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SOFTWARE Open Access

FastPop: a rapid principal component
derived method to infer intercontinental
ancestry using genetic data
Yafang Li1†, Jinyoung Byun1†, Guoshuai Cai2†, Xiangjun Xiao1, Younghun Han1, Olivier Cornelis1, James E. Dinulos1,
Joe Dennis3, Douglas Easton3, Ivan Gorlov1, Michael F. Seldin4† and Christopher I. Amos1*†

Abstract

Background: Identifying subpopulations within a study and inferring intercontinental ancestry of the samples are
important steps in genome wide association studies. Two software packages are widely used in analysis of
substructure: Structure and Eigenstrat. Structure assigns each individual to a population by using a Bayesian
method with multiple tuning parameters. It requires considerable computational time when dealing with
thousands of samples and lacks the ability to create scores that could be used as covariates. Eigenstrat uses a
principal component analysis method to model all sources of sampling variation. However, it does not readily
provide information directly relevant to ancestral origin; the eigenvectors generated by Eigenstrat are sample
specific and thus cannot be generalized to other individuals.

Results: We developed FastPop, an efficient R package that fills the gap between Structure and Eigenstrat. It can: 1,
generate PCA scores that identify ancestral origins and can be used for multiple studies; 2, infer ancestry
information for data arising from two or more intercontinental origins. We demonstrate the use of FastPop using
2318 SNP markers selected from the genome based on high variability among European, Asian and West African
(African) populations. We conducted an analysis of 505 Hapmap samples with European, African or Asian ancestry
along with 19661 additional samples of unknown ancestry. The results from FastPop are highly consistent with
those obtained by Structure across the 19661 samples we studied. The correlations of the results between FastPop
and Structure are 0.99, 0.97 and 0.99 for European, African and Asian ancestry scores, respectively. Compared with
Structure, FastPop is more efficient as it finished ancestry inference for 19661 samples in 16 min compared with
21–24 h required by Structure. FastPop also provided scores based on SNP weights so the scores of reference
population can be applied to other studies provided the same set of markers are used. We also present application
of the method for studying four continental populations (European, Asian, African, and Native American).

Conclusions: We developed an algorithm that can infer ancestries on data involving two or more intercontinental
origins. It is efficient for analyzing large datasets. Additionally the PCA derived scores can be applied to multiple
data sets to ensure the same ancestry analysis is applied to all studies.
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Background
Genome wide association (GWA) studies usually evalu-
ate data from thousands of individuals. Identifying the
subpopulations within the data set and inferring biogeo-
graphic origins of the samples are important steps in the
conduct of any study. Not allowing for population sub-
structure in the analysis will introduce false positives [1].
Furthermore, one usual step in quality control proce-
dures checks for Hardy-Weinberg equilibrium, often just
in the controls. If the population being studied com-
prises two or more subpopulations, Hardy-Weinberg
equilibrium will be violated for any SNPs with variability
in allele frequencies among the subsets. Two software
packages are widely used in analysis of substructure:
Structure and Eigenstrat. Structure assumes each indi-
vidual may inherit a proportion of its ancestry from mul-
tiple distinct populations and then estimates an ancestry
proportion for each subpopulation [2, 3]. The setup of
running Structure is complex as it requires tuning mul-
tiple parameters. Also when large samples are involved,
Structure requires considerable computational time.
Eigenstrat, implementing the program smartPCA, uses
principal component analysis (PCA) to model ancestry
variation among the samples [4–6]. PCA has been a
standard procedure in population genetics studies for
over 30 years. The continental origin variations in allele
frequencies among individuals can be elaborated in a
lower dimensional space using the derived eigenvectors
to score individuals. However, PCA does not fulfill the
requirement of ancestry inference as it does not estimate
the proportional ancestry origin of each individual. Fur-
thermore the current implementation of Eigenstrat
returns eigenvectors for a specific population that can-
not be generalized to another sample. To extend the use
of PCA in association analysis and develop a fast and ac-
curate method for ancestry inference, we have developed
FastPop, an R package that allows users to estimate the
proportion of intercontinental ancestry for each individ-
ual. Furthermore, the scores derived from PCA analysis
in FastPop can be generalized to other studies provided
the same set of markers are used. Human population
history tends to follow gradients of gene flow [7], and
we have incorporated flow among major populations to
assist in assignment of major ancestral origins of
participants.

