pre-

processes the input data by discretizing the differential gene expression profile into equally

sized bins and converting a gene-set annotation into a binary format. Second, it performs esti-

mation of conditional mutual information between differential gene expression and each

gene-set. Here the metric is conditioned on the gene-set membership profile which is also dis-

cretized into several bins.

Formula for calculating conditional mutual information is presented below:

IðX;YjZÞ ¼
X

z2Z
pZðzÞ

X

y2Y

X

x2X
pX;YjZðx; yjzÞlog

pX;YjZðx; yjzÞ
pXjZðxjzÞpYjZðyjzÞ

ð1Þ

In our algorithm, X stands for a set of bins in the expression vector (by default 10 bins), Y

for a set {0, 1} which represents presence or absence of a gene in a regulon and Z is a set of bins

(by default its size is 3) into which we discretize gene-set membership. Prior to computation of

the metric, no probability smoothing is performed. In order to speed up our method, we

implemented an efficient computation of the metric using numba package [101].

Following estimation of conditional mutual information, the program estimates the signifi-

cance of the inferred associations. For this, a non-parametric testing procedure is imple-

mented. The differential expression profile is randomly shuffled multiple times and at each

iteration the conditional mutual information is calculated between these profiles and the scru-

tinized gene-set. Then the significance of the association is inferred as the proportion of cases

when the CMI of randomly permuted differential expression profile turned out to be greater

than CMI of the original profile. This procedure is applied to a list of gene-set in a descending

order of the CMI calculated at the second step. When multiple insignificant associations (by

default 5) come in a row, the testing stops.

pyPAGE may also use an additional filtering procedure which is applied from top-to-bot-

tom to the list of most informative gene-sets. Each next gene-set is required to fulfill following

requirement:

Iðcandidate gene set; expressionjaccepted gene setÞ
Iðcandidate gene set; accepted gene setÞ

> r ð2Þ

r represents an increase in the amount of information and its optimal values typically lie

between 0 and 0.5 (by default it is set to 0.1). The idea behind this procedure is that in the final

output should be a representative set of gene programs (regulons), where each new entry adds

a significant amount of information to the information that is already present in the selected

ones. It is important to note that this filtering is not related to annotational biases and so can

not replace estimation of conditional mutual information in the first place.

The final output of pyPAGE consists of gene-sets that, first, exhibit significant association

with expression represented by high CMI and, second, pass a redundancy test. The resulting

list can be additionally filtered using multiple testing correction methods. However, in practice

we observe that all gene-sets that pass previous tests pass the Benjamini–Hochberg procedure.

In the end results are reported in the form of a table. It also has an option of the graphical
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output, which is a heatmap representing gene-set members enrichment within equally sized

bins ordered by differential gene expression. To quantify the level of over- and under-repre-

sentation in each bin, we employ the hypergeometric test to calculate two distinct p-values:

one for the likelihood of observing fewer genes from the same gene-set in a given bin (under-

representation), and another for the probability of observing more genes (over-representa-

tion). If the p-value for over-representation is lower than that for under-representation, we

consider the gene-set to be over-represented in that bin; otherwise, it is considered under-rep-

resented. The minimal p-value is then log-transformed, and multiplied by -1 if the gene-set is

over-represented.

pyPAGE is implemented as a python package and is openly available at https://github.com/

goodarzilab/pypage.

Tests

In order to validate various aspects of pyPAGE execution we have developed a series of tests

based on simulated data. Our main focus was on proving that the program is robust to gene-

set annotation biases. To do that we evaluated its average performance using artificial datasets

and benchmarked it against other programs. We also conducted two additional tests to dem-

onstrate consistency of pyPAGE predictions. Though to produce highest performance

pyPAGE needs to receive clean data with strongly manifesting biological signals, we still

expected the program to perform decently in various adversarial cases. By subsampling the

original input and by modulating the robustness of signals encoded in the data, we wanted to

show at which cost the reduction in input quality is to the overall performance. The full

description of the tests is provided further.

