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x 

 

Stem cells, including embryonic stem cells (ESC) and induced pluripotent stem 

(iPS) cells, have been speculated as tools for studying development as well as prospective 

sources for tissue engineering.  However, a major challenge in building tissues and 

organs is the lack of a vascular system.  The development of the vascular system in vivo, 

starts with ESC differentiating into vascular progenitor cells (VPC), which further 

differentiates into endothelial cells (EC) and smooth muscle cells (SMC).  Studying EC 

differentiation and the synergistic effects of molecular, cellular, and physical cues that 

drive blood vessel formation can provide researchers with the means to develop larger 

tissues in vitro, as well as therapies against vascular diseases in adults.  The guidance of 

stem cell differentiation has largely relied on biochemical factors, but the precise 

combinatorial signals in the vascular niche has yet to be defined.  In this study, 

mechanical signaling and patterning was explored by probing various components in the 

microenvironment. Specifically, I 1) studied stiffness directed vascular differentiation, 2) 

generated vascular patterns with use of biomimicry; 3) optimized human stem cell EC 

differentiation to form vascular networks. 
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Chapter 1: Introduction 

1.1 Background 

 The cellular microenvironment is a complex system composed of biochemical 

signaling, cell-to-cell signaling, and matrix components with distinct biochemical 

composition, architectural structure and corresponding mechanical signals.  Due to this 

complexity, the precise combinatorial signals in the vascular niche, particularly as they 

change over time, have yet to be elucidated.  

 

Understanding the various signals in the vascular niche during vasculogenesis and 

angiogenesis, are important in the field of medicine, as dysfunctions in the system cause 

numerous pathologies including atherosclerosis and tumor angiogenesis.  In tissue 

engineering, recapitulating the vascular environment is essential to be able to generate a 

thick enough tissue to facilitate organ regeneration.  The fundamental building block to 

both vasculogenesis and angiogenesis are endothelial cells (EC), which line all blood 

vessels and are responsible for regulating metabolism, development, healing, 

regeneration, and immune response in the body.  Their multifaceted nature is coupled 

with the presence of other important cell types, like smooth muscle cells (SMC) and 

fibroblasts that form each blood vessel. 

 

By deriving vascular EC from stem cells, they can be applied to therapeutic 

applications, including new vessel formation or for use in drug testing in vitro.  ESC and 

iPS are known for their self-renewing properties and their ability to differentiate into all 

cell types in the body.  These characteristics make ESC and iPS appealing tools for 

therapeutic strategies and developmental models.  The derivation of EC from ESC/iPS 

can be utilized in regenerative therapies to treat cardiovascular diseases, like 

revascularization of ischemic tissue in patients exhibiting other vascular damage [2, 3].  

The capability of stem cells to become any cell type in the body is an exciting tool in 

regenerative medicine, but also poses a challenge to mimic the vascular niche in the 

differentiation process.   

 

The development of embryonic vascular networks is temporally and spatially 

coordinated through various soluble signals in the surrounding microenvironment which 

provides differentiation, migration, and positioning cues.  The guidance of stem cell fate 

has largely relied on biochemical signals, such as growth factors, and is typically 

confined to a 2D environment.  Recently, the extracellular ‘niche’, including its 

mechanical environment, has been shown to influence the fate of stem cells in vitro [1].  

Understanding how mechanical signals in both 2D and 3D microenvironments will 

enable the study of normal and pathological development processes for the future of 

regenerative medicine. 

 

1.1.1 Vasculogenesis in the embryo 

The development of the vasculature is vital once the growing embryo reaches a 

size in which passive diffusion cannot adequately supply cells with oxygen and nutrients.  

Vasculogenesis describes the process of de novo formation of blood vessels in the 
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embryo that arise from endothelial precursor cells (EPC) or angioblasts derived from the 

mesoderm to form a primitive vascular plexus and form the first blood vessel network 

[2].  The vascular plexus undergoes further remodeling (angiogenesis) where growth, 

migration, sprouting, and pruning of these progenitor cells leads to the development of a 

functional circulatory system.  As the network matures, pericytes and SMC stabilize the 

network and provide contractile support and integrity to the newly formed vessels [3, 4].  

Vasculogenesis within the embryo is spatially divided within extra- or intra- embryonic 

compartments. Extraembryonic vasculogenesis initially forms by the blood islands 

assembling within the mesodermal layer of the yolk sac [5].  Blood islands form a 

functional network that facilitates the transfer of nutrients from the yolk sac to the 

embryo. Intraembryonic vasculogenesis has been shown to occur throughout the 

mesoderm layer, with the endocardium being the first endothelial structure formed at 7.3 

days post-coitum (dpc) [2].  As the heart enlarges, the coronary vasculature is formed to 

supply nutrients and remove waste from the newly forming heart tissue.  Endothelial and 

smooth muscle precursor cells that develop the heart tube undergo epithelial-to-

mesenchymal transformations to give rise to capillaries, arteries, and veins of the 

coronary vasculature [6]. 

 

1.1.2 Vascular progenitor cells 

The differentiation of the vasculature is divided into three stages: determination, 

differentiation, and maturation.  Vascular smooth muscle cells (VSMC) and pericytes 

share a common progenitor with EC [7], and are the primary cells derived from vascular 

progenitor cells (VPC).  The distinction between VCMC and pericytes reside primarily in 

morphology and anatomical locations. VSMC are mainly associated with arteries and 

veins while pericytes surround vessels with smaller diameters such as arterioles and 

capillaries.  Expression of Flk-1 has been identified as VPC which may be used to 

generate pure populations of EC.  Notable studies that implicate Flk-1 come from single 

cell studies done by Nishikawa et al., and Yamashita et al., in which ESC were induced 

towards Flk-1+ cells that gave rise to both EC and hematopoietic cells or EC and VSMC, 

respectively (Figure 1) [7, 8].   

 



3 

 

Figure 1: Development of the vasculature.  EC and VSMC arise from a common 

progenitor that are positive for Flk-1 expression. The propagation of EC undergoes 

vasculogenesis that gives rise to a primitive vascular plexus.  This primitive plexus 

stabilizes through VSMC and pruning through angiogenesis which is the process of new 

blood vessel formation from pre-existing ones to form a mature vascular structure. 

 

Yamashita et al. studies note the presence of both α-SMA+ (SMC) and PECAM-

1+ (EC) cells from a common Flk-1+ progenitor four days after single cell sorting [7]. 

Moreover, VEGF knockout mice lacking one copy of the receptor genes have abnormal 

blood vessel formation and subsequently die in utero [9]. The absence of blood islands 

and blood vessel networks is observed in the yolk sac, dorsal aortae, and endocardium, 

indicating that VEGF/Flk-1 are required very early in development to regulate both 

vasculogenesis and angiogenesis through signaling cascades [10].  These cues must 

determine the spatial and temporal appearance of hemangioblasts from undifferentiated 

mesoderm, and further the maturation and assembly of these precursors into angioblasts 

and then into mature, quiescent blood vessels.  The close development of hematopoietic 

and endothelial precursors may indicate that both lineages arise from a common 

progenitor, the hemangioblast, where studies have shown that they share several genes 

[6].   

 

1.1.3 Biochemical signaling  

Chemical signals mark the initiation of a developmental cascade during the early 

events of endothelial differentiation.  Growth factors are soluble molecules that are 

supplemented in the medium which may prompt cells to grow, replicate, differentiate, or 

migrate.  Without growth factor stimulation, cells are programmed towards apoptotic 

pathways.  Mesoderm-inducing factors are critical for the differentiation of angioblasts, 

as suggested by the defects in the vascular lineage of embryos lacking the receptor 

tyrosine kinase, Flk-1 or vascular endothelial growth factor receptor-2 (VEGFR-2) [9, 

11].  VEGF is the most published biochemical molecule that regulates vasculogenesis 

and angiogenesis in vivo, and influences the fate of ESC by guiding them towards an EC 

lineage [7, 8, 12].  Flk-1 is an important receptor that marks for mesodermal 

commitment, and is influenced by the presence of the following biochemical signals: 

bone morphogenetic protein-4 (BMP-4), fibroblast growth factor (FGF), and the Wnt 

ligand [13].  When VEGF binds to the Flk-1 receptor, it induces a signal cascade that 

activates the Ras pathway, which is believed to influence cell fate towards the vascular 

lineage [14].   

 

Although BMP-4 is usually associated with osteoblast inductions, it induces 

undifferentiated cells towards the mesoderm and subsequently endothelial fate from Flk-

1+ cells [15].  It has also been reported that BMP-4 induces phosphorylation of Flk-1 and 

Tie-2 receptors and migration in mESC-derived EC [16].  Lastly, basic FGF (bFGF) has 

been used with VEGF for EC development and to promote angiogenesis [17].  EC also 

recruit pericytes and VSMC by releasing platelet derived growth factor (PDGF) [3].  

These cell types stabilize the newly formed blood vessel.  Transforming growth factor-
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beta is responsible for stabilizing VSMC around the blood vessel by promoting VSMC 

differentiation [18].   

 

1.1.4 Mechanical signaling  

In addition to responding to biochemical factors, cells are also constantly sensing 

the mechanical factors in their surroundings while interacting with the local ECM.  The 

ECM provides additional signaling to tissues for: maintaining tissue integrity, remodeling 

during adaptations, and repair in response to disease or injury [19]. Even though cells are 

in close contact with the ECM in vivo, cells spatially interact with the ECM differently; 

EC contact the basement membrane on the basal but not the apical surface [20].   

Mechanotransduction is the conversion of mechanical stimuli into chemical signals that 

affect cellular responses such as proliferation, differentiation, migration, adhesion, and 

matrix reconstruction [21, 22].  Integrins are transmembrane receptors that act as 

mechanosensors by sensing and responding to cell-ECM connections, and facilitate 

inside-out and outside-in signaling pathways resulting from complex combinations of 

chemical or mechanical stimuli (Figure 2).  Fibronectin is a known ECM protein that 

promotes the differentiation of EC from stem cells [23, 24], and α5β1 integrin activity 

enhances the secretion of VEGF, thereby providing a positive feedback loop in EC 

differentiation [25].  Another integrin, α5β3, has been coupled to VEGFR2 to initiate EC 

migration in response to VEGF binding [26]. 

 

Figure 2: VEGFR2 or Flk1 is a possible receptor that can sense changes in the 

environment such as shear stress and release soluble factors like VEGF. α5β3 is an 

integrin that has been shown to sense the ECM and transmit signals inside the cell [27]. 

In the vascular system, vascular functions are partially maintained through forces 

produced by blood flow and blood pressure.  The constant unidirectional flow of blood 
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exerts a shear stress on EC that results in changes in morphology, function, and gene 

expression.  With the onset of forces, mechanosensors (ion channels, G protein-coupled 

receptors, and tyrosine kinase receptors) transmit information to the cytoskeleton to either 

assemble or disassemble its filaments in response (Figure 3) [28].  The extracellular 

domain of integrins binds directly to ECM proteins and interact with proteins inside the 

cell through its cytoplasmic domains. Inside the cell, there are proteins such as focal 

adhesion kinase (FAK), Src family kinases (SFK), and cytoskeletal proteins such as α-

actinin, vinculin, etc. [13] that, together, translate the mechanical signal into a cell fate 

response.  Shear stress also plays a role in determining arterial/venous-EC specification 

[29].   

 
Figure 3: The mechanisms in which these physical forces are being sensed is named the 

study of mechanotransduction.  In mature cells, it has been shown that these cells can 

sense the mechanical environment, however, in immature or differentiating cells it is not 

well understood how these mechanisms have a role in directing stem cell fate.  Growth 

factor receptors and integrins are the most studied sensors in mechanotransduction. [30]. 

 

In vitro experiments have also developed ways to analyze these signals when EC 

are subjected to both shear and tensile stresses [31, 32].  EC are subjected to the blood-

induced shear stresses as well as stretching forces due to constriction or dilation of 

vessels from VSMC or pericytes.  In addition to transmembrane proteins acting as 

mechanosensors, the surface of EC is coated in a matrix of membrane-bound proteins 

called the glycocalyx which include proteoglycan(s [33].   Specifically, heparan sulfate 
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proteoglycan (HSPG) acts as mechanosensors for EC [34] and SMC [35].  In one study, 

ESC-derived EC under shear stress increased specific EC markers, such as vascular 

endothelial-cadherin and PECAM-1.  However by using heparinase III enzyme to 

selectively degrade HSPG, the effects of shear stress on ESC-derived EC were abolished, 

suggesting that shear stress induced expression of these genes depends on HSPG [36].  

Similarly, another study suggests that HSPG is also an important mechanotransducer in 

modulating SMC gene expression through the activation of the ERK1/2 pathway.  When 

SMC were subjected to laminar flow shear stress there was reduced expression of several 

SMC markers (α-SMA, SM22, SM-MHC, smoothelin, and calponin).  These effects were 

negated when an enzyme to cleave heparan sulfate was added, as well as an inhibitor to 

the ERK1/2 pathway and marker expression was not downregulated when shear stress 

was applied [35].   

The modulus of elasticity or stiffness is a characteristic of the ECM that certain 

anchorage-dependent cells sense and respond to with a variety of cellular processes, 

including lineage specification and commitment of progenitor cells [37]. When 

mesenchymal stem cells are seeded on soft substrates, Flk-1 is upregulated while the 

stiffer substrate upregulates protein markers associated with SMC fate [38].  Softer 

materials also increase the migration of many cell types and form more capillary-like 

structures [39].  The forces that cells exert on the matrix and the mechanical resistance of 

the matrix gives rise to tension across the cell membrane which leads to changes in 

expression of genes and differentiation. 

 

In the vascular system, the stiffness of transplanted ex vivo blood vessels vary 

significantly from healthy versus diseased endothelium and between arterial and venous 

environments.  The healthy range of arterial EC is reported to be from 3-5 kPa while 

diseased stiffness are higher, ranging from 13-280 kPa [40].Porcine aorta stiffness 

measured by atomic force microscopy (AFM) is reported to be 5-8 kPa [41] and similarly 

mouse arteries are measured at 5 kPa [42, 43], while bovine carotid arteries are measured 

at 2.5 kPa [44].  Conversely, the diseased arteries in ApoE-null mice, a model for 

atherosclerosis, exhibit an increased stiffness of 28 kPa [42, 43].  Interestingly, 

longitudinal tensile stress of bovine veins range from 35-100 kPa [45]. These studies 

suggest that recapitulating the stiffness of the endothelial microenvironment is an 

important factor in development and diseases.   

 

1.1.5 Assembly of 3D vascular networks 

Perfusion of larger engineered biological tissues is required to ensure proper 

function and survival in its intended environment.  However, advances in tissue 

engineered microvascular networks have been slow.  Current limitations include the 

small size of lumen diameter, vessel length, complex geometries, and high vessel density 

requirements.  Recently, a few laboratories have been able to generate perfusable 

vasculature by utilizing microfluidic devices made from molded polydimethylsiloxane 

(PDMS) seeded with human umbilical vein endothelial cells (HUVEC) and normal 

human lung fibroblasts (NHLF) within fibrin or collagen gels [46-48].  These gels 

contain angiogenic properties that subject cells to mechanical signaling through integrins 
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that associate with the cytoskeleton [49].  Changing the concentration of fibrinogen 

allows for modifications of the gels’ mechanical and viscoelastic properties that lead to 

increased vascular-like formation [49-51].  When HUVEC are co-cultured with stromal 

cells, networks do not regress as quickly and maintain their stable morphology over 

longer times [46].  While HUVEC have been the most utilized cell type for building 

microvasculature in vitro, the use of stem cells are of particular interest as a cell source. 