Implementation
Principal components analysis
We selected 2318 SNPs across the whole genome based
on having a large fixation index (FST) value among
European, African and Asian populations for PCA ana-
lysis. We conducted PCA analysis of 505 Hapmap sam-
ples with European, African or Asian ancestry along
with a collection of 19661 additional samples of

unknown ancestry. To perform PCA, we use the eigen-
decomposition method, which parses the covariance re-
lationships among markers.

Define XN�P ¼
x11 ⋯ x1P
⋮ ⋱ ⋮

xN1 ⋯ xNP

0
@

1
A; where N and P

are the number of samples and SNPs, respectively.
For the mean-centered data matrix, we need to com-

pute the mean on each SNP,

�x:j ¼
XN

i¼1
xij

N
; where i ¼ 1;⋯;N and j ¼ 1;⋯; P:

Then, we generate the mean-centered data matrix as

YN�P ≡
x11−�x:1 ⋯ x1P−�x:P

⋮ ⋱ ⋮
xN1−�x:1 ⋯ xNP−�x:P

2
4

3
5:

Assume that there are larger number of samples than
number of SNPs (N > P). We construct the covariance
matrix as

CP�P ¼ 1
N−1

⋅Y TY :

Since the covariance matrix C is symmetric and posi-
tive definite, the eigenvalues of C are real and positive
semi-definite. The eigendecomposition of covariance
matrix C can be applied to calculate the eigenvalues λi
and the eigenvectors vi of C satisfying that

Cv�i ¼ λiv�i:

which can be written in matrix form as CV = VΛ,

where ΛP�P ¼
λ1
0

0
λ2

0
0

⋯
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ λP

2
64

3
75 is a diagonal

matrix with diagonal eigenvalues λi.
In PCA, the λi in Λ are extracted according to size

descent order (i.e. λ1 ≥ λ2 ≥⋯ ≥ λP) and the matrix V P�P

¼ v�1 v�2 ⋯ v�P
� �

consists of eigenvectors corresponding
to λi.
For our purposes we find that selection of SNPs to

maximize interancestral variability ensures that the first
few eigenvectors capture interpopulation variation. We
therefore obtain a low dimensional projection, score matrix
ZN × k = YN × P × PP × k (1). Where k = 2 or 3 is adequate for
capturing ethnic similarities when considering 3 or 4 con-
tinental origins respectively. The eigenvectors are

PP�k ¼ v�1 v�2 ⋯ v�k
� �

:

Once we select the first k eigenvectors, named as SNP
weights, which we would like to keep among the princi-
pal components computed from the discovery data, we
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can predict new scores in the new data using pre-
computed SNP weights.

Let UM�P ¼
u11 ⋯ u1P
⋮ ⋱ ⋮

uM1 ⋯ uMP

0
@

1
A be a new data with

M samples and the same P SNPs as in the original ana-

lysis. Then, generate the mean-centered matrix, WN�P ≡

u11−�u:1 ⋯ u1P−�u:P

⋮ ⋱ ⋮
uN1−�u:1 ⋯ uNP−�u:P

2
4

3
5.

Using the SNP weights PP × k from the original ana-
lysis, compute the new score matrix, Z*N × k =WN × P ×
PP × k (2). For prediction of new score matrix, we recom-
mend that the SNP weights should be generated from
large samples (N> > P) to avoid variance shrinkage if the
eigenvectors will be applied to a subsequent data set [8].