Simulating differential expression

All implemented tests required simulating differential gene expression data. Though in princi-

ple pyPAGE does not depend on any particular type of the input distribution, we decided to

make the input data realistic. So, we based the simulation on the actual gene expression esti-

mates from a real biological system, which in this case was activation of murine CD4 T cells

(PRJNA296380) [102]. Starting off with fastq files, we first applied Salmon [103] to quantify

gene counts and afterwards applied DESeq2 [68] to estimate differential gene expression

between two groups of samples. To produce an arbitrary amount of simulated gene expression

profiles using this data, we performed random shuffling of the data across genes. This proce-

dure minimized the informational content which had been in the data initially. We demon-

strated that by performing pyPAGE gene-set enrichment analysis of terms from biological

pathway annotation using original and augmented data. While the analysis of the original data

reported 76 pathways, using simulated data pyPAGE on average reported only 3.36 pathways

(standard deviation = 1.80). Though this procedure removes almost completely any informa-

tional content, it preserves the properties of the original data distribution. Moreover it can be

repeated multiple times to produce many samples of simulated differential expression profiles.

Simulating pathway annotations

In addition to the differential expression profiles, each test needed a simulated pathway anno-

tation. To be able to assess the performance of pyPAGE at later stages, during annotation

design whether a gene-set is deregulated or not should be directly encoded in its structure.

And so our goal was to create annotations each containing in total 1100 gene-sets, among

which 100 are known to be deregulated in the corresponding differential gene-expression pro-

file. The number of genes that went into a newly designed gene-set chosen based on the
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distribution of sizes of TF regulons [37]. To simulate unperturbed gene-sets we randomly

picked the necessary number of genes. To imitate deregulated gene-sets, we used genes that

are either over- or under-expressed in the corresponding simulated data; the details of simulat-

ing such gene-sets are described in the following paragraph.

When simulating deregulation our objective was to imitate patterns observed in real sys-

tems, so as to avoid making the task of predicting gene-set deregulation too easy or too diffi-

cult. In a real case scenario genes of a deregulated gene-set are not always exclusively found

among the most overexpressed or underexpressed genes, rather the signal is distributed over

the whole range of values. Likewise, in our simulation we built probabilistic models to control

which genes go into a newly formed gene-set. We aimed that the resulting distribution of dif-

ferential gene expression in each gene-set should match the truncated normal distribution on

an interval between -1 and 1 with predefined parameters. So for each gene-set we first defined

a distribution of expected differential gene expression, then randomly sampled a number of

values from it and selected those genes from a simulated differential expression profile which

most closely matched these values. Parameters of the expected distribution were also selected

randomly. For an upregulated gene-set, its mean was picked randomly from a random distri-

bution in an interval between 0.5 and 1, for a downregulated gene-set the interval was between

-1 and -0.5. The standard deviation was uniformly selected in the range between 0.1 and 0.2.

To simulate dual regulation, we mixed genes selected for an upregulated gene-set with those of

a deregulated one. Finally, to imitate biological and technical noise to each gene-set we added

a randomly selected group of genes. The ratio of randomly added genes was controlled by sig-

nal-to-noise ratio, which in the general case was set to 33%.

The resulting gene-set annotations were unbiased with gene-set membership following

approximately normal distribution. To produce biased annotations, we needed to add bias

externally. And so we selected 2000 genes which would represent genes with promiscuous

activity. Then each gene-set in an annotation was concatenated with additional 100 genes ran-

domly selected from this group. The idea behind this approach is that added genes would

occur much more frequently than all other genes effectively creating bias in gene-set member-

ship distribution.

Benchmarking pyPAGE

Using the artificial datasets containing simulated differential expression and gene-set annota-

tions, we were able to analyze pyPAGE effectiveness and compare it with other programs:

iPAGE and fgsea. The test was basically a classification task: each program needed to predict

deregulated gene-sets. The performance was judged based on the knowledge of true patterns

of regulation which were encoded in simulated annotation. We used multiple metrics to assess

performance of programs which were averaged across 20 iterations with different sets of simu-

lated data. To present these results we plotted ROC (receiver operating characteristic) curves,

PR (precision recall) curves, DET (detection error tradeoff) curves, FDR (false discovery rate

curves) curves and calculated respective AUC (area under the curve) scores. Since the number

of unperturbed gene-sets was much greater the most relevant metric in this task was PR-AUC

score. Programs were tested in 4 different conditions to reflect the effect of bias and non-linear

regulation on the quality of predictions.

Robustness test

Since in practical applications, the input data of a gene-set can often be corrupted, we devel-

oped two tests to explore how robust pyPAGE is to the augmentation of the input. The first

strategy that we implemented for simulating input perturbation was increasing the amount of
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noise in the data. In the previous we set signal-to-noise ratio to 33%, however here we varied

this parameter in the range between 0 and 100%. The second type of augmentation we used

was implemented by randomly subsampling the input data. We iteratively decreased the num-

ber of genes in the input by 5% measuring pyPAGE performance. Both tests output pyPAGE

sensitivity changes in response to input modulation.

