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Stochastic Optimal Load Shedding with Heterogeneous Load Zones

Yu Zhang∗ and Scott Moura†
∗University of California, Santa Cruz, zhangy@ucsc.edu
†University of California, Berkeley, smoura@berkeley.edu

Abstract—Reliability and resilience in power distribution net-
works are vitally important to ensure seamless electricity delivery
to end users. In this paper, we provide an optimization frame-
work for stochastic optimal load shedding in power distribution
networks that consists of heterogeneous load zones. Considering
uncertain estimates of power consumption and energy shortfall,
we formulate the system planning task as a chance-constrained
integer quadratic program. By leveraging binary decomposition
and McCormick relaxations, we develop two efficient algorithms
yielding minimum total load shedding cost while respecting fair-
ness among different end users. Simulation results corroborate
the merits of our proposed framework and algorithms, which
outperform the off-the-shelf solver BARON.

I. INTRODUCTION

By turning off service or cutting back the supply voltage,
load shedding (a.k.a. rolling blackout) is the last but indis-
pensable resort when power generation along with transmis-
sion & distribution systems cannot meet the demand. Load
shedding regularly occurs in many underdeveloped regions,
which suffer from insufficient generation capacity or aging
transmission infrastructure [1], [2]. For developed countries,
load shedding can happen in exceptional situations due to rare
natural disasters [3], as well as economic forces at the expense
of system reliability (e.g., the California electricity crisis of
2000–2001).

Under various risks of possible load surge, power de-
generation/failure, and multi-hazard threats, proactive load
shedding must be meticulously planned in order to prevent
uncontrolled service disruptions and equipment damage. In
[4], dynamic and static models of load shedding are developed
in power systems with distributed generation. Operation and
security constraints such as the power flow equations are
incorporated in the resulting optimization problem. A load
shedding flowchart is proposed for an islanded microgrid
based on frequency and rate of change of frequency [5].
Impacts of island load shedding and restoration strategies on
reliability of microgrids are studied via the sequential Monte
Carlo simulations [6]. Considering the participation of smart
buildings, Xu et al develop a distributed load shedding to
alleviate the rate of frequency drop [7]. Their solution is based
on the Lagrangian relaxation and a time-division multiple
access wireless network. A mid-term stochastic optimization
program, which incorporates a unit commitment based market
clearing, is proposed to deal with outage scheduling performed
by transmission system operators [8]. These existing works
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Fig. 1. A distribution network consisting of industrial, commercial, and
residential load zones is managed by a distribution system operator (DSO).

mainly focus on the infrastructures of either transmission
systems or a single microgrid. In addition, the inherent inte-
grality of decision variables in load shedding is not considered.
Finally, rotational load shedding via bilinear integer program-
ming is developed for heterogeneous load zones controlled by
a utility [9]. McCormick relaxations along with a heuristic
procedure of feasible solution recovery are proposed therein
without theoretical guarantee of feasibility.

Inspired by prior work in the literature, we formulate a
novel stochastic load shedding problem for distribution power
grids with heterogeneous end users. Our contribution is two-
fold. First, we take the uncertainty of parameters (i.e., power
consumption and required energy shortfall) into account for the
decision making. We propose a chance-constrained pure inte-
ger programming framework, whose objective is to minimize
the total load shedding cost while promote fairness among
multiple microgrids (Section II). The resulting formulation is
more practical. Second, by leveraging the binary decomposi-
tion, McCormick relaxations, and the bounded structure of all
integer variables, we develop two novel algorithms that are
much faster than BARON – a state-of-the-art solver for global
optimization of nonconvex optimization problems (Sections IV
and V).

II. PROBLEM FORMULATION

Consider a power distribution network supporting a total of
N electrical loads, as shown in Fig. 1. Those loads can be
classified into different groups according to the consumption
patterns of electricity end users; e.g., industrial, commercial,
and residential zones. We assume that each load zone can be
shed independently without affecting the rest of the network.
Whenever needed, the distribution system operator (DSO)
conduct load shedding program which can be formulated as an
optimization problem whose details are elaborated as follows.