Additionally, iPS-derived EC, would allow for pathologies associated with patient-

derived tissues to be examined [52].   

 

1.1.6 Patterning cells 

One potential alternative for providing semi-structured vasculature is to transfer 

patterned EC as distinct layers between sheets of cell/tissues or on the surface of 

biomaterials.  Microcontact printing proteins is a well-known technique that is utilized to 

control spatial patterning and cell-cell interactions [53].  However, the successful 

biomimetic replicate of a highly branched vascular tree requires the anatomical structure 

of the native vasculature include branching over various length scales.  Analogous to the 

transport of oxygen and nutrients in the blood vessel, the leaf contains veins that transport 

food and water to the plant.  The length scales in the leaf can also mimic our 

microcapillary system. The veins of the leaf can also branch into smaller and smaller 

tributaries, just like the vascular system. Specifically, net-veined or reticulate-veined 

leaves contain veins that branch from the main rib with subdivisions into finer veinlets, 

extending from a midrib to the edge (elm, peach, apple, cherry), or radiate fan-shaped 

(maple, grapes).  Some leaves are even designed in a parallel configuration (tulip).  These 

lessons from nature can be exploited to create innovative designs in building new tissues.  

 

1.1.7 Small-diameter vascular grafts 

Small-diameter (<6 mm) vascular grafts potentially serve as an alternative 

solution for patients who cannot undergo bypass surgeries.  However, delayed re-

endothelialization of commercially available non-degradable synthetic grafts [54] is a 

major obstacle.  EC mitigate thrombus formation, and therefore, are vital for long term 

graft survival [55, 56].  Cell-seeded tissue engineered vessels have been shown to 

perform better at the blood-material interface. However, these natural grafts exhibit 

limited mechanical integrity without synthetic supplementation in the scaffolding [57].  

Silk fibroin is a naturally occurring polymer that can be blended with different ECM 

proteins, growth factors, or other polymers through electrospinning techniques and has 

been explored as a viable substitute for blood vessels [58].  The rate of degradation can 

also be tuned and has been shown to be replaced by collagen and other ECM proteins 

within the body [59, 60].  Silk vascular grafts have been reported to have comparable 

mechanical properties to those of native blood vessels [58].  Silk material is easily 

processed, biocompatible, with tunable properties that are suitable for small-diameter 

vascular grafts. 
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1.2 Goal and Overview of the Dissertation 

Blood vessels are the essential transport mechanism responsible for moving 

oxygen and nutrients throughout the body.  For sufficient transportation, most cells are 

found no more than 100-200 µm from the nearest capillary [61].  This diffusion limitation 

significantly restricts researchers’ ability to build tissues and organs for regenerative 

medical applications and impedes successful integration after implantation.  Thus, 

integration of a functional vascular network is essential for tissues greater than 

thicknesses of 500 µm [62, 63].  Endothelial cells (EC), which line the interior surface of 

blood vessels, are a critical component to building vasculature in vitro.  Smooth muscle 

cells (SMC) associate with blood vessels, mainly arteries, to synthesize supporting matrix 

and control blood pressure, with pericytes supporting the smaller vessels.  By 

understanding the synergistic effects of molecular, cellular, and physical cues that drive 

blood vessel formation, we may provide the field with the means to develop larger tissues 

in vitro, as well as therapies against vascular diseases in adults.   

 

Embryonic stem cells (ESC) and induced pluripotent stem cells (iPS) are exciting 

in vitro models, retaining the ability to differentiate into all cell types in the body, and are 

potential cell sources for patient specific therapies, drug screenings, and disease 

modeling.  The guidance of stem cell differentiation from soluble signals (i.e. cytokines) 

has been well-examined in several cell lines [23, 64, 65] , but the precise combinatorial 

signals, including mechanical signaling in the vascular niche guiding vascular 

specification have yet to be defined (Figure 4).   

 

It has become apparent that mechanical signaling plays a critical role in the 

development of many tissues differentiation [37], but its role in vascular EC or SMC fate 

from a common vascular progenitor cell (VPC) remains undiscovered [7].    Therefore, 

the goal of the work in this thesis is to investigate microenvironment niche signals for 

enhanced EC and vascular formation of perfusable vasculature.  This thesis focuses on 1) 

stiffness directed differentiation, 2) microcontact printing for vascular assembly, and 3) 

microvasculature formation.  The following chapter, Chapter 2, investigates how stiffness 

directs VPC towards EC or SMC, and examines a panel of mechanosensors and their 

effect on mechanotransduction.  Chapter 3 examines signaling from topological patterns.  

We show how leaf veins can be used to generate a reverse mold to mimic branching 

vasculature by using microcontact printing.  Chapter 4 examines the development of 

vasculature using stem cell derived-EC by looking at cell ratio, concentrations, and 

exogenous soluble factors, as well as, the role of supporting cell type in.  Chapter 5 

examines using electrospun silk as a scaffold to generate a muscle-endothelial bundle to 

provide perfusion through our cardiac muscle strips.  The last chapter includes a 

discussion of the challenges and successes involved in obtaining the data presented in this 

dissertation. 
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Figure 4: Microenvironmental factors direct stem cell fate.  Soluble factor signaling, cell-

ECM interactions, cell–cell interactions shear stress, and material stiffness can all 

influence stem cell commitment. 
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Chapter 2: Substrate Stiffness Directs Diverging Vascular Fates 

 

ABSTRACT 

 

In addition to providing cells sourcing for many cell therapies, ESC and induced 

pluripotent stem (iPS) cells are excellent cell culture systems for elucidating 

developmental signals.  ESC and iPS cells are traditionally cultured and induced into 

tissue-specific derivatives on tissue culture plastic, however; it has been recently shown 

that the stiffness of the substrate also plays a role in directing cells towards differential 

cell lineages. Using our chemically-defined and staged induction methods, the putative 

role for stiffness in vascular fate was examined in 2 distinct ESC lines. After initial 

induction and purification of multipotent Flk-1+ vascular progenitor cells (VPC), the 

diverging endothelial cell (EC) and smooth muscle cell (SMC) populations were 

quantified for expression of either platelet endothelial cell adhesion molecule (PECAM-

1).  Here, we were able to culture mouse ESC VPC on single stiffness polyacrylamide 

hydrogels and observed EC and SMC emerging in a spatially distinct arrangement and 

identify signaling pathways that may be contributing to stiffness directed vascular 

differentiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

2.1 Introduction 

In vivo, cells are closely integrated with their cellular microenvironment - a 

complex system composed of soluble signals, cell-to-cell interactions, and extracellular 

matrix (ECM). The structural cells, soluble signals and ECM proteins combine to provide 

mechanical support, as well as signals that influence cell behavior and even cell fate. 

Although it has been well-known that matrix elasticity influences 2D cell migration [66], 

matrix elasticity has also recently been shown to provide a distinct signal that can exert 

effects on the lineage specification of progenitor cells [37]. Subsequently, a flurry of 

manuscripts have published on guiding the differentiation of epidermal stem cells [67], 

osteoblasts [68, 69], and neuronal [37, 70] by tuning the substrate stiffness to in vivo like 

conditions.  Specifically, mesenchymal stem cells (MSC) differentiate towards 

adipocytes on less stiff matrices, while bone differentiation occurs on stiff matrices [37, 

71]. 

 

However, with regards to the role of stiffness in directly vascular endothelial fate, 

only 1 direct study has been published suggesting that low stiffness (2kPa) in directing 

mesenchymal stem cells (MSC) towards an EC fate. Unfortunately, it was unclear 

whether the nanofibrous architecture was, in fact, also playing a role in cell fate 

specification since the experimental design simultaneously changed from high stiffness 

polystyrene dishes to the low stiffness nanofibrous architecture [72]. Moreover, the role 

of stiffness in directing embryonic stem cells or vascular progenitor cells towards and 

endothelial fate has not yet been examined.  There are a few more studies studying the 

role of stiffness in smooth muscle fate, with one showing that stiff substrates had a higher 

expression of SMC markers from MSC (15kPa), while MSC on soft substrates had a 

higher expression of chondrogenic and adipogenic markers (1kPa) [73].  Another, using a 

nanofiber matrix showed that stiff matrices (8-15kPa) had an increase of smooth muscle 

actin while soft (2-5kPa) had an increase of Flk-1 expression [38].  However, Flk-1 

expression is a known vascular progenitor marker that can differentiate into both EC and 

SMC [7], so it is unclear if a specific cell type was obtained, and rather only a 

commitment to becoming a vascular cell. 

 

Despite the lack of evidence directly showing that low stiffness materials can 

direct EC fate from vascular progenitor cells (VPC), there are a number of studies that 

show that mature EC internalize vascular endothelial growth factor (VEGF) [74], as well 

as, upregulate the production of VEGF [75] and GATA2 [76], a VEGF2 promoter, 

following culture on low stiffness materials, and that this specifically replaces the 

Rho/ROCK signaling pathway [75] that typically leads to upregulation of VEGF. Based 

on these studies, we expect that low stiffness will direct EC compared to vascular SMC, 

but the direct effect of matrix stiffness on vascular endothelial fate has not yet been 

shown. 

 

The matrix stiffness, largely sensed by integrins  [77], has been shown to 

manipulate lineage specification and commitment of progenitor cells [37].  The forces 

that cells exert on the matrix, as well as, the mechanical resistance of the matrix, gives 

rise to tension across the cell membrane which leads to changes in expression of genes 
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and differentiation.  Integrins are transmembrane receptors that act as mechanosensors by 

sensing and responding to cell-ECM connections, and facilitate inside-out and outside-in 

signaling pathways resulting from complex combinations of chemical or mechanical 

stimuli.  Integrins are composed of α and β subunits, and several have been implicated to 

be necessary in cell differentiation.  Fibronectin is a known ECM protein that promotes 

the differentiation of osteoblasts through its interaction with α5β1 [78, 79], but also 

promotes the differentiation of EC from stem cells [23, 24] and through α5β1 integrin 

activity.  This interaction enhances the secretion of VEGF, providing a positive feedback 

loop in EC differentiation (Figure 5) [25]. When β1 integrins are activated, a signaling 

cascade occurs through FAK and other proteins which leads to the activation of Ras-ERK 

and mitogen-activated protein kinase pathways which has been shown in both endothelial 

[80] and osteoblast differentiation [81].  Another integrin, α5β3, has been coupled to 

VEGFR2 to initiate EC migration in response to VEGF binding when interacting with 

vitronectin or fibrinogen [26, 82, 83].  In contrast, cells in suspension showed reduced 

VEGFR2 activation in response to VEGF.  Although there are known mechanosensors 

and signaling pathways, previous studies have only used tissue culture plastic.  The effect 

of varied stiffness to mimic in vivo like conditions on these signaling processes has not 

been studied. 

 
Figure 5: Mechanotransduction signaling.  The cell exerts a force (Fext) which is 

internalized (Fcell) at a mechanosensor (an integrin) and activates multiple intracellular 

signaling pathways to secrete VEGF which creates a positive feedback loop by activating 

VEGFR2. 

In the vascular system, the stiffness of transplanted ex vivo blood vessels also vary 

significantly from healthy versus diseased endothelium and between arterial versus 

venous EC.  Porcine aorta stiffness is reported at 5-8 kPa [41] and similarly mouse 

arteries are measured to be 5 kPa [84], while bovine carotid arteries are measured at 2.5 

kPa [44].  However, the arteries in ApoE-null mice, a model for atherosclerosis, exhibit 

an increased stiffness of 28 kPa [84].  Altogether, the healthy range of arterial EC is 

reported to be from 3-5 kPa while diseased stiffness is significantly greater, ranging from 

13-280 kPa [40], suggesting that recapitulating the stiffness of the endothelial 

microenvironment is an important factor in development and diseases.   
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To mimic this physiological environment, matrix elasticity can be altered in a 

variety of materials: polyethylene glycol (6-26 kPa) [85, 86], alginate (0.1-30 kPa) [87, 

88], PDMS (0.1-2700 kPa) [68, 89].  Polyacrylamide gels can mimic physiological 

conditions by altering the concentration of bis-acrylamide and generating stiffnesses that 

can vary by three orders of magnitude from 0.1 kPa to 200 kPa [66, 90].  Polyacrylamide 

hydrogels offer an easily tunable material that mimics stiffness found in vivo, compared 

to traditional cultures on glass and plastic surfaces.  Also, polyacrylamide gels 

exhbitg1hhrt4r4e optical properties that allow generation of images similar in quality to 

traditional culture platforms.   

 

To study how stiffness affects vascular fate from stem cells, cells were cultured 

on polyacrylamide hydrogels as the stiffness tunable substrate.  Using our novel mouse 

ESC that express a GFP reporter under Tie-2 and a RFP reporter under α-smooth muscle 

actin, we examined the role of stiffness in the diverging fate of Flk-1+ vascular progenitor 

cells (VPC).  By using Zebraxis, which have strips that vary in stiffness we set out to 

observe if the stiffness will produce endothelial-like cells or smooth muscle-like cells.  

Next, we examined the role of stiffness on single stiffness surfaces (10- and 40 kPa) to 

better quantitate endothelial or smooth muscle cell levels.  The commitment of Flk-1+ 

cells towards EC or SMC lineages will be quantified temporally over the course of 3-10 

days.  By using various inhibitors and antibody-blocking, we identify signaling pathways 

that may be contributing to stiffness directed vascular differentiation. 

 

2.2 Methods 

2.2.1 Mouse embryonic stem cell culture 

R1 and A3 murine embryonic stem cells were maintained on 0.5% gelatin coated 

plates in serum-free medium containing Knockout Dulbecco’s Modified Eagle Medium 

(KO-DMEM; Invitrogen), 15% Knockout Serum Replacer (KSR; Invitrogen), 1Χ 

Penicillin-Streptomycin (Invitrogen), 1Χ Non-essential Amino Acids (Invitrogen), 2mM 

L-glutamine (Invitrogen), 0.1mM 2-mercaptoethanol (Calbiochem), 2000 Units/ml of 

leukemia inhibitory factor (LIF-ESGRO; Chemicon), and 10 ng/ml of bone 

morphogenetic protein-4 (BMP-4; R&D Systems). Full media changes occurred every 

other day and cells were passaged every four to five days. 

 

2.2.2 Polyacrylamide hydrogel fabrication 

Zebraxis were generously made by Dr. Engler, according to the methods 

described here [91]. Acrylamide was polymerized on aminosilanized 25mm diameter 

coverslips.  A solution containing the cross linker N,N’ methylene-bis-acrylamide, 

acrylamide, 1/100 volume 10% ammonium persulfate, and 1/1000 volume of N,N,N,’,N’-

Tetramethylethylenediamine was mixed.  For single stiffness, two different combinations 

of acrylamide and bis-acrylamide were used to make 10 and 40 kPa substrates [92].  25 

µL of the mixed solution was placed between the aminosilanized treated coverslip and a 

Rain-X treated glass slide.  50 µg/mL fibronectin was chemically crosslinked to the 

substrates using photo activating cross linker Sulfo-SANPAH (Pierce) 
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Figure 6: Polyacrylamide hydrogel formation.  A) Zebraxis formation, image adapted 

from [91].  B) Single-stiffness polyacrylamide [92]. 