Analysis of Alzheimer’s disease

To characterize perturbation of transcriptional and post-transcriptional programs in AD, we

analyzed bulk RNA-sequencing dataset from MSBB study [18]. We focused on samples of

BM36 brain region and considered only those that either were annotated as definitely patho-

logical or normal, which left 163 samples. After that we processed the input fastq files with

Salmon [103] to quantify gene counts, which we analyzed using DESeq2 [24]. As part of

DESeq2 analysis, we performed principal component analysis, which showed that samples

cluster within 4 groups corresponding to a sex of the donor and a batch group. Each of these

groups contained both healthy and pathological samples, however one of the batch groups

showed poor separation between healthy and pathological samples and so we excluded them

from our analysis. For the remaining 97 samples we estimated fold change of each gene and

corresponding p-values, doing so separately for male (35 samples) and female (62 samples). In

order to account for any sex-specific variation, we combined estimated p-values using a modi-

fied inverse chi-square method for correlated tests [104] as well as values of log fold change

using mean. Afterwards we quantified differential gene expression using the following for-

mula:

DE ¼ ð1 � p valueÞ � signðlogðfold changeÞÞ ð3Þ

Finally, we used these estimates to perform pyPAGE analysis of TF regulons deregulation

using gene-sets from Vorontsov et al. [37] (full description of the annotation is provided in

Table B in S1 Text). For this run we used the following set of parameter values: alpha 0.01,

redundancy ratio 0.2, number of expression bins is 10 and the number of bins into which the

gene-set membership vector is split is 3. The overall summary of this and following pyPAGE

experiments can be found in Table C in S1 Text.

In order to analyze post-transcriptional regulation, we first needed to estimate differential

transcripts stability. To do this we first applied Salmon [103] to quantify separately exonic and

intronic counts and then applied REMBRANDTS [27] to produce unbiased estimates of stabil-

ity for each sample. Next using t-test we compared stability between pathological and normal

samples; the resulting p-values and fold changes were used to quantify differential stability

similarly to how we estimated differential gene expression. Finally, based on these estimates

pyPAGE was able to infer deregulation patterns of RBP regulons from our newly compiled

annotation and microRNA targets [38] from MSigDB [3,97] (Table C in S1 Text). pyPAGE

analysis of RBPs was done with alpha set to 0.05, redundancy ratio 0.3, number of expression

bins 10, gene-set membership bins 3. miRNAs were analyzed using number of expression bins

10, gene-set membership bins 3, alpha 0.01 and no redundancy filtering, instead we selected

only those miRNAs whose targets were significantly enriched either among top differentially

upregulated genes or top differentially downregulated genes. This was done because we wanted

to limit our analysis to the strongest signals in the data.

Cell-type specific deregulation patterns were estimated using single cell data. For this pur-

pose we used two datasets. In both cases we relied on prior annotation of cell-types provided

by the authors of the studies. One was an already processed dataset presented by the ROSMAP

study [20]. The dataset contained 70634 cells from 48 donors and was balanced in respect to
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pathology and sex covariates. We used it for the analysis of TF regulons. There within each cel-

lular type cluster we applied t-test to estimate differential gene expression between cells from

AD and non-AD samples. Then pyPAGE was used to estimate deregulation of TF regulons

within each cell type. To analyze activity of the regulators that we previously detected in our

analysis we set redundancy ratio to 0.0 and alpha to 1.0, this prevented pyPAGE from truncat-

ing its input only to significant associations. In addition we also ran pyPAGE with redundancy

ratio being set to 0.3 and alpha to 0.05 which allowed us to identify TFs whose perturbation

remained hidden in the bulk data. For the analysis of RBP and miRNA deregulation, we used

another single cell RNA-seq dataset from Morabito et al. [21]. In this data there were 18 sam-

ples in total of which 11 were from AD patients (6 female, 5 male) and 7 from healthy donors

(2 female, 5 male). In total there were 61472 cells. We processed this dataset de novo using cell-

ranger [105] and velocyto [106] in order to finally run velovi [92]. We applied velovi to single

cell datasets of individual samples in order to estimate patient specific rates of RNA splicing

and degradation in each cellular type. In the end in a manner similar to how we estimated dif-

ferential gene expression, here we used t-test to estimate differential kinetic rates between

patients with and without AD. Based on the differential splicing and degradation rates, using

pyPAGE we were able to infer the activity of RBP regulons. To analyze miRNA regulons, we

used only differential degradation rates. With RBPs and miRNAs we only wanted to get esti-

mates of differential activity of the factors identified in bulk analysis, so in all of the cases we

set redundancy ratio to 0.0 and alpha to 1.0.