1) Decision variables: We have two sets of optimization
variables: i) kn: total number of outages for load n in the

978-1-7281-3103-0/20/$31.00 ©2020 IEEEAuthorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 21,2023 at 09:40:28 UTC from IEEE Xplore.  Restrictions apply. 



planning horizon (a few days or weeks); and ii) dn: duration of
each outage for load n that is a multiple of the unit time period
(e.g., 15 or 30 minutes). Note that dn can also be modeled as
a continuous variable. However, it is often restricted to be
integer for the planning problem under study.

2) Cost functions: We model the load shedding cost of zone
n ∈ N := {1, 2, . . . , N} as:

Cn(dn, kn) = cn,1dnkn + cn,2dn + cn,3kn, ∀n ∈ N . (1)

The cost is proportional to the total duration of load shedding
dnkn in the planning horizon. The coefficients cn,1, cn,2,
and cn,3 are pre-determined based on the preference of each
zone. For example, residential zones often have large cn,2 and
relatively small cn,3 due to the fact that they prefer multiple
bursts of shorter duration of power outages [9].

3) Fairness regularizers: Besides minimizing the total
shedding cost, the DSO may strive for the shedding fairness,
which essentially guarantees that the load shedding costs or
damages of different zones do not vary dramatically. We
propose to promote fairness by using soft constraints in this
work. Let Cave and Cave

gi denote the average cost for all
zones and gi-th group of zones, respectively. Then, fairness
can be boosted by adding certain regularizers with appropriate
weighting coefficients. Here, we focus on the `1-norm regular-
izers of inter-group faireness Φinter(Cn) := |Cn − Cave| and
intra-group fairness Φintra

gi (Cn) := |Cn −Cave
gi |. Note that we

can also consider the `2-norm quadratic penalty or generally
a convex function for the regularizers.

4) Load shedding constraint: Let P ave
n be the average

power consumption for zone n and Eave
sf denote the average

energy shortfall, which is the required amount of energy that
being shed across the planning period. In order to ensure that
the demand after load shedding can be met with the generation
capacity, we have the coupling constraint:

Eave
sf −

N∑
n=1

P ave
n dnkn ≤ 0. (2)

However, the actual power consumption of each zone and the
required energy shortfall have inherent uncertainties due to the
forecasting errors. We leverage the following chance constraint
to make the planning decisions robust to those uncertainties:

Pr

(
Esf −

N∑
n=1

pndnkn ≤ 0

)
≥ η, (3)

where Esf and pn are the random total energy shortfall and
power consumption of zone n, respectively. The chance con-
straint ensures that the post-shedding demand can be balanced
with a high probability η ∈ [0, 1] .

To this end, the DSO needs to solve the following optimal
load shedding problem:

min
{dn,kn}

N∑
n=1

Cn(dn, kn) +
N∑
n=1

αn|Cn(dn, kn)− Cave|

+

Ng∑
i=1

∑
n∈Ngi

βn|Cn(dn, kn)− Cave
gi | (4a)

s.t. Pr

(
Esf −

N∑
n=1

pndnkn ≤ 0

)
≥ η (4b)

dn ≤ dn ≤ dn, n ∈ N (4c)

kn ≤ kn ≤ kn, n ∈ N (4d)
dn ∈ Z+, kn ∈ Z+, n ∈ N , (4e)

where α and β are the weighting parameters for the inter/intra-
group fairness regularizers. Lower and upper limits of dn, kn
are posed as the constraints (4c) and (4c). The resulting prob-
lem is a chance-constrained pure integer quadratic program,
which is generally NP-hard to solve.

III. MODEL VARIATIONS

In this section, we discuss variants of problem (4) that are
dependent on probability distributions of uncertain parameters
as well as lower limits of the decision variables.

