Lawrence Berkeley National Laboratory

Recent Work

Title

INCORPORATION OF A CIRCULAR BOUNDARY CONDITION FOR A MAGNET WITH QUADRANT SYMMETRY INTO THE PROGRAM TRIM

Permalink

https://escholarship.org/uc/item/53n418k6

Authors

Brady, Victor Laslett, L. Jackson.

Publication Date

1980

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Engineering & Technical Services Division

INCORPORATION OF A CIRCULAR BOUNDARY CONDITION FOR A MAGNET WITH QUADRANT SYMMETRY INTO THE PROGRAM TRIM

Victor Brady and L. Jackson Laslett

January 1980 RECEIVED
LAWRENCE
BERKELEY LABORATORY

MAK 24 1980

For Reference

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Incorporation of a Circular Boundary Condition for a Magnet with Quadrant Symmetry into the Program Trim

Victor Brady

L. Jackson Laslett

January 21, 1980

This work was supported by the U. S. Department of Energy under Contract W-7405-ENG-48 $\,$

Incorporation of a Circular Boundary Condition for a Magnet with Quadrant Symmetry into the Program Trim

Victor Brady

L. Jackson Laslett

1. Introduction

This report describes the modifications made in the magnetostatic program Trim to incorporate a technique for handling the boundary conditions in the case of a magnet with quadrant symmetry. The program Trim solves the equation for the z-component A of the magnetic vector potential for a two-dimensional geometry in the x,y-plane. The symmetry assumed for the boundary condition described here is that A is zero along the y-axis and that the derivative of A normal to the x-axis is zero. The technique consists of applying a boundary condition to a circular boundary closely surrounding the region of interest, thus eliminating the necessity of a large air region surrounding the essential features of the magnet. The program Trim is described in the report UCRL-18439 titled "Trim: A Magnetostatic Computer Program for the CDC 6000" by John S. Colonias. The boundary condition is discussed in the internal report ESCAR-28 titled "On a Boundary Condition Applicable to Magnetostatic Relaxation Computations" by L. Jackson Laslett. The version of the program described here is essentially the same as described in the report by Colonias except that in order to keep the program within the bounds of small core memory the limit mentioned in the definition of PRBCON(3) has been reduced from 4000 to 3500. A flag has been added to the input parameters for the program Mesh to enable the user to choose the boundary condition described herein. The modifications to the programs Mesh and Field are described in the following pages, and the appendix contains an example of an input deck for calculating the field of a magnet with quadrant symmetry.

2. Program Mesh

Input for the program Mesh is prepared in the same way as for the standard version of Trim. The program assumes the first input region to be the universe, and it assumes that all succeeding input regions lie within the universe. Due to the symmetry of the problem all the input regions lie within the first quadrant. The universe need contain only those features essential to the problem without any surrounding air space. The program constructs two additional regions surrounding the universe which give an outer boundary of two concentric circles, and these regions are given numbers consecutive to the numbered input regions. In the printed output from Mesh the data specifying these two additional regions are listed before the data for the input regions.

The program constructs the two additional regions in the following way. A value JMAX = max(KMAX,LMAX)+3 is calculated from the input values KMAX and LMAX. In mesh coordinates the outer region is then a square of dimension JMAX on a side, and the inner region is a square of dimension JMAX-1 on a side. The x and y coordinates of the points on the circular portions of the two regions are calculated as follows. If there are M points on the circular boundary, excluding the points on the axes, then the angular distribution of the points is given by

$$\Theta(k) = \pi(2k-1)/4M$$
; $k = 1, 2, ..., M$.

Because of the storage limit of 3500 mentioned in the introduction, the maximum allowable value of JMAX is 109. The number of points along the outer boundary is N=2JMAX-3, and the number of points on the inner arc is N-2, not counting points on the axes. The radius R of the circular boundaries is then calculated as follows. Let

$$ZMAX = \max \sqrt{x^2 + y^2}$$

for points of the universe. Then the radius of the inner boundary is

$$R = ZMAX+2H$$

and the radius of the outer boundary is

$$R = ZMAX+3H$$

where H satisfies the relation

$$H = \pi(ZMAX+3H)/2N$$
.

The option to use the circular boundary feature is taken if PRBCON(41) is set to 1.0, in which case the boundary value flags in PRBCON(5)-PRBCON(8) need not be set. If PRBCON(41) is not specified the program behaves in the manner of the standard version of Trim. The parameter PRBCON(41) is transferred to the program Field as TVAR(43). In figure 1 is shown one of the dipole magnet designs that was proposed for use in the Experimental Superconducting Accelerating Ring. Figure 2 is the mesh for this magnet with the circular boundary, and figure 3 is the mesh from the standard version of Trim.