Ancestry analysis
We started with three well characterized continental
populations, studied by the HapMap consortium of
European, Asian, and African descent, since

characterizing ancestry for these populations is often
a major goal in genome-wide association studies.
The centroid of each known Hapmap population was
characterized by the multivariate mean of the first
and second score (Fig. 1). A triangle reflecting the
usual clines of intermarriage among continental
groups was created by connecting the lines connect-
ing the centroids (lines in dark green). Six lines per-
pendicular to the triangle sides and originating at
the centroids were obtained (lines in grey). Individ-
uals of unknown ancestry can be divided into three
groups based on their location relative to the tri-
angle: points in area 1–3 are classified as 100 %
European, African or Asian ancestry, respectively;
points in areas 4–6 have mixture origin of two adja-
cent populations; points in area 7 have a mixture
origin of European, African and Asian ancestry. For
points in area 4–6, the distance between the closest
point on the triangle was identified and the admix-
ture proportion is the proportional distance to each
centroid. For example, for a sample in area 4, if the
distances along the European-African line are L1 to
the European and L2 to the African centroids, then
the proportion of European ancestry for this

Fig. 1 Proportion of ancestry inference using first and second PCA score. X and Y axis denote the first and second PCA score generated by
FastPop. Red, blue, green and black denote Hapmap samples with European, Africana, Asian ancestry and studied samples with unknown
ancestry. The centroids of each population were computed for Hapmap samples. Three lines in dark green were drawn connecting the centroids;
six extra line perpendicular to triangle sides and across the centroids were drawn in grey. Individuals in area 1–3 are classified as pure European,
Afrian and Asian origin; samples in area 4–6 have mixture origin of two adjacent populations; samples in area 7 have mixture origin of European,
African and Asian ancestry. h1, h2 and h3 denote the distance between the samples in the triangle to the sides of the triangle; l1-l6 denote the
distance between the image of the sample at the triangle sides and the population
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individual is computed as P ¼ 1
L1

1
L1þ 1

L2
(3), the propor-

tion of African ancestry is 1-P. For a point inside
the triangle, let H1, H2 and H3 denote the distance
between the point and the three sides of the triangle;
L1-L6 denote the distance between the point and the
nearest perpendicular projects onto the ancestry tri-
angle. The proportion of European for this individual
is then computed as

P ¼ 1
H1� 1

L1
1
L1þ 1

L2
þ 1

H3� 1
L6

1
L6þ 1

L5

� �
= 1

H1 þ 1
H2 þ 1

H3

� �
(4), with similar

calculations yielding the proportion of African and Asian
ancestry. Hapmap samples can be downloaded from
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/
hapmap3_r3/plink_format/.
The approach can also be generalized to include add-

itional populations. When we plotted the first three PC
scores for individuals coming from four distinct popula-
tions (European, Asian, African and Native American,
along with a population of Mexican Americans of un-
known ancestry), we observed a three-dimensional tetra-
hedron instead of a two dimensional triangle for three
populations, which suggested we could extend the tri-
angle algorithm to a tetrahedron-based algorithm to in-
corporate four populations. When applied to four
populations, a similar approach to that taken for 3 popu-
lations is employed. We first define regions for which
the closest point to an ancestry tetrahedron is a vertex,
and for those individuals, a single continental ancestry is
assigned. For points outside the tetrahedron but closest
to a side, we project to the nearest face of the tetrahe-
dron (as described in the Supplementary methods) and
then use equation 4 to estimate the proportions of an-
cestry for each of three origins for that face. For points
inside the tetrahedron, an extension of equation 4 to en-
compass a mixture of 4 populations is applied. In this
case, the projections are to each of the four faces of the
tetrahedron. For interior points, once the sample was
mapped to the two-dimensional face (for example, the
face formed by L1, L2 and L6 in Fig. 4), we applied
equations 3 and 4 developed for three populations to es-
timate the proportions of European, Asian and Native
American (denoted in red, green and purple) on this sur-
face. We then performed the estimation of ancestry for
each ancestry plane as indicated above for equations 3
and 4. For interior points the final estimated proportion
of each ancestry is the average of the proportions from
each of calculations.