A. Chance Constraint Reformulations

Let a := [Esf , p1, p2, . . . , pN ]> = a + ν collect the
random input parameters of problem (4). Note that vector
a := [Eave

sf , P
ave
1 , P ave

2 , . . . , P ave
N ]> is the mean of a while

ν quantifies the estimation or forecasting errors. Suppose
additive errors are Gaussian distributed. In this case, we can
convert the chance constraint into a second-order cone (SOC)
constraint via the following lemma.

Lemma 1 (Section 4.4 in [10]). Let a ∼ N(a, Σ) be a
Gaussian random vector. Given η ≥ 0.5, the chance constraint
Pr(a>x ≤ 0) ≥ η is equivalent to the second-order cone
constraint

a>x + φ−1(η)‖Σ 1
2 x‖2 ≤ 0, (5)

where φ(x) = 1√
2π

∫ x
−∞ e−t

2/2 dt is the cumulative distribu-
tion function of a standard Gaussian random variable.

Let x = [1,−d1k1, . . . ,−dNkN ]>. Thus, the chance con-
straint (4b) can be equivalently rewritten as the SOCP (5),
where Σ = E(νν>) is the covariance matrix of a.

If any entries of a are non-Gaussian or have unknown
distributions, equivalent closed-form reformulation may be
intractable. In this case, we leverage the sample average
approximation (SAA) method that replaces (4b) with the
following deterministic constraint 1

S

∑S
s=1 1(a>s x) ≤ 1 − η,

where {as}Ss=1 are independent identically distributed (i.i.d.)
samples of a; the indicator function 1(x) = 1 if x > 0 and
0 otherwise. Let ϑ∗ and Ω∗ denote the optimal value and
optimal solution set of the original problem (4), while ϑS and
ΩS the counterparts of the SAA problem. Furthermore, let Y
be the feasible set of problem (4). Under mild conditions, the
approximate problem “converges almost surely” to the original
one as guaranteed by the following theorem.

Theorem 1 (Asymptotic optimality). Assume there is an
optimal solution y∗ of problem (4) such that for any ε > 0
there is y ∈ Y with ‖y∗ − y‖ ≤ ε and Pr(a>y ≤ 0) > η.
Then, ϑS → ϑ∗ and sup

yS∈ΩS

dist(yS ,Ω
∗)→ 0 with probability

1 as S →∞.
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The proof is based on Proposition 2.2 in [11]. We omit
details here due to space limit. The sampling-based scenario
approximation provides an alternative approach to approxi-
mate the chance constraint by using a set of deterministic
linear constraints a>s x ≤ 0, s = 1, 2, . . . , S. The finite
sample performance is guaranteed with enough i.i.d. samples
{as} [12], [13].

B. Zero Lower Limits for Decision Variables

If the lower limits dn = kn = 0, then we inherently have
dn = 0 if kn = 0, and vice versa. By using auxiliary binary
variables {zn} and the big-M technique, such conditional
constraints can be cast as

zn ≤ dn ≤M1zn, zn ∈ {0, 1}, ∀n ∈ N (6)
zn ≤ kn ≤M2zn, zn ∈ {0, 1}, ∀n ∈ N , (7)

where M1 = maxn∈N {dn} and M2 = maxn∈N {kn}.

IV. PROPOSED APPROACHES

We propose two approaches to solve problem (4), namely
the binary decomposition plus McCormick relaxation (BDMR)
and the matrix-based binary program (MBP) reformulation.

A. Binary Decomposition & McCormick Relaxation (BDMR)

McCormick envelopes are the commonly used convex relax-
ations for bilinear nonlinear programs [14]. A load shedding
problem with a fairness constraint is solved by the McCormick
relaxation, where cost reductions are obtained over two indus-
try practices [9]. However, the relaxation is generally not exact.
An extra procedure should be developed to recover a feasible
solution, which is often ad-hoc for complicated feasible sets.