2.2.3 Characterizing material properties of polyacrylamide hydrogels 

Indentation experiments were performed with a commercial AFM apparatus 

(NTEGRA Vita, NT-MDT).  A spherical borosilicate glass bead with a diameter of 10 

µm was used (SNL-10, Bruker).  Young’s modulus of elasticity, E, was calculated using 

Nanoindentation of Soft Elastic Materials on Nanohub, where force curves were obtained 

by the deflection of the AFM cantilever as it was unloading from the sample [93].  

Poisson’s ratio was assigned a value of 0.5 [94]. 

 
Table 1: Measured modulus of elasticity of polymerized polyacrylamide.  This table 

shows the relative concentrations of acrylamide and bis-acrylamide and their measured 

modulus of elasticity.  1 hydrogel per sample and 5 indentations per hydrogel were 

assessed for these measurements. 

 

2.2.4 Induction of Mouse Embryonic Stem Cells to Mesodermal Lineage 

For dissociation, R1 mESC were harvested from 0.5% gelatin coated dishes using 

TrypLE (ThermoFisher) while A3 mESC were disassociated from the MEF layer and 

purified through a gravity separation prior to plating on 100mm tissue culture treated 

plates (Corning) coated with 0.050 mg/mL fibronectin (Corning).  Cells were then fed 

with stage 1 medium containing alpha-MEM (Cellgro), 20% knockout serum 
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replacement (ThermoFisher), 1Χ penicillin-streptomycin (ThermoFisher), 1Χ 

nonessential amino acids (ThermoFisher), 2mM L-glutamine (ThermoFisher), 0.05mM 

2-mercaptoethanol (Calbiochem), 5 ng/mL BMP-4 (Peprotech), and 30 ng/mL or 20 

ng/mL of VEGF (Peprotech) for R1 and A3, respectively. Cells were cultured for 2 (R1) 

or 3 (A3) days for optimal number of Flk-1+ cells.  Adherent cells were harvested using 

Cell Dissociation Buffer (ThermoFisher) and sorted based on expression of Flk-1 (PerCP, 

Biolegend) using fluorescent activated cell sorting (BD, ARIA II).   

 

The purified Flk-1+ cells were cultured onto fibronectin-coated Zebraxis-coated 

slides or single stiffness polyacrylamide (PA) hydrogels or on our tissue culture plastic 

control Figure 7.  Cell densities on substrates was varied to control total number of cells: 

30,000 cells/cm2, 20,000 cells/cm2 and 10,000 cells/cm2 and observed for the next 10 

days in stage 2 medium consisting of 70% alpha-MEM (Mediatech), 30% DMEM 

(Invitrogen), 2Χ Nutridoma CS (Roche), 1Χ penicillin-streptomycin (Invitrogen), 1Χ 

nonessential amino acids (Invitrogen), 2 mM L-glutamine (Invitrogen), 0.05 mM 2-

mercaptoethanol (Calbiochem), and supplemented with 30 ng/mL VEGF and 5 ng/mL 

BMP4 for R1 or 10 ng/mL VEGF and 10 ng/mL bFGF for A3 (as previously optimized 

[17]).  

 
Figure 7: Overview of induction process to examine the role of stiffness.  Induce R1 and 

A3 mESC into Flk-1+ vascular progenitor cells and plate on Zebraxis or tissue culture 

plastic (>0.1 GPa), 40 kPa, and 10 kPa, which are all coated with fibronectin. 
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2.2.5 Immunofluorescence 

R1 and A3 stage 2 cells were grown from 3-10 days and fixed with 4% 

paraforaldeyde (Tousimis) for 5 minutes at room temperature.  Cells were placed in a 

solution of 0.7% Triton X-100 (Fisher), 5% donkey serum (Fitzgerald), and 1% bovine 

serum albumin (Sigma) for another 5 minutes at room temperature to be permeabilized 

and block non-specific binding of the antibody.  CD31 PE (rat, BD Biosciences) and 

primary antibody against Calponin-1 (mouse, Sigma) were used in a dilution of 1:200 and 

1:30000, respectively in 1% bovine serum albumin.  Secondary FITC anti-mouse 

(abcam) was used in a dilution at 1:300.  Cells were stained for 1 hour at room 

temperature for both primary and secondary incubation.  During secondary incubation, 

DAPI was added to stain the nucleus. 

 

2.2.6 RNA-Seq 

Total RNA was extracted with TRIzol reagent (Life Technologies).  Ribo-Zero 

Gold rRNA Removal Kit (Illumina) was used to remove ribosomal RNA before 

preparation of sequencing libraries using the ScriptSeq RNA-Seq Library Prep Kit 

(Illumina).  Sequencing was performed with Illumina HiSeq 4000 systems, and raw 

sequence reads were examined for quality using FastQC [95].  The reads were 

subsequently trimmed to remove adaptors and filtered for bad quality bases using Trim 

Galore [96, 97].  Clean sequence reads were aligned to mouse genome, mm10, using 

STAR aligner [98].  Gene counts were called using HTSeq (5), and differentially 

expressed genes were identified using DESeq2 R package [99].  Gene ontology (GO) 

analysis was carried out using DAVID [100, 101] to identify enriched biological 

functional groups and processes. 

 

2.2.7 Inhibitor assay 

Flk-1+ VPC-A3 were plated on single-stiffness surfaces for 24 hours then the 

media was replaced with the following inhibitors added: 5µM FAK inhibitor 14 (Tocris 

Bioscience), 1:200 αvβ3 (Bioss), 1:200 αvβ1 (Bioss), and 10 ug/mL αvβ6 (abcam) for 

another 24 hours.  The cells were fixed and stained as previously explained. 

 

2.2.8 Statistical analysis 

Statistical analyses were conducted with GraphPad Prism 7 software. Two-way 

ANOVA with Tukey’s multiple comparison for the analysis of three groups was used. 

Differences at P≤0.05 were considered statistically significant. P values were calculated 

by analysis of variance for multiple pairwise comparisons.  The data are reported as mean 

± SEM. 

 

2.3 Results 

Using Zebraxis with alternating channels of elevated and depressed channels (1 

vs. 10 kPa and 10 vs. 34 kPa - with greater stiffnesses on the elevated channels and the 
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lower stiffnesses on the depressed channels), we were able to show that Flk-1+ VPC 

differentiated towards both Tie-2+ GFP expressing and αSMA+ RFP expressing cells on 

the stiffer channels on day 8 (Figure 8).  

 
Figure 8: Flk-1+ VPC-A3 on Zebraxis on day 8 in stage 2.  Confocal images of live A3-

VPC on two different Zebraxis: 1vs10 kPa and 10vs34 kPa.  There appears to be more 

Tie-2 GFP+ cells on the 1vs10 kPa compared to the 10vs34 kPa.  Green: Tie-2 GFP and 

Red: SMA RFP+.  Scale bar=50 µm.  

 

On day 12, cells were fixed and stained with PECAM-1, SM22α, and DAPI 

(Figure 9).  On the 1 vs. 10 kPa Zebraxis, cells were observed on only the 10 kPa stripe.  

However, cells on the 10 vs. 34 kPa Zebraxis were observed to be only on 34 kPa stripe.  

The cells consistently migrated to the elevated surface, which also happened to be the 

stiffer surface.  The mechanism in which cells migrate upward onto an elevated ridges or 

channels rather than in the downward direction has been documented by other groups, but 

is not well-understood [36, 37].  Due to design limitations of the alternating channels, we 

moved to single-stiffness surfaces. 
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Figure 9: Flk-1+ VPC-A3 on 1 vs. 10kPa and 10 vs. 34 kPa Zebraxis on day 12 in stage 

2.  Cells were fixed and stained with PECAM-1 (green), SM22α (red), and DAPI (blue).  

The cells only adhere on the stiffer (higher) A) 10 kPa or B) 34 kPa stripe.  Scale 

bar=200 µm. 

 

To isolate the elastic modulus from the elevation factor, we decided to use single-

stiffness polyacrylamide chips tuned to a low stiffness 10 kPa, and a higher stiffness, 40 

kPa, plus tissue culture plastic (TCP) control, a very stiff material >0.1 GPa [102]. The 

VPC-A3 and R1 cells were differentiated and stained with endothelial markers, PECAM-

1, and early smooth muscle cell markers, CNN-1 after 3, 7, and 10 days.  The outgrowths 

of VPC were often observed as PECAM-1+ EC islands surrounded by CNN1+ positive 

SMC, or pure PECAM-1+ populations or pure CNN1+ populations (Figure 10).  

Although these are simple 2D cultures, it appears as if the cells were attempting to 

organize according to their native physiology with EC generating a confluent layer for 

lining the lumens of blood vessels with SMC loosely associated in the surrounding space. 

 
Figure 10:  Flk-1+ VPC-A3 on single stiffness matrices at day 7 in stage 2.  Cells were 

fixed and stained with PECAM-1 (red), CNN1 (green), and DAPI (blue).  In some areas 

we see the cells organize themselves in a way where the PECAM-1+ cells are in the 

center with CNN-1+ cells surrounding them, but in other areas on the same chip we see 

pure PECAM-1+ or CNN1+ populations.   

 

The results clearly and robustly show that stiffness does play a role in early 

differentiation of VPC, specifically the lower stiffness generated more PECAM-1+ (EC) 

cells while the greater stiffnesses (40kPa and higher) directed more VPCs towards 
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CNN1+ (SMC) cells (Figure 11). The trend continues onto day 7 and 10, but by day 14 

we see that all CNN1+ cells have disappeared and are left with an equal amount of 

PECAM+ cells on all three conditions (data not shown).  This may be due to the cells 

being cultured to over confluence during the experiment and in endothelial-specific 

media.  The experiment was repeated using mESC-R1 and observed similar results to the 

mESC-A3 line. 

 
 

Figure 11: Flk-1+ VPC-A3 and R1 differentiation on single stiffness substrates from day 

3-10 in stage 2 .  We observed a trend of more PECAM-1 positive cells on lower stiffness 

and CNN1 on higher stiffness in both the A3 and R1 mESC lines. * p-value < 0.05 ** p-

value < 0.005 *** p-value < 0.0005 

 

To identity gene expression signatures associated with the varying stiffness, we 

performed RNA-Seq of the 10 kPa, 40 kPa, and TCP populations.  10 and 40 kPa 

populations display distinct expression profiles compared to TCP populations, with a 

total of 25 genes exhibiting more than a twofold expression changes (Figure 12A).  

Compared to the TCP population 11 genes were upregulated and 22 genes were 

downregulated in 10 kPa (Figure 12B), while only 14 genes were downregulated in 40 

kPa compared to TCP (data not shown).  Compared with gene expression profiles in TCP 

populations, the gene expressions in 10 kPa had higher expression in those known to be 

associated with vascular development, like: migration, vasculature, blood vessel, and 

angiogenesis.   

 

The ability of the cell to sense its environment and convert that into cellular 

processes is the study of mechanotransduction and various mechanosensors have been 

implicated, such as integrins (transmembrane proteins) and focal adhesions (link between 

cytoskeleton and extracellular matrix).  To further investigate the role of stiffness on 

vascular differentiation, inhibitors and antibodies were used to block the signaling 

pathways that may be affected stiffness directed differentiation.  Based on the literature, 
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we chose FAK 14 (prevents FAK phosphorylation) [103-105], anti-αvβ3 (integrin that 

supports mesoderm differentiation, binds to vitronectin and fibrinogen) [106], anti-αvβ1 

(integrin that stimulates angiogenesis and binds to fibronectin) [106, 107], and anti-αvβ6 

(integrin that binds to several ECM proteins and affects vascular proliferation).  Anti-

αvβ3 inhibits or competitively binds αvβ3 integrin and blocks the crosstalk between αvβ3 

and Flk-1 or VEGFR2, thereby down regulating VEGF signaling [41].  Both αvβ3 and 

αvβ1 have been shown to provide signals that regulate EC [108] and vascular lumen 

formation [109, 110]. 

 

After 48 h of treatment, the cells were stained with PECAM-1 and CNN-1 and 

counterstained with DAPI to observe any changes.  FAK inhibitor 14, αvβ1, and αvβ1+ 

αvβ3 mitigated stiffness directed differentiation and, in some cases, up-regulated 

PECAM-1 expression, compared to the control (no inhibitor).  However, their effect on 

PECAM-1 and CNN1 were not significant on the varying stiffness.  αvβ3 and αvβ6 

followed stiffness directed differentiation trend, but αvβ3 upregulated PECAM-1 

expression, while downregulating CNN1 expression.  αvβ6 saw similar expression levels 

as the control. 

 

Figure 12: Gene expression of 10 kPa compared to TCP populations.  A)  Hierarchical 

clustering analysis of genes upregulated (red) and downregulated (green).  Genes with 
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expression differences more than twofold were selected for analysis (P < 0.05).  B) Gene 

ontology Analysis of the differentially expression genes. x-axis: -log(P value). 

 
Figure 13: Inhibitor assay on Flk-1+ VPC-A3 outgrowths on day 5 after 24 hr treatment.  

Compared to the control (no inhibitor added), stiffness-directed differentiation was not 

seen when FAK inhibitor 14, αvβ1, or αvβ1+ αvβ3 were added.  However, when αvβ3 

was blocked, we saw an enhanced trend of PECAM-1 on lower stiffness and a decrease 

in over all levels of CNN-1.  αvβ6 did not have an effect compared to the control.  * p-

value < 0.05 ** p-value < 0.005 *** p-value < 0.0005 **** p-value < 0.00005 
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2.4 Discussion 

Initial studies on Zebraxis showed that Flk-1+ VPC preferred to adhere to the 

elevated surface, which happened to be the stiffer surface.  Due to design constraints that 

required the stiffer material to be on a raised surface, we moved to single-stiffness 

surfaces.  Those studies showed that the outgrowths of Flk-1+ VPC were observed as 

PECAM-1+ EC islands surrounded by CNN1+ SMC.  From day 3-10, we see that SMC 

fate is greatest on the stiffer substrates and EC fate greatest on low stiffness.  RNA-Seq 

data shows a clear difference between 10 and 40 kPa populations compared to TCP, with 

more vascular development related genes upregulated on low stiffness.  Various 

mechanosensors were inhibited, which were seen to either negate stiffness directed 

differentiation or enhance endothelial differentiation. 

 

Compared to TCP, TEK was upregulated on low stiffness (10 kPa) which encodes 

angiopoietin-1 receptor or Tie-2, a protein associated with regulating embryonic vascular 

development and angiogenesis [111].  Integrins αvβ1 and αvβ3 have been reported to 

congregate by Ang-1/Tie-2 and Ang2/Tie-2 and form complexes which result in 

different cellular outcomes in EC [112, 113] (Figure 14).  Ang-1 and Ang-2 are ligands 

that are agonistic and antagonistic to Tie-2 receptor, respectively.  Ang-1 binding to 

Tie-2 leads to Akt activation which promotes survival and endothelial quiescence, 

while Ang-2 will interfere with Ang-1/Tie-2.  Both Ang-1 and Ang-2 recruit αvβ3 to 

Tie-2, but only Ang-2 results in the complex formed with Tie-2/αvβ3/FAK [112].  αvβ3 

has been shown to be necessary in EC differentiation [26], rescue EC from apoptosis 

[114], regulates actin cytoskeleton in EC and aids in endothelial barrier integrity 

(decreased permeability) [115].  However, in our study, when antibody-blocked, we saw 

an increase of PECAM-1 expression (and a decrease in CNN1 expression) compared to 

our control (no inhibitor added) (Figure 13).  Integrin blocking antibodies have been 

shown to result in integrin clustering on the cell surface, which can lead to signaling 

events [116, 117].  We suspect that αvβ3 was not activated due to our ECM substrate 

being fibronectin, but adding anti-αvβ3 allowed clustering and complexing with 

VEGFR2 to further promote endothelial differentiation [14, 50, 82].  It is interesting to 

note that high levels of Tie-2, found in our low stiffness populations, is a marker for 

phalanx or a quiescent EC phenotype compared to low levels of Tie-2 being expressed in 

tip cells of an angiogenic sprout [118, 119]. 