3. Program Field

If the option to use the circular boundary feature is chosen, then the boundary condition is applied in the following way. With N points on the outer circular arc and N-2 points on the inner arc, not counting points on the axes, one regards the potential function in this region to be expressible in the form

$$A = \sum_{m=1}^{N-2} b_m [(R-H)/r]^{2m-1} \cos(2m-1)\Theta$$

where R is the radius of the outer arc, H is the distance between the

inner and outer arcs, and (r,θ) are polar coordinates. In particular A can be written

$$A_{i}^{I} = \sum_{m=1}^{N-2} b_{m} \cos(2m-1)\theta_{i}^{I}$$

at the points i=1,2,...,N-2 of the inner arc. The coefficients b are then expressible by

$$b_{m} = \sum_{i=1}^{N-2} (M^{-1})_{m,i} A_{i}^{I}$$

where M^{-1} is the inverse of the matrix M for which the elements are

$$(M)_{p,q} = \cos(2q-1)\theta_p^{I}$$

The extension of the potential function to the outer arc then leads to the values

$$A_k^0 = \sum_{i=1}^{n-2} E_{k,i} A_i^I$$

where the elements of E are given by

$$E_{k,i} = \sum_{m=1}^{n-2} \cos(2m-1)\theta_k^0 [(R-h)/R]^{2m-1} (M^{-1})_{m,i}$$

where $i=1,2,\ldots,N-2$ and $k=1,2,\ldots,N+1$, and k=1 corresponds to the point on the x-axis. The points θ^{-} on the inner arc have been regularly spaced in the sense that

$$\theta_{p}^{I} = \pi(2p-1)/[4(N-2)]$$

where p=1,2,...,N-2, and therefore the inverse of M is readily expressible in explicit form as

$$(M^{-1})_{m,i} = [2/(N-2)]\cos(2m-1)\theta_{i}^{I}$$

= $[2/(N-2)]\cos(2m-1)(2p-1)\pi/[4(N-2)]$

and E has the elements

$$E_{k,i} = \frac{2^{N-2}}{N-2} \sum_{m=1}^{N-2} [(R-H)/R]^{2m-1} \cos(2m-1)\theta_{k}^{0} \cos(2m-1)\theta_{i}^{1}.$$

In the version of Trim decribed here the azimuthal distribution of the points on the outer boundary is $\theta_1^0 = 0$ and

$$\theta_{k}^{0} = \pi(2k-3)/4N$$

for k=2,3,...,N+1.

Values of \mathbf{A}_k^0 as obtained above are introduced as values of the potential function on the outer boundary following the completion of any

full relaxation pass through the remainder of the mesh, and such values on the outer boundary then are employed in the subsequent relaxation revision of interior potentials. It is to be noted that the factor

$$[(R-H)/R]^{2m-1} \approx 1-(2m-1)\frac{H}{R}$$

appears in the equations above, and this agrees through first $\mbox{ order }$ in $\mbox{H/R}$ with the factor

$$\left[\frac{a}{h}-m\right]/\left[\frac{a}{h}+(m-1)\right]$$

proposed in the report ESCAR-28.

4. Program Trip

The plotting program Trip has not been changed, but if one wishes to plot the entire grid, including the circular regions constructed by the program, then the values XMAX and YMAX used in the input to Trip must be specified accordingly.

5. Examples

To test the method the potential A was calculated for a window-frame current distribution with no iron as illustrated in figure 4. The results of the Trim run were compared with analytical results. In table 1 the two sets of values are compared for some of the calculated points. In figures 5 and 6 are shown the mesh plot and the equipotential plot for the window-frame calculation.

The program was run for variable permiability iron for the mesh configurations of figures 2 and 3. In figure 7 is shown the equipotential plot corresponding to the mesh of figure 2. This plot shows there is probably no advantage to using the circular boundary for this configuration because the potential outside the iron has fallen off to about two percent of its maximum value. The potential values for the two runs agreed to about four figures in the air region inside the iron. It took about 1.25 times as long to do the calculation for the circular boundary as for the mesh shown in figure 3, and since the number of mesh points are about the same for the two runs this gives a good idea of the relative speed of computation for the two methods. The possible gain in speed of convergence by over-relaxing the updated values on the outer boundary was investigated by running this variable permiability case for several values of a relaxation parameter. Thus if A is the potential on the outer boundary and n is the cycle number, then we used the relation

$$A^{n+1} = \phi A^{new} + (1-\phi) A^n$$

for $\phi=1.00,1.30,1.60,1.90,1.94$ and found no change in the number of cycles needed for convergence. The value of ϕ was therfore left at unity.