In this paper, instead of directly applying the McCormick
relaxations, we develop a joint scheme of binary decomposi-
tion plus McCormick relaxations. As shown in the following,
the proposed relaxation is exact and can efficiently solve the
original problem (4).

To introduce the least number of new binary variables, and
consider the fact that dn ≤ kn for all n ∈ N , we apply the
binary decomposition (a.k.a. binary expansion) [15] [16] to
{dn}n∈N that yields dn =

∑blog2 dnc
r=0 2rbn,r, where the new

binary variables bn,r ∈ {0, 1} for r = 0, 1, . . . , blog2 dnc.
For simplicity of notation, define Rn := blog2 dnc and
Rn := {1, 2, . . . , Rn}. Hence, the bilinear terms {dnkn} can
be rewritten as dnkn =

∑Rn

r=0 2rbn,rkn =
∑Rn

r=0 2rzn,r, ∀n ∈
N , where zn,r = bn,rkn,∀n ∈ N . By using the McCormick
relaxation, we have

zn,r ≥ bn,rkn, ∀n ∈ N , ∀r ∈ Rn
zn,r ≥ kn + (bn,r − 1)kn, ∀n ∈ N , ∀r ∈ Rn
zn,r ≤ kn + (bn,r − 1)kn, ∀n ∈ N , ∀r ∈ Rn
zn,r ≤ bn,rkn, ∀n ∈ N , ∀r ∈ Rn

(8)

To this end, each load shedding cost function can be rewrit-
ten as Cn(bn,r, zn,r, kn) =

∑Rn

r=0 (cn,12rzn,r + cn,22rbn,r) +
cn,3kn. Similarly, the load shedding coupling constraint
(2) becomes Eave

sf −
∑N
n=1

∑Rn

r=0 P
ave
n 2rzn,r ≤ 0.

The corresponding chance constraint takes the
form of a>x + φ−1(η)‖Σ 1

2 x‖2 ≤ 0, where

x =
[
1,−

∑R1

r=0 2rz1,r, . . . ,−
∑Rn

r=0 2rzn,r

]>
.

The complete problem formulation by using the proposed
BDRM is given as follows:

min
x,

{kn,bn,r,zn,r}

N∑
n=1

Cn +
N∑
n=1

αn|Cn − Cave|

+

Ng∑
i=1

∑
n∈Ngi

βn|Cn − Cave
gi | (9a)

s.t. a>x + φ−1(η)‖Σ 1
2 x‖2 ≤ 0 (9b)

x = [1,−
∑
r

2rz1,r, . . . ,−
∑
r

2rzn,r]
> (9c)

kn ≤ kn ≤ kn, ∀n ∈ N (9d)

dn ≤
∑
r

2rbn,r ≤ dn, ∀n ∈ N (9e)

kn ≤M2

∑
r

bn,r, ∀n ∈ N (9f)

bn,r ≤ kn, bn,r ∈ B, ∀n ∈ N , ∀r ∈ Rn (9g)
zn,r ∈ Z+, kn ∈ Z+, ∀n ∈ N , ∀r ∈ Rn (9h)
all constraints in (8). (9i)

Note that the constraints (9f) and (9g) ensure that the problem
formulation is also applicable for the case of zero lower limits
of dn and/or kn, as discussed in Section III-B.

Lemma 2. The McCormick relaxation is exact when at least
one of the variables of the bilinear terms is binary.

By leveraging this well-known result for the McCormick
relaxation (see e.g., [15], [16]), we can show the equivalence
of problems (9) and (4) as given in the following proposition.

Proposition 1. The binary decomposition plus McCormick
relaxation (BDMR) reformulation (9) has the same optimal
solution to the original load shedding problem (4). Hence,
these two problems are equivalent.