Spatial analysis of TF deregulation patterns was performed using sequencing data from the

Visium platform of the middle temporal gyrus [22]. In total the dataset had 25293 (22085 after

filtering out ones with less than 2000 gene counts) spots from 6 cortical slices (3 healthy and 3

AD). The count data was scaled and then log normalized after which we computed differential

gene expression between AD and control samples using the Wilcoxon test. This was done for

each cortical layer relying on their prior annotation. Further, we applied pyPAGE to estimate

differential activity of TFs that we previously identified as associated with AD. In the end for

each TF in each cortical layer we report its deregulation pattern computed as normalized CMI

multiplied by the sign of log fold change and its significance.

We also analyzed the association between the activity of the identified regulons and

patients’ survival. To do this, we analyzed another bulk RNA-seq dataset from the ROSMAP

study [107] stored in the Synapse database under syn21589959. The samples were from dorso-

lateral prefrontal cortex and posterior cingulate cortex. We considered only samples from AD

patients for whom the age the disease was first diagnosed was not censored. This left us with

46 samples. For these samples we performed gene expression quantification using salmon and

then normalized these estimates. We then used this normalized gene expression to quantify

activity of TF regulons in each sample using pyPAGE estimates of conditional mutual infor-

mation. Similarly, we used salmon and REMBRANDTS to estimate transcripts stability in each

sample and afterwards used normalized stability to infer activity of RBP and miRNA regulons.

Activity of regulons was estimated on a per-sample basis, so that instead of differential expres-

sion/stability, pyPAGE was run with normalized expression/stability values for each sample.

Next, we used regulon activity in Cox Proportional-Hazards Model to identify factors associ-

ated with survival of AD patients. Based on this we selected regulons which were significantly

associated with survival. We then analyzed patterns of activity of these regulons in various

samples and effectively excluded those regulons which did not show any marked difference in

their activity between different samples. Then based on the activity of the remaining regulons

we performed clustering of samples which resulted in two big clusters. Next, we used this strat-

ification to analyze its association with survival. For this, we built Kaplan-Meier curve and

PLOS COMPUTATIONAL BIOLOGY pyPAGE: A framework for Addressing biases in gene-set enrichment analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012346 September 5, 2024 23 / 34

https://www.zotero.org/google-docs/?J7UEaH
https://doi.org/10.1371/journal.pcbi.1012346


performed Cox Proportional-Hazards Model which incorporated other AD relevant covariates

such as sex, APOE genotype, Braak score, Cerad score.

For the two clusters that we identified in our survival analysis we looked at the polymor-

phisms that characterize these groups using a complementary WGS dataset (syn2580853). In

particular we considered 2 categories: those that are associated with AD polymorphisms from

GWAS catalog [96] and those that are associated with the RBPs from our analysis. We report

variants that are enriched in one group of samples (present in over 80% of samples) or depleted

in another (present in fewer than 20% of samples).

Characterization of regulon functions

We describe the functions of the identified TF, RBP and miRNA regulons based on the enrich-

ment of molecular pathways among their members. To do that, we used a statistical overrepre-

sentation test from PANTHER [108], which includes multiple testing corrections. This test

estimated the significance of pathway enrichment within a set of all genes that are targets of a

specific factor. Then we aggregated the inferred functions of each regulon and presented them

in a heatmap form.

For RBPs we also characterize their roles in various RNA metabolic processes. This was

done based on manual curation of scientific literature. We describe RBP associations with fol-

lowing molecular mechanisms: alternative splicing [109–116], RNA editing [117–119], polya-

denylation [120], RNA export [121,122], stress granule formation [123,124,124–129], RNA-

decay [72,130–132], RNA stabilization [73–81] and miRNA functions [132–137].