Table 1						
X	Y	A From Program	A analytic			
10.0	•0	249.7	250.2			

X	Y	A From Program	A analytic
10.0	•0	249.7	250.2
20.0	•0	493.1	493.9
30.0	•0	730.6	731.6
5.0	5.0	125.9	126.1
20.0	20.0	511.8	513.2
25.0	25.0	631.5	633.2
30.0	30.0	727.3	729.1

6. Appendix

The following appendix contains a set of control cards and data input cards for calculating the magnet field for the magnet illustrated in figure 1 using the circular boundary condition.

```
TRV08,4,850,170000.XXXXXX,BRADY
FLOOR (3)
GETTAPE.OLD1=TRIM/QUADSYM/MESH.21416.
GETTAPE, OLD2=TRIM/QUADSYM/FIELD, 21416.
GETTAPE, OLD3=TRIM/QUADSYM/TRIP, 21416.
UPDATE (P=OLD1,C=C1,F,C=LIST)
RETURN (CLD1)
RUN76(SC, I=C1, B=MSH, O=L IST, NL75000)
RETURN(C1)
LINK (F=MSH.X)
UPDATE (P=OLD2, C=C2, F, O=LIST)
RETURN (CLD2)
RUN76 (SC. I=C2.B=FIELD.O=LIST, NL50000)
RETURN(C2)
REWIND(TAPE35)
LINK, F=FIELD, X.
UPDATE (P=OLD3, C=C3, F, O=LIST)
RETURN((LD3)
RUN76 (SC. I=C3.8=TRP.0=LIST)
REWIND(TAPE35)
RETURN(C3)
LINK (F=TRP, X)
EXIT.
DUMP.170000.L=LIST.
GRUMP, L =L IST.
CXII.
FIN.
TIM.
DDB .
COPY, OUTPUT/RB, LIST.
COPY.DAYFILE/RB.LIST.
DISPOSE, LIST = MF, R = (FLOOR 3).
END OF FECORD
END OF FLOORD
 DIPCLE MAGNET
 *1+8 . +44. +53. O.
                        *41+1.
                                   S
                                        2
                                                        UNIVERSE
          1
               O.
                           0.
    1
                           8.27
     1
         13
               0.
                         10.439
    1
         16
               0.
         33
                         22.1056
    1
               0.
         53
                         38.35
    1
               0.
   38
         53
              22.1056
                         38.35
         53
                         38.35
   44
              27.43
   44
          1
              27.43
                           0.
   38
          1
              22.1056
                           0.
   17
          1
              10.439
                           0 -
               8.27
   14
          1
                           û.
          1
                                        C
    1
               0.
                           0.
     2
          1
              220000.
                                        1
                           0.
    2
         13
                .14229
                           8.26878
     2
         16
                .17961
                         10.43745
    3
                .91860
                         10.39850
         16
                         10.30730
    4
         16
               1.65296
    5
         16
               2.37901
                         10.16430
    6
                           9.97022
         16
               3.09312
               3.79167
    7
         15
                           9.72604
    7
         14
               3.52906
                           9.05242
    6
         14
               3.26646
                           8.37680
    6
         13
                           7.70518
               3.00385
    5
         13
               2.31005
                           7.94082
    4
         13
               1.59811
                           8.11412
    3
         13
                .87363
                           8.22373
                                       C
```

```
3
                                                    IRON REGION
       2
                        0.
                                     1
            0.
38
                          .00000
       1
            22.10560
38
       2
            22.09690
                          .61998
       3
                         1.23947
38
            22.07082
38
       4
            22.02738
                         1.85799
38
       5
            21.96660
                         2.47504
       5
37
                         3.09015
           21.88855
37
       6
           21.79327
                         3.70283
       7
37
            21.68085
                         4.31259
            21.55137
37
       8
                         4.91896
       9
                         5.52146
37
            21.40493
                         6.11962
36
      10
            21.24165
            21.06167
                         6.71296
36
      11
36
      12
            20.86511
                         7.30102
      12
            20.65213
                         7.88333
35
      13
            20.42291
                         8.45945
35
35
      14
            20.17762
                         9.02891
     -15
                         9.59126
35
            19.91646
34
      16
            19.63962
                        10.14607
      17
            19.34734
34
                        10.69290
      17
            19.03983
                        11.23131
33
                        11.76089
33
      18
            18.71735
      19
                        12.28121
33
            18.38013
32
      20
            18.02846
                        12.79188
      20
                        13.29248
31
            17.66261
      21
            17.28285
                        13.78262
31
30
      22
            16.88950
                        14.26191
29
      22
            15.48287
                        14.72999
29
      23
            16.06326
                        15.18648
                        15.63102
28
      24
            15.63102
      24
                        16.06326
27
            15.18648
      25
                        16.48287
26
            14.72999
                        16.68950
25
      25
            14.26191
24
      26
            13.78262
                        17.28285
24
      27
            13.29247
                        17.66261
            12.79188
      27
23
                        18.02846
22
      28
            12.28121