B. Matrix-based Binary Programming (MBP)

In addition to the BDMR approach, we propose a matrix-
based reformulation by using the fact that both dn and
kn are bounded integers. Performance of the two proposed
approaches will be demonstrated in the ensuing section.

Define dn := [dn, dn + 1, . . . , dn]>, and kn := [kn, kn +

1, . . . , kn]>. Furthermore, let Hn := dnk
>
n , Dn := dn1>,

and Kn := 1k
>
n , where 1 is the all-ones vector with an appro-

priate dimension. Note that matrix Hn contains all possible
values of the bilinear terms {dnkn}n∈N . Matrices Dn, Kn

have all the values of dn, kn respectively. The key idea is to
define matrix variables that consist of all possible values of the
integer decision variables. In this way, the decision variables
can be cast as binary matrices of which all the entries are
zero except one. The value “1” entries of all matrix variables
indicate the optimal values of {dn, kn}.
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Specifically, define Qn = cn,1Hn + cn,2Dn + cn,3Kn

and a binary matrix variable Xn ∈ B(kn−kn)×(dn−dn),
where at most one of all its elements is 1. Thus, it
can be seen that the load shedding costs become Cn =
Tr(Q>nXn), ∀n ∈ N . The shedding constraint is given as
Eave
sf −

∑N
n=1 P

ave
n Tr(H>nXn) ≤ 0 while the corresponding

chance constraint is a>x + φ−1(η)‖Σ 1
2 x‖2 ≤ 0, where

x = [1,−Tr(H>1 X1), . . . ,−Tr(H>NXN )]>.

To this end, we can equivalently rewrite problem (4) as the
a matrix-based binary SOCP:

min
x,

{Xi}Ni=1

N∑
n=1

Tr(Q>nXn) +
N∑
n=1

αn
∣∣Tr(Q>nXn)− Cave

∣∣
+

Ng∑
i=1

∑
n∈Ngi

βn
∣∣Tr(Q>nXn)− Cave

gi

∣∣ (10a)

s.t. a>x + φ−1(η)‖Σ 1
2 x‖2 ≤ 0 (10b)

x = [1,−Tr(H>1 X1), . . . ,−Tr(H>NXN )]> (10c)∑
i,j

Xn,ij ≤ 1, Xn,ij ∈ {0, 1}, n ∈ N . (10d)

Remark 1. First, both formulations (9) and (10) are equiv-
alent to the original load shedding problem (4). Second, the
BDMR approach has auxiliary binary variables {bn,r, zn,r},
which is also applicable when {dn}n∈N are modeled as con-
tinuous variables. In this case, binary decomposition should
be applied to {kn}n∈N . The matrix-based binary program
approach introduces the sparse matrix variables {Xn}n∈N .
The box constraints are implicitly enforced by the coeffi-
cient matrices {Hn,Dn,Kn}n∈N . The BDMR has a total
of N + 2

∑N
n=1blog2 dnc binary variables while the matrix-

based approach has
∑N
n=1

[
(kn − kn)× (dn − dn)

]
binary

variables. Finally, both formulations are binary linear or
SOCP programs, depending whether uncertainties of load
shedding constraints are considered.

V. NUMERICAL RESULTS

In this section, we show the comparisons and effectiveness
of the proposed approaches vis-à-vis BARON, which is the
state-of-the-art solver for global optimization of nonconvex
optimization problems [17]. We first study the problem without
fairness regularizers and uncertainties. Then, the discussion
of the regularizers and the robustness of the optimal solution
associated with the chance constraint will be provided. All
simulations are conducted under an iOS system with 3.6 GHz
Intel Core i7 and 32 GB memory. The modeling languages
CVX [18] and Yalmip [19], along with two solvers: Gurobi
8.1 [20] and BARON 17.8.9 are used. Throughout all the
simulations, we have the parameters: Eave

sf = 106, 500 ≤
P ave
n ≤ 1000, and αn = βn for all n ∈ N . Finally, in all case

studies, the three different approaches always yield the same
(sub)optimal solutions with negligible relative gaps between
the lower and upper bounds of the objective.