 

If Ang-1 is not present in high concentrations Tie-2 will associate with αvβ1 

(binds to fibronectin) and leads to Tie-2 being phosphorylated [113, 120].  By blocking 

αvβ1 with no added Ang-1 we saw a decrease in both PECAM-1 and CNN1 expression 

compared to our control (no inhibitor added), which may be due to the antibody blocking 

the response of fibronectin as well as the underlying stiffness.  αvβ1 has been shown to 

rescue αvβ3 signaling [121, 122], so we blocked both.  We observed a recovery effect, 
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where PECAM-1 expression was suppressed by anti-αvβ1 but recovered through anti- 

αvβ3.  Our data shows αvβ3 activation through the addition of anti-avb3, but αvβ1 

requires the underlying stiffness/force from attachment to fibronectin to be activated. 

 

Another upregulated gene in low stiffness is TSPAN8, which encodes for 

tetraspanin proteins that are found on the cell surface and forms complexes with 

integrins. TSPAN8 plays a role in cell development, motility, and angiogenesis [123].  

Tetraspanins organize integrins into multiprotein complexes and has been shown to 

associate with a3b1 and a6b4.  TSPAN8 is present in exosomes and enhances EC 

proliferation, migration, sprouting, and maturation of endothelial progenitors [124].  

When internalized, EC have elevated levels of VWF, VEGF, VEGFR2 and other factors 

that drive EC proliferation, migration, sprouting and progenitor maturation [125]. 

 

Figure 14: Proposed mechanism of low stiffness directed EC differentiation. 

 

 

 

 

 

 

 

 

 

 

 

 



24 
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ABSTRACT 

 

 

The vascularization of tissue grafts is critical for maintaining viability of the cells within 

a transplanted graft. Several strategies are currently being investigated including very 

promising microfluidics systems. Here, we explored the potential for generating a 

vasculature-patterned endothelial cells that could be integrated into distinct layers 

between sheets of primary cells. Bioinspired from the leaf veins, we generated a reverse 

mold with a fractal vascular-branching pattern that models the unique spatial arrangement 

over multiple length scales that precisely mimic branching vasculature. By coating the 

reverse mold with 50 μg/mL of fibronectin and stamping enabled selective adhesion of 

the human umbilical vein endothelial cells (HUVECs) to the patterned adhesive matrix, 

we show that a vascular-branching pattern can be transferred by microcontact printing. 

Moreover, this pattern can be maintained and transferred to a 3D hydrogel matrix and 

remains stable for up to 4 d. After 4 d, HUVECs can be observed migrating and sprouting 

into Matrigel. These printed vascular branching patterns, especially after transfer to 3D 

hydrogels, provide a viable alternative strategy to the prevascularization of complex 

tissues. 
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3.1 Introduction 

A major obstacle in the development of tissue engineered products for clinical 

applications is the lack of perfusable prevascularization within the in vitro-generated 

tissue product.  This is especially important for building large organs such as the heart, 

kidneys, and liver.  Current strategies for in vitro prevascularization include: subtractive 

methods like stainless steel needle-based molding and dissolvable-network-based 

sacrificial molding, additive methods like soft lithography/PDMS stamping-based 

micromolding and layer-by-layer stacking, and hybrid methods like bioprinting and gel-

based microfluidic systems [126].  These various vasculogenesis and angiogenesis-based 

strategies also utilize a number of techniques (reviewed in [127]) including: 

photolithography, microcontact printing, functionalization of scaffold material, growth 

factor gradients, and co-culture with mural cells [128, 129].  Specifically, microfluidic 

systems [47, 130, 131] have emerged as leading tools to overcome many of the 

challenges of developing microvasculature.   

 

3.1.1 Generation of perfusable microvessels 

Microfluidic platforms offer precise control over various aspects of the cellular 

microenvironment enabling the generation of perfusable microvessels, but the utility of 

these platforms remain limited.  These platforms are limited to one length scale and are 

not currently designed to integrate the perfusable vasculature generated within the device 

with the primary tissue product.  Moreover, it is becoming increasingly apparent that 

endothelial cells (EC) provided with a tissue co-culture are highly migratory and 

disruptive to the patterned tissue-specific cells [132]. Tissue co-cultures with ECs have 

been successfully used to generate functional in vitro models in the blood-brain barrier 

[133], skin [134] and the lung alveolar capillary barrier [135].  A remaining challenge in 

these co-culture models is the generation of a basement membrane for physically 

separating the EC from the tissue-specific cells.   

Alternatively, decellularized matrix from heart [136], liver [137], and kidney 

[138] are especially promising strategies for organ replacement because these strategies 

preserve the native three-dimensional (3D) architecture and vascularity of the organ. 

However, the cell seeding often requires long culture times and tissue morphology and/or 

organization is difficult to reestablish [136]. Moreover, a failure to completely 

decellularize a tissue can lead to negative outcomes upon in vivo implantation, including 

a pro-inflammatory response with associated M1 macrophages and subsequent fibrosis.  

The complete endothelization of the entire vasculature is also a critical aspect for the 

success of a decellularized graft.  Unless the graft is fully endothelialized to conceal the 

underlying collagen, coagulation and blockage will occur when the graft is exposed to 

circulating blood [137]. 

 

3.1.2 Microcontact printing 

One potential alternative for providing semi-structured vasculature is to transfer 

patterned EC as distinct layers between sheets of cell/tissues or on the surface of 

biomaterials.  Microcontact printing proteins is a well-known technique that is utilized to 

control spatial patterning and cell-cell interactions [53].  However, the successful 

biomimetic replicate of a highly branched vascular tree requires the anatomical structure 
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of the native vasculature include branching over various length scales.  Analogous to the 

transport of oxygen and nutrients in the blood vessel, the leaf contains veins that transport 

food and water to the plant.  The length scales in the leaf can also mimic our 

microcapillary system. The veins of the leaf can also branch into smaller and smaller 

tributaries, just like the vascular system. Specifically, net-veined or reticulate-veined 

leaves contain veins that branch from the main rib with subdivisions into finer veinlets, 

extending from a midrib to the edge (elm, peach, apple, cherry), or radiate fan-shaped 

(maple, grapes).  Some leaves are even designed in a parallel configuration (tulip).  These 

lessons from nature can be exploited to create innovative designs in building new tissues.  

By generating a vascular fractal-like pattern reverse mold from the veins of a leaf, 

we were able to model the unique spatial arrangement of EC over several length scales 

that precisely mimic branching vasculature.  Here, we show that this can be accomplished 

via 1) microcontact printing adhesive matrices in appropriate vascular-like patterns 

followed by 2) transfer of the patterned cells to a 3D gel. This pattern is maintained after 

transfer to the surface of a 3D hydrogel matrix.  The unique design potential for this 

largely 2D pattern would be the ability to transfer patterned EC between layers of cell 

sheets, potentially providing a non-disruptive alternative to prevascularizing complex 

tissues.  

 

3.2 Methods 

3.2.1 Mask 

The mask is prepared by boiling a fresh leaf from a White Alder (Alnus 

rhombifolia) in a 0.2 molar Na2CO3 solution for 2 hrs. After boiling, the excess cellulose 

material surrounding the leaf vascular structure is removed manually with a nylon brush, 

rinsed with dH2O, and sandwiched between cardboard panels to dry overnight on the 

benchtop.   

 

3.2.2 Leaf mold 

The SU-8 2050 mold is soft baked on a hotplate at 65°C for 3 min and then 95°C 

for 6 minutes. The leaf mask is pressed flat against the SU-8 exposed to ultraviolet (ABM 

UV, I-line) for 15 seconds. A post exposure bake is performed on a hotplate at 65°C for 2 

min and 95°C for 6 minutes. The SU-8 mold is then developed in SU-8 Developer 

(Microchem) for 5 minutes, rinsed with isopropyl alcohol (IPA) and air dried, then hard 

baked at 200°C for 30 minutes (Figure 15).  

 

3.2.3 Vascular stamp 

Polydimethylsiloxane (PDMS) prepolymer and a curing agent were thoroughly 

mixed in a 10:1 weight ratio (Sylgard 184 Silicon Elastomer Kit, Dow Corning) and 

degassed in a desiccator for 30 minutes to remove any air bubbles in the mixture.  The 

prepolymer mixture was poured onto the leaf mold and set to cure at 60°C for 2 hours.  

The next day, the PDMS stamp was peeled off the mold, cut to desired stamp size (Figure 

16), and sterilized following standard procedures. 

 



27 

 

 

Figure 15: Leaf mask.  After the mask is prepared by boiling a fresh leaf in a 0.2M 

Na2CO3 solution for 2 hrs and removing the excess cellulose material, the leaf is pressed 

into the surface of a SU-8 epoxy-based negative photoresist, treated with UV, baked and 

then developed. The resulting height profile of the patterned channels left in the mask 

measured ~25µm in height. Scale bar =100µm. 

3.2.4 Microcontact printing 

The PDMS stamping process (Figure 16) begins by coating (or “inking”) the 

stamp surface with 50 µg/mL of fibronectin (FN; Corning) and incubated at 37°C.  After 

1 hour, the excess FN is removed by rinsing with distilled water followed by air drying. 

The FN-coated stamp is then applied directly to the surface of a non-tissue culture-treated 

dish using slight pressure and left in contact with the dish for 5 minutes before removal. 

The plate is incubated with 2% Pluronic® F-127 (Sigma) in phosphate buffered saline 

(PBS) solution for 1 hour before washing with PBS. 

 

 

Figure 16: Schematic of the stamping process.  A section of the PDMS leaf stamp is cut 

and coated with 50 µg/ml FN.  After a gentle wash, the FN-coated stamp is pressed onto 

the surface of a non-tissue culture treated dish, thus transferring the FN pattern onto the 

surface of the dish. 
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3.2.5 Validation of printed fibronectin 

To better visualize the stamped FN pattern, Alexa Fluor 488 succinimidyl ester 

(Life Technologies) was conjugated to FN (Corning) at a 10-fold molar excess of 

fluorophore-to-protein and developed on a nutation device for 90 minutes at room 

temperature. The protein-fluorophore mixture was then purified through a size-exclusion 

column (Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-10 membrane; Millipore) 

and centrifuged according to manufacturer’s directions.  The final concentration of the 

protein-fluorophore was measured using a NanoDrop 1000 Spectrophotometer (Thermo 

Scientific). The 2.4mg/mL solution was then diluted down to 50 µg/mL for coating the 

stamp.  

 

3.2.6 Cell culture 

Human umbilical vein endothelial cell (HUVEC; Life Technologies) were 

cultured in a humidified incubator at 37°C under 5% CO2 in fully supplemented 

Endothelial Cell Growth Medium (EGM™-2 with BulletKit™; Lonza). HUVEC (p3-5) 

were then seeded onto the FN-patterned surface in a non-tissue culture-treated dish at 

10,000 cell per cm2 and imaged after 24h. 

 

3.2.7 Immunofluorescence staining and microscopy 

The patterned HUVEC were fixed with 4% PFA for 20 minutes, permeabilized 

with 0.7% Triton X-100 for 5 minutes at room temperature, blocked for 20 minutes in 

0.1% BSA in PBS, and then incubated with Fluorescein Phalloidin (1:200; Life 

Technologies) for 1 hour at room temperature.  DAPI counterstain was added directly to 

the solution during the last 5 minutes of staining. 

 

3.2.8 Collagen gels 

Collagen gel solutions contained rat rail collagen type I (2 mg/mL; Corning), 0.1 

M sodium hydroxide, 10% fetal bovine serum (Life Technologies), 20% 5x Dulbecco’s 

Modified Eagle’s medium (Life Technologies), and the remainder EGM-2 medium.  The 

gel solution was then placed on patterned cells and cultured in a humidified incubator at 

37°C and 5% CO2 overnight. After 24 hours, the collagen gel is found compacted to 80% 

of its original size and floating in the medium with the cell pattern transferred from the 

cell culture dish to the lower surface of the gel.  

 

3.2.9 Matrigel 

Patterned HUVECs were coated in Matrigel™ Basement Membrane Matrix at 50 

μL/cm2 of growth surface and allowed to gel at 37°C for 30 minutes.  Culture media was 

then added and observed over time. After 4 days, the gel was rinsed gently with PBS and 

fixed with 4% paraformaldehyde for 30 minutes at room temperature.  After rinsing, 

phalloidin rhodamine (Invitrogen, 1:50) and DAPI (1:50) were added and allowed to 

stain for 24 hours at 4°C.  Plates were rinsed twice before imaging using confocal 

microscopy (Nikon Eclipse C1). 
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3.3 Results 

Using a leaf branching pattern, we were able to generate a mask, reverse mold, 

and stamp that retained the initial branch pattern (Figure 15).  This branched pattern was 

then used to preferentially surface-treat (i.e. stamp) Alexa Fluor 488 succinimidyl ester-

treated FN onto non-tissue culture-treated dishes retaining the same pattern (Figure 17A-

C).  Once HUVECs were seeded in the dish, they preferentially adhered only to the FN-

stamped areas in the dish (Figure 17D-F), and thus retained the vascular-like branching 

pattern of the leaf. To further illustrate the structure and alignment of the cells, HUVECs 

were stained with phalloidin and counterstained with DAPI nuclear stain (Figure 17G-I).  

 

Although a simple and elegant technique, microcontact printing using bulk stamps 

like our vascular leaf stamp comes with resolution limits. The upper limit is inherently set 

at the diameter of the largest vein in the leaf, measured at 229 µm. The lower resolution 

limit in our PDMS stamp was 29µm, respectively, and corresponded with stamped 

patterned vascular cells at 22 µm (Figure 18).  Although leaf veins were present at lower 

diameters, the PDMS stamp was not able to transfer the printed pattern at this smaller 

resolution. However, this value is very close to the normal length scales for 

microvasculature which typically range from 5 to 10 µm in diameter, and therefore, are 

expected to be sufficient for clinical application. 

 

 
Figure 17: Images of the patterned cells.  A-C) To verify the selective stamping of the 

FN, the stamp was coated with FN-treated Alexa 488 (green). Scale bars =1000µm, 

1000µm and 100µm, respectively. D-F) After seeding with HUVECS, the cells adhere to 
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the stamped vascular pattern, but not to the non-stamped areas in the non-tissue culture-

treated dishes. Scale bar = 200µm. G-I) The patterned were HUVECS stained with F-

actin (green) and DAPI (blue) counterstain. Scale bars =1000µm, 100µm and 100µm, 

respectively. M-N) The HUVECs were then transferred to the surface of 3D collagen 

hydrogels.  Scale bars = 200µm and 50µm, respectively. 