Software implementation
In order to use FastPop, users need to provide the input
file in a correct format. FastPop takes the cleaned geno-
type file coded in additive model as the input file. The
usual options for data cleaning includes removing

individuals or SNPs with a high missing rate. We ob-
served that an additional “population” may be identified
when the missing rate for the samples was higher than
0.05. It is also critical that the SNP genotype data are in
forward strand and it is easy to use PLINK to flip the al-
leles. We provided the reference allele file in the package
for users to check the allele information.
There are two steps using FastPop: first, FastPop will

compute scores for individuals based on eigenvectors
from PCA analysis; second, it will estimate the propor-
tional ancestry of each individual based on the scores
generated in first step (Fig. 2). FastPop is implemented
in R programing language. The function “PredictionP-
CAScoring.R” enables the user to compute scores based
on eigenvectors from PCA analysis given by 2318 SNP
weights; create a plot to visualize the scores and com-
pare scores of the studied samples with 505 HapMap
samples with known ancestry. The function “InterConti-
nentalDistanceMetrics” calculates the proportion of each
continental ethnicity from scores of individuals and this
function also works for inference using eigenvectors as
input directly. The output file is ancestry.out which has
six columns including sample ID, first PCA score, sec-
ond PCA score, proportions of European, African and
Asian ancestries. The whole package is freely available at
https://sourceforge.net/projects/fastpop/files.

Results
We applied FastPop on intercontinental ancestry analysis
of a data set including 19661 individuals from studies
performed in the U.S. and Europe primarily of European
descent, but with some additional self-reported African-
American and Asian members. We used a large sample
size to avoid any potential for overfitting and to ensure
the intrasample variance is consistent for application to
future studies. In order to evaluate the results from Fas-
tPop, we also ran Structure on the same set of data to
benchmark our results. Structure was run without/with
prior population information for Hapmap samples. For
each individual, we compared the estimated proportions
of European, African and Asian ancestry between Fas-
tPop and Structure. The results from FastPop are highly
consistent with those found using Structure across the
19661 samples (Fig. 3). The correlations of the results
between FastPop and Structure are 0.99, 0.97 and 0.99
for European, African and Asian, respectively. Further,
we studied different cutoff values of estimated propor-
tions of ancestry from 0.9 to 0.7 to assign the individuals
to each continental ancestry, and FastPop had similar ac-
curacy compared with Structure. For example, when we
used a stringent cutoff value of 0.9 in both FastPop and
Structure, >95 % of the individuals identified by Struc-
ture were also identified by FastPop. When the cutoff
value was relaxed to 0.7, the concordance rate increased
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to 99.8 % (Table 1). While FastPop retains the same level
of accuracy as Structure, it is much faster in performing
the analysis compared with Structure. FastPop finished
ancestry inference for 20166 samples in 16 min, while
Structure required 21 h when implemented without
prior ancestry information and 24 h when implemented
with prior ancestry information for HapMap samples.
Structure was run with parametric settings “BURNIN
10000 NUMREPS 1000 INFERALPHA 1 POPSPECIFI-
CALMBDA 1”.
We also tested the algorithm on a data set compris-

ing 505 individuals with European, Asian, African an-
cestry from the HapMap consortium along with 43
individuals of Native American ancestry derived from
the Human Genome Diversity Panel, along with 53
Mexican individuals with mixed ancestry. Points at or
closest to the four vertex corners were designated as

100 % European, Asian, African or Native American,
respectively (red, green, blue or purple in Fig. 4). The
Mexican samples had a mixed ancestry and all the
points lay within the ancestry-defined tetrahedron
(black color in Fig. 4). For individuals with mixed an-
cestry we projected the samples to the faces of the
tetrahedron (Supplementary Methods). We compared
the results from the extended FastPop and STRUC-
TURE for the four population ancestry inference, and
the results were highly consistent between methods.
The concordance rates were greater than 97 % in all
the four populations (Additional file 1: Table S1 and
Figure S1). And the correlations for the estimated
proportions between FastPop and STRUCTURE were
all greater than 0.99 for the four populations. The 54
Mexican samples had a mixed ancestry and they were
identified as mixed population by both Structure and

Fig. 2 Flow chart of intercontinental ancestry analysis using FastPop

Fig. 3 Comparison of estimated proportion of ancestry between FastPop and Structure for 19661 individuals. X and Y axees denote the
proportion of ancestry for each individual from FastPop and Structure
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extended FastPop (Additional file 1: Figure S2). As
noted in the methods above, individuals outside the
ancestry tetrahedron are mapped to the nearest part
of the tetrahedron and analyzed according to equation
4.