                        18.38013
                        18.71735
21
      28
            11.76039
20
      29
           11.23131
                        19.03983
      29
            10.69290
                        19.34734
19
      29
            10.14607
                        19.63962
18
      29
             9.59126
                        19.91646
17
             9.02891
                        20.17762
16
      30
      30
             6.45945
                        20.42291
15
             7.88333
                        20.65213
14
      31
13
      31
             7.30102
                        20.66511
12
      32
             6.71296
                        21.06167
11
      31
             6.11961
                        21.24165
      32
             5.52146
10
                        21.40493
 9
      32
             4.91896
                        21.55137
                        21.68085
      33
             4.31259
 8
 7
      32
             3.70283
                        21.79327
 6
      33
             3.09015
                        21.88855
             2.47504
 5
      33
                        21.96660
      33
             1.85799
 4
                        22.02738
 3
             1.23947
      33
                        22.07082
 2
      33
              .61998
                        22.09690
 1
      33
              .00000
                        22.10560
      53
                      38.35
 1
            0.
44
      53
          27.43
                      38.35
                        0.
                                     C
44
       1
          27.43
       1
           168000.
                                     1
                        0.
 4
```

```
3.44553
                           7.51806
     7
         12
     7
         13
                           8.17532
               3.74675
     8
         14
               4.04798
                           8.83258
     8
         15
               4.34920
                           9.48985
    9
         14
               4.99584
                           9.16593
   10
         14
                           8.79802
               5.61850
   11
         13
               6.21419
                           5.38788
   12
         13
               6.78006
                           7.93748
   12
         12
               6.31048
                           7.38773
               5.84089
                           6.83798
   11
         11
   10
         11
               5.37130
                           6.28824
     9
         11
                           6.75699
               4.76823
     8
         12
               4.12447
                           7.16810
                                        C
     5
                           0.
                                        1
              70000.
          1
   11
          9
               5.98236
                           5.71002
   12
         10
               6.50536
                           6.20921
   12
         11
               7.02837
                           6.70841
   13
         11
               7.55137
                           7.20760
                           6.77047
               7.94566
   14
         11
   15
         10
               8.31468
                           6.31180
                                        C
   12
          9
                           5.00035
               6.58707
                                        1
    6
          1
              46000.
                           0.
   12
          9
               6.58707
                           5.00035
   15
         10
               8.31468
                           6.31180
   15
          3
               8.65726
                           5.83306
          9
                           5.33578
   16
               8.97230
          7
   13
               7.10805
                           4.22712
   12
          8
               6.85846
                           4.62108
                                       C
    7
                           0.
              36000.
                                        1
          1
                           3.15739
               7.64355
   14
          6
   17
          7
               9.64824
                           3.98549
   17
          6
               9.88492
                           3.35574
          5
                           2.65649
                                        C
   14
               7.83105
     ð
          1
               24000.
                                        1
                           0.
          5
   14
               7.83105
                           2.65849
   17
          6
               9.88492
                           3.35574
          5
   17
              10.08055
                           2.71205
                                        C
   14
               7.98603
                           2.14855
        FECORD
END OF
END OF
        FECORD
 0
 1
 *24+56. *26+56.
 S
 0
END OF FECORD
END OF RECORD
 0. 52. 0. 52. 74.2857 1. 0. 1.
0. 52. 0. 52. 74.2857 C. 50. 2.
```


DIPOLE MAGNET

F16.2

DIPOLE MAGNET

F16.3

₩ 85

WINDOW-FRAME, 2000 AMPS, NO IRON.

F16. 5

WINDOW-FRAME. 2000 AMPS. NO IRON.

YMIN= 0.000 CYCLE 344 DUMP 2

YMAX= 65.000 MODE AIR

XMIN= 0.000 AMIN= 7.9533E+00

XMAX= 65.000 AMAX= 0.3565E+02

11 DCT 79 LINEAR MODEL


```
DIPOLE MAGNET
YMIN=
          0.000
                    CYCLE
                                 DUMP
                                       2
                           391
           52.000
YMAX=
                    MODE IRON
XMIN=
           0.000
                    AMIN= E.4934E+00
           52.000
                    AMAX= 3,9931E+05
XMAX=
OS NOU 79 LINEAR
                    MODEL
```

FIG.7

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720