 

Figure 18: Resolution of the PDMS stamp  is limited by the A) maximum vein diameter 

of the original leaf (229 µm) and the B) minimal size retained in the PDMS stamp (29 

µm).  Pattern transfer of Alexa 488-treated FN (green) can be C) slightly larger due to 

smudging or slightly smaller due to incomplete coverage.  Note, the smallest printed 

thickness, 22 µm, is consistent an adhering EC.  

 

After the cells reached confluence on the pattern (day 3-4), they were transferred 

onto a 3D collagen-type I gel by direct cell-to-gel contact (Figure 19A-B). Upon 

subsequent culture on the collagen-type I hydrogels, the HUVECs maintain their vascular 

patterns on the 3D gel surface with minimal EC invasion into the 3D gel with a maximal 

depth of 46 µm (Figure 19C-D) at 4 days.  Interestingly, the maximal EC depths were 

observed at the nodes between branch points.  To investigate invasion potential of the 

patterned EC, the cells were also transferred to softer Matrigel materials. Again, the 

patterned remained stable for up to 4 days. After 4 days, the EC began to migrate outside 

the pattern and invade into the Matrigel (Figure 20). 
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Figure 19: Pattern transfer to collagen gels.  Patterned EC were transferred onto 3D 

collagen-type I gels by direct cell-to-gel contact A) scale bar = 500 µm and B) scale bar = 

200 µm. Upon subsequent culture on the collagen-type I hydrogels, the HUVECs can C) 

maintain their vascular patterns on the gel surface for up to 4 days D) with minimal 

invasion into the 3D gel as seen by the Z-stacked image of the cells.   

 
Figure 20: Pattern transfer to Matrigel.  Patterned EC were transferred onto Matrigel by 

direct cell-to-gel contact.  Individual cells can be seen by DAPI nuclear staining (blue) 

and phalloidin stain (red). Upon subsequent culture on the Matrigel, the HUVECs can 
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maintain their vascular patterns on the gel surface for up to 4 days (not shown), but then 

A) started to migrate (scale bar = 100 µm) and B-E) invade the 3D gel. Scale bar = 10 µm 

3.4 Conclusions 

The vascular patterns developed using our microcontact printing methods enable 

patterning cells into shapes mimicking the spatial scale of the microvasculature and the 

spatial organization of these cells is retained upon transfer into 3D gels. This is an 

alternative design approach to perfusable microfluidic systems [47, 130, 131] in which 

the dynamic ECs are disruptive to the primary tissue assembly and organ function. In 

cardiac tissue, for example, the alignment of the cardiac cells facilitates the rapid cell-to-

cell signaling required for synchronous contractile forces [139].  However, when 

dynamic ECs and neo vessels are co-cultured with patterned cardiac cell sheets, the 

migratory ECs disrupt the cell-to-cell junctions of the cardiac cells [132]. In these types 

of in vitro cultures, dynamically sprouting neovessels, although perfusable, could disrupt 

the physiology of the primary tissue. Using the methods presented, patterned EC can be 

transferred onto 3D surfaces – potentially including cell/tissue/material grafts - enabling 

more rapid vascularization of implanted graft constructs and may, as recently shown from 

bioprinting 3D vascular channels with alternating primary tissue, facilitate a more robust 

vascularization of the transplanted graft in vivo [140].   
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Chapter 4: Generation of Endothelial Cells from Human Stem Cells to Form 

Perfusable Vascular Networks 

4.1 Introduction 

One of the goals of tissue engineering is to generate a functional tissue that can 

facilitate organ regeneration and may serve as models for studying diseases, drug 

screening and delivery.  However, most cell cultures start in 2D systems, and translation 

into 3D systems it not a direct process.  Despite significant advances in the field of 

regenerative medicine, the in vitro generation of patient-matched tissues/organoids 

remains hindered by the lack of a perfusable vasculature - required to meet the high 

nutritional and metabolic demands of the primary engineered tissue/organoids. To 

address this unmet need, many researchers focus their efforts towards forming and 

integrating perfusable vasculature with complex tissues or organoids.  

 

Not only is the vasculature in tissues larger than oxygen’s diffusion limit, but also 

required for tissue development, healing/regeneration, and appropriate immune responses 

to promote assimilation and survivability of tissue.  All blood vessels are composed of 

endothelial cells, but their multifaceted nature can also be coupled with the presence of 

other important cell types distinct in each different blood vessel.  Blood is pumped away 

from the heart through arteries composed of smooth muscle cells, a thick matrix, and 

sometimes additional blood vessels that feed the wall of the thick vessel and even 

fibroblasts in the adventitia.  The arteries then branch into smaller vessels called 

arterioles, with pericytes, and capillaries.  Capillaries, composed of only endothelial cells, 

allow the diffusion of oxygen, nutrients, and metabolic waste to the surrounding tissue.  

Then the blood flows through venules to the veins and back to the heart.   

 

4.1.1 In vitro microvasculature 

Perfusion of larger engineered biological tissues is required to ensure proper 

function and survival in its intended environment.  Present limitations include the small 

size of lumen diameter, vessel length, complex geometries, and high vessel density 

requirements.  Current approaches for generating in vitro vasculature include: subtractive 

methods like stainless steel needle-based molding and dissolvable-network-based 

sacrificial molding, additive methods like soft lithography/PDMS stamping-based 

micromolding [141] and layer-by-layer stacking, and hybrid methods like bioprinting and 

gel-based microfluidic systems [126].  These various vasculogenic and angiogenic-based 

strategies also utilize a number of techniques (reviewed in [127]) including: 

photolithography, microcontact printing, functionalization of scaffold material, growth 

factor gradients, and co-culture with mural cells [128, 129].  Of these approaches, 

microfluidic systems [47, 130, 131] have emerged as leading tools to overcome many of 

the challenges of developing microvasculature.  Human umbilical vein endothelial cells 

(HUVEC) co-cultured with normal human lung fibroblasts (NHLF) seeded within a fibrin 

gel are the current cell combination most successful in building microvasculature in vitro, 

but the use of stem cells are a more versatile cell source for modeling tissue development, 
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and for iPS-derived EC, would allow for pathologies associated with patient-derived 

tissues to be examined [52].   

 

Fibrin gels exhibit angiogenic properties that produce microvasculature-like 

networks and subjects cells to mechanical signaling through integrins that associate with 

the cytoskeleton [49].  Changing the concentration of fibrinogen allows for modifications 

of the gels’ mechanical and viscoelastic properties that lead to increased vascular-like 

formation [49-51].  When HUVEC are co-cultured with stromal cells, networks do not 

regress as quickly and can maintain their stable morphology for up to 2 weeks [46].  

Initial studies show that our stem cell-derived endothelial cells from both mouse ESC and 

human ESC can initially form vascular-like networks but are leaky and not stable past a 

few days.  This may be due to matrix metalloproteinase and/or cathepsin activity which 

breaks down the fibrin gel [142] and inhibitors may be used to stabilize the networks. 

 

4.2 Methods 

4.2.1 Primary cell culture 

Human umbilical vein endothelial cell (HUVEC; Life Technologies) were 

cultured in Endothelial Cell Growth Medium (EGM™-2 supplemented with BulletKit™; 

Lonza) on fibronectin coated plates (10 µg/mL; Corning) and used in experiments 

between passages 3-5.  Norman human lung fibroblasts (NHLF; Lonza) were cultured in 

Fibroblast Growth Medium (FGM-2; Lonza) and used in experiments between passages 

3-10.  Human aortic smooth muscle cells (Lonza) were cultured in Smooth Muscle 

Growth Medium-2 (SmGM-2™ Bulletkit™; Lonza) on gelatin coated plates.  Inactivated 

mouse embryonic fibroblasts (MEFs) were cultured in 88% High Glucose DMEM, 10% 

FBS, 1% L-glutamine, and 1% penicillin-streptomycin on gelatin coated plates. 

 

4.2.2 Mouse embryonic stem cell culture 

R1 and A3 murine embryonic stem cells were maintained on 0.5% gelatin coated 

plates in serum-free medium containing Knockout Dulbecco’s Modified Eagle Medium 

(KO-DMEM; Invitrogen), 15% Knockout Serum Replacer (KSR; Invitrogen), 1Χ 

Penicillin-Streptomycin (Invitrogen), 1Χ Non-essential Amino Acids (Invitrogen), 2mM 

L-glutamine (Invitrogen), 0.1mM 2-mercaptoethanol (Calbiochem), 2000 Units/ml of 

leukemia inhibitory factor (LIF-ESGRO; Chemicon), and 10 ng/ml of bone 

morphogenetic protein-4 (BMP-4; R&D Systems).  A3 mESC were maintained in the 

same media on mouse embryonic fibroblasts (MEF). Full media changes occurred every 

other day and cells were passaged every four to five days. 

 

4.2.3 Induction of mouse embryonic stem cells to mesodermal lineage 

mESC were harvested from 0.5% gelatin coated dishes using TrypLE 

(ThermoFisher) and plated in 100mm tissue culture treated plates (Corning) coated with 

50 µg/mL Fibronectin (Corning).  A3 cells were disassociated from the MEF layer and 

purified through a gravity separation.  mESC were placed in a basal media of alpha-

MEM (Cellgro), 20% knockout serum replacement (ThermoFisher), 1Χ penicillin-

streptomycin (ThermoFisher), 1Χ nonessential amino acids (ThermoFisher), 2 mM L-
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glutamine (ThermoFisher), 0.05mM 2-mercaptoethanol (Calbiochem), 5 ng/mL BMP-4 

(Peprotech), and 20 ng/mL, or 30 ng/mL of VEGF (Peprotech) for A3 and R1 

respectively. Cells were cultured for 2 or 3 days, R1 and A3 for optimal number of Flk-1+ 

cells. Adherent cells were harvested using cell dissociation buffer (ThermoFisher) and 

sorted using fluorescent activated cell sorting (BD, ARIA II) using Flk-1 PerCP 

(Biolegend).  

 

4.2.4 Human stem cell culture 

Both iPS cell line (DF19-9-7T, WiCell) transfected with puromycin resistance 

under MHCa promoter (courtesy of Dr. Chiamvimonvat, UC Davis) and human 

embryonic stem cell line H9-ESC (WiCell) were maintained in mTeSR™1 medium 

(StemCell Technologies) on Matrigel™ (BD)-coated plates and passed every 3-4 days 

with Accutase.  

 

4.2.5 Human stem cell induction towards KDR+ VPC (stage 1) 

Human ESC (hESC-H9) were detached using Versene (Thermo Fisher) for 8 

minutes followed by physical dissociation by triturating with a pipette.  An aliquot of the 

cells was counted and plated on 50 μg/mL fibronectin-coated dishes at 10,000 cells/cm2.  

The stage 1 medium included: alpha-MEM (Cellgro), 20% KSR (Invitrogen), 1ΧPS, 

1ΧNEAA, 2 mM L-glutamine, 0.05 mM 2-mercaptoethanol, 15 ng/mL VEGF and 

5ng/mL BMP-4 (Peprotech).  Cells were fed with a full media change every third day 

until day 6, then it was fed every day and were sorted for KDR+ (Biolegend) expression 

with a BD FACS Aria III on day 10 (Figure 21). 

4.2.6 Human stem cell induction towards VE-cadherin+ EC (stage 2) 

KDR+ VPC were plated on dishes coated with 50 μg/mL fibronectin-coated dishes 

and plated at 20,000 cells/cm2 and supplemented with 5uM ROCKi (Stem Cell 

Technologies) for the first 24 hours.  The stage 1 medium consisted of: 70% alpha-MEM 

and 30% DMEM, 2Χ Nutridoma CS, 1% penicillin-streptomycin, 1% NEAA, 2 mM L-

glutamine, 0.05 mM 2-mercaptoethanol, 30 ng/mL VEGF, and 10 ng/mL bFGF 

(Peprotech).  After 7 days (day 17 of total differentiation), 5uM SB431542 was added to 

the medium.  Cells were fed with a full media change every third day.  On day 25 of total 

differentiation (8 days later), VPC were sorted for VE-Cadherin (eBioscience) and re-

plated on 50 μg/mL fibronectin-coated dishes. 
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Figure 21: Optimized protocol for hESC-H9 for EC.  In stage 1, hESC-H9 are plated on 

fibronectin and sorted for KDR expression on day 10.  The KDR+ cells are then re-plated 

onto fibronectin. On day 17 of total differentiation, SB-431542 is added and the EC are 

sorted for CD144 expression on day 25 of total differentiation. 

4.2.7 Induction of human stem cells towards smooth muscle cells 

The McCloskey laboratory has also been optimizing the induction of smooth 

muscle cells from pluripotent stem cells using serum-free medium (Figure 22). For this 

study, undifferentiated stem cells were harvested and plated at 10,000 cells/cm2 on dishes 

coated with 10 µg/mL fibronectin and cultured in stage 1 induction medium consisting of 

alpha-minimal essential medium (a-MEM), 20% KSR, 1x AAS, 1x NEAA, 2mM L-

glutamine, and supplemented with 5ng/ml BMP-4, and 15ng/ml of VEGF. After 10 days, 

the KDR+ cells from stage 1 were isolated and seeded on 10 µg/mL fibronectin and 

expanded in stage 2 SMC induction medium consisting of alpha-minimal essential 

medium (a-MEM), 20% KSR, 1x AAS, 1x NEAA, 2mM L-glutamine supplemented with 

0.1, 1, or 10 ng/mL PDGF-BB.  Cells were collected for microvascular co-cultures on 

day 24 and the varying concentrations of PDGF-BB were pooled.  

 
Figure 22: Differentiation protocol for hIPS for SMC. In stage 1, hIPS follow the 

endothelial cell induction protocol seen in [23]and sorted for KDR expression on day 10.  

The KDR+ cells are re-plated onto fibronectin and fed with stage 2 media supplemented 

with varying concentrations of PDGF-BB.  On day 24, the derived hIPS cells were 

analyzed for Calp1, SMTN-B, and SM-MHC and were used for the following study.  

Image provided by Edwin Shen. 

 

4.2.8 Human stem cell induction towards cardiomyocytes 

hESC-H9 were detached using Versene for 8 minutes following by physical 

dissociation by triturating with a pipette.  An aliquot of the cells was counted and re-

plated onto Matrigel-coated plates in mTeSR1TM (Stem Cell Technologies).  When the 

cells reached confluency, the medium was replaced with RPMI supplemented with 2% 

B27 without insulin (RPMI/B27 w/o insulin) and 12 µM GSK3 inhibitor (CHIR99021) 
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on day 0.  24 hours later the medium was replaced with RPMI/B27 w/o insulin.  On day 

3, the medium was replaced again with RPMI/B27 w/o insulin supplemented with 5µM 

Wnt inhibitor (IWP2).  On day 5, the medium is replaced with RPMI/B27 w/o insulin.  

From day 7-14 the cells were fed with RPMI/B27 w/ insulin every third day.  Cardiac 

troponin T expression was analyzed on day 21 and 26 (Figure 23). 

 
Figure 23: hESC-H9 derived cardiomyocytes stained with cTNT and analyzed using flow 

cytometry. 