Discussion
There are broadly two types of clustering methods: dis-
tance based methods and model-based methods. The al-
gorithm of FastPop is based on distance. We first map
each individual using PC values as coordinates and the
joint probabilities of ancestry are based on how close
each individual is to each centroid or nearest elements
of ancestry surfaces. STRUCTURE is a model-based
method. It assumes that each cluster (population) is

modeled by a characteristic set of allele frequencies and
the main modeling assumptions are Hardy-Weinberg
equilibrium within populations and complete linkage
equilibrium between loci within populations [2]. Struc-
ture applies a Bayesian approach to infer the ancestry of
each individual and allele frequency from all popula-
tions. So FastPop and STRUCTURE have completely dif-
ferent algorithms although we showed that the results
from FastPop are highly correlated with that from
STRUCTURE in our study. FastPop is a distance-based
method and it conducted mathematic calculations using
distance on the coordinates which is very straightfor-
ward and fast. However, STRUCTURE uses a Bayesian
method for inference of ancestry and it applies MCMC
algorithm to achieve final desired distribution in

Table 1 Comparison of assigned ancestry using different cutoff value between FastPop and Structure

Cutoff value CEU YRI CHB

Without prior population information for Hapmap samples

0.9 PCA Scores 17520/16329/16325 64/62/55 740/721/719

0.8 PCA Scores 18016/17928/17928 175/165/159 773/768/767

0.7 PCA Scores 18171/18122/18122 266/263/260 799/796/796

With prior population information for Hapmap samples

0.9 PCA Scores 17510/16329/16321 69/62/59 743/721/719

0.8 PCA Scores 18017/17928/17928 174/165/159 774/768/768

0.7 PCA Scores 18167/18122/18121 267/263/260 799/796/796

Number in each cell indicates: No. assigned by structure/No. assigned by FastPop/No. common in both methods. Structure analysis was conducted with/without
prior population information for Hapmap samples. Structure was run was run under admixture model. Parameter setting “BURNIN 10000 NUMREPS 1000
INFERALPHA 1 POPSPECIFICALMBDA 1”. Without prior population information, the running time is 21:16:00 and 23:30:00 for with prior population information

Fig. 4 Panel a displays four intercontinental populations and one mixed population in 2-dimensions. Tetrahedron model in b can be applied to
the extended intercontinental analysis. European, Asian, African, and Native American are four distinct populations and denoted in red, green,
blue, purple, respectively. Mexican American is mixed population and represented in black. Each intercontinental population has three combina-
tions derived for each face in the tetrahedron. First, FastPop is applied to infer ancestry on each face of tetrahedron and then average proportions
over each intercontinental population are used to summarize ancestry
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computation. As shown by equations (1) and (2), calcu-
lations in FastPop do not require iteration to solve the
principal components and therefore we find that FastPop
works very well for moderate samples sizes such as those
we have studied here and that the scoring method can
then be applied effectively to any sample size. If an in-
vestigator wanted to apply our approach to a very large
dataset comprising over 50,000 subjects we have found
that substituting PCA with matrix inversion with a sin-
gular value decomposition method or with a random
vector analysis will reduce computation time compared
to application of standard PCA [9, 10].
PCA has become a standard procedure in population