ENCODE processing

The ENCODE eCLIP data [67] was available for two cell lines: HepG2 and K562. In total,

there were 234<RBP, cell type> pairs (687 samples including replicates, and matched controls

for each RBP). RBPs with no matched control or with matched control only (without the

experiments) were excluded from the analysis resulting in the final set of 222 <RBP, cell type>

pairs. The data were analyzed as follows: (1) reads were preprocessed as in the original eCLIP

pipeline [138], (2) trimmed reads were mapped to the hg38 genome assembly using hisat2

[139], (3) the aligned reads were deduplicated [138], (4) the uniquely and correctly paired

reads were filtered with samtools [140], (5) gene-level read counts in exons were obtained with

plastid [141] using gencode v31 comprehensive gene annotation [142], therefore joint read

counts were obtained for genes with overlapping annotations, (6) differential expression analy-

sis against matched controls was performed with edgeR [26], (7) Z-Scores were estimated for

each gene across data for all RBPs for the fold change values estimated in (6). Based on (6) and

(7) reliable RNA targets of each RBP were defined as those passing 5% FDR, raw log2FC > 0.5,

Z-Score(log2FC) > 1.645. The processed data is stored in S2 and S3 Tables.

Supporting information

S1 Fig. Bias in gene-set annotations. (A) Characteristics of a gene-set membership degree dis-

tribution in the TF regulons annotation. The top plot represents the observed distribution

with a power law function being fit to it. We also report the gamma parameter of this distribu-

tion and the R2 The bottom plot represents the deviation of the observed distribution from the

power law. (B) Similar representation for RBP regulons. (C) Similar representation for

miRNA targets. (D) Similar representation for GO pathways.
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S2 Fig. Performance of pyPAGE benchmarked against iPAGE and fgsea in various simu-

lated conditions. For comparison we used multiple metrics, results are presented as ROC, PR,

DET curves and plot of dependency between alpha and FDR.

(TIFF)

S3 Fig. Variation in expression of TF regulons. (A) Boxplots representing expression of TF

regulons which were identified using pyPAGE in AD and non-AD samples from female and

male donors. (B) Boxplots representing expression of the same TF regulons in AD and non-

AD samples in different age cohorts.

(TIFF)

S4 Fig. Top 100 of pathways enriched in TF regulons. (A) Heatmap representing biological

pathways that are enriched among targets of TFs we have identified in our analysis. Here we

present top 50 pathways which are significantly enriched in most of the regulons excluding

several generic terms, like “molecular process”. (B) This heatmap represents another 50 path-

ways significantly associated with the analyzed TFs.

(TIFF)

S5 Fig. Cell-type specific patterns of TF target genes deregulation in AD. (A) Differential

activity of TFs in excitatory neurons inferred using pyPAGE based on the analysis of single-

cell RNA-seq data. (B) TF regulons deregulated in inhibitory neurons. (C) TF regulons dereg-

ulated in astrocytes. (D) TF regulons deregulated in oligodendrocyte progenitors. (E) TF regu-

lons deregulated in microglia. (F) TF regulons deregulated in oligodendrocytes. (G) TF

regulons deregulated in endotheliocytes. (H) TF regulons deregulated in pericytes.

(TIFF)

S6 Fig. Correlation between the expression of RBPs and their regulons’ average stability.

The barplot representing the correlations between the expression of RBPs and the average sta-

bility of their regulons. Asterix indicated significant correlation (p-value<0.05).

(TIFF)

S7 Fig. Variation in expression of TF regulons. (A) Boxplots representing stability of RBP

regulons which were identified using pyPAGE in AD and non-AD samples from female and

male donors. (B) Boxplots representing stability of the same RBP regulons in AD and non-AD

samples in different age cohorts. (C) Boxplots representing stability of miRNA targets within

AD and non-AD samples from female and male donors. (D) Boxplots representing stability of

miRNA targets within AD and non-AD samples from different age cohorts.

(TIFF)

S8 Fig. Top 100 pathways enriched in RBP and miRNA regulons. (A) Heatmap representing

biological pathways that are enriched among targets of TFs we have identified in our analysis.

Here we present only the top 100 pathways which are significantly enriched in most of the reg-

ulons. (B) Similar representation for miRNA targets.

(TIFF)

S9 Fig. Association of expression of a subset of HOX genes with survival of patients with

AD. (A) Comparison of the similarity between various regulon activity metrics, namely condi-

tional mutual information (CMI), mean regulon abundance and the expression of a factor

itself. (B) Heatmap representation of activity of transcriptional regulons in different patients.

(C) Bar Plot representing significance of association of activity of each previously identified

regulon with patient’s survival. (D) Kaplan-Meier curve representing the difference in survival

between two groups of patients stratified based on the activity of post-transcriptional regulons
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