4.2.9 Microfluidic device fabrication 

The molds for the microfluidic devices were generously provided by our 

collaborator, Dr. Roger Kamm (MIT).  The devices were made by desiccating PDMS at a 

ratio of 1g of curing agent to 10g of base.  The PDMS was then poured into the molds 

and baked in an oven at 75°C for 2 hours.  There are three channels (width=0.4cm, 

length=2.1cm, and height=1cm).  The device ports were generated using a biopsy punch 

(ID: 1mm) to create inlet and outlet ports.  Both the PDMS devices and glass slides were 

plasma treated in a plasma cleaner (Harrick) for 1 minute and 20 seconds at 

approximately 600 mTorr and bonded together (Figure 24) to form the microfluidic 

device used in these studies. 

 
Figure 24: Microfluidic device fabrication.  PDMS was mixed and desiccated at 10:1 

base to curing agent before being poured into the mold and baked at 75°C for 2 hours.  
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The device was removed from the mold and ports were made with a biopsy punch.  The 

device and a glass slide are placed in a plasma cleaner to be bonded together. 

4.2.10 Microvascular network formation 

Fibrinogen solution was prepared by reconstituting 6 mg/mL of bovine fibrinogen 

in PBS and dissolving the mixture in 37°C water bath for 4 hours.  The solution was then 

filtered using 0.22 µm filter and stored at 4°C.  Cells were lifted with trypsin and 

resuspended at various concentrations (Table 2) with 2 U/mL thrombin.  The cell 

suspensions were then mixed in a 1:1 ratio of 6 mg/mL fibrinogen and immediately 

injected into the cell channel.  Devices were placed in a humidity box at room 

temperature to allow the gels to cure for 20 minutes before filling the media channels 

with supplemented EGM2.  Media was replenished every 24 hours for the duration of the 

culture.  In the study where E-64 was used, 2 µM was added to the fibrin gel. 

 

Cell combinations Total number of cells (million/mL) Ratio 

HUVEC+NHLF 8 to 4 2 to 1 

mESC-derived tip/stalk EC+NHLF 4 to 1 4 to 1 

mESC-derived phalanx EC+NHLF 4 to 1 4 to 1 

VPC-R1+HUVEC+NHLF 4 to 4 to 4 1 to 1 

VPC-A3+HUVEC+NHLF 4 to 4 to 4 1 to 1 

hESC-H9 VEC+NHLF 8 to 4 2 to 1 

HUVEC+MEF 8 to 4 2 to 1 

HUVEC+hIPS-derived SMC 8 to 4 2 to 1 

HUVEC+hESC-derived CM+NHLF 4 to 4 to 4 1 to 1 

HUVEC+hESC-derived CM 8 to 4 2 to 1 

Table 2: Cell combinations used in microfluidic devices with their respective 

concentrations and ratios. 

4.2.11 Vessel quantification 

The quantification of vessel length, diameter, density, and branching points over 

time (Figure 25A) was accomplished using a quantitative tool called AngioTool [143]. 

AngioTool allows the user to threshold brightness depicting the outline of the vascular 

networks (green-yellow line, Figure 25B). Once the program is run, it identifies vascular 

pathways and junctions, as well as, spreadsheets of data for generating graphs and 

statistics.  
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Figure 25: Quantification of vessel statistics is accomplished by A) first imaging the 

vasculature using a fluorescent microscope. B) The second line illustrates the green-

yellow overlay while the C) red line shows the junctions and pathways after running 

AngioTool. 

 

4.2.12 Statistical analysis 

Statistical analyses were conducted with GraphPad Prism 7 software. One-way 

ANOVA with Student's unpaired t-test was used to compare two groups.  Differences 

at P≤0.05 were considered statistically significant. P values were calculated by 

analysis of variance for multiple pairwise comparisons.  The data are reported as mean 

± SEM. 

 

4.3 Results 

First, we set out to replicate previous studies that show that HUVEC and NHLF 

form perfusable vasculature when embedded in a fibrin gel [46].  By day 3 of culture, we 

can already see that HUVEC self-assemble into a vascular-like structures (Figure 25 and 

Figure 26).  By day 4, we can perfuse the tissue with 2.2 µm beads (not shown).  Using 

AngioTool, we analyzed the average vessel length and vessel percentage area and used 

this data as our standard for the next experiments, in addition to perfusion.   

The first set up experiments used co-cultures of our mESC- derived EC 

subpopulations, phalanx EC, with NHLF in the microfluidic devices (Figure 27).  Within 

48 hours, the cells form connections but regress the following day.  The fibrin gels 

compact in the channel and the experiment can no longer progress. It was suspected that 

the mouse EC may not have been able to fully integrate with the human fibroblasts for 

complete vasculogenesis and/or stabilization of the neovessels. 
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Figure 26: HUVEC and NHLF form perfusable microvasculature. Green=HUVEC 

CellTracker green dye.  Scale bar=100µm. n=2 

 
Figure 27: mESC-derived tip/stalk and phalanx EC and NHLF in fibrin gels form 

connections but are not stable.  Green=mESC-derived tip/stalk or phalanx EC 

CellTracker green dye.  Scale bar=100µm.  n=2 
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Next, we attempted to compare VPC from two different mouse ESC lines, mESC-

A3 and mESC-R1, with HUVEC and NHLF as a triculture.  By supplementing the 

devices with known mature EC that are from a human, we suspected this may aid the 

VPC in forming perfusable vasculature.  Although a developing vascular network is 

initiated, these vessels they are much less robust and stable, compared to the devices with 

only HUVEC and NHLF.  It appears that the VPC might destabilize the structures, 

perhaps due to their highly angiogenic nature (Figure 28) [65].   

 
Figure 28: Vascular progenitor cells in fibrin gels. The addition of the VPC-R1 to the 

HUVEC+NHLF inhibit vasculature formation.  By day 4, all the cells have regressed, and 

the gel has compacted.  No visual evidence of lumen formation was seen.  Red=VPC-R1 

or VPC-A3 CellTracker red dye.  Scale bar=100µm.  n=2 

 

Because it was suspected that the mouse ESC-derived EC might not be fully 

integrating with the human fibroblasts, we set out to examine the vascular assembly using 
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hESC-derived EC.  These studies first required adapting our mouse ESC induction for 

human ESC.  Human ESC cells were first examined for optimal induction time, seeding 

density, and VEGF treatment for stage 1.  The greatest percentage of KDR+ cells from 

hESC-H9 cells was obtained at day 8 from cells seeding at 1,000 cells/cm2, with VEGF 

treatment between 15 and 30 ng/ml insignificant (Figure 29) [23].  However, in order to 

generate enough EC for our experiments, we chose to use a cell density at 5,000 cells and 

collect on day 10.  In stage 2, we also adapted our protocols to introduce a TGF-β 

receptor type 1 inhibitor (SB431542) at 7 days post sort to minimize smooth muscle cell 

proliferation in differentiating EC cultures [144].  On day 25 of total differentiation, the 

cells were sorted for VE-cadherin and expanded to passage 2 for our microfluidic device 

experiments.   

 
Figure 29: Induction of human ESC cells into VPC (stage 1) into KDR+ cells, varying 

seeding density, VEGF treatment, and examined for optimal induction time. 

 

Combining the VE-cadherin+ cells with the NHLF in the fibrin gels and devices, 

we see that vascular connections started to form in the first 24 hours, but by day 3 have 

completely regressed.  At this point, we thought that the issue might not be with the cells, 

but with the highly angiogenic cells migrating and degrading the fibrin gels.  To block the 

activity of one potential source of fibrin degradation, we decided to add a cysteine 

protease inhibitor, E-64, to inhibit the breakdown of the fibrin gel (Figure 30). It appears 

as if the protease inhibitor might be aiding the vessel stability, but the concentration of 

the inhibitor required per cell source would still need to be optimized.   
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Figure 30: hESC-H9 derived EC and NHLF in fibrin gels.  Similarly, to the mouse-ESC 

derived EC and VPC, the hESC-H9 derived EC form connections in the first 24 hours, 

but quickly regress over the next 48 hours and then curiously rebound formations.  The 

addition of E-64 might be aiding not aid in the formation of vasculature up to day 3 and 

will require further studies.  Green=hESC-H9 VEC+ CellTracker green dye. Scale 

bar=100µm.  n=2 

  

 Lastly, we decided to investigate the effect of co-culture with alternative stromal 

or accessory cell types including: inactivated mouse embryonic fibroblasts (MEF), hiPS-
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derived SMC, and hESC-derived CM, with HUVEC and NHLF as our control and 

examine the vessels formation on day 4.  Devices seeded with MEF co-cultured with 

HUVED did not form vessel-like structures and regressed by day 4, and according to data 

obtained by Angiotool, with low average vessel length, vessel percentage area, and total 

number of junctions (Figure 31).  However, devices seeded with hIPS-derived SMC co-

cultured with HUVEC exhibited more promising results, generating more vessel-like 

structures that appeared to be perfusable.  However, these vessel-like structures were not 

stable past day 4.  Devices seeded with HUVEC co-cultured with hESC-H9-derived 

cardiomyocytes (CM) and NHLF showed formation of vasculature and, compared to the 

control, the vessel network did not appear to be interrupted significantly by the presence 

of the hESC-H9 derived cardiomyocytes.  The vessel percentage area was also similar to 

the control HUVECs co-cultured with NHLFs, but the average vessel lengths and total 

number of junctions remained inferior.  Moreover, the vessel diameters were larger (data 

not shown) explaining the high vessel percentage area without high vessel length or 

numbers of junctions.  Lastly, when devices were seeded with only HUVEC and hESC-

H9 derived CM without the addition of NHLF, we did not observe vessel formation 

compared to the control.  We conclude that although the presence of the CM did not 

significantly interrupt the vascular formations of HUVEC and NHLF, they did not 

enhance the vascular assembly or stability of neovessels. 

 

 

 
Figure 31: Investigating different accessory cell types co-cultured with HUVEC in 

microfluidic devices.  Day 4 data presented for average vessel length, vessel percentage 

area, and total number of junctions.  The addition of the stem cell-derived SMC produce 

vessel like structures, and hESC-derived CM with NHLF, but the average vessel length 

and total number of junctions varies significantly from the HUVEC and NHLF networks.  

Without the addition of NHLF with hESC-derived CM, vessel-like structures are not 

formed. n=2 * p-value < 0.05 ** p-value < 0.005 *** p-value < 0.0005 **** p-value < 

0.00005 
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4.6 Discussion 

In this chapter, fibrin is used as a three-dimensional structure to study the 

formation of vasculature in co- or tri-cultures.  Fibrin is an insoluble protein which plays 

a role in blood clotting and is formed through the enzymatic polymerization of fibrinogen 

through thrombin.  For therapeutic purposes, it is used as a sealant and adhesive in 

surgery.  Once the wound starts to heal, fibrin is degraded and remodeled.  In vitro 

studies have reported that fibrin gels might also promote proliferation and matrix 

synthesis through the release of platelet-derived growth factors and transforming growth 

factor beta [145].  In addition, fibrin gels have angiogenic properties that produces 

microvasculature-like networks and subjects cells to mechanical signaling through 

integrins that associate with the cytoskeleton [49].  The polymerization of fibrin forms a 

dense network that is impermeable to cell infiltration but is opposed by fibrinolysis, the 

degradation of fibrin through cell-secreted enzymatic proteases.  Aprotinin is a 

proteinease inhibitor which slows down the degradation of fibrin (fibrinolysis).  

Aprotinin acts as an inhibitor by forming complexes with human trypsin, plasmin, and 

plasma.  It blocks fibrinolysis by inhibiting plasmin.  Plasmin is a serine protease that is 

secreted to rapidly degrade fibrin [146].  Cystine cathepsins are lysosomal proteases that 

degrade intracellular and extracellular matrix proteins, like collagenase and elastase 

[147].  Other proteases such as matrix metalloproteinases (MMPs) also  contributes to 

fibrinolysis and degrading multiple ECM proteins [147].  Cathepsins and MMPs have 

been implicated in vasculogenic and angiogenic activities, normal and dysfunctional.  

Specifically, cathepsin L has been associated with cell invasion, neovascularization, and 

its activity is upregulated in endothelial progenitor cells compared to mature EC [148].  

And in tumor studies, MMPs have been implicated to play a critical role in ‘vasculogenic 

mimicry’, which is a term to describe how malignant tumors form microvasculature [149, 

150].  Zhang et al. shows that with the formation of microvasculature in melanoma 

tissues, there is an increase of MMP-2 secretion and a decrease of E-cadherins, which 

plays a role in cellular adhesion [150].  In another study, MMP-2 and MMP-9 were 

shown to increase in hypoxic conditions and promote angiogenesis in pulmonary arterial 

endothelial cells [151].  MMP-9 can also release VEGF from the ECM, which is an 

inducer of tumor angiogenesis [152]. 

 

A vascular network is needed to generate a functional tissue in vitro if larger than 

100-200 µm because deeper than that the cells are deprived of oxygen and cell viability 

decreases [61, 153].  However, Shimizu et al. reports that only a maximum thickness of 

80 µm can be used for successful transplantation of a cardiac construct [154].  To 

overcome this limit, primary cells have been used, like HUVEC and stromal cells to 

increase vascularity in in vitro tissues [130, 155, 156].  In these studies, sheets of cardiac 

tissue are made and placed on top of each other to form a thicker sheet.  In between these 

sheets, vascular cells were placed and a vascular network forms within 24 hours.  Even 

though microvessels self-assemble in these tissues, it is unclear whether the connection to 

host-derived vessels is fast enough to allow survival of the implanted tissue.  This may 

explain why our hESC-derived CM did not integrate well in the microfluidic device as 

the fibrin gel channel is 4000 µm wide.  However, when the device was tri-cultured with 
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HUVEC+NHLF+hESC-derived CM, we were able to observe the microvessels self-

assemble.  The viability of the hESC-derived CM was not assessed, but clusters were 

observed to be contracting (data not shown). 

 

Within the branching sprout during angiogenesis are specialized EC: tip, stalk, 

and phalanx [118, 142].  The tip EC are found at the leading edge of a sprouting vessel 

and are distinct in their DLL4/Notch1 signaling [157].  Tip cells have more organized 

stress fibers compared to stalk and phalanx EC with probing filopodia and migrate 

towards angiogenic stimuli [158].  Stalk cells trail behind tip cells and are characterized 

through the suppression of Dll4 through Notch signaling.  Stalk cells also readily 

proliferate, form lumens and do not extend filopodia [159].  Phalanx EC are less 

migratory and have high levels of Flt-1, which is thought to mitigate signals of VEGF, 

keeping phalanx EC stable [160].  This is also aided in high levels of VE-cadherin, which 

tightens the EC-to-EC junctions.  We set out to examine these subpopulations of EC and 

their ability to form vasculature, as well as their vascular progenitors to mimic 

vasculogenesis further.  Tip/stalk EC are thought to be more angiogenic than phalanx EC, 

so we expected that tip/stalk EC would readily form vessel-like structures, as they do in 

Matrigel assays [118].  However, we found that both EC subpopulations and VPC 

degrade the fibrin faster than they can form these connections.  We suspect that these 

subpopulations are either too proliferative or too migratory for the fibrin gel.  We also 

suspect the mouse cells do not integrate with the human fibroblasts.  It is possible that the 

secreted soluble factors by either cell types may not have the appropriate receptors due to 

the different animal origins.  The mechanism of how NHLF signal EC to self-assembly is 

still unclear, we know it occurs when the cells are cultured in direct fibroblast-endothelial 

contact (juxtacrine) and indirectly through secreted soluble factors (paracrine).  Although, 

the juxtacrine culture has improved vascularity compared to paracrine, there are signals 

specifically from NHLF that have yet to be explored [46, 161].   