genetics study for substructure analysis. The eigenvec-
tors from PCA are easy to use for population adjustment
in GWA studies. However it lacks the ability to provide
clear information for ancestral origin. To fill this gap, we
developed an efficient tool for inference of ancestry with
PCA scores as the input. The PCA scores generated by
FastPop can be used to identify ancestries of individuals
or could be used to adjust for population structure in as-
sociation analysis. The scores are based on SNP weights
so the scores of reference population such as Hapmap
samples can be applied to other studies provided the
same set of markers are used. This characteristic is at-
tractive especially in large consortia studies when mul-
tiple independent studies may be analyzed by individual
laboratories. The PCA scores generated in one site can
be adopted by other sites thus to reduce the repetitive
work and ensure consistency among analyses. In current
GWA studies, sample sizes keep increasing and now in-
volve tens of thousands individuals. FastPop can be more
efficiently implement than Structure in analyzing data
with a large sample size.
FastPop provides the estimated centroids from a

training set considering the users may have a small
data set and may require a golden standard for the
centroid positions for the populations. Theoretically,
the triangle model in FastPop will work without
training samples. When the sample size of a data
comprising of three populations is big enough, we
can calculate the centroids position for each popula-
tion based on the principal component values from
the study samples instead of deriving centroid posi-
tions from Hapmap samples. We also tested this idea
by inferring ancestry for 19661 study samples with-
out using Hapmap samples, and the correlations of
the results between FastPop and Structure were
still > 95 %. For this approach, one needs to define a
set of centroids for defining ancestral origins.
As a further comparative analysis, we also evaluated

linear discriminative analysis (LDA) method applied to
PCA scores as input to predict ancestry. Compared to
LDA, FastPop had better performance in terms of the

estimated proportions, consistent performance across
different cut off values for decisions and a lower excess
positive rate for Europeans. We are using the term ‘ex-
cess positives’ here to denote the classification of indi-
viduals who may have multiple ancestries into a single
ancestry group by LDA (Additional file 1: Table S2). The
improved performance of FastPop over a more generic
application of LDA reflects the application of clines re-
lating more typical intermarriages along continental
clines as opposed to the more generic model that is re-
quired by LDA.
The version of FastPop released to SourceForge in-

cludes an input file with 2318 SNPs that differentiate
European, African and Asian very well across the
whole genome. The 2318 SNPs were derived from
our study population to maximize variation among
European, African and Asian populations. However,
any set of markers that differentiates European, Afri-
can and Asian can be applied in the analysis. We
have provided a set of markers for the users so they
do not need to choose a set of ancestry informative
markers for the analysis. If some of the SNPs are
missing from the input file, the researchers can re-
place the missing genotype with average of genotype
from the samples we provided in the package. Fas-
tPop can be implemented for different sets of
markers and the locations of three centroids would
then need to be recomputed either using user sup-
plied samples or HapMap samples with a different
set of markers.
FastPop is based on a trianglular algorithm so theoret-

ically it works for any data including different intercon-
tinental populations provided the ancestral origins
provide reasonable fit to a triangular origin. In this
study, we evaluated the performance of FastPop in dif-
ferentiating individuals with either a mixture of Euro-
pean, African and Asian or with additional Native
American Ancestry. The preponderance of studies re-
quires analysis of samples without consideration of ori-
gins, which are the three major ancestries in most
genome-wide association analysis.
The currently released FastPop has been released to

characterize genetic data involving three ancestries and
is available upon request for four ancestries. Theoretic-
ally, our algorithm can be applied to an arbitrary num-
ber of populations, but the algorithm becomes more
complex as the number of dimensions increases. We
also have assumed that that the number of dimensions
that need to be characterized is one less than the num-
ber of populations.

Conclusions
We developed FastPop, an efficient R package that can
be applied to ancestry study on genotype data including
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three intercontinental origins. The PCA scores generated
by FastPop can be included for population structure ad-
justment or classification into major ancestral groups.
Additionally, the method can be applied for large studies
to ensure comparability of results among participating
sites. The algorithm based on PCA score mapping can
also be extended to multiple population inference. We
have applied FastPop in the analysis of data from the
OncoArray consortium, which has genotyped 410,000
samples, because we needed an approach that could be
readily applied across this large consortium. We anticipate
that our approach would be of value to other investigators
performing coordinated analyses across large consortia.
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