Fig. 2. The solver computation time of BDMR, BMP using Gurobi 8.1, and
the original problem (4) directly solved by BARON. Fairness regularizers and
uncertainties of the load shedding constraints are not included.

Fig. 3. Individual load shedding costs vs the fairness weighting parameters.

A. Results without Fairness Regularizers

First, we test the proposed approaches for problem (4) with-
out fairness regularizers and uncertainties in the coefficient
vector a. As shown in Fig. 2, the problem can be solved within
35 seconds even for the large-scale instance N = 1, 000.
The running times of the two methods are in the same range
when N < 100. Interestingly, as the problem size grows, the
BDMR has the best performance compared with the matrix-
based binary linear program and the BARON solver.

B. Results with Fairness Regularizers

Fig. 3 shows the individual cost of each zone with respect to
the increasing weight of fairness. It can be seen that shedding
costs vary dramatically across different zones with a very
small weight; e.g., α = β = 0.1 or 0.3. The fairness is
enforced when the weights exceed a certain threshold. A
case study of N = 30 zones (7 industrial, 12 residential,
and 11 commercial zones) is presented in Fig. 4 to further
illustrate the effectiveness and the scalability performance of
the algorithms. The weights are fixed at α = β = 2.

Table I compares the computation time of different ap-
proaches. Both BDMR and MBP significantly outperform
BARON. For N = 30, BDMR and BARON are terminated
for running 625 minutes with relative gaps 1.34% and 10.97%,
respectively. The MBP formulation is better than the other two
alternatives whose relative gaps are still large, even with more
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Fig. 4. Optimal load shedding cost of each zone with N = 30 and α = β =
2. Uncertainties of the load shedding constraint is not included.

TABLE I
COMPUTATION TIME (MINUTE) OF DIFFERENT APPROACHES FOR N = 15,

α = β = 5 AND N = 30, α = β = 2.

BDMR MBP BARON
N = 15 5.2 26.5 114.9
N = 30 625 544 625

running time. Interestingly, adding the fairness regularizers
makes the problem much harder to solve.

C. Result with the Chance Constraint

We consider again the scenario of N = 15 zones and
assume that the random elements of a are correlated within
each group, but independent across different groups. There-
fore, the covariance Σ is a block diagonal positive definite
matrix. We generate 5, 000 i.i.d. samples of normal vectors
a = a + Σ

1
2 v, where v ∼ N(0, I) is a standard normal

vector. The chance constraint formulation is compared with
a nonrobust benchmark that fails to take uncertainties into
account. For the latter, optimal decisions are essentially made
by solving the problem with only the static constraint (2). Note
that the shedding requirement is met whenever a>x is non-
positive. Fig. 5 shows the robustness of the optimal solutions
obtained by solving the chance-constrained problem. It can be
seen that the shedding constraint is always satisfied with the
binary SOCP, while about 34% of the time the constraint is
violated for the nonrobust benchmark.

VI. CONCLUSION

This paper studies the stochastic optimal load shedding
problem for networked microgrids. Taking into account the
uncertainty of actual power consumption and energy shortfall,
the system operator aims to obtain the optimal load shedding
decisions with least total shedding cost while keep inter-
/intra-group fairness among a large amount of end users. We
formulate such a task as an integer quadratic program, which
is generally NP-hard to deal with. Capitalizing on the binary
decomposition and McCormick relaxations, we develop two
efficient algorithms whose runtime is 60%–95% shorter than
the state-of-the-art solver BARON.
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Fig. 5. Load shedding constraint violation (deemed as violation if a>x > 0):
chance constraint (4b) vs static constraint (2). A total of 5, 000 Monte Carlo
simulations are conducted for N = 15 with nodes α = β = 5 and η = 0.95.
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