 

During vasculogenesis, the endothelial precursor cells (EPC) form a primitive 

vascular plexus.  These EPC then go on to differentiate into EC, which forms the first 

blood vessel network [2].  As the network undergoes further remodeling (angiogenesis) 

and matures, mural cells (pericytes and SMC) stabilize the network and provide 

contractile support and integrity to the newly formed vessels [3, 4].  Mural cells can be 

found surrounding the endothelium, with multiple layers of vascular SMC found on 

blood vessels and pericytes on small-diameter vessels [162].  In the absence of mural 

cells, embryos would not survive due to vessel permeability and destabilization, which is 

also found in the leaky vasculature formed by tumors due to their inability to recruit 

mural cells  [163, 164].  Interestingly, there are reports suggesting that pericytes can 

differentiate into vascular SMC [165, 166], which proposes plasticity among mural cells.  

However, characterizing pericytes has been difficult as their behavior in vivo and in vitro 

are different.  In vivo pericytes are multipotent, but in vitro they do not act as stem cells 

[162], and currently, pericytes have only been generated as a subpopulation in mesoderm 

EC differentiation studies in CD31- populations [167, 168].  Pericytes and vascular SMC 

share some markers and arise from the same embryonic origins, such as αSMA and 
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Calponin-h1 (CNN-1) in vitro, but pericytes do not express CNN-1 in vivo [162], further 

complicating their phenotypes.   

Surprisingly, contrary to the in vivo surroundings during vasculogenesis, the most 

robust self-assembled microvasculature in vitro co-cultures EC with NHLF and is 

routinely used in numerous microfluidic studies [46, 169, 170], but there are some studies 

that use pericytes instead [171, 172].  In general, fibroblasts are the most common cell in 

connective tissue that maintains extracellular matrices and provides physical support to 

tissues [173, 174].  Even though these self-assembled microvessel networks do not 

completely mimic the complex in vivo microenvironment, they have been shown to 

behave similarly in terms of permeability, vasoactive response, and barrier function [48, 

171].  Shown by Bichsel et al, the pericytes in culture surround the self-organized 

microvessel network and show mural-like behavior, but whether these cells function like 

vascular smooth muscle cells was not studied.  To date, there are no studies 

characterizing why NHLF robustly make microvasculature in vitro, and no other studies 

using other types of fibroblasts found in other tissues.  When recapitulating the vascular 

plexus in vitro, we examined the use of hIPS-derived SMC instead of lung fibroblasts 

since their roles in development and maintenance are significant in vivo.  We found that 

devices seeded with hIPS-derived SMC co-cultured with HUVEC offered promising 

results but were not stable passed day 4.  This may be due to not having a pure population 

of vascular SMC, so other cell types in the population may be proliferating and/or 

migrating and disrupting the newly formed networks.  

 

4.4 Conclusions 

Using microfluidic devices as our platform to form vasculature, we have 

investigated the potential of our mESC-derived EC and VPC and hESC-derived EC.  

These cell types seem to be able to form networks and connections, but quickly degrade 

their 3D environment.   By comparing NHLF to other stromal cell types we see that 

NHLF provide the necessary cues to HUVEC to form perfusable vasculature.  hIPS-

derived SMC and hESC-derived CM with NHLF form some networks but are less stable.  

Future work will be needed to optimize seeding devices with alternative cell types like 

hESC-derived endothelial cells and eliminating the use of primary endothelial 

cells/HUVEC. Further optimization of microfluidic device protocols and medium 

formulations will also be necessary to generate stable vasculature from the stem cell 

derived endothelial cells. Further experimentation is also needed to determine if the 

vasculature is perfuasble. 
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Chapter 5: Electrospinning Bombyx Mori Silk with Poly(ethylene oxide) 

5.1 Introduction 

Cardiovascular diseases remain the leading cause of death in humans.  

Arthrosclerosis, the hardening and thickening of blood vessels, are a primary contributing 

factor in development of cardiovascular disease. An arterial blood vessel is composed of 

three distinct layers, an endothelial layer lining the lumen of the vessel, a medial layer 

with smooth muscle cells and thick matrix in the middle, and an outer adventitial layer of 

connective tissue.  When the artery providing blood to the heart muscle is compromised, 

a bypass surgery will take a saphenous vein from the leg to reroute the blood flow around 

the occluded region.  For patients who fail to arterialize following bypass surgery or 

patients with multiple bypass surgeries, synthetic or in vitro-derived vascular grafts are a 

necessity. Therefore, the development of small-diameter vascular grafts, for providing 

larger-scale blood flows (inner diameter > 6 mm), have been a subject of intense 

investigation in recent years.  These have been made from synthetic materials like 

polytetrafluoroethylene, polyester (Dacron®) [175], polylactic acid, or polyglycolide 

[176].  However, synthetic grafts have the tendency to lead to thrombosis and eventual 

occlusion.  Some products, like GORE® PROPATEN® Vascular Graft, include anti-

coagulants to alleviate this problem. However, over time the drug will dissipate and, if 

not completely reendothelialized, the graft will occlude and require further replacement 

surgeries.   

 

Newer small-diameter grafts made from polylactic acid [177] and polyurethane 

[178] have been widely accepted to be suitable for use as tissue-engineered vascular 

grafts, but they are not conducive to cell adhesion [179].  Only grafts seeded with 

endothelial cells will have properties that can excrete anti-thrombotic factors, and are 

considered vital for long term graft survival [55, 56].  Natural biopolymers like collagen 

and fibrin have been explored. These exhibit good biocompatibility and promote cell 

adhesion and differentiation [180, 181], but these natural grafts exhibit limited 

mechanical integrity complicating their integration in vivo [57].  Specifically, the burst 

strength of these constructs is much lower compared with bypass grafts from a patients’ 

own blood vessel [182]. 

 

5.1.1 Silk fibroin 

Silk fibroin, derived from Bombyx mori cocoons, is a naturally occurring polymer 

that can be blended with different ECM proteins, growth factors, or other polymers 

through electrospinning techniques and has been widely examined as a biomaterial  [58, 

183].  It is compatible with cells [184], blood [185], non-immunogenic [186], and the rate 

of degradation can also be tuned and has been shown to be replaced by collagen and other 

ECM proteins within the body [59, 60].  The use of silk fibroin has been reported in 

constructing vessels by electrospinning [187] or freeze drying [182], and the 

biocompatibility has been tested in vitro and in vivo [188].  Most importantly, electropun 

silk vascular grafts have been reported to have comparable mechanical properties to those 

of native blood vessels [58, 188].   
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5.1.2 Electrospinning  

Electrospinning fibers, due to their long fibers and high surface area, are an 

excellent strategy that can provide tube-like structures that can sustain high levels of 

mechanical stress.  An electrospinning set up requires high-voltage power supply, a 

syringe pump, a collecting plate, and an electrostatically charged fluid.  A charge 

difference is established between the spinneret and grounded plate.  The liquid will form 

a Taylor cone which produces an electrospun fiber.  In addition to the setup, certain 

parameters must be optimized.  These include: the distance between spinneret and 

ground, viscosity of the fluid, and flow rate that will form the Taylor cone.  The fiber 

diameters formed can also be altered by adjusting these parameters.   

 

Once the material is prepared through electrospinning, the secondary structures of 

silk fibroin (β-sheet, three-fold helix (β-turn), or random coil) can be altered depending 

on the processing [189].  Treatment with organic solvents like alcohols can be used to 

convert the crystallization from random coil to β-sheet, which has been shown to be 

highly effective and the transition to alcohol vapor and sterility for cell cultures purposes 

is effective as well [189, 190].   

 

5.1.3 Lumenized muscle 

 The self-assembly of skeletal muscle strips under tension has been recently 

developed [191, 192].  Briefly, a hollow tube is created by allowing a high concentration 

of gelatin mixed with sodium hydroxide and thrombin to form around a 0.5mm diameter 

wire (Figure 32).  After allowing the solution to solidify at 4°C, the wire is removed.  

Another solution made of fibrinogen, MatrigelTM, cells, aminocaproic acid, and media is 

pipetted through the cavity from the displaced wire.  The device is placed at 37°C, 

allowing the gelled thrombin to diffuse into the cell-fibrinogen solution to form the 

muscle strip in fibrin.   
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Figure 32: Muscle strip device.  A) A gelatin solution is added to the device and allowed 

to solidify around a wire (i), a cell-fibrinogen solution is added (ii), placed at 37°C to 

allow thrombin to diffuse through and form fibrin (iii), and media is replaced surrounding 

the newly formed muscle strip (iv).  B) A representative device with a quarter for scale. 

 

This technology is required to be in tension axially, which aligns the cells, 

however, when the tissue under tension is detached, the muscle strip will contract.  

Moreover, without providing perfusion to the tissue, the size of these muscle strips 

remains limited. Our laboratory has explored the addition of a perfusable lumen through 

the length of the muscle.  This required the addition of a second sacrificial gelation step 

for providing spatially segregated endothelial cells within the lumen. This new device 

design requires a series of molds cast using polydimethylsiloxane (PDMS) and 

degradable polymers to guide tissue formation within a microfluidic chamber. By 

inserting electrospun silk fibroin between the muscle and endothelial layers, we also aim 

to prevent the tissue from collapsing upon removal from the device. 

 

5.2 Methods 

5.2.1 Silk processing and spinning solution 

Bombyx mori cocoons were processed following the methods published by Jin, H. 

[193].  First, they were boiled in 0.02 M sodium carbonate for 30 minutes and rinsed with 

distilled water to remove the pro-inflammatory sericin protein (Silk 1). After boiling, the 

silk was dissolved in 9.3 M lithium bromide for 30 minutes and dialyzed for 48 hours. 

The electrospinning solution was prepared by dissolving 2.5% by weight of polyethylene 

oxide (PEO) into 5% silk solution, resulting in a 5% silk 2.5% w/v PEO solution and 

placed on a rotator overnight (Figure 33). 

5.2.2 Electrospinning 

 A syringe pump set at 5 µL/min was connected to tubing filled with 10 mL of 

silk/PEO solution.  A 23G dispensing tip was used and connected to a positive charge of 

5 kV.  The distance from ground was set to 9 cm.  The silk scaffolds were submerged in 

90/10 (v/v) methanol/water for sterilization and induction of β-sheet formation for 20 

minutes and desiccated overnight (Silk 3). 

 
Figure 33: Processing Bombyx mori cocoons.  The sericin was removed using sodium 

carbonate then dissolved in lithium bromide and dialyzed for 48 hours.  Then 2.5% 
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polyethylene oxide was dissolved into 5% silk solution and electrospun to make silk mats 

or tubes. 

 

5.2.3 Scanning electron microscopy (SEM) 

Electrospun silk on glass coverslips were sputter coated with gold before analysis.  

Images of electrospun fibers coated with gold were obtained with a Zeiss Gemini 500.  

Average fiber diameters were determined by measuring 100 fibers selected randomly 

from each image using ImageJ software. 

  

5.2.4 X-ray diffraction 

An X-ray diffractometer (PANalytical X'Pert PRO Theta) with Co/Kα radiation 

(k=1.788965 nm) was used to analyze the crystallinity of the silk.  Data were collected 

for 2θ values of 5-45° with a step size of 0.03° and a continuous time of 0.7 s per step, 

according to a previous study [194].  Bragg’s Law was used to convert diffraction angles 

from Co/Kα to Cu/Kα.  The D-spacing was calculated using the following equation: 

D=λ/(2×sin(θ)), where θ=Bragg’s angle. 

 

5.2.5 Primary cell culture 

Normal human lung fibroblasts (NHLF; Lonza) were cultured in Fibroblast 

Growth Medium (FGM™-2; Lonza) on gelatin-coated plates.  To test attachment to our 

silk substrate, NHLF were lifted using trypsin and re-plated at 10,000 cells/cm2 on tissue 

culture treated plastic, glass coverslips, and glass coverslips with electrospun silk.  

Gelatin was not used to coat any of these substrates.  Murine C2C12 skeletal muscle cells 

were cultured on gelatin-coated dishes in medium containing: 88% High Glucose 

DMEM, 10% FBS, 1% L-glutamine, and 1% penicillin-streptomycin.  Human umbilical 

vein endothelial cell (HUVEC; Life Technologies) were cultured in Endothelial Cell 

Growth Medium (EGM™-2 with BulletKit™; Lonza) on fibronectin coated plates (10 

µg/mL; Corning) and used in experiments between passages 3-5. In the muscle strip 

device, C2C12 and HUVEC were injected at 20x106 cells/mL. 

5.2.6 Quantifying Cell Alignment 

Images were processed via custom MATLAB (MathWorks, Inc) scrips. Actin labeled 

images were analyzed by transforming them into 8-bit images.  A 2-by-2 median filtering 

(medilt2) operation was carried out to ensure proper identification of edges.  Image 

threshold values were calculated (graythresh) and used when turning the images into 

binary. The binary images were then dilated and eroded separately, and their difference 

became the cell membrane or actin skeleton. The binary outline was then analyzed for its 

properties (regionprops) from which the orientation was extracted.  Cells were defined as 

“aligned” if they are within ± 30° of the principal axis, which was found by maximizing 

percent alignment. 
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5.2.7 Muscle-endothelial bundle device 

The microfluidic devices (Figure 34) were made by desiccating PDMS at a ratio 

of 1g of curing agent to 10g of base around concentric 17 G and 24 G needles and baked 

in an oven at 75°C for 2 hours or overnight. A well is created by using a biopsy punch 

and the device is bonded to a 18mm glass coverslip.  The muscle and endothelial tissue 

are layered using a sacrificial hydrogel technique.  First, a silk mat is wrapped around the 

24 G needle and placed into the 17 G needle.  Second, the outer layer of the muscle tissue 

is formed by injecting muscle cells through the 17G needle (coats the silk tube).  The 

endothelial layer is then added by injecting the cells through the 20 G needle.  C2C12 and 

HUVEC are dyed with CellTracker Red/Green, respectively. 

 

 
Figure 34: Muscle-endothelial bundle device.  (a-b) Schematics of the device.  (c-d) The 

cells that were injected after 1 hour are less aligned compared to 24 hours later.  (e-h) The 

formation of the muscle-endothelial bundle is similar to the muscle strip device, however 

there is an additional needle in the cavity that allows the muscle cells to form around it 

before injecting endothelial cells in the new cavity.  (i-j) C2C12 (red) form connections 

with each other and surround HUVEC (green) in a cavity.   

 

5.3 Results 

5.3.1 Silk characterization using SEM 

The morphology of Silk 2 and 3 were characterized by SEM at different 

magnifications to investigate the effects of methanol (Figure 35).  An average fiber 

diameter of 408 ± 121 nm was measured (Figure 36) in the regions of the mats where no 

defects were present and only of Silk 2, due to ambiguity of specific fibers in Silk 3 

samples (Figure 35 bottom).  The inconsistency in fiber formation in Silk 2 can be 

attributed to the start of the electrospinning process/Taylor cone formation because the 
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defects are most likely formed when electrospraying are underneath the electrospun 

fibers.   

 

Figure 35: Scanning electron microscope images  of Silk 2 (top) and Silk 3 (bottom). 

Scale bars=1µm 

 
Figure 36: Histogram of diameter of electrospun fibers.  Mean: 470 ± 150 nm 
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5.3.2 X-ray diffraction analysis 

The main crystal structures are Silk 1 and 2, while Silk 3 is a relatively new 

structure that was observed to be formed in solutions of fibroin at an interface, like air-

water [195].  Silk 1I is the natural fibroin that is emitted from Bombyx mori silk glands 

and is characterized by having β-turn structures that result in compact silk conformations 

[196].  Silk 2 is less compact than Silk 1 and is characterized by having antiparallel β-

sheets of crystallized silk found in spun silk fibers, while Silk 3 is found to form a 3-fold 

extended helix at an interface [197].  The use of silk fibroin in research or commercial 

applications is usually made up of a mixture of these crystalline structures which can be 

tuned depending on the application [198].  The toughness and solubility in water of silk 

fibroin is dependent on their β-sheet composition.  To study the composition of the silk 

produced, we used an X-ray diffraction method of analysis.  Figure 37 shows the X-ray 

diffraction data of the silk fibroins produced in our studies: degummed fibroin (Silk 1), 

electrospun fibroin (Silk 2), and electrospun fibroin prepared in methanol (Silk 3). Silk 1 

has a broad peak at 2θ = 21°, which corresponds to a crystalline spacing of 0.422 nm.  

Silk 2 and Silk 3 have similar 2θ diffraction peaks at 19° which corresponded to a 

crystalline spacing of 0.467 nm.  However, Silk 3 showed an additional peak at 2θ = 24°, 

which corresponds with a crystalline spacing of 0.370 nm.  A previous study 

demonstrated similar XRD pattern of the β-sheet crystalline structure at 0.370 nm, 

however they report two other diffraction peaks at 8.19° and 20.46° [194].  The peak for 

degummed silk was not as intense as the electrospun silk, indicating that these solutions 

contain decreased crystallization but increased organization. 

 

Figure 37: X-ray diffraction patterns of sericin-free silk (Silk 1), electrospun water-

soluble silk (Silk 2), and electrospun water-insoluble silk (Silk 3). 

 

0

500

1000

1500

2000

2500

0 10 20 30 40 50

In
te

n
s
it
y

Diffraction angle (2θ)

Silk 1 Silk 2 Silk 3



55 

 

5.3.3 In vitro cell interactions 

 Normal human lung fibroblasts were plated to examine cell attachment to the silk 

fibers.  As controls, we plated NHLF on tissue culture plastic and glass coverslips.  After 

7 days, the cells were stained with F-actin and DAPI (Figure 38).  Surprisingly, the 

NHLF appeared to be aligning to the substrate as early as 3 days, even though the fibers 

were spun randomly.  We quantified the alignment using MatLab and found that the 

NHLF were more aligned on silk (84.6%) compared to TC plastic (67.7%) and glass 

(76.8%).  This un-intended alignment can be observed in the XRD results, where the 

electrospun fibers (Silk 2) are more aligned than the raw silk (Silk 1).  We also see the 

formation of aligned fibers after methanol treatment (Silk 3), so the cells are responding 

by aligning to these structures. 

 
Figure 38: Normal human lung fibroblasts plated on tissue culture (TC) plastic, glass 

coverslips, and electrospun silk (Silk 3).  Cells were stained with F-actin and DAPI.  

Using MatLab, we quantified alignment of F-actin fibers and found that, on average, the 

F-actin fibers are aligned more on the electrospun silk, then TC plastic, followed by 

glass.  Scale bars=100µm 

 

5.3.4 Muscle-endothelial bundle device 

Figure 39 shows the development of muscle-endothelial bundle without (Figure 

39A) and with (Figure 39B) the silk scaffold.  After injecting the fibrinogen+C2C12 cells 

and allowing the thrombin to diffuse through at 37°C, the cells are also able to diffuse out 

into the well (Figure 39A).  With the addition of the silk mat coating the 25G needle 

(blue), the C2C12 cells attach to the silk and remain from day 0-5.  Since the C2C12 have 

attached so closely, we can also see that the silk has unwound itself in part of the device.  

The total length of the tissue is 8.87 mm, while the diameter of the muscle bundle starts 

at ~1.12 mm (day 0) and compacts to ~617 µm (day 5), a 45% change.  The endothelial 
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bundle compacts from ~812 µm (day 0) to ~413 µm (day 5).  As a previous study has 

reported [192], we observed that the bundles becomes taut, which indicates that there is 

internal tension between the two ends where the tissue is attached.  

 

Figure 39: Muscle-endothelial bundle.  A) HUVEC (green) and C2C12 (red) in muscle 

strip device, without the addition of silk.  C2C12 leak into well of device after injection 
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but still forms a tube around the HUVEC.  B) The addition of the silk tube allows the 

C2C12 to attach and prevents them from spreading into the well.  After 24 hours, there is 

a clear border between the HUVEC and C2C12 cells, and the muscle-endothelial bundle 

further compacts through day 5.  Scale bar=1000µm. 

 

5.4 Conclusions 

 Using Bombyx mori cocoons, we have been able to repeat and demonstrate that 

we can electrospin in PEO into mats.  We verify that fibers are formed using SEM and 

have an average diameter of 473 ± 147 nm.  By using x-ray diffraction, we see there is a 

change in structure or organization of the fibers between Silk 1 (degummed silk) and Silk 

2 and 3 (electrospun silk), due to the decreased broadness of the peaks at 2θ= 19°.  By 

treating the electrospun mats in 90% methanol, we can induce a β-sheet change, and 

create water-insoluble silk, Silk 3.  A structure change can be seen in the x-ray 

diffraction, at 2θ=24°.  We can also verify that the silk is water-insoluble when used in 

cell culture.  We verified that NHLF will adhere to the silk mats, and interestingly align 

themselves compared to tissue-culture plastic and glass coverslip.  Lastly, by wrapping 

the dispensing needle in the muscle-endothelial device with silk, we show that the C2C12 

skeletal muscle cells will attach to the silk, with an endothelial tube bisecting the muscle 

tissue.  
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Chapter 6: Conclusions 

 The goal of tissue engineering is to generate a functional tissue that can facilitate 

organ regeneration.  The field combines cells, materials, biochemical factors.  However, a 

major obstacle is vascularizing these tissues.  In the body, most cells are found no more 

than 100-200 µm from the nearest capillary [61].  This diffusion limitation restricts the 

size of tissues and organs that can be built and impedes successful integration after 

implantation.  To build vasculature to overcome this obstacle, EC that line the lumen of 

blood vessels is required.  Support cells, such as smooth muscle cells and fibroblasts, are 

also needed to synthesize matrix and control blood pressure.  By studying EC 

differentiation and the factors that drive blood vessel formation, we can provide 

researchers with the ability to develop larger tissues.  Embryonic and induced pluripotent 

stem cells are both valuable sources for generating specific cell types for its intended 

application due to their unlimited proliferation potential and ability to differentiate into 

any cell type.  The goal of the work in this thesis is to investigate how the stiffness of the 

substrate affects VPC towards EC or SMC fate, microcontact printing using biomimicry, 

microvasculature formation in a 3D environment, and lastly Bombyx mori silk as a 

scaffolding for cells. 

 

 First, we were inspired by Dr. Engler’s work on how the stiffness of 

polyacrylamide hydrogels can affect mesenchymal stem cells and wanted to examine its 

effects on VPC.  Initially, we wanted to use a novel mouse ESC line that expresses GFP 

under Tie-2 promoter and RFP under the αSMA promoter on Zebraxis, which have low 

and high stiffness stripes, to see if their reporters would be expressed on the different 

stiffnesses.  The results indicated that the VPC preferentially adhere to 10 kPa compared 

to 1 kPa, and 34 kPa compared to 10 kPa, which due to design constraints is elevated.  

There have been studies documenting cells migrating upward onto elevated ridges rather 

than in a downward direction, but is not well understood [36, 37].  Therefore, we moved 

to single-stiffness polyacrylamide hydrogels since the effect of stiffness on Zebraxis was 

inconclusive.  Using 10 and 40 kPa single stiffness polyacrylamide hydrogels and tissue 

culture plastic as a control, we examined days 3-10 and found that VPC on lower 

stiffness expressed more PECAM-1, and more CNN-1 on higher stiffness.  Next, we 

investigated mechanosensors such as integrins and focal adhesions to pinpoint signaling 

pathways that may be affecting stiffness directed differentiation.  As expected, FAK 14, 

which prevents FAK phosphorylation, downregulated both PECAM-1 and CNN-1 on all 

varying stiffness.  Integrin αV forms heterodimers with integrins β1, β3, and β6 which 

are expressed on EC.  They interact with many ECM proteins and have a role in 

angiogenesis and leukocyte adhesion.  Specifically, αvβ3 is an integrin that supports 

mesoderm differentiation.  αvβ1 binds to several ECM proteins that affect vascular 

proliferation.  It also associates with integrin α1-α6 chains and acts a fibronectin receptor 

that is involved in cell-cell and cell-matrix interactions.  However, due to their 

associations with EC adhesion, migration and proliferation, variations of the αv integrin 

family are implicated in a number of diseases, including fibrosis and cancer [199, 200].  

The same integrin mediated signals are exploited to manipulate the microenvironment to 

support tumor growth.  In our studies, we surprisingly found that the addition of αvβ3 
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upregulated PECAM-1+ expression on all culture conditions, but αvβ1 suppressed 

PECAM-1+.  Together, both αvβ3 and αvβ1 modulated the expression of PECAM-1.  By 

analyzing RNA-Seq data we saw a clear difference between the 10 and 40 kPa 

populations compared to TCP.  More vascular development related genes were 

upregulated on low stiffness compared to TCP.  TEK was one of the genes upregulated on 

10 kPa and encodes for Tie-2, an angiopoietin receptor that is associated with vascular 

development and angiogenesis [111].  The upregulation of Tie-2 leads to various 

signaling pathways that complex with αvβ3 and αvβ1.  Tie-2 forms complexes with αvβ1 

to activate subsequent signaling pathways.  When comparing to our inhibitor assay, by 

blocking αvβ1 we see that stiffness-directed differentiation was repressed (decrease in 

PECAM-1).  Interestingly, blocking αvβ3 did not lead to repressed PECAM-1 

expression, but led to an increase.  By blocking both αvβ3 and αvβ1, we concluded that 

αvβ3 is activated through the addition of anti-αvβ3, but αvβ1 needs the underlying 

stiffness/force from fibronectin to be activated. 

 

 In the next chapter (Chapter 3), we and collaborator, Michelle Khine (UCI), were 

inspired by leaf veins to generate a reverse mold.  We explored the potential for 

generating a vasculature as patterned EC that could be provided as distinct layers 

between sheets of cells.  The mask was prepared by boiling a fresh leaf and removing the 

excess cellulose material surrounding the leaf vascular structure.  Standard photo 

lithography methods were applied, and the leaf mask was pressed flat against the 

photoresist.  By using microcontact printing, we were able to preserve the branching 

vasculature and the unique spatial arrangement of EC over length scales that mimic 

branching vasculature.  We showed that HUVEC adhere to the patterned matrix and can 

be transferred to 3D hydrogel matrices, like collagen and Matrigel.  We observed 

migration of the cells and sprouting in the Matrigel, but to a lesser extent in collagen.  

That was expected due to the difference in stiffness between the matrices. 

 

 Chapter 4 explores the use of microfluidic devices to form perfusable vasculature.  

Our collaborator Roger Kamm (MIT) provided us both paracrine and juxtacrine molds 

for microfluidic devices to study whether cell secretion or cell-cell contact is necessary 

for the emergence of microvasculature.  First, we set out to repeat his studies by using 

primary cell lines, HUVEC and NHLF.  The co-culture of these cells in a fibrin gel 

robustly make perfusable vasculature as early as 4 days and stay stable for up to 14 days.  

However, the use of primary cells is not ideal to use for tissue engineering purposes 

because we need the vascularized tissue be able to connect to the host.  Therefore, 

induced pluripotent stem cell derived-EC would be the optimal choice.  In addition to cell 

type, matrix composition, cell concentration, cell ratio, stromal cell type, biochemical 

stimuli, can all be used to form perfusable vasculature [citations].  Starting with our 

mouse embryonic stem cell derived EC before moving to human stem cell derived cells, 

we investigated phalanx and tip/stalk EC subpopulations.  Both subpopulations form 

connections but not perfusable vasculature and quickly de-stabilize, with phalanx EC 

destabilizing on day 3 and tip/stalk EC on day 4.  Next, we cultured our mouse derived-

VPC (mESC-R1 and A3) with HUVEC and NHLF and found similar results to the EC 

subpopulations.  However, it was interesting to note that the mouse derived VPC, de-
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stabilized the HUVEC from forming microvessels as well.  We concluded that the mouse 

cells do not integrate with human fibroblasts since it is possible that the secreted soluble 

factors by either cell type may not have the appropriate receptors due to different animal 

origins.  Subsequently, we attempted hESC-derived EC that were sorted for VE-cadherin.  

We see promising results on day 1 but the cells regress by day 2 and the fibrin gel 

dissipates.  We attempted to add a protease inhibitor, E-64, to slow down the breakdown 

of the fibrin gel, it appears that there is a possibility of it aiding vessel stability, but the 

concentration of the inhibitor will need to be optimized.  Lastly, we investigated the 

effect of alternative stromal or accessory cell types: inactivated MEF, hIPS-derived SMC, 

and hESC-derived CM.  Unfortunately, the best accessory cell to HUVEC are NHLF, 

with a tri-culture with hESC-derived CM second, hIPS-derived SMC third, and MEF and 

hESC-derived CM last.  Further examination on NHLF is needed to understand the 

synergistic effect with HUVEC to form microvessels. 

 

Lastly, Chapter 5 investigates the use of Bombyx mori cocoons as a biomaterial 

through electrospinning.  As both the material and method were new to the lab, specific 

parameters needed to be optimized.  First, we followed a published protocol to process 

the cocoons into monomers.  For our electrospinning solution, we combined the dissolved 

silk with polyethylene oxide (PEO) which has been shown to prevent conformational 

transitions while the silk is solubilizing and reprocessed into new fibers.  Organic 

solvents like, hexafluoro-2-propanol, is commonly used to electrospin silk, but is not 

biocompatible and adds another removal step before introducing in vitro or in vivo [201].  

Although, electrospinning parameters are published, it varies from set up to set up, such 

as height of the spinneret, voltage, viscosity of the solution, and the total time spent 

electrospinning, as well as the goal of the product (tubes, mats, etc).  So, these parameters 

had to be optimized for our set up and our specific needs.  First, a silk mat was produced 

to study the cytoxicity with cells in vitro, but we first had to change the silk into its 

secondary structure, so it would become insoluble using methanol.  Next, we had to 

figure out how to make a silk tube.  We tried to roll a silk mat into a tube and a rotating 

mandrel with a conductive dispensing tip attached.  The electrospun silk on the 

dispensing tip was not removable compared to rolling a silk mat into a tube.  The silk 

tube was then used to show that C2C12 skeletal muscle cells will attach to the silk with 

an endothelial bisecting the muscle tissue.  Over the course of 5 days, compaction can be 

seen which has been reported from a previous study, which indicates that there is internal 

tension between the two ends where the tissue is attached [192]. 
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